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NON-LOCAL RETINEX – A UNIFYING FRAMEWORK AND BEYOND ∗

Dominique Zosso†, Giang Tran , and Stanley J. Osher

Abstract. In this paper, we provide a short review of Retinex and then present a unifying framework. The
fundamental assumption of all Retinex models is that the observed image is a multiplication between
the illumination and the true underlying reflectance of the object. Starting from Morel’s 2010 PDE
model, where illumination is supposed to vary smoothly and where the reflectance is thus recovered
from a hard-thresholded Laplacian of the observed image in a Poisson equation, we define our
unifying Retinex model in similar but more general two steps.

We reinterpret the gradient thresholding model as variational models with sparsity contraints.
First, we look for a filtered gradient that is the solution of an optimization problem consisting of
two terms: a sparsity prior of the reflectance and a fidelity prior of the reflectance gradient to the
observed image gradient. Second, since this filtered gradient almost certainly is not a consistent
image gradient, we then fit an actual reflectance gradient to it, subject to further sparsity and
fidelity priors. This generalized formulation allows making connections with other, variational or
kernel-based Retinex implementations.

We provide simple algorithms for the optimization problems resulting from our framework. In
particular, in the quadratic case, we can link our model to a plausible neural mechanism through
Wilson-Cowan equations. Beyond unifying existing models, we derive entirely novel Retinex flavors
by using more interesting non-local versions for the sparsity and fidelity prior. Eventually, we define
within a single framework new Retinex applications to shadow detection and removal, nonuniformity
correction, cartoon-texture decomposition, as well as color and hyperspectral image enhancement.

Key words. Retinex, non-local operators, reflectance, illumination, image decomposition, contrast enhance-
ment, shadow detection, cartoon-texture decomposition, thresholding.
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This is a significantly expanded and overhauled version of work initially presented in much
shorter and preliminary form in [83].

1. Introduction. Retinex is a theory on the human visual perception [38, 42, 39]. It was
an attempt at explaining how a combination of processes supposedly taking place both in the
retina and the cortex is capable of adaptively coping with illumination that varies spatially.
The fundamental observation is the insensitivity of human visual perception with respect to a
slowly varying illumination on a Mondrian-like scene, see figure 1.1.

Amongst other models for enhancement and noise removal—such as [75, 43, 65, 66], for an
overview see [1]—Retinex has received particular attention because it is deeply connected with
psycho-visual empirical evidence of human perception. However, depending on the application,
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the various Retinex assumptions are given different importance, and resulting implementations
vary significantly; to the point where “opposing” schools of thought openly accuse each other
of doing it wrongly. Retinex research is a minefield and here we explicitly want to stay non-
partisan.

The outline of this paper is as follows: we start by providing a short review of some Retinex
flavors, in section 2. We tentatively classify models and algorithms in 5 main classes: original
Retinex formulation, threshold-based PDE-models, reset-based random walk and kernel-based
methods, reset- and threshold-free center-surround models, variational Retinex. While fun-
damental connections and equivalences have been shown between random-walk, threshold,
and the original Retinex formulation [30, 53], a divide still exists between recent kernel-based
Retinex such as [4] and variational models like [36].

To fill this gap, we will then in section 3 recall some definitions and notions from non-local
differential operators, and introduce a few new concepts. Based on these non-local differential
operators we will be able to make a formal connection between existing kernel-based, center-
surround, and variational Retinex models. Indeed, in section 4 we provide a short overview
of relevant methods for constructing weight kernels, some of which are well known and others
are suggested more unexpectedly. Then we will show in section 5 how threshold-based, kernel-
based, and center-surround Retinex can be expressed as variational models, the latter two by
making use of these non-local generalizations of differential operators using particular kernels.

In a second step, we will propose a tentative unifying, non-local framework for Retinex in
section 6. Our proposed model takes the shape of a generalized fidelity to thresholded-gradient
problem. We provide a quick outline of how we numerically solve our model for proof of concept,
and we show important connections with Wilson-Cowan IDE equations of neural-networks. We
will then show how the proposed unifying model can reproduce results of other state-of-the-art
Retinex models in section 7. Beyond simply reproducing existing results, we will explore the
new degrees of freedom of the proposed unifying framework, as shown in section 8. Especially,
the flexibility in choosing the weights for the sparsity and fidelity terms, separately, brings
about the possibility of adaptive or conditional thresholding, in section 9, inspired by the
idea of interacting color channels and hue-sensitivity, which allows far-reaching connections
with state-of-the-art shadow-removal algorithms far from traditional Retinex. Finally, we will
conclude on our framework in section 10.

2. A short review of Retinex implementations.

2.1. Original Retinex algorithm. Land formalized the reflectance ratios, by summing
thresholded log-ratios over continuous paths between two pixels [40]. He defines the relative
reflectance of pixel i to j as (see figure 2.1):

(2.1) R(i, j) =
∑
k

δτ log
Ik+1

Ik
with δτ (·) :=

{
· if | · | ≥ τ
0 otherwise

where δτ denotes hard thresholding. The thresholding makes sure, that only sharp intensity
transitions are included in the sum, and the slow drift due to smoothly varying illumination
is eliminated. Provided that the thresholding yields perfect distinction between illumination
gradients and actual feature edges, the relative reflectance of i to j is invariant to the path
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Figure 1.1: Mondrian illusion. Left: Under uniform illumination, the relative intensity ratio
between the top-most and bottom-most patch in this synthetic “Mondrian” image is obvious. Right:
Albeit these patches have the same absolute gray-level under smoothly varying illumination, their
underlying relative reflectance ratio, 2.7, is still perceived by humans, and it can be recovered by
multiplying the local intensity ratios at the discontinuities along any path joining the two patches,
effectively discarding gradients due to lighting.

connecting them. The average relative reflectance at i is then estimated as

(2.2) R̄(i) = Ej [R(i, j)] =
1

N

N∑
j=1

R(i, j)

However, “the ultimate purpose is to describe any area by relating its reflectance to a single,
standard, high reflectance somewhere in the Mondrian or to several equally high reflectances”
[42]. Instead of localizing the highest reflectance in a preprocessing step, which seemed bi-
ologically unplausible, it was proposed to estimate the maximum reflectance directly while
performing the sequential sum along each path. Indeed, whenever the intermediate sequential
sum from j up to Ik+1, i.e. the relative reflectance of Ik+1 to j, becomes positive—equivalent
to a sequential product bigger than 1—, one has reached a new maximum reflectance, and the
sequential sum is reset, with Ik+1 as new reference. Due to the presence of the thresholding
operator, the final reference pixel does not necessarily coincide with the brightest pixel along
the path. For a mathematical definition and analysis of this reset mechanism, see [60].

There has been quite some debate about the respective role and importance of both thresh-
old and reset in the Retinex, including by McCann himself [51]. The criterion will serve us
dividing the many Retinex implementations in two broad classes: threshold-based versus reset-
based. A third class of implementations is based on an alternative technique proposed by Land,
which determines lightness as ratio of the local intensity compared to the average intensity
of its immediate (circular) surroundings, without neither thresholding, nor reset [41]. A forth
class, finally, extracts the reflectance and illumination information variationally, by optimizing
different energy functionals.

2.2. Threshold-based Retinex implementations (PDE). In 1974, Horn proposed a math-
ematical alternative to the Retinex algorithm that differs substantially in form [29]. He es-
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Figure 2.1: Relative and average reflectance. a) The relative reflectance of pixel i to pixel j is
computed by accumulating all important local intensity gradients along any path γ joining these pixels.
b) The average reflectance of i is then obtained as the average relative reflectance of i to different j.

sentially stripped the Retinex algorithm down to a smoothness prior on the illumination field,
and thus to a thresholding on intensity derivatives. He poses the problem of recovering the
underlying reflectance R, which multiplied by the illumination B resulted in the observed I:

(2.3) I(x, y) = B(x, y)R(x, y)

By taking the logarithm, i := log(I) etc., we obtain an additive impact of illumination:

(2.4) i(x, y) = b(x, y) + r(x, y)

Since the illumination b is supposed to be varying smoothly, the spatial derivatives of the
observed intensity are mostly due to edges in the reflectance r. However, he realized that
first order derivatives are directional in the two-dimensional case of images, and that the
lowest order isotropic derivatives are found in the scalar Laplacian operator: ∆b will be finite
everywhere, while ∆r will be zero except at each edge separating regions [29]. Therefore,
discarding the finite parts of the observed intensity Laplacian is supposed to yield the Laplacian
of the reflectance (Poisson equation):

(2.5) ∆r = δτ∆i

A tight mathematical connection between Land’s and Horn’s computations, on the basis
of Green’s formula, has been shown in work by Hurlbert [30]. A fully discrete alternative to
Horn’s convolution and inversion scheme was proposed by [49]. There, an equivalent two-stage
algorithm was introduced, which achieves inversion at very low computational cost, feasible
in terms of neural networks. The steps are first local contrast computation and thresholding
(δτ ), then inversion, as follows:

c(x) = δτ

i(x)−
∑
y 6=x

w(x, y)i(y)

(2.6)

r(x) = c(x) +
∑
y 6=x

w(x, y)r(y)(2.7)
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While the first step is straightforward, the second step realizes inversion through feedback
in terms of neural networks: r(y) is Retinex output computed in parallel, and the system
(hopefully) converges to a steady state solution.

Horn’s model has been strongly backed up by a much more recent paper by Morel [53],
where the authors show a very tight connection between Horn’s Laplacian thresholding and
Land’s original, resetless Retinex algorithm. Indeed, “if the Retinex paths are interpreted as
symmetric random walks, then Retinex is equivalent to a Neumann problem for a linear Poisson
equation” [53]. The main difference between Horn and Morel concerns the argument of the
hard thresholding operator: while Horn thresholds the scalar Laplacian, Morel thresholds the
components of the gradient prior to computing the divergence. De facto, Morel thus effectively
solves an L2-gradient fitting problem:

(2.8) r̂ = arg min
r

{
‖∇r − δτ∇i‖22

}
We refer to this basic model as L2-Retinex. Note that reconstruction from thresholded gradient
has earlier been proposed by Blake [8, 9, 11]. More recently, the L1-equivalent thresholded-
gradient fidelity Retinex has been proposed: The L1-Retinex minimizes the isotropic L1-
distance [45]:

(2.9) r̂ = arg min
r
{‖∇r − δτ∇i‖1}

2.3. Reset-based Retinex implementations (Random walk). Moving away from thresh-
olding and relying purely on the reset mechanism, Frankle and McCann have patented their
Retinex algorithm [20]. The Frankle-McCann algorithm replaces sequential products along
paths by pairwise pixel ratios sampled along discrete spirals. Long-distance interactions are
computed first, then the sampling progressively approaches the center pixel while decreasing
the spacing. At each step, the lightness estimate is updated with a ratio-product-reset-average
operation [21]. More recent variants of the algorithm mainly involve multiresolution image
pyramids [50, 21], different sampling patterns [80, 31], or ratio modifiers [70].

Two of the main drawbacks of the Frankle-McCann algorithm are the strong dependence on
the path length of the spiral pattern (represented as number of iterations), and the appearance
of asymmetric halos due to the anisotropic sampling pattern. In order to avoid these issues,
Provenzi et al. replace the path-based sampling pattern by a repeated sampling through
random sprays [61]. Indeed, if the threshold is removed from the Retinex formulation, then
the reset reduces the relative reflectance, computed using a specific path γk, to the ratio of
central pixel I(i) and brightest pixel I(x) along that same path γk [60]:

R(i, j) = log
I(i)

I(x)
(2.10)

R(i) =
1

N

N∑
k=1

log
I(i)

I(xk)
(2.11)

where xk is the brightest pixel encountered along γk. Therefore, many paths become redun-
dant, and the maxima I(xk) can be sampled alternatively. It was suggested that averaging
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repeated random spray sampling of xk directly, with radially decreasing sampling density, can
substitute the path-based filtering efficiently. On the downside, such sampling of extrema ex-
hibits high variance, and the recovered reflectances are typically noisy. More robust estimators,
such as high-percentage quantiles rather than the most extreme sample, results in smoother
illumination estimation and therefore lower noise.

Beyond, the (white-patch) random spray Retinex was combined with a (gray-world) model
used for automatic color equalization (ACE) [65, 62]. Eventually, the random spray sampling
was replaced by a kernel, representing the sampling density of the random spray in the limit
case [4, 59]:

(2.12) R(i) =
∑

j:I(j)≥I(i)

w(i, j)f

(
I(i)

I(j)

)
+

∑
j:I(j)<I(i)

w(i, j)

where w(i, j) is the kernel, representing the probability density of picking a pixel j in the
neighborhood of i [4]. Note that, here again, we find the ratio modifier f previously introduced
by Sobol [70].

2.4. Center-surround Retinex implementations. A simple alternative to threshold/reset
based Retinex algorithms was proposed by Land based on findings of lateral inhibition [41].
The alternative consists in determining the local lightness (reflectance) as the ratio between
local intensity and an average of its close surroundings. Land realized that this much simpler
model could reproduce all Retinex behavior modeled so far, and had the additional competence
of generating empirically perceived Mach bands [64, 17].The fundamental idea is again that
the low-frequency components are due to illumination, while the high-frequency details are
features in the reflectance.

10 years later, only, the idea was picked up and formulated as single- and multi-scale
center-surround Retinex [35, 34, 63]. The single-scale Retinex is given by

(2.13) R(i) = log I(i)− log [F ∗ I] (i)

where F is a Gaussian kernel. The multi-scale Retinex is then simply the combination of
different single-scale retineces:

(2.14) R(i) = log I(i)−
∑
n

wn log [Fn ∗ I] (i)

where wn :
∑

nwn = 1 are the weights of each scale, and Fn are Gaussian kernels of different
scale.

Changing the order of log and Gaussian convolution in the single scale Retinex amounts
to homomorphic filtering

(2.15) R(i) = log I(i)− [F ∗ log I] (i)

which in turn can be identified as a special case of (resetless) kernel-Retinex, with the kernel
w(i, j) ≡ F and ratio modifier f ≡ log:

(2.16) R(i) =
∑
j

w(i, j) log

(
I(i)

I(j)

)
= log I(i)−

∑
j

w(i, j) log I(j)
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2.5. Variational Retinex. A whole family of variational Retinex models handles the regu-
larity priors on the reflectance and illumination parts of the Retinex decomposition in a more
explicit way. First of its kind, the variational framework by Kimmel introduces competing H1

smoothness priors on both the illumination and reflectance fields, as well as a quadratic fidelity
prior between illumination and observed intensity [36]. In addition, illumination is constrained
to be bigger or equal to observed intensity, i.e. the reflectance is limited by an upper bound:

(2.17) min
b

{∫
Ω
|∇b|2 + α(b− i)2 + β|∇b−∇i|2dxdy

}
s.t. b ≥ i, 〈∇b, ~n〉 = 0 on ∂Ω.

Kimmel solves this quadratic programming problem using projected normalized steepest de-
scent at multiple resolutions [36]. Here, we rewrite the problem slightly, optimizing for the
reflectance rather than the illumination, by substituting according to the coherence condition
i = b+ r:

(2.18) min
r

{
‖∇r −∇i‖22 + α‖r‖22 + β‖∇r‖22

}
s.t. r ≤ 0, 〈∇r, ~n〉 = 0 on ∂Ω.

This form makes clear that variational Retinex is an optimization between reflectance gradient
fidelity and some sparsity penalties.

Subsequently, variations of this variational Retinex model have been proposed, mainly
involving different norms for the fidelity and sparsity terms, and dropping the asymmetry
constraint r ≤ 0. First, Ma and Osher have dropped a few terms and replace H1 smoothness
of the reflectance by a TV-prior [46]:

(2.19) min
r

{
‖∇r −∇i‖22 + 2λ‖∇r‖1

}
As a complication, instead of the local TV prior, they also make use of non-local total variation.
Further, Ng and Wang introduce an L2-fidelity prior between reflectance and intensity [54]:

(2.20) min
r

{
‖∇r −∇i‖22 + α‖r − i‖22 + 2λ‖∇r‖1

}
Chen et al. have used a TV-L1-based variational Retinex approach, which they call logarithmic
total variation (LTV), for illumination normalized face detection [15]:

(2.21) min
r
{‖∇r −∇i‖1 + α‖r‖1}

Remark 2.1.At this point it is worthwhile noting, that both the L2- and L1-Retinex [53, 45]
have a threshold-free variational equivalent.

Indeed, the hard threshold on the intensity gradient can be seen as a contraction of an
L0-sparsity prior on the gradients of the reflectance:

(2.22) min
r

{
‖∇r − δτ∇i‖22

}
= min

r


∥∥∥∥∥∇r − arg min

~q

{
‖~q −∇i‖22 + τ2‖~q‖0

}∥∥∥∥∥
2

2


which is a relaxed version of the more complicated problem

(2.23) min
r

{
‖~q −∇i‖22 + τ2‖~q‖0

}
s.t. ∇r = ~q
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This connection between basic threshold and a related variational problem makes it intuitive,
that other variational models, such as the TV-Retinex [46], can be retro-fit into a thresh-
old based Poisson-problem, as well. This is the fundamental insight leading to the non-local
unification proposed in this paper.

3. Non-local differential operators (basic definitions). In the this section, we recall and
give a few definitions of non-local differential operators, which we need in order to cast existing
kernel-based Retinex methods into a variational framework, and based on which we will propose
our unifying Retinex framework. To this end, we recall a few definitions of non-local operators
[22]. Here, we employ the continuous definitions, but their translation into the discrete case is
relatively straightforward.

3.1. Products and norms. First, we give the definitions of particular products and norms
of scalars and non-local vectors. To begin with, we require appropriate inner products.

Definition 3.1.For scalars i : Ω→ R, we choose:

(3.1) 〈i, j〉 :=

∫
Ω
i(x)j(x)dx,

which is the common L2 inner product.
Definition 3.2.Accordingly, we introduce the following inner product for vectors ~v : Ω →

Ω× Ω:

(3.2) 〈~u,~v〉 :=

∫
Ω×Ω

u(x, y)v(x, y)dxdy.

Definition 3.3.The associated L2 norms are respectively for scalars i : Ω→ R:

(3.3) ‖i‖2 :=
√
〈i, i〉 =

√∫
Ω
i(x)2dx,

and for vectors ~v : Ω→ Ω× Ω:

(3.4) ‖~v‖2 :=
√
〈~v,~v〉 =

√∫
Ω×Ω

v(x, y)2dxdy.

Definition 3.4.Similarly, the L1-norm of the vector ~v, ‖~v‖1 : Ω× Ω→ R, is defined as

(3.5) ‖~v‖1 :=

∫
Ω×Ω
|v(x, y)|dxdy.

Definition 3.5.Let w be a non-negative weighting function and ~v a vector. The weighted
L0-“norm” of the vector ~v, ‖~v‖0,w : Ω× Ω→ R, is defined as

(3.6) ‖~v‖0,w :=

∫
Ω×Ω

w(x, y)(1− δ(v(x, y)))dxdy
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where δ is the Dirac distribution. This functional emphasizes the (L0) sparsity of important
vector components.

Definition 3.6.Further, pointwise multiplication is written for scalars i and j as

(3.7) (i · j)(x) := i(x)j(x), x ∈ Ω

and for vectors ~u and ~v as:

(3.8) (~u · ~v)(x, y) := u(x, y)v(x, y), x, y ∈ Ω

3.2. Differential operators. We can now extend the gradient operator to the non-local
case:

Definition 3.7.Let Ω ∈ Rn, x ∈ Ω, i(x) be a real function i : Ω→ R. We define the non-local
gradient of this function as the vector of all partial derivatives, ∇wi : Ω→ Ω× Ω:

(3.9) (∇wi)(x, y) :=
√
w(x, y)(i(y)− i(x)), x, y ∈ Ω

for some non-negative weights w(x, y).
Remark 3.8.Note that this definition of non-local gradients amounts to a pointwise multi-

plication between the vector of all finite differences, ~di, and the weight-vector ~ω:

(3.10) (∇wi) ≡ ~ω · ~d

{
~ω : ω(x, y) =

√
w(x, y) x, y ∈ Ω

~di : di(x, y) = i(y)− i(x) x, y ∈ Ω

Thus we will call any such pointwise product between a weighting function and another vector,
say, ~q, a quasi-gradient, insofar as it shares the form of an actual gradient up to the fact that
the vector ~q does not actually stem from non-local finite differences.

Definition 3.9.The associated divergence of a vector ~v ∈ Ω×Ω, namely divw ~v : Ω×Ω→ Ω,
is then defined as the negative adjoint under the above inner products:

(3.11) 〈∇wi, ~v〉 = 〈i,−divw ~v〉 ,

The expression for the divergence is easily found as

(3.12) (divw ~v)(x) :=

∫
Ω

√
w(x, y)v(x, y)−

√
w(y, x)v(y, x)dy.

Definition 3.10.The non-local Laplacian, ∆wi : Ω → Ω is defined as the composition of
non-local divergence and non-local gradient:

(3.13) (∆wi)(x) := (divw(∇wi))(x) =

∫
Ω

(w(x, y) + w(y, x))(i(y)− i(x))dy.
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Lemma 3.11.Let ws(x, y) be a symmetric weighting function, i.e. ∀x, y ∈ Ω : ws(x, y) =
ws(y, x). This restriction simplifies the expressions of both the divergence and associated Lapla-
cian:

(3.14) (divws ~v)(x) =

∫
Ω

√
ws(x, y)(v(x, y)− v(y, x))dy,

and

(3.15) (∆wsi)(x) = (divws(∇wsi))(x) = 2

∫
Ω
ws(x, y)(i(y)− i(x))dy,

where the Laplacian now differs from the regular graph Laplacian by a factor 2.
Proof. The symmetry of weights, ws(x, y) = ws(y, x) in particular leads to:√

ws(x, y) =
√
ws(y, x), and(3.16)

ws(x, y) + ws(y, x) = 2ws(x, y).(3.17)

From which the simplifications immediately follow.

3.3. Filtered gradients. Based on the non-local differential operators defined above, we
now introduce filtered gradients, by making use of a filter function f acting on the scalar
differences.

Definition 3.12.Be f : R → R a real-valued distortion function applied to the finite dif-
ferences. We define filtered non-local gradients, ∇w,f i : Ω → Ω × Ω, as the quasi-gradients
obtained as follows:

(3.18) (∇w,f i)(x, y) :=
√
w(x, y)f(i(y)− i(x)), x, y ∈ Ω

Definition 3.13.We call ∆w,f the filtered non-local Laplacian obtained by applying the (reg-
ular) divergence to filtered gradients

(3.19) (∆w,f )(x) := (divw(∇w,f i))(x) =

∫
Ω
w(x, y)f(i(y)− i(x))− w(y, x)f(i(x)− i(y))dy.

Lemma 3.14.Let fs be a symmetric real-valued function, i.e. fs(z) = fs(−z) and choose the
weights ws(x, y) = ws(y, x) symmetrically. The associated filtered non-local Laplacian ∆ws,fs

is always zero:

(3.20) (∆ws,fs)(x) = 0.

Proof. The symmetrically filtered non-local Laplacian with symmetric weights is written

(3.21) (∆ws,fs)(x) =

∫
Ω
ws(x, y)fs(i(y)− i(x))− ws(y, x)fs(i(x)− i(y))dy.
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Due to symmetry, one has both ws(x, y) = ws(y, x) and fs(i(x)− i(y)) = fs(i(y)− i(x)) and
therefore the integrand vanishes.

Lemma 3.15.Let fa be an anti-symmetric real-valued function, i.e. fa(z) = −fa(−z) and
choose the weights ws(x, y) = ws(y, x) symmetrically. The associated filtered non-local Lapla-
cian ∆ws,fa is given by:

(3.22) (∆ws,fa)(x) = 2

∫
Ω
ws(x, y)fa(i(y)− i(x))dy.

Proof. The anti-symmetrically filtered non-local Laplacian with symmetric weights reads

(3.23) (∆ws,fa)(x) =

∫
Ω
ws(x, y)fa(i(y)− i(x))− ws(y, x)fa(i(x)− i(y))dy.

Due to (anti-)symmetry, one has both ws(x, y) = ws(y, x) and fa(i(x)−i(y)) = −fa(i(y)−i(x)),
from which the lemma is directly obtained.

3.4. Non-stationary filtering. In the above definitions, the filter function f was stationary,
i.e. independent of the location. Here, we now introduce a non-stationary filtering function.

Definition 3.16. Be fns : R × Ω × Ω → R a non-stationary real-valued distortion function
applied to the finite differences. We define non-stationary filtered non-local gradients, ∇w,fnsi :
Ω→ Ω× Ω, as follows:

(3.24) (∇w,fnsi)(x, y) :=
√
w(x, y)fns(i(y)− i(x), x, y), x, y ∈ Ω

Definition 3.17.We call ∆w,fns the non-stationary filtered non-local Laplacian obtained by
applying the (regular) divergence to non-stationary filtered gradients

(∆w,fns)(x) := (divw(∇w,fnsi))(x)(3.25)

=

∫
Ω
w(x, y)fns(i(y)− i(x), x, y)− w(y, x)fns(i(x)− i(y), y, x)dy.

Lemma 3.18.Let f be a cross-symmetric non-stationary real-valued filter function, i.e. let
f(z, x, y) = −f(−z, y, x), and choose the weights ws(x, y) = ws(y, x) symmetrically. The
associated non-stationary filtered non-local Laplacian ∆ws,f is given by:

(3.26) (∆ws,f )(x) = 2

∫
Ω
ws(x, y)f(i(y)− i(x), x, y)dy.

Proof. The lemma is again an immediate result of the (anti-)symmetry properties of the
weights and the filter-function.
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3.5. L0 sparse quasi-gradients. Based on the preceding definitions of non-stationary fil-
tered gradients, we can now make a formal connection between particular types of sparse
gradient approximations and related thresholding filter functions. We first consider the L0-
gradient sparsity.

Lemma 3.19.Let w1 and w2 be two non-negative weighting functions. We look for a vector
~qL0 which is L0 sparse as weighted by w1, while the quasi-gradient

√
w2 · ~qL0 remains close to

the observed gradients ∇w2i. This is the solution of the following optimization problem

(3.27) ~qL0 = arg min
~q

{
λ2‖~q‖0,w1 + ‖

√
w2 · ~q −∇w2i‖22

}
which has a closed form as a component-wise hard-thresholding applied to the non-local finite
differences:
(3.28)

qL0(x, y) = Shτ (i(y)− i(x)), where τ = λ

√
w1(x, y)

w2(x, y)
and Shτ (z) =

{
0 |z| ≤ τ
z otherwise

Proof. We first proceed by rewriting the optimization problem component-wise, and ex-
plicitly using the definition of the L0-cost function:

(3.29) qL0(x, y) = arg min
q∈R

{
λ2w1(x, y)(1− δ(q)) + w2(x, y) (q − (i(y)− i(x)))2

}
,

∀(x, y) ∈ Ω× Ω.

It is easy to see that the sub-differential of the expression to be minimized contains 0 in at
most two points, i.e. there are at most two local minima (just one if they coincide), namely:

(3.30) qL0(x, y) ∈ {0, i(y)− i(x)}.

Since the expression goes to +∞ for q → ±∞, the global minimum is determined by comparing
the cost associated with just these two candidates:

(3.31) qL0(x, y) =

{
0 w2(x, y)(i(y)− i(x))2 ≤ λ2w1(x, y)

i(y)− i(x) otherwise,
∀(x, y) ∈ Ω× Ω.

Identifying this expression with hard-thresholding completes the proof.
Remark 3.20.Let w3 be another weighting function, based on w1 and w2 as

(3.32) w3(x, y) = max (w1(x, y), w2(x, y)) x, y ∈ Ω

The quasi-gradient
√
w3 · ~qL0 is an instance of non-stationary filtered non-local gradient:

(3.33) (
√
w3 · ~qL0) (x, y) = (∇w3,fnsi)(x, y) =

√
w3(x, y)fns(i(y)− i(x), x, y)

with

(3.34) fns = Shτ and τ(x, y) = λ

√
w1(x, y)

w2(x, y)
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3.6. L1/TV sparse quasi-gradients. After making the relation between hard-thresholded
gradients and L0-sparsity, we now highlight the similar connection between soft-thresholding
(shrinkage) and L1/TV-sparsity.

Lemma 3.21.Let w1 and w2 be two non-negative weighting functions. We look for a vector
~qTV such that the quasi-gradient

√
w1 · ~qTV has small L1-norm, while the quasi-gradient

√
w2 ·

~qTV remains close to the observed gradients ∇w2i. More precisely, we are interested in the
solution of the following convex optimization problem:

(3.35) ~qTV = arg min
~q

{
2λ‖
√
w1 · ~q‖1 + ‖

√
w2 · ~q −∇w2i‖22

}
It is found as component-wise soft-thresholding applied to the non-local finite differences:
(3.36)

qTV (x, y) = Ssτ (i(y)− i(x)), where τ = λ

√
w1(x, y)

w2(x, y)
and Ssτ (z) =


z + τ z < −τ
0 |z| ≤ τ
z − τ z > τ

Proof. For shorter notation, let us write τ := λ

√
w1(x,y)

w2(x,y) ≥ 0, and z := i(y) − i(x). Again
we rewrite the problem component-wise:

(3.37) qTV (x, y) = arg min
q

{
f(q) := 2τ |q|+ (q − z)2

}
, ∀(x, y) ∈ Ω× Ω.

The cost functional f(q) is non-differentiable at q = 0, and it grows to infinity for q → ±∞. As
a consequence, it is minimized for a finite q∗ such that the functional’s sub-gradient contains
0 at that point, ∂qf(q∗) 3 0. The sub-differential is easily computed as

(3.38) ∂qf(q) =


2(τ + q − z) q > 0

[−τ − z, τ − z] q = 0

2(−τ + q − z) q < 0.

There are, thus, three cases to consider:
Case 1a: z > τ . Clearly, in this case 0 is not in the sub-differential at q = 0. Also, the

differential does not vanish for any negative q. Instead, q = z − τ is the only minimizer.
Case 1b: z < −τ . Similar to case 1a, except that the only minimizer is found for q = z+τ .
Case 2: z ∈ [−τ, τ ]. In this case, 0 ∈ ∂qf(q = 0), while no q 6= 0 leads to a vanishing

derivative. The minimizer is thus given by q = 0. In addition, we have:

f(0) = z2(3.39)

f(q > 0)− f(0) = 2τq + (z − q)2 − z2 = 2(τ − z)q + q2 > 0(3.40)

f(q < 0)− f(0) = −2τq + (z − q)2 − z2 = 2(−τ − z)q + q2 > 0,(3.41)

which confirms q = 0 as only minimizer in this case. Identifying the three cases and their
minimizers with soft-thresholding (shrinkage) completes the proof.
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Remark 3.22.Let again w3 be the weighting function such that w3 = max (w1, w2). The
quasi-gradient

√
w3 · ~qTV is an instance of non-stationary filtered non-local gradient:

(3.42) (
√
w3 · ~qTV ) (x, y) = (∇w3,fnsi)(x, y) =

√
w3(x, y)fns(i(y)− i(x), x, y)

with

(3.43) fns = Ssτ and τ(x, y) = λ

√
w1(x, y)

w2(x, y)

3.7. L2/H1 sparse quasi-gradients. The next step is to consider L2 gradient “sparsity”:
Lemma 3.23.Let w1 and w2 be two non-negative weighting functions. We look for a vector

~qH1 such that the quasi-gradient
√
w1·~qH1 has small L2-norm, while the quasi-gradient

√
w2·~qH1

remains close to the observed gradients ∇w2i. This corresponds to the following quadratic,
convex optimization problem:

(3.44) ~qH1 = arg min
~q

{
λ‖
√
w1 · ~q‖22 + ‖

√
w2 · ~q −∇w2i‖22

}
Its solution is found as scaling applied to the non-local differences:

(3.45) qH1(x, y) = Suτ (i(y)− i(x)), where τ = λ
w1(x, y)

w2(x, y)
and Suτ (z) =

z

1 + τ

Proof. The cost function is fully differentiable and can be solved pointwise:

(3.46) qH1(x, y) = arg min
q

{
λw1q

2 + w2(q − (i(y)− i(x)))2
}
, ∀(x, y) ∈ Ω× Ω.

Since the cost functional approaches +∞ for q → ±∞, the minimum is achieved for vanishing
first variation. Optimality thus requires from a minimizer q∗:

(3.47)
(
λ
w1(x, y)

w2(x, y)
+ 1

)
q∗ = i(y)− i(x),

from which the lemma is directly obtained.
Remark 3.24.Let again w3 be the weighting function such that w3 = max (w1, w2). The

quasi-gradient
√
w3 · ~qH1 is an instance of non-stationary filtered non-local gradient:

(3.48) (
√
w3 · ~qH1) (x, y) = (∇w3,fnsi)(x, y) =

√
w3(x, y)fns(i(y)− i(x), x, y)

with

(3.49) fns = Suτ and τ(x, y) = λ
w1(x, y)

w2(x, y)

Remark 3.25.For the particular choice of identical weights w = w1 ≡ w2, we have w3 = w,
and the thresholdings in both L0 and L2/H1 sparse quasi-gradients become a constant in space,
that is τ(x, y) = λ uniformly, which makes the filtering function stationary and anti-symmetric.
If the weights are binary, then this extends to the L1/TV case, as well. On the other hand,
if the weights controlling the sparsity and the fidelity are different, then those thresholding
functions τ vary spatially, which results in adaptive thresholding. We will further discuss this
in section 9.
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3.8. TV augmented quasi-gradients. The last case deals with a gradient enhancement:
Lemma 3.26.Let w1 and w2 be two non-negative weighting functions. We look for a vector

~qTV such that the quasi-gradient
√
w1 · ~qTV has increased L1-norm, while the quasi-gradient√

w2 · ~qTV remains close to the observed gradients ∇w2i. It’s the solution of the following
optimization problem:

(3.50) ~qTV = arg min
~q

{
−2λ‖

√
w1 · ~q‖1 + ‖

√
w2 · ~q −∇w2i‖22

}
and is found as unshrinkage applied to the non-local differences:
(3.51)

qTV (x, y) = Ss−τ (i(y)− i(x)), where τ = λ

√
w1(x, y)

w2(x, y)
and Ss−τ (z) =


z + τ z > 0

0 z = 0

z − τ z < 0

Proof. In this case again, we proceed by rewriting the problem component-wise, and sub-

stituting τ := λ

√
w1(x,y)

w2(x,y) and z := i(y)− i(x):

(3.52) qTV (x, y) = arg min
q

{
f(q) := −2τ |q|+ (q − z)2

}
, ∀(x, y) ∈ Ω× Ω.

The cost function f(q) is non-differentiable at q = 0, and f(q) → ∞ as q → ±∞. The
subgradient of f is:

(3.53) ∂qf(q) =


2(−τ + q − z) q > 0

∅ q = 0

2(τ + q − z) q < 0.

There are now 5 cases to be considered:
Case 1a: z ≥ τ . The only vanishing subgradient is found for q = z + τ .
Case 1b: z ∈ (0, τ). There are two locations with vanishing subgradient, namely q = z± τ ,

corresponding to two local minima, one of which is the minimizer. The global minimum is
found by evaluating the cost function at these two locations:

f(z + τ) = −2τ(z + τ) + τ2 = −2τz − τ2(3.54)

f(z − τ) = 2τ(z − τ) + (−τ)2 = +2τz − τ2,(3.55)

therefore f(z + τ) < f(z − τ), and the global minimizer is found as q = z + τ .
Case 2a: z ≤ −τ . The only vanishing subgradient is found for q = z − τ .
Case 2b: z ∈ (−τ, 0). As in case 1b, there are two local minima, at q = z ± τ . This time,

f(z − τ) < f(z + τ) and q = z − τ is the unique minimizer.
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Case 3: z = 0. In this case, there are two equal minimizers, q = ±τ , since f(τ) = f(−τ) =
−τ2, here.

The cases 1a through 2b combine into the gradient enhancement of the lemma. For the
single point z = 0 we are left with an ambiguity between two minimizers. In order to resolve
this ambiguity, we deliberately set the solution to q = 0 for z = 0, albeit this is clearly not a
minimizer, but a local maximum instead. This choice is primarily motivated by the desire to
obtain an odd filtering function, and since no image gradients are to be created out of nowhere.

Remark 3.27.Let again w3 be the weighting function such that w3 = max (w1, w2). The
quasi-gradient

√
w3 · ~qTV is an instance of non-stationary filtered non-local gradient:

(3.56)
(√
w3 · ~qTV

)
(x, y) = (∇w3,fnsi)(x, y) =

√
w3(x, y)fns(i(y)− i(x), x, y)

with

(3.57) fns = Ss−τ and τ(x, y) = λ

√
w1(x, y)

w2(x, y)

4. Computing the weights. At this point, it is worthwhile spending some time on different
choices for the weight vectors used in the non-local differential operators. We will discuss
common choices such as local weights, patch-based non-local weights, semi-local Gaussian
kernels, and finally we suggest the use of cosine-based distances.

4.1. Local weights. It is possible to construct a local weight vector that reproduces the
finite difference scheme of standard local differential operators.

Definition 4.1.Indeed, we construct two-dimensional local weights between two points x and
y as

(4.1) wε(x, y) :=
1

ε

[
δ

(
x− y +

(
ε
0

))
+ δ

(
x− y +

(
0
ε

))]
,

where δ is the Dirac distribution. Then, in the limit ε→ 0, the non-local derivative approaches
the standard gradient:

(4.2) lim
ε→0

(∇wεu)(x) = lim
ε→0

1

ε

u
(
x+

(
ε
0

))
− u(x)

u

(
x+

(
0
ε

))
− u(x)

 = (∇u)(x)

4.2. Semi-local Gaussian kernel. The Gaussian kernel corresponds to a symmetrical ex-
tension and mollification of local weights.

Definition 4.2.The isotropic 2-dimensional normalized Gaussian kernel is given by:

(4.3) wg(x, y) :=
1

2πσ2
e−

d(x,y)2

2σ2 ,

where d(x, y) denotes the Euclidean distance between points x and y, and σ is a scale factor.
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4.3. Patch-based non-local weights. The non-local weights commonly used in imaging
have been introduced by Buades, Coll and Morel in [13].

Definition 4.3.Based on an image i(x), we define non-local weights as

(4.4) wnl(x, y) := e−
d(I(x),I(y))2

h2 with d(I(x), I(y))2 :=

∫
Ω
Gσ(t)(i(y + t)− i(x+ t))2dt,

where h > 0 is a scale parameter and Gσ is a Gaussian window with standard deviation σ.
This weight is close to zero if the regions (patches) around x and y, I(x) and I(y), have
an important Gaussian-weighted L2-distance d(I(x), I(y)). Practically, for each pixel x we
only calculate wnl(x, y) for y in a small search window centered at x, keep only a few, large
coefficients and discard the rest [13, 22, 46]. These weights are generally used today, and little
attention is typically paid to where they come from.

However, an important connection has been shown by [2], where the exponential weights
have been connected with maximum-entropy distributions known from statistical mechanics
[32, 25]. Indeed, the Gaussian weights are maximum-entropy weights minimizing the non-
local H1-energy based on patch-distances d(I(x), I(y)). This argument suggests, that different
weights are optimal when functionals other than non-local H1 are considered, such as non-local
TV or non-local L0, corresponding to differing choices of distances d.

4.4. Cosine-distances. Indeed, it must appear wrong to use (illumination-sensitive) non-
local weights based on the input image, to measure the non-local H1 of the illumination
invariant reflectance (or its fidelity to filtered gradients). Instead of computing and updating
the weights on the current estimate of the reflectance, we suggest using illumination-robust
weights stemming from the input image as a proxy, by normalizing patches by their L2-norm
before computing distances. Such normalized L2-distance can be shown to be equivalent to a
cosine distance:

(4.5) d(I(x)/‖I(x)‖2, I(y)/‖I(y)‖2) = 1− 〈I(x)/‖I(x)‖2, I(y)/‖I(y)‖2〉 = 1− cosαxy,

where αxy := ∠(I(x), I(y)) is the angle between two patches.
Further, exponentials of such cosine distances have the same low order terms in their series

expansion as powers of the cosine:

(4.6) e−λ(1−cosαxy) ≈ cosλ αxy αxy � 1

4.5. Color distances. In a natural image, objects of similar material may have similar
texture and thus small patch-angle. However, more likely pixels of the same material will have
a very similar hue. Here, cosine distances come in very handy. Indeed, to measure the similarity
in material between pixels, we use the cosine distance in RGB space. This comes from the
observation that two pixels in RGB space have the same hue if the angle between the two
corresponding RGB vectors is small—irrespective of their strength of illumination, encoded as
magnitude. Given any two pixels x, y with the corresponding RGB values (I1(x), I2(x), I3(x))
and (I1(y), I2(y), I3(y)), the angle between those two vectors, αxy, is computed via

(4.7) cos(αxy) :=
〈I(x), I(y)〉
‖I(x)‖‖I(y)‖

=
I1(x)I1(y) + I2(x)I2(y) + I3(x)I3(y)√

I2
1 (x) + I2

2 (x) + I2
3 (x)

√
I2

1 (y) + I2
2 (y) + I2

3 (y)
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Definition 4.4.Then we define the color/hue-based weight as follows:

(4.8) wc(x, y) =

{
cos(αxy) if cos(αxy) ≥ c
0 otherwise,

where 0 < c < 1 is a parameter close to one. Note that this definition of color weight in RGB
space can be directly generalized to weights based on cosine-distances in hyperspectral images
[3].

5. Closing the gap between kernel and variational Retinex. The link between PDE-
Retinex (thresholded Poisson equations) and variational models has been shown before. The
definitions of non-local differential operators will now allow us to make a formal connection
between semi-local kernel-based and center-surround Retinex models on the one hand, and
local variational as well as threshold-based models on the other hand. This will eventually
provide a big umbrella under which all Retinex methods can be classified.

5.1. Homomorphic filtering as variational problem. We have already mentioned that the
homomorphic filtering Retinex can be rewritten as a Gaussian-kernel wg(x, y) based compu-
tation of the following form:

(5.1) r(x) = i(x)−
∑
y

wg(x, y)i(y) = −
∑
y

wg(x, y) (i(y)− i(x)) ,

provided that the Gaussian kernel is normalized, i.e.
∑

y wg(x, y) = 1. The second sum now
clearly identifies with our definition of non-local Laplacian (see Definition 3.10 and (3.15)),
and we may thus also write:

(5.2) r(x) +
1

2
∆wg i(x) = 0

This in turn is the Euler-Lagrange equation corresponding to the following convex optimization
problem:

(5.3) min
r

∥∥∇wgr −∇wg i∥∥2

2︸ ︷︷ ︸
A

−
∥∥∇wgr∥∥2

2︸ ︷︷ ︸
B

+ 2 ‖r‖22︸ ︷︷ ︸
C


The interpretation of this variational model is as follows: We look for a reflectance r whose
gradients are similar to those of i (A), but enhanced (B), while having minimal energy (C).

5.2. Perceptual contrast enhancement and non-local derivatives. In their award-winning
model, Bertalmìo and colleagues have used their kernel-based lightness estimate together with
a grey-world prior and a fidelity constraint to build a “perceptually inspired variational frame-
work” for image enhancement [4, 59]. Their anti-symmetrized kernel-based Retinex has a
variational formulation, which is very close to the ACE model [5], namely:

(5.4) min
R

{∫
Ω

[
α (R(x)− 1/2)2 + β (R(x)− I(x))2

]
dx+ C

min
max√
w

(R)

}
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where C
min
max√
w

(R) is a contrast function. For particular, but reasonable choices of the contrast
functions, the contrast term can be written as

(5.5) C
min
max√
w

(R) ≡ −
∫

Ω×Ω

√
w(x, y)|fa(r(y)− r(x))|dxdy = −‖∇w,far‖1

In particular, fa may be the identity. Thus, we rewrite the the perceptual contrast enhance-
ment in terms of non-local derivatives as follows:

(5.6) min
r=log(R)

{
α ‖R− 1/2‖22 + β ‖R− I‖22 − ‖∇wr‖1

}
where the first term represents the gray-world prior, the second is a fidelity term with respect
to the observed intensity, and the contrast term increases non-local TV of the reflectance.

6. Non-local Retinex (proposed model). So far we have seen that all Retinex models
have a variational cousin, potentially through the use of non-local differential operators. Even
more, these variational counterparts all share a very similar structure: the energy typically
comprises one or two fidelity terms (image and/or its gradient), as well as sparsity priors or
alternatively, through negation, enhancement terms.

Also, we have shown that this type of variational problem can be retrofitted into a
Horn/Morel-style gradient-fidelity problem (PDE-Retinex), potentially adding further terms.
In particular, we have shown in the previous section, how different gradient sparsity and fidelity
terms translate into different associated thresholding functions.

Here, we want to formulate this retrofitted PDE-Retinex model as a general recipe. We
tackle the Retinex problem in a two step approach:

1) Gradient filtering. We realize that the reflectance obeys both to some gradient sparsity
priors and some gradient fidelity priors. In a first step, we thus look for an optimal quasi-
gradient that best satisfies those two constraints. This quasi-gradient is obtained as filtered
gradient of the observed image ∇w,f i. Here, we write w as short for w3, since both w1 and w2

are entirely hidden within the generic gradient filter f , inspired by the threshold employed by
Horn and Morel [29, 53].

2) Gradient fitting. However, the resulting quasi-gradient almost certainly is not a valid
gradient by itself, and we wish to fit a reflectance, whose gradient comes closest to the quasi-
gradient determined in the first step, while possibly respecting some additional constraints:

(6.1) r̂ = arg min
r

{
‖∇wr −∇w,f i‖pp + α ‖r‖22 + β ‖r − i‖22

}
The sparsity and gradient fidelity terms of the first step will determine the exact filter function
f to be used, while the sparsity/smoothness priors on the illumination will essentially govern
the gradient fidelity norm p of the second step.

The interest of such a two step procedure is manifold: First, each step, i.e. thresholding
the input gradient, followed by a gradient fitting is relatively simple to compute, compared to
the non-compacted variational model. Further, the computational tools required to solve the
gradient reconstruction step become independent of the gradient sparsity imposed.
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Finally, this two step procedure is fully compatible with Marr’s theory of lightness com-
putation in the (primate) retina, given in (2.6) and (2.7) [49]. Beyond, it particularly neatly
fits into Wilson-Cowan equations, modeling large-scale activity in cortical neural populations
[76, 77], as will be shown below.

6.1. Numerical optimization. In the following, we present basic solvers used for proof
of concept. Note that solvers with better efficiency could easily be devised, but doing so is
beyond the scope of this manuscript.

6.1.1. L2 gradient fidelity. The L2-based problem is differentiable and we propose to
solve its Euler-Lagrange equations. The energy of the L2 gradient-fidelity non-local Retinex
is

J(r) = ‖∇wr −∇w,f i‖22 + α ‖r‖22 + β ‖r − i‖22
The corresponding Euler-Lagrange equations are

(6.2) 0 = 2(−∆wr̂ + ∆w,f i+ αr̂ + β(r̂ − i)),

and we recover an estimate of the reflectance, r̂, as

(6.3) r̂ = ((α+ β)I − L)−1 (βi−∆w,f i) ,

where I is the identity matrix, and L is the Laplacian matrix derived from the weights w(x, y):

(6.4) Lxy =

{
w(x, y) + w(y, x) x 6= y

−
∑

z w(x, z) + w(z, x) x = y.

Remark 6.1.Since the graph Laplacian L is negative semi-definite, the operator (α+β)I−L
is diagonally dominant. Therefore, we can solve for r̂ either by a Gauss-Seidel algorithm or
conjugate gradient method with a few iterations.

Remark 6.2.Note that the problem at hand strongly resembles the L2 statistical ranking
problem [33, 28, 57], from which alternative optimization strategies could be inspired.

6.1.2. Wilson-Cowan equations. Originally, the Wilson-Cowan equations [76, 77] pro-
vided a description of the (temporal) evolution of the coarse-scale, mean activity of a popu-
lation of both inhibitory and excitatory neurons in the cortex [6]. The equations have later
been generalized in order to model the spatio-temporal distribution and patterns of excitation
in the visual cortex (V1) [12]. A first connection between the Wilson-Cowan equations and
Retinex was proposed by Cowan and Bressloff, where it was shown that Marr’s Retinex model
could actually be written in terms of Wilson-Cowan equations, and thus be implemented by
corresponding neuron populations [49, 16].

Definition 6.3.The relevant descriptor of mean activity, a(x, φ, t), at cortical coordinates x,
orientation preference φ is given by the following integro-differential equation (IDE) [12, 6]:

(6.5)
∂a(x, φ, t)

∂t
= −νa(x, φ, t) + µ

∫ π

o

∫
Ω
w(x, φ, y, ϕ)σ [a(y, ϕ, t)] dydϕ+ λh(x, φ, t)
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where h(x, φ, t) is the external stimulus, w is a kernel that decays with the distances |x − y|
and |φ− ϕ|, and σ is a sigmoid function.

Definition 6.4.Like previous authors, we ignore the orientation φ and assume the external
stimuli to be constant in time:

(6.6)
∂a(x, t)

∂t
= −νa(x, t) + µ

∫
Ω
w(x, y)σ [a(y, t)] dy + λh(x)

Lemma 6.5.The proposed L2-based non-local Retinex model is a steady-state of the above
orientation-insensitive Wilson-Cowan equations.

Proof. First, let us write the gradient-descent equation associated with the first variation

(6.7)
∂r(x, t)

∂t
= 2

∫
Ω
w(x, y)(r(y, t)− r(x, t))dy

− 2

∫
Ω
w(x, y)f(i(y)− i(x))dy − 2αr(x, t)− 2β(r(x, t)− i(x))

After rearrangement,

(6.8)
∂r(x, t)

∂t
= −2

(
α+ β +

∫
Ω
w(x, y)dy

)
r(x, t) + 2

∫
Ω
w(x, y)r(y, t)dy

+ βi(x)− 2

∫
Ω
w(x, y)f(i(y)− i(x))dy,

the individual terms can easily be identified with the elements of the Wilson-Cowan equation:

ν = 2α+ 2β + 2

∫
Ω
w(x, y)dy(6.9)

µ = 2(6.10)
σ[r] = r(6.11)

λh(x) = βi(x)− 2

∫
Ω
w(x, y)f(i(y)− i(x))dy(6.12)

where the first coefficient can easily be made constant by imposing kernel normality, i.e. ∀x :∫
Ωw(x, y)dy = 1. Further, the central term clearly identifies as lateral excitation, whereas
the input stimulus i(x) is affected by lateral inhibition through the (thresholded) gradients∫

Ωw(x, y)f(i(y)− i(x))dy.
As usual, the solution of the initial minimization problem is associated with the steady

state of its gradient descent, and since the gradient descent corresponds to a Wilson-Cowan
IDE, therefore, the L2 non-local gradient Retinex is a steady state of the corresponding Wilson-
Cowan IDE.

Remark 6.6.It is to note that a similar claim was made in [6], where the perceptually in-
spired variational Retinex model is associated with a Wilson-Cowan IDE. However, there, the
claim involves the sigmoid function σ to be both spatially varying and depending on r(x, t); a
complication which is not required in the Retinex IDE proposed here.
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6.1.3. L1 gradient fidelity. Let us now consider the optimization of the proposed gradient
fitting after filtering in the p = 1 case. We would like to point out that this problem is formally
equivalent to the L1 statistical ranking problem, for which efficient graph-cuts-based solvers
have been developed [58]. Here, as simpler yet less efficient alternative for illustrative purposes
we might as well explore a more intuitively accessible split Bregman/augmented Lagrangian
based approach, as outlined in the following paragraphs [7, 23, 55].

The L1-based problem writes:

(6.13) min
r

{
‖∇wr −∇w,f i‖1 + α ‖r‖22 + β ‖r − i‖22

}
which we may split into the following linearly constraint minimization problem over two vari-
ables:

(6.14) min
r,e

{
‖e−∇w,f i‖1 + α ‖r‖22 + β ‖r − i‖22

}
s.t. e = ∇wr

We address the constraint by introducing the following augmented Lagrangian, which includes
the constraint as both a quadratic penalty and Lagrangian multiplier term:

(6.15) AL(r, e, µ) = ‖e−∇w,f i‖1 + α ‖r‖22 + β ‖r − i‖22 + ρ ‖∇wr − e‖22 + 2 〈µ,∇wr − e〉

The L1 minimization problem can now be solved by iteratively finding a saddle point to
this augmented Lagrangian, iteratively along the different problem dimensions (ADMM). This
process essentially involves iteration of three steps: solving the L2 minimization in r, shrinkage
of e, updating the Lagrangian multiplier µ:

(6.16)



rk+1 = arg min
r

{
α ‖r‖22 + β ‖r − i‖22 + ρ

∥∥∥∥∇wr − ek +
µk

ρ

∥∥∥∥2

2

}

= ((α+ β)I − ρL)−1

(
βi− ρdivw

(
ek − µk

ρ

))
(L2-Retinex)

ek+1 = arg min
r

{
‖e−∇w,f i‖1 + ρ

∥∥∥∥e−∇wrk+1 − µk

ρ

∥∥∥∥2

2

}

= Ss1/2ρ

(
∇wrk+1 −∇w,f i+

µk

ρ

)
+∇w,f i (Shrinkage)

µk+1 = µk + ρ
(
∇wrk+1 − ek+1

)
(Dual ascent)

Remark 6.7.The most time consuming part is the update rk+1. To speed up, we use a fixed ρ
for every iteration as suggested by the split Bregman method [24], resulting in repeated inversion
using the same system. Also, since the system matrix ((α + β)I − ρL) is sparse and strictly
positive, we can use the Gauss- Seidel or conjugate gradient methods to solve rk+1 with a few
iterations.
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6.1.4. L0 gradient fidelity. Finally, let us look at the non-convex L0-based gradient-
fidelity optimization problem. This L0-based problem writes:

(6.17) min
r

{
‖∇wr −∇w,f i‖0 + α ‖r‖22 + β ‖r − i‖22

}
This problem is hard to solve. We propose to treat it very similarly to the above L1-problem
and first split it into the following linearly constraint minimization problem over two variables:

(6.18) min
r,e

{
‖e−∇w,f i‖0 + α ‖r‖22 + β ‖r − i‖22

}
s.t. e = ∇wr

The resulting sub-optimization problems are now easy to solve, but we have no guarantee for
overall convergence. Indeed, we address this problem in analogy to the L1 gradient fidelity,
introducing both quadratic penalty and Lagrangian multiplier, and solve iteratively along each
direction, where the only change occurs in the e-step:

(6.19)



rk+1 = arg min
r

{
α ‖r‖22 + β ‖r − i‖22 + ρk

∥∥∥∥∇wr − ek +
µk

ρk

∥∥∥∥2

2

}

=
(

(α+ β)I − ρkL
)−1

(
βi− ρk divw

(
e− µk

ρk

))
(L2-Retinex)

ek+1 = arg min
r

{
‖e−∇w,f i‖0 + ρk

∥∥∥∥e−∇wrk+1 − µk

ρk

∥∥∥∥2

2

}

= Sh1/
√
ρk

(
∇wrk+1 −∇w,f i+

µk

ρk

)
+∇w,f i (Thresholding)

µk+1 = µk + ρk
(
∇wrk+1 − ek+1

)
(Dual ascent)

ρk+1 = ρk · s (Step reduction)

where s > 1 is a constant that essentially reduces the step size at each iteration and causes
the iterative process to stabilize eventually.

Remark 6.8.Note that the L0-optimization problem is not convex. In order to enforce con-
vergence, we add one more step to the iterative process, that is decreasing the effective step-size
of the variable-split at every iteration. As a ramification, however, the matrix (α + β)I − ρL
is not constant, and the rk+1-update is less efficient. Moreover, said system-matrix becomes
singular at some point. Numerically, we will converge sooner and stop before that. The proof of
the convergence of this scheme is still an open question. However, we can see later that despite
rigorous theory, this model offers interesting new applications of Retinex in shadow detection
with interesting, stable results.

7. Results I: Relations to existing models. The first results section is dedicated to demon-
strate the unifying power of the proposed non-local two-step Retinex model.

7.1. Model correspondences. In the following paragraphs, we want to show how the
existing Retinex implementations can be reproduced in our proposed, fundamental non-local
Retinex model. In all these models, we can restrict ourselves to identical weights w = w1 =
w2 = w3. The different correspondences are summarized in table 7.1.
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Table 7.1: Filtered non-local gradient-fidelity based approximations to existing Retinex models.
Both Poisson PDE [53] and L1-Retinex [45] employ gradient filtering natively. For the other
methods, the filtered gradient reproduces a gradient sparsity term.

Model Norm p Weights w Filter fa Additional terms

Poisson PDE [53] L2 local Shλ —
L1-Retinex [45] L1 local Shλ —
TV-Retinex [46] L2 local Ssλ —
Variational Retinex [36] L2 local Suλ α ‖r‖22 (r ≤ 0)

TV-Retinex [54] L2 local Ssλ β ‖r − i‖22
TV-L1 [15] L1 local — α ‖r‖22 (α ‖r‖1)

Random walk/Kernel [59] L2 Gaussian Ss−λ α ‖r‖22 + β ‖r − i‖22

7.1.1. Poisson. The PDE version of Retinex [53] can be derived exactly from the L2-
version, p = 2, of the proposed Retinex model, under local weights wl and gradient thresholding
fa = Shλ . Indeed:

(7.1) r̂ = arg min
r

{
‖∇wlr −∇wl,fai‖

2
2

}
(L2-Retinex)

implies the Euler-Lagrange equations

(7.2) (∆r̂)(x, y) = (∆wl,fai)(x, y) x, y ∈ Ω. (Poisson PDE Retinex)

7.1.2. L1-Retinex. The next close relative of the proposed non-local Retinex model is
its local L1 predecessor, L1-Retinex [45]. The closest match to L1-Retinex in the proposed
framework is obtained if we choose the weights wl(x, y) such as to reproduce the well-known
local finite differences differential operators, gradient filtering fa = Shλ , and with p = 1:

(7.3) r̂ = arg min
r
{‖∇wlr −∇wl,fai‖1} = arg min

r

{∫
Ω

n∑
k=1

∣∣∣∇kr(x)− Shλ(∇ki(x))
∣∣∣ dx}

which is the anisotropic L1-distance for local gradient fidelity.

7.1.3. TV regularized Retinex. In [46], the authors propose to solve directly for an image,
whose gradient is close to the observed gradient in L2, while minimizing isotropic TV:

(7.4) r̂ = arg min
r

{
‖∇r −∇i‖22 + 2λ‖|∇r|2‖1

}
, (TV Retinex)

This is the constraint L1-relaxed gradient sparsity assumption, solved through Bregman iter-
ations:

(7.5) r̂ = arg min
r

{
‖q −∇i‖22 + 2λ‖|q|2‖1

}
s.t. q = ∇r (Bregman TV Retinex)
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A similar model can be obtained through the proposed general Retinex model by employing
soft-shrinkage gradient filtering, fa = Ssλ, to which the according potential is recovered:

(7.6) r̂ = arg min
r

{
‖∇wlr −∇wl,fai‖

2
2

}
Again, the main difference is the use of anisotropic TV through gradient filtering in the pro-
posed framework.

7.1.4. H1+L2 regularized. The variational Retinex model in [36] can be rewritten exactly
as

(7.7) r̂ = arg min
r

{
‖∇r −∇i‖22 + α ‖r‖22 + λ ‖∇r‖22

}
s.t. r ≤ 0 (H1/L2 Retinex)

In [36], the authors motivate the L2 term mainly as “a regularization of the problem that makes
it better conditioned”, and they state that “in practice this penalty term should be weak [. . .]
and α should therefore be very small.” The constraint r < 0 corresponds to the reset in the
original Retinex theory. The constraint and L2 norm together push the reflectance close to
white.

We may find a similar problem within the proposed framework, where we choose uniform
gradient scaling fa = Suλ and omit the clipping constraint:

(7.8) r̂ = arg min
r

{
‖∇wlr −∇wl,fai‖

2
2 + α ‖r‖22

}
7.1.5. TV+L2 regularized. Recently, a mixture of TV regularized and Kimmel’s varia-

tional approach was proposed [54]. This model essentially boils down to:

(7.9) r̂ = arg min
r

{
‖∇r −∇i‖22 + β ‖r − i‖22 + 2λ ‖∇r‖1

}
(TV/L2 Retinex)

Again, we may approximate this model with a similar energy based on similarity to filtered
gradients, with fa = Ssλ:

(7.10) r̂ = arg min
r

{
‖∇wlr −∇wl,fai‖

2
2 + β ‖r − i‖22

}
The main difference is the use of anisotropic TV through gradient filtering in the proposed
framework.

7.1.6. TV-L1. The “logarithmic total variation” (LTV) model was suggested for extraction
of illumination invariant features for face recognition [15]. It is defined as an TV-L1 based on
the logarithmic input image and its logarithmic illumination:

(7.11) r̂ = arg min
r
{‖∇r −∇i‖1 + α ‖r‖1} (TV-L1)

Its equivalent in the proposed framework is found by relaxing the second term to an L2-norm,
i.e. TV-L2 Retinex.
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7.1.7. Bertalmío. To approximate the perceptually inspired Retinex model through our
proposed general framework, we replace or complete the intensity fidelity by a gradient fidelity:

(7.12)
r̂ = arg min

r

{
α ‖r‖22 + β ‖r − i‖22 + ‖∇wr −∇wi‖22 − 2λ ‖∇wr‖1

}
(-TV+L2 Retinex)

This is essentially homomorphic filtering with TV in place ofH1. Again, we may now substitute
by incorporating the TV-enhancement term as an input-gradient filter fa = Ss−λ:

(7.13) r̂ = arg min
r

{
‖∇wr −∇w,fai‖

2
2 + α ‖r‖22 + β ‖r − i‖22

}

7.2. Examples. In the following we provide a range of example results obtained using
the proposed non-local Retinex model to illustrate the broad spectrum of Retinex flavors it
includes.

7.2.1. The Logvinenko illusion. We have applied the whole range of Retinex “modes”
retrofitted above to existing Retinex implementations to a single common test image extracted
from the Logvinenko illusion pattern [44]. The test image is shown in Fig. 7.1a). The illusion
consists of the following: due to the suggested smoothly varying lighting, the oblique grey
diamonds of the upper row appear darker than the diamonds of the lower row. However, as
shown in the adjacent Fig. 7.1b), their actual intensity is exactly equal. In this example, the
Retinex model is expected to separate the almost smooth shading from the rough checkerboard-
like reflectance, thereby truly rendering the two rows of diamonds at different reflectances.

The first model, L2-Retinex equivalent to [53], produces the standard result in Fig. 7.1c).
It can be clearly seen that in particular the lower row of diamonds is not recovered completely
flat, since the illumination is not smooth everywhere. The related L1-Retinex in Fig. 7.1d),
inspired by [45], suffers from very similar artifacts. In Fig. 7.1e) we show the results of our
model with parameters set to correspond to TV-regularized Retinex [46], resulting in less
artifacts. Adding an L2 fidelity-constraint (β > 0), as in [54], injects more of the initial
shading into the estimated reflectance, see Fig. 7.1f).

The TV-L1-inspired model [15] is in our case an TV-L2 model for illumination recovery,
where the TV-sparsity of the extracted illumination is tuned by the parameter α. It is clearly
appreciated in Fig. 7.1g–j) that the impact of the parameter is quite severe, with higher
values corresponding to the output desired for illumination invariant feature extraction. The
choice of parameters inspired by Kimmel’s Retinex formulation yields the output shown in
Fig. 7.1k–m), which corresponds well to the behavior expected from [36]. The parameter α
controls the degree of dynamic range compression applied, i.e. the dominance of local contrast
enhancement. Finally, in Fig. 7.1n–p) we provide the output produced by model parameters
mimicking Bertalmío’s perceptually inspired Retinex [4]. Here, the unshrinking of the gradients
has the unpleasant effect of amplifying pixel noise.

7.2.2. Other applications. To show the “unifying power” of the proposed Retinex model,
we provide a few more illustrating examples in Fig. 7.2.
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Input Demonstration Reflectance Illumination

a) b) c) d)

e) f) g) α = 0.05

h) α = 0.1 i) α = 0.5 j) α = 5

k) α = 0.05 l) α = 0.1 m) α = 0.5

n) α = 0.05 o) α = 0.15 p) α = 0.5

Figure 7.1: Logvinenko illusion and different Retinex decompositions. a) Input image.
b) Demonstration of the illusion: despite the appearances, the “horizontal squares” actually have
equal intensity. Retinex is supposed to reproduce this illusion of intensity difference. c) Reflectance
and illumination recovered using the L2-Retinex (hard thresholding, p = 2, , α = β = 0). d) L1-
Retinex (hard thresholding, p = 1, α = β = 0). e) TV-regularized Retinex (soft thresholding, p = 2,
α = β = 0). f) Ng-Wang-like Retinex (soft thresholding, p = 2, α = 0, β = 0.0015). g–j) TV-
L2 Retinex (no thresholding, p = 1, α > 0, β = 0). k–m) Kimmel-like Retinex (gradient scaling,
p = 2, α > 0, β = 0). n–p) Bertalmio-like Retinex (Gaussian kernel weights, gradient unshrinkage,
p = 2, α > 0, β = 0.002). g–p) Where applicable, α drastically tunes the amount of dynamic range
compression.
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Input Reflectance Illumination

a)

b)

c)

d)

Figure 7.2: Unifying non-local Retinex model. a–b) Our unifying model decomposes an
input image into underlying reflectance and estimated illumination, and successfully reproduces basic
Retinex behavior (b/w squares and checkerboard, respectively). c) The same model allows dynamic
range compression and local contrast enhancement (here: radiography), as well as d) illumination-
invariant feature extraction, e.g. for face detection.

First, in Fig. 7.2a–b) two standard results are shown, that are based on L2-gradient thresh-
olding. We unsurprisingly succeed in separating the smooth gradient illumination from the
sharp reflectance features.

The third example in Fig. 7.2c) is an (artificially) unevenly exposed radiography, where
important features are masked due to the great dynamic range. We perform center-surround-
like exposure correction and dynamic range compression simply by choosing p = 2, wide
Gaussian kernel based weights, no thresholding, and α = 0.01.
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Input Reflectance Illumination (grey) Output

Figure 7.3: HSV color Retinex.Retinex is performed on the value-channel of a color image in
HSV space. The final output is obtained by applying post-processing enhancement as in [36].

The forth example is based on the challenge of illumination-invariant feature extraction
for face recognition [15]. For this, we use p = 1, soft-thresholding λ = 0.2, and dynamic range
compression α = 5.

In Fig. 7.3 we provide an example inspired by Kimmel’s variational Retinex [36], where
color images are involved. Here, Retinex is applied to the V-channel (lightness) of the color
image (as opposed to separately on each RGB channel, as originally proposed), and we use
matching parameters in our proposed framework. After application of their suggested post-
processing steps, we obtain images very similar to Kimmel’s original results.

8. Results II: New perspectives. Beyond reproducing existing Retinex models, our pro-
posed framework also has the potential to yield new results thanks to it generalizing power.
In the next sections, we explore a few new possibilities offered by choosing new sets of param-
eters, in particular based on p = 0 gradient fidelity, with applications to shadow detection and
removal, and cartoon-texture decomposition.

8.1. L0 gradient fidelity. In Fig. 7.1 we have shown a series of decomposition results
obtained with different model configurations. The best results in terms of piecewise constant
reflectance versus illumination have been achieved with the basic hard thresholding models
(L2- and L1-Retinex), as well as the soft-thresholding based TV-Retinex. However, all these
models suffer from artifacts of illumination estimation at the edges and corners of the flat
diamonds, where illumination smoothness is not a stringent enough prior. Therefore, we
propose seeking for further illumination gradient penalty by choosing p = 0, corresponding to
L0 gradient fidelity (as opposed to TV- or H1-sparsity of the illumination). In Fig. 8.1 we show
a few results where we make use of TV-regularization of the reflectance (soft thresholding).
In particular in combination with Gaussian kernel weights, the decomposition exhibits less
artifacts than previous results, see Fig. 8.1b).

8.2. Shadows in artificial images: the Adelson checker illusion. Another instance, where
H1 smoothness (p = 2) or TV-regularity (p = 1) constraints are not sparse enough priors for
the illumination field, is the Adelson checker illusion. We show a grayscale image of the
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Reflectance Illumination

a) b) c)

Figure 8.1: Logvinenko illusion and new L0-based Retinex decompositions. Soft
thresholding, p = 0, α = β = 0. a) Local weights. b) Narrow Gaussian kernel weights, λ = 0.33. c)
Wider Gaussian kernel weights, λ = 0.8.

illusion image in Fig. 8.2a): the squares A and B appear to be of different intensity, for the
human visual system corrects actual intensity by perceived shading. However, as shown in
the adjacent demonstration, the diamonds truly have identical intensity. Here again, the role
of Retinex is to separate the shading from the underlying reflectance. However, while the
reflectance is expected to be piecewise constant, the illumination has both smooth and parts
and sharp transitions. The sharp transitions are not sufficiently accounted for under simple
L2 hard-thresholding, as shown in Fig. 8.2e–g); the estimated illumination always turns out
too smooth. Even additional dynamic range compression cannot entirely fix the issues, as now
parts of the checkerboard’s reflectance also appear in the illumination, see Fig. 8.2d). Thanks
to the new possibilities of the proposed framework, however, the problem is rather nicely
solved using a combination of L0 gradient fidelity, hard thresholding, and slight dynamic
range compression, as shown in Fig. 8.2c).

8.3. Shadow detection in natural images. Shadow removal from a single (natural) image
plays an important role in many computer vision algorithms. Most methods are based on a
two-step procedure: first detect shadows, and then reconstruct shadow-free images. Shadow
detection can be based on features such as intensity, gradients or texture, and even make use of
supervision or training data [82, 27, 67]. Once the shadow regions have been reliably detected,
several techniques aim at reconstructing a shadow-free images, through matting, inpainting,
or Poisson editing [67, 78].

Here, we explore the applications of the proposed unified Retinex model for single step
shadow detection and removal from a single image. We propose to use the L0 gradient fidelity
criterion combined with dynamic range compression, without any gradient thresholding. The
unfiltered L0 gradient fidelity is a strong prior on illumination gradient sparsity, while the
dynamic range compression tends to take large intensity modulations out of the reflectance,
and balance the mean intensities of inside- and outside-shadow regions. Our model can detect
shadows in monochromatic and color images. We show a few example results for shadow
detection in Fig. 8.3. We believe that the proposed model can largely compete with the recent
state-of-the-art shadow detection scheme proposed Guo et al. [26, 27].

Moreover, our model also provides a shadow-free reflectance estimate at the same time. Re-
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Input Demonstration Reflectance Illumination

a) b) c) d)

e) λ = 0.05 f) λ = 0.1 g) λ = 0.5

Figure 8.2: Adelson checker illusion. a) Input image. b) Demonstration of the illusion: despite
the appearances, the squares A and B actually have equal intensity. Retinex is supposed to reproduce
this illusion of intensity difference by removing the shadows. c) Reflectance and illumination recovered
using the novel L0-based Retinex. Hard thresholding λ = 0.15, p = 0, α = 0.04. d) L2-Retinex
with dynamic range compression has too smooth illumination (hard thresholding λ = 0.025, p = 2,
α = 0.01). e–g) L2-Retinex without dynamic range compression. The drop shadow is removed nicely,
but the cylinder shading is not.

flectance output (i.e. after shadow removal) is illustrated in Fig. 8.4. However, in most natural
scenes, the actual border between shaded and unshaded regions is rather smooth, called the
penumbra, which is due to the spatial extent of the light source. Hence, the estimated shadow
boundary in the proposed model is consistently overly sharp, and the estimated shadow-free
reflectance image includes artifacts, see Fig. 8.4c). This problem can partially be tackled by
smoothing the estimated illumination field in post-processing, as shown in Fig. 8.4d). A no-
ticeable difference in texture is still visible, however, due to the missing specular highlights in
the shadowed region, exclusively lit by ambient light.

8.4. Shadow removal in color images. If the images are treated as color images, how-
ever, a few shortcomings of the simple shadow-removal model become obvious, beyond the
penumbra-issue. In Fig. 8.4e) we show the output of Retinex being applied to the lightness
channel in HSV-space only. Since the shadowed region was lit by (sky-blueish) ambient light
only, compared to warmer direct sun light, the colorcast after intensity correction becomes
really striking. If, in contrast, we perform Retinex on all three RGB channels independently,
the colorcast can be successfully avoided, see Fig. 8.4f). However, since the three channels are
not coupled, the respective shadow-boundaries differ slightly, creating local color-artifacts.

The observed issues are just a manifestation of a more fundamental Retinex problem
when dealing with color images: namely the correct choice of color space and channels in
which to perform Retinex. Traditionally, Retinex theories consider RGB-images and treat
the color channels independently in order to achieve color constancy (color normalization)
[42]. To some purists, this is the one and only right way. Other authors have suggested
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Input Guo et al. Proposed model

Figure 8.3: Shadow detection results. We compare the shadow detection results (illumination
output) of our proposed model against the recently published results (blue mask) from Guo et al.
[26, 27]. The results of the first row are very comparable, while we believe the examples of the second
row are in favor of the proposed model. Indeed, our illumination output may be “multilevel” rather
than just binary, and therefore better reflect the different nuances of shade in natural images (pole).
On the other hand, our approach is less subject to local artifacts and produces more coherent shadow
estimates.

to perform illumination correction by just working on the V-channel (lightness) of images in
HSV color space—Retinex is expected to correct the amount of lighting but should conserve
the general tone-trend in an image. Both approaches can yield unsatisfactory results in some
situations. In particular, HSV-Retinex is unable to normalize differences between different
lighting-temperatures (for example, blueish ambient lighting versus directly lit parts of a scene).
It was alternatively proposed to perform color correction in CIELAB colorspace, where Retinex
again works on the lightness channel, while a co-correction is performed on the chroma-channels
based on the estimated change of illumination [73, 72].

An intermediate compromise between channel-wise RGB and lightness-only HSV Retinex
could be devised as follows. The main advantage of RGB-Retinex is the capability of color-
normalizing (“greying”) the respective shadow/light regions in a scene independently. Its main
drawback is the lack of coupling between shadow boundaries in the three color channels. For
HSV-retinex the situation is exactly opposite. A potential solution could perform channel-wise
Retinex in RGB, but using a coupling term that encourages shadow boundaries to be collocated
in all three color channels. Such a goal could be achieved by replacing the current channel-
wise gradient fidelity by a grouped gradient fidelity derived from group sparsity [47, 48]. More
advanced, another gradient fidelity functional involving stronger channel coupling could be
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Input Guo et al. Reflectance (proposed model)

a) b) c) Grayscale d) smoothed e) HSV f) RGB

Input Reflectance Input Reflectance

g) h)

Figure 8.4: Shadow removal results. a) Input image. b) Recently published results from Guo
et al. [26, 27]. c) Reflectance output of input image reduced to grayscale. The sharp boundary of the
detected shadow region creates artifacts in the penumbra. d) The artifacts are almost entirely removed
by smoothing the estimated illumination in post-processing. e) If the Retinex model is applied only
to the V-channel of the color image in HSV-space, then strong colorcast becomes apparent, due to
different lighting color for direct and ambient light. f) The colorcast is avoided by correcting all three
RGB channels (colorbalancing). However, local artifacts appear due to inconsistent shadow region
boundaries in the three individual channels.

Input Cartoon Texture

Figure 8.5: Cartoon-texture decomposition. For important α, the L0 model separates texture
(reflectance) from cartoon (illumination).

employed, such as the Color Beltrami energy, that aligns gradients across color channels [37].

8.5. Cartoon-texture decomposition. The separation of an image into a piecewise reg-
ular component (cartoon) and its high-frequency parts (texture) is generally referred to as
cartoon-texture decomposition [79, 56, 71]. If we give even more importance to dynamic range
compression, then our proposed L0 gradient-fidelity based Retinex model can be used to this
very same end. Indeed, the “reflectance” will only contain the texture of the image, whereas
all larger scale intensity patches will be attributed to illumination (cartoon part). The scale
of separation is determined by the weight of the dynamic range compression, α. In Fig. 8.5
we show results of cartoon-texture decompositions of two natural images.
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9. Adaptive thresholding with texture and color. In the preceding examples and com-
parisons, we always considered equal weights for gradient sparsity and fidelity, w = w1 = w2.
However, doing so is not a requirement of the method, and choosing alternative weights for the
two terms tremendously broadens the spectrum of possibilities. The fundamental principle is
as follows: the reflectance of two pieces of same material is likely to be similar. If the non-local
weights are constructed in a way that strongly connects same-material pixels, then the re-
flectance should have low non-local gradient magnitude. The first milestone is the definition of
a suitable “material-distance” and the construction of the associated weights-graph. In the fol-
lowing, we quickly want to discuss two possible routes, namely the use texture and color-based
weight graphs, as introduced in section 4, and their connections to existing methods.

9.1. Texture-based non-local sparsity. Here, the assumption is that pixels belonging to
objects of the same material (and thus same reflectance) are characterized by local image
structure (image patches) that are similar to (at least some) other, distant patches of the same
material, and dissimilar to patches around pixels of different material.

This idea of texture sparsity in reflectance has been employed in non-local retinex already,
to different extents [68, 74, 46].

In the proposed, unified model, this idea could be easily implemented as follows. The
reflectance gradient is expected to be non-locally sparse, therefore we would pick w1 = wnl.
The gradient fidelity, however is required locally, thus one chooses local weights w2 = wε, or
mollified semilocal weights w2 = wg. This choice, together with an appropriate norm on both
terms leads to one of the non-stationary gradient filters exposed in sections 3.5 through 3.7.
In order to improve the material-similarity weights based on texture distances, illumination
normalized cosine distances may be used in lieu of the classical non-local weights wnl.

9.2. Chroma-conditioned gradient thresholding. The argument of texture-based mate-
rial (dis-)similarity can easily be extended into a color-based (dis-)similarity metric, by using
color-distances (see section 4.5). As pointed out earlier, classical Retinex treats the color chan-
nels independently and ignores any relations between them. In shadow-removal applications,
however, this is clearly a shortcoming, since the presence of a shadow can be expected to
similarly affect all color channels, and it is reasonable to exploit this interaction.

The role of threshold in the original Retinex theory is “to remove the effects of nonuniform
illumination over the scene” [40]. However, those gradients are not necessarily small, for
example the ones cross the shadow edges [18]. Explicitly, a large gradient belongs to reflectance
if the material is different on both sides but to illumination if the material is the same. Such
similar conditional thresholdings have been used in shadow removal [18, 19], and appeared in
intrinsic image decomposition [10, 69, 52, 81, 14]. All these models aim at enforcing reflectance
gradient sparsity between pixels that have similar hue, since these are believed to belong to
objects of the same material and thus similar reflectance. Conversely, reflectance gradients are
conserved only, if they are “motivated” by a hue gradient, suggesting a material boundary.

Such a method can easily be implemented within the non-local Retinex framework pre-
sented in this paper. Indeed, hue constancy requires sparsity of reflectance under illumination
invariant but hue-sensitive weights. Thus one would choose w1 = wc. In contrast, the gradient
fidelity weights can again be chosen locally, w2 = wε, or semilocally, w2 = wg. The resulting
non-stationary filter function thresholds the observed gradients according to these criteria, and
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then a reflectance gradient is fitted to this thresholded target.

10. Conclusions. In this paper, we have made an attempt at providing a fair overview of
the broad spectrum of Retinex implementations existing in literature, and at unifying them
within a single computational framework. The proposed unifying framework is a generalization
of the well-known threshold-based two-step Retinex implementations. Indeed, we formulate
the problem in the following two steps. First, we define an inner gradient sparsity and fidelity
problem, that leads to a particular choice of gradient filtering function. Second, we look for
a reflectance function that approximates this thresholded input gradient, while potentially
optimizing additional sparsity or fidelity terms. The model traditional threshold model is
thus generalized along four main directions: we use non-local differential operators in lieu of
the local derivatives, we replace the hard-threshold by a more generic odd gradient filtering
function, we extend the quadratic gradient fidelity to different fidelity norms, including L1 and
L0, and we include further terms in the reflectance reconstruction problem, such as reflectance
fidelity or dynamic range compression.

We show, how various gradient-sparsity and -fidelity problems result in different gradient
filtering functions, including soft- and hard-thresholding. Further, we discuss different general
schemes to compute the weight functions used in the non-local differential operators, including
local weights, semi-local Gaussian kernels, patch-based non-local weights, and finally cosine-
distance-based color-distances.

Further, we briefly describe a possible numerical implementation to solve the proposed
generalized non-local Retinex model in different configurations. In particular, we can show
that the L2-based non-local Retinex model can directly be implemented by Wilson-Cowan
equations, which are used to model the mean activity of a population of both inhibitory and
excitatory neurons in the cortex. This potential biological feasibility of at least the L2-version
of our framework conveys additional plausibility. Both L1 and L0-based non-local Retinex
models are proposed to be solved through variable splitting and the alternate direction method
of multipliers.

Using the proposed generalized Retinex functional, we are able to expose relations with all
major classes of existing Retinex implementations, such as kernel and variational Retinex,
perceptual-contrast enhancement, and threshold-based PDE-Retinex. These relations are
partly shown explicitly, partly made implicitly through well-established formal connections
between some of these models. In particular, we provide an extensive list of equivalences be-
tween existing variational Retinex implementations and their counterparts within the proposed
generalized framework. The capability of the proposed non-local Retinex model to reproduce
these existing algorithms is illustrated on a few sample problems.

Beyond simply reproducing existing Retinex models, our proposed framework also offers
potential for new forms of Retinex. In particular the L0-based non-local Retinex model pro-
duces interesting results in terms of shadow detection and removal. While these results are
convincing for gray-scale images, we realize that this simple model has some shortcomings
with color-images, where ambient-lighting-color correction and color-channel-coherent shadow
boundaries cannot currently be obtained simultaneously. However, we do point out how differ-
ent forms of gradient-coupling across color channels (group sparsity, Beltrami functional) could
be employed almost directly to address this issue. Pushing the dynamic range compression
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in the reflectance component even further, we show how the very same Retinex model can be
employed for cartoon-texture decomposition.

An important, yet largely unexplored, property of the proposed non-local Retinex model is
the use of hybrid weights in the thresholding part; more specifically, different weight functions
can be employed in the gradient sparsity and gradient fidelity component, leading to a gradient
filtering function that is spatially varying (non-stationary, adaptive thresholding). While we
do not provide practical examples of this capability in the present paper, we do outline the
resulting parallels with so-called conditional-thresholding methods, for example known from
shadow-removal.

While in the present paper we were able to introduce the unifying framework and outline
many relations to existing Retinex models and shadow removal algorithms, future work will
focus on providing experimental support. In particular, most of the sketched “new perspec-
tives” (shadow removal, cartoon-texture decomposition, color-cosine-distance based Retinex,
channel-couping and group sparsity in multi-channel Retinex, and adaptive thresholding) are
only superficially exposed here, but would certainly deserve more focused attention. Similarly,
the numerical algorithms presented here are valid for proof-of-concept implementations only,
but faster schemes are known to exist. Also, a detailed analysis of minimizers, in particular
existence and uniqueness, and convergence of the algorithms is an important aspect of the
model, but beyond the possible scope of the present paper as well.
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