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Abstract

Inverse problems in imaging and computer vision are typically addressed as data-fidelity optimization problems, where data-
regularizers such as H1 or TV (total variation) are included to render the problem well-posed. However, while H1 regularization is
known to produce overly smooth reconstructions, the TV (or ROF) model is feature-preserving but introduces staircasing artifacts.
The geometrically derived Beltrami framework, introduced by Sochen, Kimmel and Malladi (1998) offers an ideal compromise
between feature preservation and avoidance of staircasing artifacts. Until now, one of the main limiting factors of the Beltrami
regularizers was the lack of really efficient optimization schemes. Here, we start from one of the most efficient TV-optimization
methods, primal-dual projected gradients, and apply it to the Beltrami functional. Doing so, we achieve better performance than
ROF denoising for the basic grey-scale denoising problem, then extend the method to more involved problems such as inpainting,
deconvolution, and the color case, all in a straightforward fashion. With the proposed primal-dual projected gradients optimiza-
tion algorithm, the benefits of the geometric Beltrami regularizer become available at no extra computational cost, compared to
state-of-the-art TV/ROF regularizers.
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1. Introduction

Modern day imaging is mainly challenged by so-called in-
verse problems, namely to find an underlying image I, given de-
rived measurements I0 through the system K, affected by noise
n, e.g.:

find I : I0 = KI +n. (1)

Typical tasks are image restoration, reconstruction, segmenta-
tion, registration, classification, and many others. These prob-
lems are ill-posed, i.e., not all of the following conditions for
well-posedness are true: (1) a solution exists, (2) the solution
is unique, (3) the solution depends smoothly on the data [1,
2]. One classical resolution scheme consists in minimizing
a quadratic energy E in terms of the forward problem, while
adding a quadratic regularity penalty to render the problem well-
posed [3, 4]. Formally:

min
u

{
E = ‖KI− I0‖2

2 +α‖ΓI‖2
2

}
(2)

where typically Γ = ∇, requiring the solution to be smooth.
Although widely used today thanks to its simplicity, this

resolution scheme has some important shortcomings. Despite
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Figure 1: An image with values in [0,256] with Gaussian noise σ= 10 denoised
with three different regularity priors. One can see the oversmoothing associated
to the H1 regularization, and the staircasing effect of TV, while Beltrami com-
bines smooth gradients with feature preservation.

their popularity due to computational ease (fast analytical global5

solution), it is well-known, that these H1 regularizers are not
feature-preserving and that the obtained solutions are typically
overly smooth. Different anisotropic, feature-preserving regu-
larization schemes have therefore been researched, e.g., [5, 6,
7, 8, 9].10

The Rudin-Osher-Fatemi (ROF) or Total Variation (TV) model
[10] has particularly gained in importance, where the follow-
ing minimization problem using the TV-norm is proposed. For-
mally:

min
I

{∫
Ω

|∇I|+ λ

2

∫
Ω

(I− I0)
2
}
, (3)

for a given balancing parameter λ > 0. Here,
∫

Ω
(I− I0)

2 is a
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fidelity term wrt. the observed, noise image I0, and
∫

Ω
|∇I| is a

total variation regularizing term, where we suppose I ∈ BV (Ω),
the space of functions of bounded variation, see also [11]. Soon
after its introduction, the TV norm was locally weighted, in15

order to make the diffusion even more feature-aware and spa-
tially adaptive [12]. The weighted TV was later rediscovered
in the context of global solutions to active contours [13]. One
main problem with TV-regularization is the appearance of stair-
casing artifacts as shown in figure 1.20

Another, edge-aware feature-preserving diffusion flow stems
from the Beltrami embedding [14, 15]. Most simply:

min
I

{∫
Ω

√
1+β2|∇I|2 + λ

2

∫
Ω

(I− I0)
2
}
. (4)

A particular choice of gradient-descent preconditioner allows
for a geometric Laplace-Beltrami flow, which is parametriza-
tion invariant, and which successfully reduces diffusion close
to features. More generally, this model is based on the Polyakov
model [16] introduced in string theory for physics. The Polyakov25

model represents strings as harmonic maps in high-dimensional
and curved spaces defined by Riemannian manifolds. Adopt-
ing this pure geometric point of view amounts to seeing objects
such as images, shapes, or vector fields as geodesics or har-
monic maps, much like a 2D topographic map corresponds to a30

three-dimensional surface in the real world.
The potential of this geometric framework lies in the gen-

eral definition of the space-feature manifold and the choice of
its metric. In particular, the metric can be chosen such that
the Polyakov energy corresponds to an interpolation between35

quadratic or total variation gradient penalty. The features are
not restricted to scalar values but include vector features en-
countered in color, texture or multispectral image analysis [17].
Similarly, the embedding is not limited to 2-dimensional im-
age surfaces and generalizes naturally to n-dimensional mani-40

folds associated to volumetric or time varying images or videos.
Moreover, the choice of the metric enables the study of com-
plex geometries inherent to scale-space methods [18] and non-
flat images generated, e.g., by catadioptric or omnidirectional
cameras [19]. Local, pixel-based Beltrami-regularization was45

already successfully used for image denoising [20, 21, 22].
The direct way of implementing the Beltrami flow is ob-

tained by using an Euler explicit forward scheme of gradient de-
scent [23]. This scheme, however, is heavily limited by the CFL
condition [24] and the time step has to be chosen carefully. An50

upper bound that ensures stability of such a scheme is provided
in [25]. In order to make the scheme more robust, semi-implicit
schemes have been used instead, e.g., [26, 27, 28, 29], largely
based on work by [30]. In practice, many authors reduce the
multidimensional diffusion problem into a series (LOD, [31])55

or average (AOS, [32]) of several independent 1D diffusion pro-
cesses, e.g., [28]. Another speedup of the PDE can be achieved
by using vector extrapolation techniques [33, 34, 35]. An en-
tirely different approach makes use of decoupling schemes that
have been known in computer vision for quite some time [36,60

20, 21, 22]. Equivalent splitting schemes have previously been
applied to TV-regularized image denoising with great success
[37].

Another technique that has successfully been used with TV
regularization problems is the use of primal-dual optimization65

[38, 39, 40]. These algorithms are simple and easy to imple-
ment and are potentially faster than primal gradient-descent meth-
ods. While Chambolle’s primal-dual TV algorithm has clearly
led the way, more recent, very similar projected-gradient type
methods were shown to be even more efficient [41, 42].70

Here, we propose to use such a primal-dual projected gradi-
ent approach to design an efficient recovery algorithm for grey-
scale images by employing the Beltrami energy as regularity
prior. We present a family of simple yet efficient primal-dual
projected gradient algorithms for Beltrami minimization prob-75

lems with applications in image denoising, and straightforward
extensions to different image processing applications such as
inpainting/superresolution, deblurring/deconvolution, and com-
pressed sensing. Beyond, we present a convex simplification of
the color-version of the Beltrami energy, and thereby render our80

algorithm applicable to multichannel images. We show that the
proposed algorithms can be easily adapted to all these appli-
cations. Numerical results are presented on different images
to show the performance of the primal-dual projected gradient
algorithm using the Beltrami framework. We compare our re-85

sults against the similarly implemented ROF model. We can
show that the proposed Beltrami algorithms converge faster,
and slightly improve the quality of results wrt. TV: Beltrami
regularization maintains TV’s feature preservation but reduces
the staircasing effect in restored images.90

The rest of this paper is organized as follows. First, we pro-
vide a short introduction to the Beltrami framework in section 2.
Section 3 presents the primal-dual model, which is then related
to a projection type algorithm and variational inequalities. In
section 4 we combine results from sections 2 and 3 to describe95

the primal-dual projected gradient algorithm as used for Bel-
trami regularization, and apply our method to denoising prob-
lems. Denoising results and a short comparison to the related
TV/ROF implementation are shown in section 5. In sections 6-8
we apply our proposed model to different imaging problems. A100

simplified generalization to color images is presented in section
9. Then we conclude the paper in section 10.

2. Beltrami Framework

The two main ingredients of the Beltrami framework come
from differential geometry: The embedding of images as a Rie-105

mannian manifold, and the metric tensor used to measure image
regularity. Here, we provide a very brief review of some es-
sential concepts and definitions form differential geometry, and
refer the reader, e.g., to [43, 44, 45] for more details. Readers
who are happy with the Beltrami denoising problem as stated110

in (4) may skip this section altogether.

2.1. Definitions from differential geometry

First, we give a definition of a differentiable manifold.

Definition 1 (Differentiable manifold). A topological space M
is called an n-dimensional differentiable manifold if:115
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i. M is provided with a family of pairs
{
(Mα,φα)

}
,

ii.
{

Mα

}
is a family of open sets covering M :⋃

α

Mα = M ,

iii. φα are homeomorphisms to an open subset Oα:

Oα ⊂ Rn : φα : Mα→ Oα

iv. For any pair of overlapping patches Mα and Mβ, such that
Mα∩Mβ ,∅, the map

φβ ◦φ
−1
α : φα(Mα∩Mβ)⊂ Rn→ φβ(Mα∩Mβ)⊂ Rn

is C∞.

Note: each pair (Mα,φα) is called a chart, and the entire fam-
ily
{
(Mα,φα)

}
forms an atlas. Items (i)-(iii) provide that the

manifold M is locally Euclidean, while (iv) ensures smooth120

parametrization.
Now, let us introduce a Riemannian metric on such a differ-

entiable manifold M :

Definition 2 (Riemannian metric). A Riemannian metric on
M ⊂ Rm is a family of inner products gM

p of elements of the
tangent space TpM ⊂ Rm,

gM
p : TpM ×TpM → R

(u,v) 7→ gM
p (u,v) p ∈M ⊂ Rm (5)

such that for any two differentiable vector fields X ,Y on M , the
map

M → R
p 7→ gp(X(p),Y (p)) (6)

defines a smooth function.

Now, we may define a Riemannian manifold as follows:125

Definition 3 (Riemannian manifold). A Riemannian manifold,
(M ,gM

p ), is a differentiable manifold M equipped with an as-
sociated Riemannian metric gM

p .

An important relation is given by the pullback metric:

Definition 4 (Pullback metric). Let f : M → N be a differ-
entiable map, and (N ,gN ) be a Riemannian manifold. Now,
the pullback of gN along f is a quadratic form on the tangent
space of M :

f ∗gN : TpM ×TpM → R
( f ∗gN )(u,v) 7→ gN (d f (u),d f (v)),

(7)

where d f (u) is the pushforward of u by f . In particular, if f is130

diffeomorphic, then this defines the induced, or pullback metric
on M .

Definition 5 (Isometric maps). Two Riemannian manifolds (M ,gM )

and (N ,gN ) are said to be isometric under f : M →N , if their
metric tensors are related by the pullback relation:

gM = f ∗gN . (8)

In practical terms, the pullback metric is easily obtained as fol-
lows. Let (x1, . . . ,xm) be the local coordinates of the mani-
fold M , and the coordinates of the manifold N be given as
(y1, . . . ,yn) = f (x1, . . . ,xm). The components of the metric ten-
sor gM = f ∗gN are calculated as:

gM
i j = ∑

µν

∂yµ

∂xi

∂yν

∂x j
gN

µν. (9)

Finally, let us introduce one practical use of metric tensors
to calculate the area of a bounded domain on a Riemannian
manifold:135

Definition 6 (Area on a manifold). Let R ⊂M be a bounded
region of an n-dimensional Riemannian manifold (M ,gM ). Its
area (or hyper-surface, for n > 2) is defined as

A(R ⊂M ) :=
∫

φ(R )⊂Rn

√
detgM , (10)

where detgM is the determinant of the metric tensor expressed
in the coordinate chart (M ,φ).

2.2. Embedding

Let us consider a real-valued (grayscale) image function
I (x) ∈W 2,2 : Rn → R, where W 2,2 denotes a Sobolev space,
i.e.the L2 norm of both the function and its first and second or-
der derivatives are finite:

‖I (x)‖2 +‖∇I (x)‖2 +‖∆I‖2 < ∞ (11)

In simple terms, the function I is required to be finite and twice
differentiable. This is easily guaranteed if we consider the im-140

age to be the result of an adequate (smooth) interpolation from
a finite, discrete quantization.

In this general form, x ∈Ω⊂Rn denotes the coordinates in
n-dimensional space, and I (x) ∈ R are the associated features.
We thus typically see an image as a mapping from space to
features:

I : Ω⊂ Rn → R
(x1, . . . ,xn) 7→ I(x1, . . . ,xn).

(12)

In contrast, the Beltrami embedding associates the spatial coor-
dinates along with the features:

Definition 7 (Beltrami embedding). The Beltrami embedding
defines a diffeomorphic map as follows:

X : Ω⊂ Rn → Ω×R
(x1, . . . ,xn) 7→ (x1, . . . ,xn, I(x1, . . . ,xn)).

(13)

This amounts to seeing the function I as a non-flat surface em-145

bedded in a higher dimensional space, much like a topographic
map corresponds to a three-dimensional surface in the real world.

In terms of differential geometry, we have the following sit-
uation: We have a first Riemannian manifold defined by the im-
age domain, (Ω⊂ Rn,gΩ

µν), where the metric gΩ
µν is unspecified150

for now. A second Riemannian manifold, (M ⊂ Ω×R,hM
i j ),
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is formed by the joint space-feature manifold. These two mani-
folds are related by the embedding, diffeomorphic map X : Ω→
M .

In the case of a 2D gray scale image, I (x,y) ∈ R, the mani-
fold M is the space-feature manifold embedded in 3-dimensional
space, and Ω is a 2D surface with (x,y) denoting coordinates on
it. The embedding map is given by three functions of two vari-
ables:

X : Ω⊂ R2 → M ⊂ R3

(x,y) 7→ (x,y, I (x,y)) .
(14)

2.3. Regularizing functional155

To measure the “weight” of the embedding X : Ω → M,
Sochen et al. use the Polyakov action from high energy physics
[15, 14, 16]. This action does not need the two metrics be
specifically related in the first place. However, it was shown
that the Polyakov action is minimized (ceteris paribus) if the160

two manifolds are chosen to be isometric, i.e., the metric ten-
sor on Ω is obtained by pullback of the metric tensor on M
according to (9).

Definition 8 (Beltrami functional). In this case, the Polyakov
action simplifies to the following functional:

EBel
(
X i,gµν,hi j

)
:=

∫
Ω

√
gdx, (15)

which simply measures the surface of the embedded manifold
M . We will use this area as a measure of regularity of the165

underlying image I.

2.4. Choosing the metric tensors

The embedding space of the manifold M ⊂ Ω×R has di-
mensions of different nature, namely spatial components versus
feature components. The relative scaling between these compo-
nents is arbitrary in most applications, and it is therefore natural
to choose a metric tensor hM

i j that incorporates tuning of the as-
pect ratio [14, 15, 17], by a factor β:

{
hM

i j

}
:=


1 0 · · · 0

0
. . .

. . .
...

...
. . . 1 0

0 · · · 0 β2

= diag(1, . . . ,1,β2). (16)

Having chosen the metric tensor of the embedding space,
one can now easily compute the corresponding pullback metric
tensor for gΩ

µν, to be used on the original image domain mani-170

fold Ω, according to (9).
For the particular case at hand, this yields

{
gΩ

µν

}
:=


1+β2I2

1 β2I1I2 · · · β2I1In

β2I2I1 1+β2I2
2

. . .
...

...
. . .

. . . β2In−1In
β2InI1 · · · β2InIn−1 1+β2I2

n

 , (17)

where Ii := ∂I/∂xi is shorthand for the spatial derivatives of the
image. Beyond, the determinant of this metric tensor is calcu-
lated as simply

g = detgΩ
µν = 1+β

2|∇I|2, (18)

and the energy functional now simply reads

EBel
(
I,β2) :=

∫
Ω

√
1+β2|∇I|2dx. (19)

In the context of image processing, this energy is often referred
to as the Beltrami energy, and this is the form we have used in
(4). The standard method of minimizing this energy is to use
gradient descent (nonlinear Euler-Lagrange equations):

Ik+1 = Ik + τ
β2
√

g
div
(

∇I
√

g

)
(20)

where τ is the time-step of the PDE integration. There are, how-
ever, serious numerical issues. Indeed, this explicit scheme is
heavily restricted by the CFL condition and the time step τ has
to be chosen carefully.175

Remark 1. This Beltrami energy looks surprisingly similar to
the regularized TV functional, which integrates

√
ε+ |∇I|2.

However, the role of the addition under the square root is a dif-
ferent one. In regularized TV, the goal is to make the energy dif-
ferentiable by smoothing around zero; thus ε is typically chosen180

very small. In the present case, however, the aspect ratio β al-
lows us to consider different norms. For β→ ∞, the 1 becomes
negligible and the energy truly approaches the TV semi-norm.
On the other hand, if β→ 0, the minimizing flow approaches
isotropic heat diffusion.185

2.5. Discretized Beltrami energy

For practical purposes, we consider here a discretized grey-
scale image modeled as a function I : Ω→ R where Ω⊆ R2 is
a rectangle and I (x,y) is the intensity of the pixel (x,y). In the
discrete domain an image is usually a function I : {1, . . . ,m}×190

{1, . . . ,n}→ R where m×n is the image size.

Definition 9 (Discretized differential operators). By choosing
Neumann boundary conditions, the discrete gradient ∇I can be
discretized with a forward difference scheme,

(∇xI)(i, j) :=

{
I(i+1, j)− I(i, j) if 1≤ i < m
0 if i = m

(21)

(∇yI)(i, j) :=

{
I(i, j+1)− I(i, j) if 1≤ j < n
0 if j = n.

(22)

In order to preserve the adjointness of gradient and divergence,
〈∇I, p〉=−〈I,div p〉, the divergence of a vector field p=(px, py)
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is then defined as

(div p)(i, j) :=


px(i, j)− px(i−1, j) if 1 < i < m
px(i, j) if i = 1
−px(i−1, j) if i = m

+


py(i, j)− py(i, j−1) if 1 < j < n
py(i, j) if j = 1
−py(i, j−1) if j = n.

(23)

From now, and until the end of the paper, we consider Ω as
a discrete set of points, and we will limit our attention to this
discrete, finite case. For example, the discrete equivalent of (4)
is

min
I

{
∑
Ω

√
1+β2|∇I|2 + λ

2
(I− I0)

2
}
. (24)

3. Primal-Dual Projected Gradients

In this section, we entirely switch gears and provide a short
description of primal-dual projected gradient optimization. We
recall the main results existing in the literature to find the primal-195

dual model of an initial convex problem, and see that it can be
transformed into a variational problem. Then we give a brief
overview on how to solve this new model by using a gradient
projection type method. Here, we only recall some core princi-
pal results, and refer the interested reader to, e.g., [46, 41, 42]200

for further details, analysis and improvements of this general
method.

We start with a definition of the convex conjugate (a.k.a.
Legendre-Fenchel transform) of a function:

Definition 10 (Legendre-Fenchel transform). The convex con-
jugate of a function f is the function f ∗ defined by

f ∗(s) = sup
x∈Rn

{
〈s,x〉− f (x)

}
, s ∈ Rn. (25)

The convex conjugate of a closed convex (= convex and205

lower semi-continuous) function is again a closed convex func-
tion. Also, the biconjugate, f ∗∗ := ( f ∗)∗, is the largest closed
convex function with f ∗∗ ≤ f . As a result, f = f ∗∗ iff f is
closed convex (Fenchel-Moreau theorem).

The Legendre-Fenchel transform is used in the following210

primal-dual equivalence:

Theorem 1. Let F : W → R be a closed and convex functional
on the set W, G a closed and convex functional on the set V and
let K : V →W be a continuous linear operator. Then we have
the following equivalence:

min
x∈V

{
F(Kx)+G(x)

}
︸                        ︷︷                        ︸

Primal

= min
x∈V

max
ϕ∈W ∗

{
〈Kx,ϕ〉−F∗(ϕ)+G(x)

}
︸                                            ︷︷                                            ︸

Primal−Dual
(26)

where x and ϕ are the primal and dual variables, respectively,
F∗ is the convex conjugate of F, and W ∗ is the dual space of W.

For a proof, see [46].215

3.1. Variational problem
We will now see how the primal-dual problem of Theorem

1 can be written as a variational problem. First, let us define
sub- and supergradients as follows:

Definition 11 (Subgradient). The subderivative of a function
f : U → R at a point x0 in the convex open set U is the set
∂− f (x0) of all elements c ∈U∗ such that

f (x)− f (x0)≥ 〈c,x− x0〉. (27)

For a convex function f , the set ∂− f (x0) is always closed and220

non-empty. If in addition, f is differentiable at x0, then ∂− f (x0)
contains exactly one element.

Definition 12 (Supergradient). The superderivative of a func-
tion f : U → R at a point x0 in the convex open set U is the set
∂+ f (x0) of all elements c ∈U∗ such that

f (x)− f (x0)≤ 〈c,x− x0〉. (28)

For a concave function f , the set ∂+ f (x0) is always closed and
non-empty. If in addition, f is differentiable at x0, then ∂+ f (x0)
contains exactly one element.225

Sub- and supergradient are related by the equivalence

∂
− f = {c | −c ∈ ∂

+(− f )}=:−∂
+(− f ). (29)

Further, we require partial sub- and superderivatives as follows:

Definition 13 (Partial sub- and superderivatives). Let f : U1×
. . .×Uk→R be a multivariate function. We define the i-th par-
tial subderivative of f at (x1, . . . ,xk) as

∂
−
xi

f (x1, . . . ,xk) := ∂
−gi(0), (30)

where gi : Ui → R, gi(t) := f (x0, . . . ,xi + t, . . . ,xk). Partial su-
perderivatives are defined analogously.

We now consider the general saddle point problem:

min
u∈U

max
v∈V

{
f (u,v)

}
(31)

where U and V are closed convex, f (·,v) is convex in the first230

argument for any v ∈ V and f (u, ·) is concave in the second
argument for any u ∈U .

The point (u∗,v∗) ∈U×V is a solution to the problem (31)
iff

∀(u,v) ∈U×V : f (u∗,v)≤ f (u∗,v∗)≤ f (u,v∗). (32)

Such a (u∗,v∗) ∈U×V is called a saddle point of f .
Further, for any (u,v) ∈U×V , and c1 ∈ ∂−u f (u,v) and c2 ∈

∂+v f (u,v), we have{
f (u∗,v)≥ f (u,v)+ 〈c1,u∗−u〉
f (u,v∗)≤ f (u,v)+ 〈c2,v∗− v〉, (33)

and from (32) and (33) we can conclude that

〈c1,u−u∗〉+ 〈−c2,v− v∗〉 ≥ 0 (34)

5



We can thus rewrite (31) as the following variational inequality
problem: find x∗ ∈ X :=U×V s.t.

〈x− x∗,H(x∗)〉 ≥ 0 ∀x ∈ X , (35)

where

x =
(

u
v

)
and H(x) =

(
∂u f (u,v)
−∂v f (u,v)

)
. (36)

3.2. A projection method
In this section, we make use of a gradient projection method235

for solving the general variational inequality (35). Indeed, given
a vector x∗ and the functional H, we have the important well-
known results that follow (see [47]).

Definition 14 (Projection). We define PX (·) as the orthogonal
projection, under the Euclidean metric, onto the convex set X :

PX [x] = argminz∈X |z− x|2 (37)

Proposition 2. Let r be a positive parameter and X a convex
set. An element x∗ is solution of (35) if and only if

x∗ = PX (x∗− rH(x∗)). (38)

To prove the proposition we first need the following results:240

Lemma 3. Given x∈Rn, a vector z∈ X is equal to PX [x] if and
only if

〈y− z,x− z〉 ≤ 0 ∀y ∈ X . (39)

PROOF. PX [x] is the minimizer of F(z) = |z− x|2 over all z ∈
X . Moreover, if a vector x ∈ X minimizes F : Rn → R, then
〈y− x,∇F(x)〉 ≥ 0, ∀y ∈ X . We have

∇F(z) = 2(z− x), (40)

and thus
〈y− z,x− z〉 ≤ 0 ∀y ∈ X . (41)

�

PROOF (PROPOSITION 2). Suppose that x∗=PX [x∗−rH(x∗)],
then by lemma 3:

〈x− x∗,−rH(x∗)〉 ≤ 0 ∀x ∈ X , (42)

and since r is positive, it follows that x∗ solves (35). Conversely,
suppose that x∗ solves inequality (35), then

〈x− x∗,H(x∗)〉 ≥ 0 ∀x ∈ X , (43)

which can be rewritten

〈x− x∗,x∗− (x∗− rH(x∗))〉 ≥ 0 ∀x ∈ X ; (44)

and using lemma 3 we get

x∗ = PX [x∗− rH(x∗)]. (45)

�

This equation can be solved using a simple fixed-point method:
Given x0 ∈ X compute the solution at step n+1 by iterating the
scheme

xn+1 = PX (xn− rH(xn)), (46)

until convergence. Different strategies for choosing r are dis-
cussed in [42]. Here, for simplicity we’ll pick r = 0.2 as a245

constant.

4. Primal-Dual Beltrami Regularization

Let us now return to the Beltrami regularization problem,
and apply the primal-dual projected gradient method for its op-
timization. We first consider the simple case of denoising, as250

given by the discrete problem stated in (24). Once the primal-
dual projected gradient method has been described for this start-
ing case, it will be easily adapted to more complicated image
restoration problems.

4.1. Primal-Dual approach255

Computationally, the Beltrami denoising model (24) is usu-
ally solved by its formal Euler-Lagrange equations. This would
be viewed as the primal approach to solving the Beltrami de-
noising problem, and I is the primal variable. Based on the re-
sults of the previous section, we can now formulate the primal-
dual problem. By comparison of our Beltrami-denoising opti-
mization problem with the primal-dual model in theorem 1, we
get the following notation:

F(KI) := ∑
i j

√
1+β2|(∇I)(i, j)|2 and (47)

G(I) := ∑
i j

λ

2
(I(i, j)− I0(i, j))2 (48)

with the reflexive spaces V = Rm×n and W = R(m×n)×2. Now,
we define the functionals:

K : V → W
I 7→ ∇I and

F : W → R
x 7→ ∑i j f (x(i, j)), (49)

with f : R2 → R, f (s) =
√

1+β2|s|2. The Legendre-Fenchel
transform f ∗ of the function f is found as:

f ∗ : R2 → R

s 7→

{
−
√

β2−|s|2
β

if β2 ≥ |s|2

+∞ otherwise,

(50)

and therefore the convex conjugate F∗ of F is

F∗ : W → R
ϕ 7→ ∑i j f ∗(ϕ(i, j)). (51)

It is easy to prove that F is convex. Thus, using theorem 1,
we now get the equivalent primal-dual problem:

min
I

max
ϕ∈X

{
∑
i j
〈∇I,ϕ〉+

√
β2−|ϕ|2

β
+

λ

2
(I− I0)

2
}
, (52)
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where X = W ∗ =
{

ϕ ∈ R(m×n)×2 | |ϕ(i, j)|2 ≤ β2
}

. Further,
using ∇∗ =−div by construction of the discretized differential
operators, (52) can be rewritten:

min
I

max
ϕ∈X

{
∑
i j
−I divϕ+

√
β2−|ϕ|2

β
+

λ

2
(I− I0)

2
}
. (53)

4.2. Algorithm

Having reformulated the Beltrami denoising problem in a
primal-dual form, we can now make use of the projected gradi-
ent method for optimization.

Using the notation in (35) we get for each (i, j)

H(I,ϕ) =
(
−divϕ+λ(I− I0)

−β∇I
√

β2−|ϕ|2 +ϕ

)
(54)

In order to avoid a division by zero, we have multiplied the260

second term of H by β
√

β2−|ϕ|2. Given a current estimate
(Ik,ϕk) at iteration step k, the projection algorithm (46) then
yields the following update formula (for each (i, j)):

1) ϕk+1 = PX

(
ϕk− r1

(
−β∇Ik

√
β2−|ϕk|2 +ϕk

))
2) Ik+1 = Ik− r2

(
−divϕk+1 +λ

(
Ik− I0

))
265

where r1,r2 are positive constants and the projection on the X =
W ∗ is simply given by

PX (ϕ)(i, j) =
βϕ(i, j)

max(|ϕ(i, j)|,β)
. (55)

Indeed,

|PX (ϕ)(i, j)|2 =

{
|ϕ(i, j)|2 if β≥ |ϕ(i, j)|
β2 otherwise

(56)

as required. This primal-dual projected gradient algorithm for
Beltrami-regularized image denoising is summarized in algo-
rithm 1.

Algorithm 1 Beltrami primal-dual denoising

Initialize I0 = I0,ϕ
0 = 0.

repeat

ϕ̄k+1 ← (1− r1)ϕk +βr1∇Ik
√

β2−|ϕk|2

ϕk+1 ← βϕ̄k+1

max(|ϕ̄k+1|,β)

Ik+1 ← (1−λr2) Ik + r2
(
divϕk+1 +λI0

)
until convergence

5. Denoising results

We have implemented the proposed primal-dual projected
gradient Beltrami-denoising algorithm. Here, we want to demon-
strate its use, and compare our Beltrami algorithm with a sim-
ple primal-dual formulation of the ROF model [41, 42], known
to be efficient. The methods are very comparable in structure.
Indeed, the only difference between the proposed Beltrami de-
noising and the primal-dual ROF model is in the projection and
the update of the dual variable. Here, the ROF algorithm (see
Algorithm 2) uses

ϕ
k+1 = PX (ϕ

k− r1∇Ik) with PX (ϕ) =
ϕk

max(|ϕk|,1)
. (57)

It has been shown that this algorithm converges very fast and270

gives a better convergence rate, e.g., compared with Cham-
bolle’s projection method [39].

Algorithm 2 ROF primal-dual denoising

Initialize I0 = I0,ϕ
0 = 0.

repeat

ϕ̄k+1 ← ϕk− r1∇Ik

ϕk+1 ← ϕ̄k+1

max(|ϕ̄k+1|,1)

Ik+1 ← (1−λr2) Ik + r2
(
divϕk+1 +λI0

)
until convergence

In figure 2 we illustrate results for denoising a series of test
images using λ = 0.075 and β = 1. The images have been
degraded by an additive Gaussian noise of standard deviation275

σ = 10 (compared to an image intensity range of [0,256]. In
all examples we use the same descent parameter r = 0.2. We
choose to terminate the algorithm when the primal relative er-
ror improvement,

(
P
(
uk+1

)
−P

(
uk
))

/P(u0), reaches a desired
precision, here ε = 2 · 10−5. Both methods perform almost280

equally; only subtle differences are visible in image locations
with smoothly varying intensities, such as Lenna’s cheek.

Indeed, this is the major difference between the two meth-
ods. While the ROF model is feature preserving, it also has
a tendency to produce artificial intensity jumps (staircasing) in285

the output images. The Beltrami method is also feature preserv-
ing, but has greatly reduced staircasing. This difference is best
appreciated in Figure 3.

To measure more quantitatively the similarity between the
recovered image and the original (supposedly noise-free) im-290

age, we use both the signal-to-noise ratio, and the structural
similarity index (SSIM), the latter being well known to better
reflect perceived visual quality [48]. Comparative numbers are
reported for both methods and over a series of 16 test images, in
Table 1. It can be seen that the quality difference between ROF295

and Beltrami is not extreme, but almost consistently in favor of
the proposed Beltrami model. It is also to note that given the
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Original image
∈ [0,256]

Noisy image
(σ = 10)

Beltrami result
(β = 1,λ = 0.075)

TV result
(λ = 0.075)

Blowups

Figure 2: Denoising results: Beltrami and TV denoising applied to 7 artificially degraded test images. Noise level σ = 10 for images in [0,256]. Parameters have
been chosen to denoise somewhat excessively, in order to make differences between Beltrami and TV more visible. Beltrami denoising has smoother gradients
compared to the staircasing seen with TV.
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Beltrami TV

Image SNR SSIM Iter. CPU [s] SNR SSIM Iter. CPU [s]

cameraman∗ 25.632 0.888 33 0.624 25.574 0.886 74 1.248
circuit∗ 24.562 0.877 34 0.764 24.401 0.870 59 1.108
coins∗ 25.968 0.930 37 0.733 25.980 0.932 77 1.451
concordorthophoto 23.605 0.828 35 0.546 23.531 0.823 55 0.655
moon 28.662 0.897 46 2.683 28.659 0.908 86 4.696
liftingbody 32.106 0.951 47 4.228 31.981 0.948 92 6.505
mri 23.027 0.910 27 0.109 23.090 0.941 63 0.328
rice∗ 23.838 0.811 31 0.546 23.728 0.801 59 0.764
snowflakes 15.660 0.921 41 0.328 15.518 0.917 80 0.530
text 24.574 0.901 33 0.515 24.913 0.950 70 0.967
tire 22.880 0.916 41 0.406 22.803 0.914 67 0.593
bag 21.984 0.912 31 0.296 21.938 0.910 49 0.484
boat∗ 26.291 0.942 37 3.089 26.174 0.939 69 5.132
lenna∗ 25.084 0.948 40 3.448 24.940 0.945 78 5.710
lincoln∗ 28.519 0.845 46 2.012 28.306 0.834 78 2.839
t1brain 24.514 0.926 36 0.546 24.461 0.934 68 0.874

Table 1: Beltrami and TV denoising applied to a larger set of test images. Asterisk denotes images shown in figure 2. Signal-to-noise ratio and structural similarity
Index are in favor of the Beltrami model (bold). Also, the Beltrami model converges in a little more than half the iterations required for the TV model. Each iteration
is only slightly more computationally complex than the TV algorithm, since both implementations are based on a very similar primal-dual projected gradient method
and thus structurally identical. Convergence criterion is based on the decrease of the primal problem energy.

(a) Feature preservation (b) ROF Denoising (c) Beltrami Denoising

Figure 3: Feature preservation versus staircasing. (a) A surface plot of a section of the cameraman image before and after Beltrami denoising illustrates the feature
preserving nature of the denoising model: The steep edge is preserved (feature), while the little oscillations (noise) are removed. (b)–(c) The TV model is also
feature preserving, but has a strong tendency to introduce piecewise constant patches separated by artificial steps (staircasing). This effect is much less prominent
in the Beltrami model, where soft gradients remain smooth.
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Figure 4: Parameter choice and sensitivity. (a)–(b) For a given image and a fixed noise level, the balancing parameter λ has a prominent peak in the resulting
signal-to-noise ratio (SNR) and the structural similarity index (SSIM). (c)–(d) The optimal aspect ratio β is image dependent, but has also exhibits a flatter plateau
of near-optimality. (e)–(f) the locations of the optimal parameters β∗ and λ∗ as determined by numerical optimization. For significant noise levels (σ > 10), the
optimal β is almost noise independent, and exhibits large variation. Due to the flat plateau, almost any value between 1 and 3.5 is “good”. In contrast, the optimal
balancing parameter λ is well-defined by an inverse proportional relationship with the noise-level. (g)–(h) SNR/SSIM at SNR-optimal parameters β∗ and λ∗. (blue:
optimize both β and λ, green: keep β = 2 and only optimize λ, black: TV with optimal λ). Optimally tuned Beltrami model slightly outperforms TV denoising.

primal-energy decrease criterion, the Beltrami model converges
in roughly half as many iterations as the TV model.

While the ROF model has only one balancing parameter,300

which is essentially governed by the noise level, the Beltrami
model involves the aspect ratio β, in addition. We study the in-
fluence of parameter selection (β and λ) in terms of SNR and
SSIM. The curves are shown in Figure 4(a)–(d). In addition, we
have performed numerical optimization to search for optimal β∗305

and λ∗ over a broad range of noise levels, σ, see Figure 4(e)–
(f). The variation on β∗ is large, and above a certain noise level
the optimal choice seems largely independent of σ. In contrast,
the optimal balancing parameter λ is clearly anti-proportional
to the noise-level. In conclusion, as with the ROF model, the310

balancing parameter λ is governed by the noise level, is largely
image independent and exhibits a prominent peak. Conversely,
the aspect ratio β is mostly image dependent, and typically has
a broader plateau. In a typical application, the balancing param-
eter λ can be inferred from the estimated noise level, while the315

optimal β should be learned from a set of representative train-
ing images. In our case, the curves suggest optimal values in
a typical range of 1− 3 (and less in low-noise regimes). Fi-
nally, we have traced the SNR and SSIM achieved at optimal
parameter choices, for both the Beltrami and the ROF model,320

see Figure 4(g)–(h). The curves suggest that the Beltrami model
typically outperforms ROF in both SNR and SSIM, albeit only
marginally so.

6. Application to Inpainting and Super-resolution

Inpainting techniques aim to reconstruct or filling a lost part325

of an image. In this section, we apply our proposed primal-dual
projected gradient Beltrami method to image inpainting and we
show on numerical results that our method is well adapted to
this application.

6.1. Problem presentation330

Suppose we have an image I defined on a domain Ω ⊂ R2

and a subset D ⊂ Ω thereof, where data of the image has been
lost. We now want to find

u = Φ
−1 ( f ) (58)

where Φ is a damaging operator. In fact, this is a projection
operator on Ω\D which can be written:

Φ(u)(x) =

{
u(x) if x < D,

0 if x ∈ D.
(59)

We suppose that the set of lost data D is finite. The inpainting
model using the Beltrami energy is then defined as

min
I

{
∑
Ω

√
1+β2|∇I|2 + λ

2 ∑
Ω\D

(I− I0)
2
}
. (60)
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Using the same approach as in the denoising minimization prob-
lem, we reach the following primal-dual formulation:

min
I∈Rm×n

max
ϕ∈X

{
∑
Ω

(
−I divϕ+

√
β2−|ϕ|2

β

)
+

λ

2 ∑
Ω\D

(I− I0)
2

}
,

(61)
where X =

{
ϕ ∈ R(m×n)×2, |ϕ(i, j)|2 ≤ β2

}
. This problem can

be solved analogously to the algorithm of the previous section.
The dual update is exactly the same, while we have the follow-
ing update of I:

Ik+1 = (1−λer2) Ik + r2

(
divϕ

k+1 +λeI0

)
(62)

where the balancing weight λe is simply given by λe = λ(1−χD),
and χD represents the characteristic function on the inpainting
domain D. This means that the fidelity term is only active where
image data is available, while on D only the Beltrami regularity
prior is acting.335

When the original image is considered as clean, this would
correspond to picking λ→∞; however, doing so greatly affects
the conditioning of the system. Instead, we enforce the data-
fidelity constraint on Ω \D directly. Here, the image update
equation is replaced by

Ik+1(x) =

{
Ik(x)+ r2 divϕk+1(x) if x ∈ D
I0(x) otherwise

(63)

The two inpainting algorithms, corresponding to noisy and
clean images, are summarized below, as algorithms 3 and 4.

Algorithm 3 Beltrami primal-dual inpainting (noisy image)

Initialize I0 = I0,ϕ
0 = 0.

repeat

ϕ̄k+1 ← (1− r1)ϕk +βr1∇Ik
√

β2−|ϕk|2

ϕk+1 ← βϕ̄k+1

max(|ϕ̄k+1|,β)

Ik+1 ← (1−λer2) Ik + r2
(
divϕk+1 +λeI0

)
until convergence

6.2. Results

We demonstrate the proposed versions of Beltrami inpaint-
ing algorithms on two test images, as shown in Figure 5. The340

two test images have been artificially corrupted by discarding
p = {15,50,85}% of the image pixels, randomly. Our exam-
ples illustrate the subtle difference between the two inpainting
versions, noisy and clean: While the clean algorithm will re-
construct an image that exactly matches the input on Ω \D,345

including potentially noisy pixels and artifacts, the noisy al-
gorithm incorporates some slack in this data-fidelity and we
achieve a certain amount of denoising in the process.

Algorithm 4 Beltrami primal-dual inpainting (clean image)

Initialize I0 = I0,ϕ
0 = 0.

repeat

ϕ̄k+1 ← (1− r1)ϕk +βr1∇Ik
√

β2−|ϕk|2

ϕk+1 ← βϕ̄k+1

max(|ϕ̄k+1|,β)

Ik+1 ←

{
Ik(x)+ r2 divϕk+1(x) if x ∈ D
I0(x) otherwise

until convergence

Although not shown here, the TV-based results compare
analogously to the denoising problem.350

Also note that this Beltrami inpainting model can be easily
extended to image zooming, where simply the missing pixels
will have a regular geometric structure. Indeed, we can think of
image zooming as filling a lost part of an image, the lost part
being now between each pixels.355

7. Application to non-blind deconvolution

In this section we apply the primal-dual projected gradient
approach to the Beltrami deconvolution (deblurring) problem.

7.1. Problem statement

We assume here that the observed image I0 is a blurred and
noisy version of an unobserved image I:

I0 = h∗ I +n, (64)

where h is the blurring kernel (point spread function), and ∗ de-
notes convolution. We can formulate the Beltrami-regularized
inverse problem as follows:

min
I∈Rm×n

max
ϕ∈X

{
∑
Ω

−I divϕ+

√
β2−|ϕ|2

β
+

λ

2
(h∗ I− I0)

2

}
.

(65)
We can notice that when h = δ (δ being the Dirac impulse, i.e.,360

the identity element under convolution), the problem becomes
the initial Beltrami denoising model.

The only difference between the denoising and the decon-
volution algorithm appears in the update of the primal variable
through gradient descent. Here, as a little extra, we propose an
implicit gradient descent:

Ik+1 = Ik + r2

(
divϕk+1

λ
−hs ∗ (h∗ Ik+1− I0)

)
, (66)

and solve it spectrally as follows:

Ik+1 = F −1

{
F
{

Ik + r2
λ

divϕk+1
}
+ r2H̄F {I0}

1+ r2|H|2

}
, (67)
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Original image
∈ [0,256]

Punched image
(p = 15,50,85%)

Beltrami result
(β = 1,λ→ ∞)

Beltrami result
(β = 1,λ = 0.3)

Blowups

Figure 5: Beltrami regularized inpainting results. Two test images are artificially degraded (removal of 15-85% of the pixels. Both “clean” (λ→ ∞) and “noisy”
(λ = 0.3) algorithms are applied.
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where F denotes the Fourier transform, H = F {h}, and H̄ de-
notes the complex conjugate. The spectral approach is compu-
tationally interesting for larger convolution kernels, where FFT365

and spectral multiplication are more efficient than convolution
in time domain. For the complete non-blind deconvolution al-
gorithm, see algorithm 5.

Algorithm 5 Beltrami primal-dual non-blind deconvolution

Initialize I0 = I0,ϕ
0 = 0.

repeat

ϕ̄k+1 ← (1− r1)ϕ
k +βr1∇Ik

√
β2−|ϕk|2

ϕk+1 ← βϕ̄k+1

max(|ϕ̄k+1|,β)

Ik+1 ← F −1
{

F {Ik+
r2
λ

divϕk+1}+r2H̄F {I0}
1+r2|H|2

}
until convergence

7.2. Results

We showcase the proposed Beltrami-regularized deconvo-370

lution algorithm in Figure 6. Six test images were artificially
degraded by a linear motion-blur kernel (120◦ angle, 12 pixels
long), and affected by a low level of noise (σ = 5). The decon-
volution is generally good and relates similarly to the TV-based
results (not shown) as in the denoising case; for the black-and-375

white text image, however, the Beltrami regularizer clearly is
not the ideal prior.

8. Application in Compressed Sensing

In this section, we consider the problem of reconstructing an
object from partial frequency information. For instance, MRI380

measurements can be interpreted as a selection of a few Fourier
frequencies, because densely sampling the entire k-space would
take too long.

8.1. Problem statement

The problem is to recover f from incomplete Fourier sam-
ples. This problem can be seen as a non-blind deconvolution
(see section 7, above). Indeed, here, compressed sensing refers
to applying a binary frequency mask H to the spectrum of the
image,

F {I0}= H ·F {I}, (68)

where · denotes point-wise multiplication. Due to the convolu-
tion theorem, this can be interpreted as convolution by the filter
h = F −1{H},

(h∗ I)(x) = (F −1{H}∗ I)(x). (69)

Eventually, we are thus dealing with a non-blind deconvolution385

problem, and the image is recovered using the same algorithm
as in section 7. Note that in this case, the filter h will not be

sparsly supported in time domain, but has a much nicer def-
inition in spectral domain by construction, and therefore the
spectral update proposed in the deconvolution algorithm is par-390

ticularly interesting.

8.2. Results

To show successful image reconstruction from sparse Fourier
samples using the proposed Beltrami model, we test our algo-
rithm on the same series of 6 test images. For each of these395

images, we keep frequencies on a set of 25, 50, and 100 radial
lines only. This corresponds to between 5 and 35 % of spectral
coefficients, depending on image dimensions. The results of
our algorithm are shown in Figure 7.

9. Extension to multichannel and color images400

So far, we have dealt grey-scale image reconstruction prob-
lems, only. However, this is just a particular case, and more
generally images have higher co-dimension. Such multi-channel
images occur for example with color, texture, multimodal or
hyperspectral features. In particular, RGB-color images have405

co-dimension 3.

Definition 15 (Multichannel image). We consider a d-channel
image as a function u defined as

u : Ω⊂ R2 → Rd

x 7→ u(x) := (u1 (x) , . . . ,ud (x)) .
(70)

Thus, d-channel images are simply a collection of d grey-scale
images u1, . . . ,ud .

9.1. Simplified multichannel Beltrami functional

The Beltrami functional derived in differential geometry terms410

now leads to particular gradient coupling terms in the determi-
nant [15, 17]. However, these gradient terms render the func-
tional non-convex, and are thus a computational obstacle in the
present context.

Definition 16 (Simplified multichannel Beltrami energy). Here,
we thus formally define a simpler d-channel Beltrami energy as

E(u) :=
∫

Ω

√√√√1+β2
d

∑
s=1
|∇us|2. (71)

With this simplified d-channel Beltrami regularizer discretized
as before, we rewrite the initial denoising model using Beltrami
regularization and L2 fidelity term wrt. to given data u0:

min
u

∑
Ω

√√√√1+β2
d

∑
s=1
|∇us|2 +

λ

2

d

∑
s=1

(us−u0,s)
2

 (72)
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Original image
∈ [0,256]

Blurred and noisy
(σ = 5)

Beltrami result
(β = 0.5,λ = 0.4)

Original image
∈ [0,256]

Blurred and noisy
(σ = 5)

Beltrami result
(β = 0.5,λ = 0.4)

Figure 6: Beltrami-regularized deconvolution results. 6 test images are artificially degraded by a known motion blur filter (orientation 120◦, length 12 pixels), and a
low amount of noise is added to the blurred image (σ = 5). Estimates of the original images are recovered using fixed Beltrami parameters (β = 0.5,λ = 0.4). The
Beltrami prior seems appropriate with natural images, but clearly underperforms on the black-and-white text image.

Using the same method as in the scalar case, we can proceed
to the definition of the following equivalent primal-dual varia-
tional model:

min
u

max
∑

d
s=1 |ϕs|2≤β2

{
∑
Ω

−
d

∑
s=1

us divϕs +

√
β2−∑

d
s=1 |ϕs|2

β

+
λ

2

d

∑
s=1

(us−u0,s)
2

}
(73)

The modified variational inequality problem can again be solved
using a projection type method:

uk+1
s = uk

s − r1

(
−divϕ

k+1
s +λ

(
uk

s −us,0

))
(74)

and

ϕ
k+1
s = PX

ϕ
k
s − r2

−β∇uk
s

√√√√β2−
d

∑
l=1
|ϕl |2 +ϕ

k
s

 . (75)

Here, the projection on the ball X =
{

x | |x|2 ≤ β2
}

is simply
given by

PX (ps) =
βps

max
(

β,
√

∑
d
l=1 |pl |2

) . (76)

9.2. Results415

We demonstrate the denoising power of the proposed sim-
plified color-Beltrami model on 4 different color images. Im-
ages and denoising results are shown in Figure 8. We have
chosen parameters such that the denoising is rather excessive,
in order to better highlight the nature of the denoising. The420

simplified color-Beltrami model can be seen to effectively re-
move color granularity (noise, texture), while preserving fea-
tures such as lines and edges. Color gradients are smooth and
do not exhibit artificial staircasing.

10. Conclusions425

In this paper, we have proposed a primal-dual projected
gradient method to efficiently solve the Beltrami regularization
based image denoising. This algorithm is inspired by very suc-
cessful schemes used with the ROF model, proposed by Zhu
and Chan in [41, 42]. Beltrami regulatization offers an inter-430

esting compromise between the smooth regularization of H1

priors, and the feature preservation of TV regularization. Until
now, this compromise came at a cost in the form of increased
computational complexity and was thas rarely used in practice.
Here, we present a generic Beltrami-based denoising algorithm435

and compare its performance to the corresponding TV-based
algorithm. We can show that increase denoising quality can be
achieved at comparable computational complexity.
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Compressed image
(25 radial lines)

Beltrami recovery
(β = 1,λ = 0.5)

Compressed image
(50 radial lines)

Beltrami recovery
(β = 1,λ = 0.5)

Compressed image
(100 radial lines)

Beltrami recovery
(β = 1,λ = 0.5)

Figure 7: Beltrami-regularized compressed sensing results. 6 test images are artificially degraded by removing large parts of their Fourier spectrum. For each image,
only Fourier coefficients on 25, 50, and 100 radial lines are conserved. For cameraman, orthophoto and text, the three masks correspond to {9,18,35}% of Fourier
coefficients observed, for Lenna and boat to {5,9,19}%, and for Lincoln to {7,13,25}%, respectively, due to larger image dimensions.
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Original image
∈ [0,256]3

Beltrami result
(β = 2,λ = 0.05)

Blowups Original image
∈ [0,256]3

Beltrami result
(β = 2,λ = 0.05)

Blowups

Figure 8: Simplified Color-Beltrami denoising results. 4 color test images with strong inherent noise (object texture, half toning).

The fundamental idea is to formulate an equivalent opti-
mization problem involving a dual variable to the primal (im-440

age) variable, and where the Beltrami-regularizer is replaced
by the convex conjugate of this dual variable. The resulting
saddle-point problem is solved through a variational inequality.
The primal variable is optimized by gradient descent, and the
dual variable are optimized by gradient ascent followed by pro-445

jection on the appropriate convex set. In this work we use a
fixed steps size in the gradient descent/ascent equations, how-
ever, more elaborate schemes could be employed in order to
further increase the computational efficiency of the algorithms,
as has been done for the ROF model [41, 42].450

Beyond the simple denoising problem, we extend the primal-
dual projected gradient Beltrami regularization algorithm to a
larger family of inverse image processing problems, such as
inpainting, deconvolution and compressed sensing. All these
cases can be tackled in a very similary way. Eventually, we also455

propose a simplified color-extension of the Beltrami regulariza-
tion model, that lends itself to optimization in a very similar
fashion. Here, simplification with respect to the “true” color-
Beltrami model [17] is necessary in order to maintain a convex
functional. Future work will focus on convex relaxations of460

the true multichannel-Beltrami model to not have to make such
simplifications.

A MATLAB implementation of the proposed algorithms
will be made available at http://www.math.ucla.edu/~zosso/
code.html.465
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