
SPACE-TIME REGULARIZATION FOR VIDEO DECOMPRESSION

HAYDEN SCHAEFFER ∗, YI YANG , AND STANLEY OSHER

Abstract. We consider the problem of reconstructing frames from a video which has been
compressed using the video compressive sensing (VCS) method. In VCS data, each frame comes from
first sub-sampling the original video data in space and then averaging the sub-sampled sequence in
time. This results in a large linear system of equations whose inversion is ill-posed. We introduce
a convex regularizer to invert the system, where the spatial component is regularized by the total
variation semi-norm and the temporal component is regularized by enforcing sparsity on the difference
between the spatial gradients of each frame. Since the regularizers are L1-like norms, the model can
be written in the form of an easy to solve saddle point problem. The saddle point problem is solved
by the primal-dual algorithm, whose implementation calls for nearly point-wise operations (i.e. no
direct linear inversion) and has a simple parallel version. Results show that our model decompresses
videos more accurately than other popular models, with PSNR gains of several dB.
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ization.
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1. Introduction. Adaptive video compression and decompression is at the fron-
tier of mathematical image processing. Since the dominant source of data is video
based and the demand for transmitting videos continues to grow, the importance
of constructing reliable and fast tools to process such data is becoming increasingly
necessary. In this work, we focus on the reconstruction of compressed sequences of
frames acquired from what is known as video compressive sensing (VCS).

Classical compression algorithms, such as MPEG, acquire all incoming signal
before compressing it in a given basis. For example in MPEG-IV, the video is stored
as a sequence, where the first frame of the sequence is compressed with respect to
the wavelet basis [10, 9]. After the first frame is stored, the following frames are
compressed by taking the difference with the first frame and tracking the changes
with respect to the wavelet basis. If the difference is large, then the sequence is stored
and the process begins again with a new first frame and resulting sequence.

Recently, there are works in the literature which propose new video compression
schemes using the compressive sensing framework in order to increase the gains in
storage and recovery. This is done by compressing the incoming data before the
signal is sensed by the device, typically by means of a time-varying aperture coding
function which prevents a fixed amount of signal from reaching the lens. The coded
aperture appears as a random or pseudo-random grating, which sub-samples the signal
in space. This differs from the classical framework since the incoming signal is not
sensed directly, but rather a spatially sub-sampled version is acquired. Some recent
work on the construction and implementation of coded apertures and compressive
sensing cameras can be found in coded aperture compressive temporal image (CACTI)
systems [22], coded aperture snapshot spectral imaging (CASSI) [35, 36], cooperative
analog and digital signal processing transform imager (CADSP) [19], sparse MRI [23].
For other examples of this methodology being implemented in hardware and software,
see [14, 6, 37, 8, 16, 5, 24, 28]. A related and connected topic, in terms of hardware
adaption for image acquisition can be found in [29, 1, 34], where a flutter shutter is
used to better condition the resulting motion blur kernels.
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A computational difficulty in the VCS framework is the reconstruction of this
type of compressed data. Many of the mathematical methods found in the literature
for recovering compressed sensing data focus on the reconstruction of single image
data, for example those working on the preservation of edges [13, 38, 17, 27, 3] or
texture [11, 32, 18]. However, the temporal aspect of videos introduces the need for
different types of regularization which leverage the particular structure of the data
and the compression.

From the convex optimization perspective, the popular regularizers for video re-
covery rely on generalizing total variation to higher dimensions. Let u = u(x, y, t) be
a continuous spatiotemporal function over Ω× [0, T ], where Ω ⊂ R2 and T > 0. Note
that u(x, t) will refer to u(x, y, t) in some sections below. Recall that the 2D isotropic
total variation regularizer is defined as [31]:

TV2(u) :=

∫
Ω

∣∣∣∣√(∂xu)2 + (∂yu)2

∣∣∣∣ .
Total variation regularization and the related models, are able to reconstruct piece-
wise constant images accurately and capture edge information found in most images.
To extend this regularizer to video data, one can directly treat the time component
as an additional space variable and form the corresponding semi-norm [20, 21]:

TV3(u) :=

∫
Ω×[0,T ]

∣∣∣∣√(∂xu)2 + (∂yu)2 + (∂tu)2

∣∣∣∣
In this form, all dimensions are coupled and the expected behavior is uniform in all
directions. An equivalent semi-norm on the space of 3D functions of bounded variation
takes the form [14, 33]:

TV2+1(u) :=

∫
Ω×[0,T ]

∣∣∣∣√(∂xu)2 + (∂yu)2

∣∣∣∣+ λ

∫
Ω×[0,T ]

|∂tu|

with λ positive. We denote this semi-norm by TV2+1 since it decouples the two spa-
tial dimensions from the temporal one. The TV2+1 regularizer takes into account
the differing behaviors of the spatial and temporal components, which could allow
for more flexibility in penalizing in-frame oscillations versus sporadic error between
frames. Both semi-norms provide sufficient regularization to reconstruct video data
compressed in terms of a global basis. However, when the video data is spatially
compressed using a sub-sampling operation, as is done in CACTI systems [22], this
treatment of the temporal component is insufficient [39]. In this work, we propose a
higher-order variation on the temporal component which promotes the correct behav-
ior in the reconstructed solutions, which we verify with a variety of videos.

Related work on recovering videos from VCS data can be found in [40, 39]. The
algorithm proposed in [40, 39] uses a Gaussian mixture model to represent each 3D
patch in the data set, with the assumption that the space of patches lives on a union of
subspaces and each patch is drawn from one subspace. Unlike other dictionary-based
algorithms, the inversion of the compressive sensing operator in [40, 39] is analytic,
making it more computationally efficient.

This paper is organized as follows. A description of our reconstruction model is
given in Section 2. Characterization of the model and minimizers along with some
analytic remarks are provided in Section 3. Section 4 details the primal-dual algo-
rithm and its implementation for our model. Experiment results and comparisons
on synthetic and real video sequences are provided in Section 5. We conclude with
several final remarks in Section 6.



– 3

2. Description of the Model. In this section, we present a mathematical for-
mulation of the linear operator which defines the data acquisition process and then
detail our model for recovering VCS data.

(a) Compressed Sequence (b) 25th frame from the original se-
quence

(c) 25th frame from the TV model (d) 25th frame from our model

Fig. 2.1. The standard Shapes image is repeated for 50 frames and has been compress to 2%
in space for a total compression rate of 0.04%. Each frame is compressed with an independently
generated random mask. In this example, we show the benefits of a temporal regularizer. Our model
provides a reconstructed sequence with an average PSNR of 22.95, while the spatial-only regularized
model has an average PSNR of 7.00. Notice that this PSNR value for the spatial-only regularized
model is not too low, since the background value in the original video is 0.

2.1. Compressed Data. The data is acquired by first spatially sub-sampling
each frame in the original video and then taking the running average [43, 22, 42,
33, 41]. In mathematical terms, we can define the corresponding projection operator
P : RN×N×T → RN×N over a video sequence as:

P (u) =
1

T

T∑
j=1

PSj (uj).

where N2 is the number of pixels in each frame and T is the number of frames. The
sequence u is defined by the collection of frames uj , i.e. u := [u1, u2, ...uT ]. The set
Sj corresponds to the spatial locations in frame j where the mask is transparent (i.e.
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‘on’). For each set, Sj ⊂ Ω, where Ω is the spatial domain, the frame-wise projection
is defined by the standard operation:

PSj
(uj(x)) =

{
uj(x), if x ∈ Sj
0, if x ∈ Scj

We define the spatial compression rate (or ratio) as the size of Sj divided by the size
of Ω, which is assumed to be (nearly) uniform in j. The data projection operator
is typically normalized by T and hence represents the running average of the incom-
ing compressed signal. Alternatively, the normalization can be done point-wise by
dividing each pixel by the number of instances of acquired data:

P (u(x)) =

∑T
j=1 PSj

(uj(x))∑T
j=1 PSj (1)

,

where we take 0
0 := 0. For the mathematical exposition here, this normalization factor

is not directly considered; however, our method readily applies in this case.
In practice, the data is acquired adaptively, in the sense that sequences with

larger values of T have relatively less motion, while sequence with smaller values of
T may be more dynamic [22, 42, 33, 30] . For the model presented here, this fact is
not directly used, but could be incorporated via the parameter choices described in
Section 5. Overall, the inverse problem we consider here is: given one compressed
sequence f ∈ RN×N , find u ∈ RN×N×T such that P (u) = f .

2.2. Our Model. Since it is not necessarily true that adjacent compressed
frames carry similar information, for example there could be an abrupt change in
the motion of the objects in the foreground or a complete change in the scene, we
will consider here the decompression of a sequence of frames given one compressed
measurement. Within the sequence there are three main dimensions, two spatial and
one temporal, and we must regularize in both space and time in order to fill in all
missing information. The regularizer also must be strong enough to deal with the
various types of issues caused by the compression: 1. blurring caused by the motion
of objects between frames over the lapsed time (scene-based motion), 2. the blurring
effect caused by averaging the frames together (camera-based motion), 3. noise in the
sensor array during the acquisition process, and 4. the number of missing pixels and
the overall distribution of information in each frame.

As a starting point, we seek a model similar to that of Rudin-Fatemi-Osher (ROF)
model for still images [31]:∫

Ω

|∇u(x, 0)| dx +
µ

2

∫
Ω

(u(x, 0)− f)
2

dx,

where µ is a positive parameter and f is the input data. So we assume that each
individual frame can be well approximated by a piece-wise constant function. Also,
we take as a basic assumption that the sequence is defined over a finite time interval
where the frames are made up of a stationary background and moving foreground.
Therefore, the appropriate spatial regularizer is the average TV for each frame:

Spatial:
1

T

T∑
j=1

‖∇uj‖1 :=
1

T

T∑
j=1

∫
Ω

|∇uj | dx.



– 5

Unless otherwise stated, we consider all vector norms to be the standard l2 norm.
The spatial regularizer ensures that each reconstructed frame contains sharp edges
and regions of homogenous intensity, thereby reducing the effects of blur and noise in
the sequence. Also, it has been shown that TV -regularized decompression provides a
near-optimal stable method for image recovery [26].

Based on the assumption of piece-wise constant frames, it is clear that the dif-
ference between frames uj+1 − uj must remain piece-wise constant for consistency.
Therefore, we regularize the temporal component by the average total variation ap-
plied to the difference between adjacent frames:

Temporal:
1

T

T∑
j=1

‖∇uj+1 −∇uj‖1 :=
1

T

T∑
j=1

∫
Ω

|∇uj+1 −∇uj | dx,

where uT+1 = u1. The temporal regularizer acts partly like a temporal fidelity term
which communicates gradient based information between the frames and partly as a
penalty term to decrease the sporadic intensity displacement that could occur. This
helps mitigate the effects of sub-sampling and improves the reconstruction when the
sampling rate in space is low and/or when T is large. The choice of this regularizer
is also related to the assumption that velocity field acts locally uniformly and can be
discontinuous. This is applicable to real data, since many of the moving objects found
in stationary videos will move with a locally uniform speed as long as the object is
physically rigid in nature (i.e. non-expansive and/or low acceleration).

Altogether, the noise free decompression model can be written as a convex (con-
strained) optimization problem:

min
u

1

T

T∑
j=1

‖∇uj‖1 +
λ

T

T∑
j=1

‖∇uj+1 −∇uj‖1(2.1)

s.t P (u) = f

and the noisy recovery model can be written as a convex (unconstrained) optimization
problem:

min
u

1

T

T∑
j=1

‖∇uj‖1 +
λ

T

T∑
j=1

‖∇uj+1 −∇uj‖1 +
µ

2
‖P (u)− f‖2L2 .(2.2)

where λ and µ are positive parameters. We impose periodic boundary condition in
space and time. This condition is consistent in time since we assume the velocity field
can be discontinuous. Also, since the vector norms used are l2, the model is invariant
under rotations of the video. It is also invariant to contrast, scaling, translation of
the video.

To verify the scaling between terms in our model, consider the continuous in
time case where the lapse time between the frames, ∆t, and the time interval, I,
are shrinking. First, we will fix I and send ∆t → 0+. The number of frames, T ,
is inversely proportional to the lapse time, i.e. T = I

∆t . For simplicity, we assume
that the projection operators are identity (i.e., Sj = Ω). Using the Taylor series, the
difference between consecutive frames is:

uj+1 − uj := ∆t ∂tuj +O(∆t2).
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and thus,

∇uj+1 −∇uj := ∆t ∇∂tuj +O(∆t2).

Also, for any well-behaved sequence variables vj , the running average can be approx-
imated by:

1

T

T∑
j=1

vj =
1

I

∫ I

0

vjdt +O(∆t2).

If the space-time mixed derivatives ( i.e. ∇∂tuj) are bounded in L1, the second term
in Equation (2.2), goes to zero as ∆t → 0+. Therefore for fixed u(x, t), sending
∆t→ 0+ in the energy yields:

1

I

∫ I

0

∫
Ω

|∇uj | dx dt +
µ

2

∫
Ω

(
1

I

∫ I

0

u dt− f

)2

dx.

If we send the time interval I → 0+, by the Lebesgue differentiation theorem (and by
switching some of the operations) we have:∫

Ω

|∇u(x, 0)| dx +
µ

2

∫
Ω

(u(x, 0)− f)
2

dx,

which is the ROF model on the initial frame u(x, 0). This argument is only formal
and is used to verify that the choice of coefficients in the model (in terms of T ) are
correct with respect to our assumptions.

In the derivation above we take the difference uj+1 − uj to be an approximation
to the time derivative. However, for discrete time, we consider it to be a measure of
similarity between consecutive frames and not necessarily corresponding to close-in-
time dynamics. It could be advantageous to take large time steps (∆t large) during the
compression, thereby storing more information. In that case, only significant events in
the video need to be captured and the rest of the motion can be interpolated between
frames.

As an example, we compare our model with a model that only contains spatial
regularization (by taking λ = 0). In Figure 2.1, a sequence with 50 repeated frames
is compressed using the VCS method with an overall compression rate of 0.04% and
then recovered with the TV in space model (see Figure 2.1(c)) and our method (see
Figure 2.1(d)). The average PSNR using our model is more than 3 times larger. Also
based on visual comparison, we can see it is necessary to use temporal regularization
in order to reconstruct the objects in the video.

2.3. Relation to Known Models. Since our model uses a total variation reg-
ularizer, it is related to other 3D extensions of the ROF model. In particular, we will
consider the standard TV3 model (for example, see [20, 21, 2]):

(TV3) min
u

∥∥∥∥√(∂xu)2 + (∂yu)2 + (∂tu)2

∥∥∥∥
L1

+
µ

2
‖Au− f‖2L2 .

where A is a general (possibly ill-posed) linear operator. In this model the third
dimension is treated in the same way as space and thus does not take advantage of
the structure of the data. One benefit is that in this form the problem is easy to solve
since one could make use of any algorithm that works in the 2D case.
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Recall that the TV2+1 model separates the spatial and temporal terms as follows:

(TV2+1) min
u

∥∥∥∥√(∂xu)2 + (∂yu)2

∥∥∥∥
L1

+ λ ‖∂tu‖L1 +
µ

2
‖Au− f‖2L2 .

Although the regularizer is an equivalent semi-norm on BV (Ω×[0, T ]), the minimizers
will generally be different. This model also has the advantage that it can be solved
using standard algorithms. In both of these models, the main assumption for the
temporal term is that the optical velocity is sparse in time [14]. This is effective when
the sub-sampling operation is done within a global basis, since the basis itself prevents
localized effects such as pixillation (in space) or flickering (in time). However, when
the data is randomly sub-sampled in space, the sparse in time assumption is no longer
valid, as can be seen in numerical results present in Section 5.

3. Analytic Remarks. In this section, we introduce an alternative formulation
of our regularizer in terms of duality. Using the dual form, we are able to characterize
solutions in terms of the coefficients in the model. Also, we verify two basic properties
that the reconstruction should contain in order to be a valid recovery model.

3.1. Characterization of Semi-Discrete Minimizers. We consider the semi-
discrete function space, where the spatial variables are continuous and the temporal
variable is discrete. The energy is defined for sequences of functions u := [u1, ...uT ] ∈
(BV )T . Since the regularizer is L1-like it can be written as a maximization against
L∞-like elements. Using this duality, we can provide a meaningful range for µ for
fixed λ and T .

Lemma 3.1. Consider the semi-discrete norm defined for T > 0 and λ ≥ 0 on
the sequence u := [u1, ..., uT ] ∈ (BV (Ω))T :

||u|| := 1

T

T∑
j=1

‖uj‖TV +
λ

T

T∑
j=1

‖uj+1 − uj‖TV .

The norm has the equivalent representation:

||u|| := sup
v∈V

1

T

T∑
j=1

〈Huj , vj〉

where the operator is defined as H := [∇,∇S+] and S+ is the forward finite difference
operator (in terms of the index j). The corresponding dual space can be identified
as the space of functions w whose components can be written as wj = −div φj, with
φj ∈ L∞(Ω× Ω). The corresponding dual norm is as follows:

||w||∗ = inf
φ,ψ

max

{
||φj − S−ψj ||L∞ ,

1

λ
||ψj ||L∞

}
,

where S− is the negative of the backward finite difference operator (i.e. S− = S∗+).
Proof. By considering the dual characterization of the TV semi-norm, we can

write our semi-norm in a linear form [25]:

||u|| = 1

T

T∑
j=1

‖uj‖TV +
λ

T

T∑
j=1

‖uj+1 − uj‖TV

= sup
||φj ||∞,||ψj ||∞≤1

1

T

T∑
j=1

〈∇uj , φj〉+
λ

T

T∑
j=1

〈∇uj+1 −∇uj , ψj〉 .
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Next, by rescaling ψj (and re-using notation for simplicity) we have the following
equation:

||u|| = sup
||φj ||∞≤1,||ψj ||∞≤λ

1

T

T∑
j=1

〈∇uj , φj〉+
1

T

T∑
j=1

〈∇uj+1 −∇uj , ψj〉 .

In this form, it is clear that by defining the operator H := [∇,∇S+] and the function
space:

V := {vj | vj = [φj , ψj ], ||φj ||∞ ≤ 1, ||ψj ||∞ ≤ λ} ,

the norm simplifies to:

||u|| := sup
v∈V

1

T

T∑
j=1

〈Huj , vj〉 .

Note also that the dual operator of H can be found easily via integration by parts
and is H∗[v1

j , v
2
j ] := −div v1

j − div S− v2
j , where S− is the negative of the backward

finite difference operator.
To find the corresponding dual norm, we must first find the dual norms of both

regularizers separately. For simplicity, we will define the separate norms as:

||u||a :=
1

T

T∑
j=1

‖uj‖TV

||u||b :=
1

T

T∑
j=1

‖uj+1 − uj‖TV .

By definition, the dual norm of || · ||a is:

||w||a,∗ := sup
||u||a≤1

〈u,w〉 = sup
||u||a≤1

1

T

T∑
j=1

〈uj , wj〉 .

For all w in the corresponding dual space, we can identify (possibly non-unique) vector
fields φj such that:

wj = −div φj

Therefore, the dual norm further simplifies to:

||w||a,∗ = sup
||u||a≤1

1

T

T∑
j=1

〈uj ,−div φj〉

= sup
||u||a≤1

1

T

T∑
j=1

〈∇uj , φj〉

By the Cauchy-Schwarz inequality, we have:

1

T

T∑
j=1

〈∇uj , φj〉 ≤
1

T

T∑
j=1

||uj ||TV ||φj ||L∞ ≤ max
j

(||φj ||L∞) ||u||a
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which provides an upper bound to this dual norm (minimizing with respect to all
choices of φ). This bound can be obtained by taking ∇uJ to be a (rescaled) Dirac
delta function at a global maximum of φJ , where J is the index which maximizes the
L∞ norms over the sequence {φj}. Therefore, the dual norm is:

||w||a,∗ = inf
φ

max
j

(||φj ||L∞) ,

where wj = −div φj for all 1 ≤ j ≤ T . Similarly, for the dual norm of || · ||b, we have
by definition:

||w||b,∗ := sup
||u||b≤1

〈u,w〉 = sup
||u||b≤1

1

T

T∑
j=1

〈uj , wj〉 .

Following the same argument as above, the dual norm simplifies to:

||w||b,∗ = sup
||u||b≤1

1

T

T∑
j=1

〈uj ,−div S−φj〉

= sup
||u||b≤1

1

T

T∑
j=1

〈∇S+uj , φj〉

By the Cauchy-Schwarz inequality, we have:

1

T

T∑
j=1

〈∇S+uj , φj〉 ≤
1

T

T∑
j=1

||S+uj ||TV ||φj ||L∞ ≤ max
j

(||φj ||L∞) ||u||b

which provides an upper bound as before. This bound can be obtained by taking
∇S+uJ to be a (rescaled) Dirac delta function at a global maximum of φJ , where J
is the index which maximizes the L∞ norms over the sequence {φj}. Therefore, the
dual norm is:

||w||b,∗ = inf
φ

max
j

(||φj ||L∞) ,

where wj = −divS− φj for all 1 ≤ j ≤ T .
Altogether, the dual norm of our regularizer, || · || = || · ||a + λ|| · ||b, is given by:

||w||∗ = inf
v,s

s

s.t. ||w − v||a,∗ ≤ s ||v||b,∗ ≤ λs.

To further simplify it, we can identify elements w and v in the dual space by wj =
−div φj and vj = −div S− ψj , so that the norm becomes:

||w||∗ = inf
v,s

s

s.t. inf
φ,ψ
||φj − S−ψj ||L∞ ≤ s, inf

ψ
||ψj ||L∞ ≤ λs

where wj = −div φj and vj = −div S− ψj
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or (after some calculation) in a more compact form:

||w||∗ = inf
φ,ψ

max

{
||φj − S−ψj ||L∞ ,

1

λ
||ψj ||L∞

}
s.t. wj = −div φj ,

where the direct dependence on vj can be removed.

Next, recall the noisy model, Equation (2.2), and define the corresponding energy
functional E over sequences u ∈ (BV )T :

E(u) =
1

T

T∑
j=1

‖uj‖TV +
λ

T

T∑
j=1

‖uj+1 − uj‖TV +
µ

2
‖P (u)− f‖2L2 .(3.1)

Note that the adjoint operator of P is:

P ∗(u) = [PS1
v, PS2

v, ..., PSn
v],

which will be needed in the following theorem, whose proof is related to those found
in [25, 12, 32].

Theorem 3.2. Let E be the energy from Equation (3.1), || · ||∗ be the dual norm
from Lemma 3.1, and define the following semi-norm on (BV )T :

||u|| = 1

T

T∑
j=1

‖uj‖TV +
λ

T

T∑
j=1

‖uj+1 − uj‖TV ,

then the following relations hold:

• If ||P ∗f ||∗ ≤ 1
µ , then the optimal solution of minuE(u) is u = 0.

• If ||P ∗f ||∗ ≥ 1
µ , then the optimal solution of minuE(u) satisfies ||P ∗(f −

Pu)||∗ = 1
µ and µ 〈u, P ∗(f − Pu)〉 = ||u||

Theorem 3.2 provides some guidelines for choosing µ given the compressed se-
quence f and a fixed scale λ. To determine λ, note that by triangle inequality we
have the following bound on the ratio between the two terms:

λ
T

∑T
j=1 ‖uj+1 − uj‖TV
1
T

∑T
j=1 ‖uj‖TV

≤ 2λ(3.2)

Therefore, since we want to weigh their importance equally, it is best to choose λ ∈
[0, 1], with typical values near 1

2 .

3.2. Further Analytical Remarks. We would like the model to exhibit cer-
tain properties when the data falls into two extremal cases. The first is when the
projection operator contains no sub-sampling in space, we prefer that the minimizing
sequence not be able to distinguish information between frames. This is a model-
ing assumption to ensure that the reconstruction does not bias information between
frames. Therefore, in this case we would like the optimal solution to be constant in
time.

Property 3.3 (Degeneracy). If Sj = Ω for all 1 ≤ j ≤ T , then a constant
sequence is a minimizer.
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Proof. For any sequence {uj}Tj=1, define its average as: ū := 1
T

∑T
j=1 uj = P (u).

The energy can be bounded below:

E(u) =
1

T

T∑
j=1

‖uj‖TV +
λ

T

T∑
j=1

‖uj+1 − uj‖TV +
µ

2
‖P (u)− f‖2L2

≥

∥∥∥∥∥∥ 1

T

T∑
j=1

uj

∥∥∥∥∥∥
TV

+
λ

T

T∑
j=1

‖uj+1 − uj‖TV +
µ

2
‖P (u)− f‖2L2

≥

∥∥∥∥∥∥ 1

T

T∑
j=1

uj

∥∥∥∥∥∥
TV

+
µ

2
‖P (u)− f‖2L2

= ‖ū‖TV +
µ

2
‖ū− f‖2L2

= E(ū).

Since the functional is convex, the minimizer must indeed be obtained by the constant
sequence {ū}Tj=1.

This may seem counterintuitive at first, within the framework of compressive
sensing, since the more information one is given, the better the solution recovery
rate should be. However, the sub-sampling in space provides us with the additional
information corresponding to the pixel-frame relationship. By connecting some of the
pixels to specific frames or subsets of frames, we can better identify structures and
features in the entire sequence.

Secondly, we expect that if a sequence is nearly trivial (i.e. contains only one non-
trivial frame), then minimizers should not depend on the location of the non-trivial
frame.

Property 3.4 (Consistency). For any j, if uk = 0 for all k 6= j, then uj must
solve:

min
uj

{
(1 + 2λ)‖uj‖TV +

µ

2
‖uj − f‖2L2

}
.

This proof follows directly. This also provides further support for the use of the
temporally periodic boundary condition, since with it the model directly inherits this
property.

4. Numerical Method. Since the data can be large, both the storage and use
of large linear operators may be expensive. Therefore, we use the simple first order
method called the primal-dual algorithm [44, 7, 4, 15]. The primal-dual requires that
the energy minimization problem can be written in the form of a saddle point problem.
We outline the construction of the related saddle point problem below.

Using Lemma 3.1, Equation (2.2) can be written as a saddle point problem:

min
u

max
||v||∞≤1,||w||∞≤λ

T∑
j=1

〈∇uj , vj〉+

T∑
j=1

〈∇(uj+1 − uj), wj〉+
µT

2
‖P (u)− f‖2L2 ,

where v and w are the dual variables. We can also introduce another variable z by
taking the Legendre dual of the fidelity term to get:

min
u

max
||v||∞≤1, ||w||∞≤λ, z

T∑
j=1

〈∇uj , vj〉+

T∑
j=1

〈∇(uj+1 − uj), wj〉+ 〈P (u)− f, z〉 − 1

2µT
||z||2L2 .
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This equation can be written as an unconstrained saddle point problem by taking the
L∞ constraints and including them as a penalty to the energy:

min
u

max
v,w,z

T∑
j=1

〈∇uj , vj〉+ λ

T∑
j=1

〈∇(uj+1 − uj), wj〉+ 〈P (u)− f, z〉(4.1)

− 1

2µT
||z||2L2 − χB(v)− χB

(w
λ

)
,

where B is the L∞ ball with radius 1 and χB(x) is 0 if x ∈ B and ∞ otherwise.
This is the form of the problem which we solve numerically and is equivalent to
Equation (2.2).

4.1. Primal Dual Algorithm. Given a saddle-point problem with the form:

min
u

max
v

F (u) + 〈Au, v〉 −G(v)

where F and G are convex functions and A is a linear operator, the iterative updates
defined by the primal dual algorithm are [44, 7, 4, 15]:

un+1 = (I + τ∂F )−1(un − τAT vn)

ūn+1 = 2un+1 − un

vn+1 = (I + σ∂G)−1(vn + σAūn+1)

where ∂F and ∂G are the subdifferential of F and G respectively. The inverse oper-
ators above are the proximal operators defined by:

(I + τ∂F )−1(z) = min
v

(
f(v) +

||v − z||2

2τ

)
For our model, F (u) := 0 and G(v, w, z) := χB(v) + χB

(
w
λ

)
+ 1

2µT ||z||
2
L2+ < f, z >,

and Au = [∇u,∇S+u, P (u)]. The proximal operators are simple to calculate, thereby
making the algorithm easy to implement. We summarize the update rules below.

For the u substep, since F is trivial, the update is:

un+1 = un + τdiv vn + τdiv S−w
n − τP ∗zn.

In terms of the dual variables, the function G is separable, therefore the updates are
completely decoupled. For the v substep, the update is:

vn+1 = (I + σ∂χB)−1(vn + σ∇un+1)

= ProjB(vn + σ∇un+1).

Similarly for the w substep, the update is:

wn+1 = λ ProjB(wn + σ∇S+u
n+1),

And lastly the z substep is given simply by:

zn+1 = (I + σ∂
1

2µT
|| · ||2L2)−1(zn + σ(Pun+1 − f))

=
zn + σ(Pun+1 − f)

1 + σ
µT

.
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The projection operator ProjB is defined for vectors by

ProjB(x) :=
z

|z|l2
,

where 0
0 := 0. Altogether the algorithm is summarized below.

Algorithm 1 Primal Dual Algorithm In the Noisy Case (Equation (2.2))

Parameters: τ , σ, λ, µ.
Initialize: P , f , u0, v0, w0, z0.
while ||un+1 − un|| ≥ tol do

un+1 = un + τdiv vn + τλdiv S−w
n − τP ∗zn

ūn+1 = 2un+1 − un

vn+1 = ProjB(vn + σ∇ūn+1)

wn+1 = λ ProjB(wn + σ∇S+ū
n+1)

zn+1 =
zn + σ(Pūn+1 − f)

1 + σ
µT

end while
return u

Similarly, the constrained model (Equation (2.1)) can be written as the following
saddle point problem:

min
u

max
||v||∞≤1, ||w||∞≤λ, z

T∑
j=1

〈∇uj , vj〉+

T∑
j=1

〈∇(uj+1 − uj), wj〉+ 〈P (u)− f, z〉 .

The variable z is the Lagrange multiplier for the constraint P (u) = f . This saddle
point problem can also be seen as the limit of Equation (4.1) as µ → ∞. The
algorithm is summarized below as is nearly identical to that of the unconstrained
problem (Algorithm 1).

Algorithm 2 Primal Dual Algorithm In the Noise-free case (Equation (2.1))

Parameters: τ , σ, λ.
Initialize: P , f , u0, v0, w0, z0.
while ||un+1 − un|| ≥ tol do

un+1 = un + τdiv vn + τλdiv S−w
n − τP ∗zn

ūn+1 = 2un+1 − un

vn+1 = ProjB(vn + σ∇ūn+1)

wn+1 = λ ProjB(wn + σ∇S+ū
n+1)

zn+1 = zn + σ(Pūn+1 − f)

end while
return u
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Convergence of both algorithms above are guaranteed for σ and τ which satisfy
στ ≤ 1

||A||op , where ||A||op is the operator norm of A. For our algorithm, the bound

στ ≤ 1√
41

suffices. Also, we should note that the primal and dual residuals decay at an

appropriate rate, thus residual balancing techniques do not accelerate the convergence
of our model.

4.2. A Parallel Version. The algorithm is nearly point-wise, since it only re-
quires the knowledge of the neighboring pixel values (in space-time). This is partic-
ularly advantageous for implementation on GPU arrays. Furthermore, we present a
simple version of the algorithm that can be run in parallel. A näıve patch-wise paral-
lel algorithm would need to communicate to neighboring blocks in order to converge
to the same solution as the non-parallel algorithm. Hence a good parallel algorithm
should take into account the structure of the entire algorithm as well as the structure
of the data to approximate the non-parallel solution.

In our approach, one generates a grid of non-overlapping patches. Directly solving
the algorithm on each patch is less expensive than working on the entire data set, since
the time cost of Algorithm 1 and 2 depends directly on the number of pixels in the
solution u. Therefore, each patch should be sent to different devices to be calculated in
parallel. However, along the boundary of each patch, the solutions may not contain the
proper continuity and thus have visual artifacts. To avoid patch-boundary artifacts,
each patch is partially extended (see Figure 4.1). A spatial cutoff function Q(pi) is
introduced as a function of each patch, pi, which is defined as 1 in the patch, 0 outside
the extended region of the patch, and continuous otherwise. Then to recombine the
patches into the frames, we take a weighted average with respect to the cutoff Q (i.e.
the weight values are determine by the values of the cut off function). In practice,
we notice that a bilinear spline optimizes the visual quality of the recombination by
not blurring around patch boundaries, as compared to higher order splines. Also, the
patch boundaries need only be extended by a few pixels to properly stitch the solution

Fig. 4.1. For the parallel version of our algorithm, each frame is split into patches (on the left).
Then each patch is extended to include some of the neighboring pixels (the blue boundary on the
right). To recombine the patches, a spatial cutoff function is defined over each patch. The cutoff is
equal 1 in the patch (the black region), 0 outside of the patch, and continuous on the overlap region
(the blue region).
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together.
For a simple example, consider a 1D vector of data and extract two patches p1

and p2 which overlap on 3 points {1, 2, 3}. Then the linear spline extension is:

Q(p1)(x) = −x
4

+ 1 and Q(p2)(x) =
x

4
,

for x ∈ {0, 1, ...4}. Given a function defined on the patches, which we will denote by
upi , the recombined value u is determined by:

u(x) =
Q(p1)(x)up1(x) +Q(p1)(x)up2(x)

Q(p1)(x) +Q(p2)(x)
= Q(p1)(x)up1(x) +Q(p1)(x)up2(x),

since the interpolants sum to one, i.e. Q(p1)(x) +Q(p2)(x) = 1.
Note that the solution computed by this parallel algorithm is not necessarily the

numerical solution of Equation (2.2), but rather an approximation. The convergence
rate, in terms of the number of iterations of either Algorithm 1 or 2 required to
reach a specified tolerance, does not significantly change depending on the patch size.
Therefore, it is best to keep the number of patches close to the number of parallel
devices.

(a) Non-Parallel (b) Parallel (c) Original frame

Fig. 4.2. Comparison between Algorithm 1 and the parallel version on a sequence of 4 frames.
The nonparallel method results in an average PSNR of 34.3499 with a PSNR of 34.4915 on the
frame shown in (a). The parallel method uses 49 patches, since the size of each frame is 350× 350
and the size of each extended patch is 55 × 55 ( the extension is of length 5). This results in an
average PSNR of 34.3375 and a PSNR of 34.4887 on the frame shown in (b). The parameters are
fixed at λ = 1, µT = 15. The compression rate in space is 50% and the standard deviation of the
added noise is 5.

As an example, in Figure 4.2 we compare Algorithm 1 to the parallel version
described above using 49 patches. Both visual and PSNR comparison show very little
difference in the results. For the remaining examples, we will use Algorithm 1 directly
and not the parallel version, since this is not the main focus of the work.

5. Experimental Results. In this section, we apply our algorithm to various
compressed video sequences. The parameters are provided with each of the results
and are chosen using the guidelines in Section 3.1. The parameter λ should be larger
when the motion present in the video sequence is relatively small and can be smaller
when the motion in the video sequence is relatively large. In the experiments, we
generate independent random masks for each frame and we add Gaussian noise to
each pixel before compressing the frames. The overall compression rate is given by
the product between the compression rates in space and time. Also, each video is
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normalized to fall in the range of [0, 255]. For our model and the TV2+1 model, we
apply the primal-dual algorithm outlined in the previous section. For the TV3 model,
we use the state-of-the-art implementation called TVAL3, found in [20, 21]. We also
compare our model to the L1(DCT ) model, which uses ||DCT (u)||L1 as a regularizer
(where DCT is the 3D discrete cosine transform). The reconstruction results using
the TV3 and the L1(DCT ) models can be found in Section 5.6. Since the results
tend to be less visual accurate compared to TV2+1, we do not include them in Section
5.1-5.5.

5.1. Synthetic Example. Since our model is closely related to a video-extension
of the ROF model, we will show that it too captures the correct edge set. In Figure 5.1,
a simple synthetic sequence consisting of a jump moving to the right is compressed
with an overall compression rate of 5%. Our model provides a reconstructed sequence
with an average PSNR of 28.46, while the TV2+1 model has an average PSNR of 23.21.
Since the frames’ only feature is a high contrast jump, the main error in TV2+1 is
along the edge set. In Figure 5.2 (b) and (c), a Canny edge detector is used to locate
the edges of the two reconstructed Frame 4, for visual comparison of the regularity of
the edge set.

5.2. Parking Lot Data. For the remaining examples, our algorithm is applied
to real video sequences containing various types of motion. Some parameter optimiza-
tion is necessary to obtain optimal results. To do so, we first optimize the parameters
on a small part of the video. Then new data is generated and the optimized parame-
ters are applied to the new sequence.

First, we consider a stationary camera observing a parking lot. In Figure 5.3 one
frame from a noisy sequence of 16 frames is shown. Since each frame is nearly piece-
wise constant, total variation regularized models should be effective. The average
PSNR for our method applied to this sequence is 37.08 and the PSNR of the shown
frame (Figure 5.3 (c)) is 37.35. The average PSNR for the TV2+1 method applied to
this sequence is 30.74 and the PSNR of the shown frame (Figure 5.3 (d)) is 31.18.

Our model has a higher PSNR since it is able to communicate the spatial conti-
nuity between frames better than the TV2+1 model. This can be seen in the homo-
geneous intensity along the light pole and paint lines in Figure 5.3 (c) as opposed to
the false edges in Figure 5.3 (d). In Figure 5.4, the difference between the computed
frames and the exact frame is shown (both on the same scale). The error between
our approximation and the true solution is mainly made up of fine scale details and
a smooth component, both of which are known not to be preserved by TV terms.
On the other hand, the error between the TV2+1 approximation and the true solu-
tion contains edge information and discontinuous details, likely an artifact due to the
inconsistency between the two regularizers.

In Figure 5.5, a 4-frame sequence is extracted from the parking lot video which
contains car and shadow motion. The average PSNR for our method applied to
this sequence is 33.66 and the average PSNR for the TV2+1 method applied to this
sequence is 31.32. The TV2+1 reconstruction of the car (located on the bottom right
corner of the frames) creates a fuzzy boundary as compared to our reconstruction.
One can also see the stair-casing and pixillation effect along solid lines in the TV2+1

reconstruction.

5.3. Toy Car Data. Next, we look at the toy car video which contains a large
range of motion. In Figure 5.6, we compare our method to the TV2+1 solution and
the original sequence. In this sequence three scales of movement appear: the slow car
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(a) Original Frame 1 (b) Original Frame 2 (c) Original Frame 3 (d) Original Frame 4

(e) Noisy Frame 1 (f) Noisy Frame 2 (g) Noisy Frame 3 (h) Noisy Frame 4

(i) TV2+1 Frame 1 (j) TV2+1 Frame 2 (k) TV2+1 Frame 3 (l) TV2+1 Frame 4

(m) Our Frame 1 (n) Our Frame 2 (o) Our Frame 3 (p) Our Frame 4

Fig. 5.1. This synthetic sequence demonstrates the reconstruction of edge (high contrast) fea-
tures. The sequence is compressed to 5% of the original data. The noise has a standard deviation of
24.5. Our model provides a reconstructed sequence with an average PSNR of 28.46, while the TV2+1

regularized model has an average PSNR of 23.21.

in the background, the medium speed of the car on the left and the faster car on the
right. The velocity field is close to piece-wise constant, and can be very discontinuous
due to the large jumps between frames. The average PSNR for our method applied
to this sequence is 37.96 and the average PSNR for the TV2+1 method applied to this
sequence is 35.77.

In the zoomed in versions of Frames 1 and 2 (see Figure 5.7), we can see the
flickering effect present in the TV2+1 reconstruction. The difference between the
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(a) Compressed Sequence (b) Edges of Our Frame 4 (c) Edges of TV2+1 Frame 4

Fig. 5.2. In (b) and (c), a Canny edge detector is used to locate the edges of two reconstructed
Frame 4, for visual comparison of the regularity of the edge set.

(a) Original Frame 4 (b) Noisy Frame 4

(c) Our Frame 4 (d) TV2+1 model’s Frame 4

Fig. 5.3. Our algorithm applied to a parking lot sequence of 16 frames with slow car and shadow
motion in the bottom right corner. The average PSNR of our reconstruction is 37.08 with a PSNR
of 37.35 in the frame shown in (c). The average PSNR of the TV2+1 reconstruction is 30.74 with
a PSNR of 31.18 in the frame shown in (d). The parameters are set to λours = 4 λTV2+1

= 0.5
µT = 20. The total number of iterations is fixed to a maximum of 1200. The compression rate in
space is 50% and the standard deviation for the additive noise is 5.

two TV2+1 reconstructed frames will still be sparse since it contains pixel-wise peaks.
However, this does not appear as the visually correct representation of the true frame.
Also, the reconstruction contains a “ghost” or a faint copy of moving objects from
neighboring frames, appearing because of the method’s inability to correctly separate
the frame-by-frame behavior. These effects are diminished in our reconstruction,
thereby leading to higher PSNR values.
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(a) Our Difference (b) TV2+1 Difference

Fig. 5.4. Comparison of the difference between the recovered frame and the original frames
corresponding to the solutions in Figure 5.3 (c) and (d).

5.4. Traffic Data. w In Figure 5.8, we apply our method to a sequence of
traffic/surveillance frames. In this video, multiple scales of objects appear in motion,
both cars and people. The average PSNR for our method applied to this sequence is
32.19 and the average PSNR for the TV2+1 method applied to this sequence is 29.66.
In the zoomed in frame, Figure 5.9, we observe the reconstruction of a person walking.
Our model is able to recover the shape of the person as well as the continuous linear
structures appearing on the road, while the comparable model (TV2+1) has difficulty.
Although some objects in the video may be moving by only one pixel between frames
– which is typically not considered to be well represented by the TV semi-norm –
it seems that our model is still able to approximate the correct continuous behavior
along the boundary of those moving object.

5.5. Facial Data. For a challenging video, we test our method on a facial se-
quence which contains small movements and texture. In Figure 5.10, we observe that
each frame consists of small scale details in the stationary and moving objects as
well as subtle facial movements which rotate outside of the visual plane. The average
PSNR for our method applied to this sequence is 32.19 and the average PSNR for
the TV2+1 method applied to this sequence is 30.38. The smaller difference between
the PSNRs are due in part by the difficulty both methods have at capturing all the
details of the scenes.

A zoomed in comparison is provided in Figure 5.11. Visually, our method pro-
duces a more realistic approximation. Our model contains smoother level lines on
the face, better representing the contours in the data, while the TV2+1 reconstruction
contains fuzzy boundaries.

5.6. Comparison of Results. We compare our results to three models, the
TV2+1 model which we have used for visual comparisons in the previous sections,
the L1(DCT ) model which uses ||DCT (u)||L1 as a regularizer, and the TV3 model
implement by the TVAL3 algorithm. In Table 5.1, we compare the methods using
different sequences, different levels of noise, and various compression ratios. The
sequences listed with the same name are from different parts of the given video. Also,
by varying the compression ratio in time from 25% to 4%, we see that the PSNR
values from our reconstruction vary less than those of the other two models, which



20 –

(a) Our Frame 1 (b) Our Frame 2 (c) Our Frame 3 (d) Our Frame 4

(e) TV2+1 Frame 1 (f) TV2+1 Frame 2 (g) TV2+1 Frame 3 (h) TV2+1 Frame 4

(i) Original Frame 1 (j) Original Frame 2 (k) Original Frame 3 (l) Original Frame 4

Fig. 5.5. Our algorithm applied to a parking lot sequence of 4 frames with moderate car and
shadow motion in the bottom right corner. The average PSNR of our reconstruction is 33.66.
The average PSNR of the TV2+1 reconstruction is 31.32. The parameters are set to λours = 1.4
λTV2+1

= 1.2 µT = 0.5. The total number of iterations is fixed to a maximum of 750. The
compression rate in space is 35% and the standard deviation for the additive noise is 5.

shows that our model has a more stable performance.

In all cases listed here, our method has higher PSNR and produces more visually
appealing results as compared to the other methods. In Figure 5.12, we plot the
results from Table 5.1. The first column in Figure 5.12 corresponds to the first row in
Table 5.1, the second column in Figure 5.12 corresponds to the tenth row in Table 5.1,
and the third column in Figure 5.12 corresponds to the last row in Table 5.1. The
TV2+1 and TV3 both have the flickering effect seen in the previous examples, while
the solutions generated by the L1(DCT ) model suffers from global high-frequency
oscillations. It should be noted that the TVAL3 method is not specifically tuned
and could have results more comparable to the other methods if significantly altered,
although this is not within the scope of this work.

6. Conclusion. In this work, we introduce a convex regularizer for video recov-
ery, which is made up of a total variation term on each frame and a total variation
term on the difference between frames. The model can be easily solved using the
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(a) Our Frame 1 (b) Our Frame 2 (c) Our Frame 3 (d) Our Frame 4

(e) TV2+1 Frame 1 (f) TV2+1 Frame 2 (g) TV2+1 Frame 3 (h) TV2+1 Frame 4

(i) Original Frame 1 (j) Original Frame 2 (k) Original Frame 3 (l) Original Frame 4

Fig. 5.6. Our algorithm applied to a toy car sequence of 4 frames with three varying levels
of motion. The average PSNR of our reconstruction is 37.96. The average PSNR of the TV2+1

reconstruction is 35.77. The parameters are set to λours = 0.75 λTV2+1
= 0.4 µT = 0.25. The total

number of iterations is fixed to a maximum of 3000. The compression rate in space is 45% and the
standard deviation for the additive noise is 5.

primal-dual algorithm and has a simple parallel version. Based on visual comparisons
and PSNR values, the model outperforms other popular ones. Since our model is
developed for sequences of compressive frames with randomly generated masks, it
may be applicable to other CS paradigms, for example, compressive hyperspectral
imaging.

Acknowledgments. The authors would like to thank Wotao Yin and Tom Gold-
stein for their useful discussions. The authors would also like to thank Lawrence Carin,
Guillermo Sapiro, Giang Tran, Jianbo Yang, Xin Yuan, and the anonymous reviewers
for their helpful discussions and comments.

REFERENCES

[1] Amit Agrawal and Ramesh Raskar. Resolving objects at higher resolution from a single motion-
blurred image. Computer Vision and Pattern Recognition (CVPR), IEEE Conference on,
2007.



22 –

(a) Our Frame 1 (b) Our Frame 2

(c) TV2+1 Frame 1 (d) TV2+1 Frame 2

(e) Original Frame 1 (f) Original Frame 2

Fig. 5.7. A zoomed in visual comparison between the reconstructions in Figure 5.6.
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(a) Our Frame 3 (b) TV2+1 Frame 3

(c) Original Frame 3

Fig. 5.9. A zoomed in visual comparison between the solution from Figure 5.8.

Sequence Noise Overall Time Space Ours TV2+1 L1(DCT ) TVAL3
Toy Car 10 11.25% 25% 45% 37.96 35.74 33.24 30.98
Toy Car 10 11.25% 25% 35% 35.48 33.63 29.54 29.59
Toy Car 5 8.75% 25% 35% 37.19 35.10 33.49 30.91
Parking 5 7.00% 20% 35% 34.99 33.10 31.28 29.69
Parking 10 7.00% 20% 35% 32.12 30.69 27.57 28.57
Parking 10 9.00% 20% 45% 32.50 31.64 28.97 30.44
Parking 10 10.00% 20% 50% 32.50 31.91 29.50 30.48
Traffic 5 6.25% 25% 25% 29.74 27.25 27.74 24.67
Traffic 5 3.12% 12.5% 25% 31.58 29.07 30.27 27.40
Traffic 5 2.08% 8.3% 25% 33.51 28.90 31.06 27.04
Traffic 5 1.56% 6.25% 25% 33.59 28.69 29.60 26.85
Traffic 5 0.40% 4% 10% 31.51 24.37 24.49 23.62

Table 5.1
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Fig. 5.10. Our algorithm applied to a facial sequence of 4 frames. The average PSNR of our
reconstruction is 32.19. The average PSNR of the TV2+1 reconstruction is 30.38. The parameters
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Fig. 5.11. A zoomed in visual comparison between the solution from Figure 5.10.
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(a) Original (1) (b) Original (2) (c) Original (3)

(d) Ours (1) (e) Ours (2) (f) Ours (3)

(g) TV2+1 (1) (h) TV2+1 (2) (i) TV2+1 (3)

(j) L1(DCT ) (1) (k) L1(DCT ) (2) (l) L1(DCT ) (3)

(m) TV3 (1) (n) TV3 (2) (o) TV3 (3)

Fig. 5.12. A visual comparison of the results found in Table 5.1. The first row (a-c) contains
the original frames while the remaining rows contain the solutions generated by each model. The
first column corresponds to the first row in Table 5.1, the second column corresponds to the tenth
row in Table 5.1, and the third column corresponds to the last row in Table 5.1.


