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Abstract—Due to the limitation of spatial resolution of hyper-
spectral sensors, in real hyperspectral remote sensing images,
targets of interest usually occupy only a few pixels (or even sub-
pixels). Under such circumstances, we hope that the output of
the detection algorithm is sparse. However, the existing detection
algorithms seldom restrict this sparsity. Among the developed
detection algorithms, constrained energy minimization (CEM)
and adaptive coherence/cosine estimator (ACE) are two famous
and widely used algorithms. In this letter, based on the CEM
and the ACE, we propose the novel sparse constrained energy
minimization (SparseCEM) and sparse adaptive coherence/cosine
estimator (SparseACE) using the ℓ1 norm regularization term
to restrict the output to be sparse. Furthermore, we convert
our detection models to second-order cone program (SOCP)
problems, which can be solved efficiently by using the interior
point method. The experiments on two real hyperspectral images
demonstrate the effectiveness of the proposed algorithms.

Index Terms—Hyperspectral image, target detection, s-
parse constrained energy minimization, sparse adaptive coher-
ence/cosine estimator.

I. INTRODUCTION

HYPERSPECTRAL image target detection has received
considerable attention. In a hyperspectral image, each

pixel has a nearly continuous spectrum with dozens or hun-
dreds of very narrow bands, and all pixels with the same
spectral bands form two dimensional images [1].

Several detection algorithms [1]-[5] have been developed.
Matched filter (MF) [1] and adaptive coherence/cosine es-
timator (ACE) [1] are two hypothesis test based detection
algorithms. MF and ACE first formulate the target detection
as binary hypothesis test problems and then use the likelihood
ratio (LR) test and the generalized-likelihood ratio test (GLRT)
to obtain the detectors [1]. The constrained energy minimiza-
tion (CEM) [2] algorithm builds a finite impulse response
(FIR) filter which minimizes the total output energy under the
constraint that the filter’s response to the spectral signature of
the target is unity. The formulations of MF and CEM are very
similar. In fact, if there is a mean removing procedure before
the detection, MF and CEM are equivalent [1].
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In real situations, the spatial resolution of the hyperspectral
sensor is not very high. Thus, in real hyperspectral remote
sensing images, targets of interest usually occupy only a few
pixels or are even sub-pixel targets. Under such circumstances,
we hope that the output of the target detection algorithm is
sparse, which means the output should contain only a few non-
zero values. In this letter, based on CEM and ACE, we propose
two novel algorithms named sparse constrained energy mini-
mization (SparseCEM) and sparse adaptive coherence/cosine
estimator (SparseACE) which use ℓ1 norm regularization terms
to restrict the outputs to be sparse and formulate the target
detection as convex optimization problems. We further re-
formulate our target detection models as second-order cone
program (SOCP) [6] problems, which can be solved efficiently
by using the interior point method [6], [7]. The experiments on
two real hyperspectral images show that the SparseCEM and
SparseACE perform better than the original CEM and ACE.

II. BRIEF INTRODUCTIONS TO CEM AND ACE
A pixel’s spectrum of an N -pixel hyperspectral image

with L bands can be represented by a vector as x(n) =
[x1(n), . . . , xL(n)]

T (n = 1, . . . , N), where T denotes matrix
transpose. All spectra of an N -pixel hyperspectral image can
be arranged in a matrix form as X = [x(1) . . .x(N)]. Let
d = [d1, . . . , dL]

T represent the spectral signature of the
target of interest. d can be obtained from the spectral library.
In the rest of this letter, we use x and d to represent the
original pixel’s spectrum and spectral signature of the target,
respectively, while we use x0 and d0 to represent the mean
removed pixel’s spectrum and spectral signature of the target,
respectively.

The CEM [2] in fact is an FIR filter. Let w = [w1, . . . , wL]
T

denote the coefficients of the filter. The filter’s output of the
pixel x(n) is y(n) = wTx(n). The w of CEM is obtained
by minimizing the total output energy subject to the constraint
that the filter’s response to d is 1. The coefficients w found
by CEM is:

wCEM =
Ĉ−1d

dT Ĉ−1d
(1)

where Ĉ = 1
N

∑N
n=1[x(n)x

T (n)] is the estimated correlation
matrix. Thus, for the pixel x(n), the output of CEM is:

yCEM(x) = wT
CEMx =

dT Ĉ−1x

dT Ĉ−1d
(2)

For the pixel x(n), the output of ACE is:

yACE(x) =
(xT

0 Γ̂
−1d0)

2

xT
0 Γ̂

−1x0dT
0 Γ̂

−1d0

(3)
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where Γ̂ = 1
N

∑N
n=1[x0(n)x

T
0 (n)] is the estimated covariance

matrix.
We can see the geometric interpretations of CEM and ACE

by using the whitening transform as follows [1]:

x̃ = Γ̂− 1
2x0 d̃ = Γ̂− 1

2d0 (4)

After the whitening transform, the estimated covariance matrix
of whitened hyperspectral data equals the identity matrix [1].
If x0 and d0 are used, Ĉ equals Γ̂. Then the CEM becomes:

yCEM(x) =
dT
0 Γ̂

−1x0

dT
0 Γ̂

−1d0

(5)

In fact, at this time, CEM equals MF [1]. Using the whitening
transform (4), we can rewrite (5) and (3) as [1]:

yCEM(x) =
d̃T x̃

∥d̃∥2
(6)

yACE(x) =
(x̃T d̃)2

∥x̃∥2∥d̃∥2
= cos2 θ (7)

where θ is the spectral angle between x̃ and d̃.
In this letter, we consider CEM and ACE from a new

perspective. Consider the following optimization problem:

min
w

wTw s.t. wT d̃ = 1 (8)

The solution of (8) is w⋆ = d̃
∥d̃∥2

. So, noting (6), the CEM
can be obtained as:

yCEM(x) = w⋆T x̃ =
d̃T x̃

∥d̃∥2
(9)

From (7), we can see that the output of ACE is the cosine
square of the spectral angle between the whitened test pixel’s
spectrum x̃ and the whitened target’s spectral signature d̃ [1].
Since the solution of (8) w⋆ = d̃

∥d̃∥2
has the same direction

as d̃, the cosine square of the spectral angle between x̃ and d̃
is the same as the cosine square of the angle between x̃ and
w⋆. So, the ACE can be obtained as:

yACE(x) =
(x̃T d̃)2

∥x̃∥2∥d̃∥2
=

(
w⋆T x̃

∥w⋆∥∥x̃∥

)2

= ∥d̃∥2
(
w⋆T x̃

∥x̃∥

)2

(10)
For a given hyperspectral image, ∥d̃∥2 is a constant, which
does not influence the detection result. Thus, ∥d̃∥2 can be

omitted, and
(

w⋆T x̃
∥x̃∥

)2
has the equivalent detection result with

the original ACE in (3) and (10). From (9) and (10), we can
see that after getting the solution of the optimization problem
(8), CEM and ACE can be obtained by using (9) and (10),
respectively.

III. SPARSECEM AND SPARSEACE

A. Formulation

Due to the limitation of spatial resolution, in real hyper-
spectral remote sensing images, targets of interest, such as
airplanes and vehicles, usually occupy only a few pixels and
have a small population. Also, at some time, sub-pixel targets
need to be detected. The CEM minimizes the total output

energy subject to the constraint that the output of the spectral
signature of the target is 1. Thus, the essence of CEM is
suppressing the background pixels’ outputs and restricting
them to be near zero while keeping large outputs of target
pixels. Since targets of interest usually occupy only a few
pixels, we propose the sparse constrained energy minimization
(SparseCEM) which adds a sparsity regularization term to
CEM to force the output (i.e., wTX) to be sparse so that
the outputs of background pixels can be further suppressed
and restricted to be near zero. At the same time, we require
that the target pixels have large outputs. We use the constraint
wTd = 1 to guarantee that the spectral signature of the target
has a large output. So, the algorithm will only restrict the
outputs of background pixels to be near zero, while keeping
large outputs of target pixels. In this way, the output ranges of
target pixels and background pixels will be far away from each
other, and the targets and background can be well separated
in the output.

The ℓ1 norm can formulate the sparsity effectively [8].
In this letter, we use the ℓ1 norm to formulate the sparsity.
The proposed SparseCEM can be formulated as the following
constrained optimization problem:

min
w

wT Ĉw + λ∥wTX∥1 s.t. wTd = 1 (11)

where ∥ · ∥1 denotes the ℓ1 norm, and ∥wTX∥1 =∑N
n=1 |wTx(n)|. λ is a positive constant.
We can apply a similar idea to ACE. As mentioned above,

we can obtain the ACE by solving the optimization prob-

lem (8) and using (10). Since
(

w⋆T x̃
∥x̃∥

)2
has the equivalent

detection result with the original output of ACE in (3) and
(10), we can add a sparsity regularization term to (8) to force
w⋆T x̃
∥x̃∥ to be sparse. Again, the ℓ1 norm is used to formulate

the sparsity. The proposed sparse adaptive coherence/cosine
estimator (SparseACE) can be formulated as:

min
w

wTw + λ

N∑
n=1

∣∣∣∣wT x̃(n)

∥x̃(n)∥

∣∣∣∣ s.t. wT d̃ = 1 (12)

Let wSparseCEM and wSparseACE represent the solutions
of (11) and (12), respectively. The outputs of SparseCEM and
SparseACE can be obtained as:

ySparseCEM (x) = wT
SparseCEMx (13)

ySparseACE(x) = ∥d̃∥2
(
wT

SparseACEx̃

∥x̃∥

)2

(14)

We can set a threshold η, if wT
SparseCEMx(n) > η, we

determine that the target is present in this pixel; otherwise
we determine that the target is absent in this pixel. For the
SparseACE, a threshold can be set similarly.

B. SOCP Implementation

The optimization problems (11) and (12) have no closed
form solutions and are hard to solve directly. Since the ℓ1 norm
is non-differentiable, we cannot directly solve (11) and (12)
by using the gradient based optimization methods. However,
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in the following, we will show that (11) and (12) belong to
second-order cone program (SOCP) problems which can be
solved efficiently by using the interior point method.

The SOCP [6] is a kind of nonlinear convex optimization
problem, and has the following standard form:

min fTy

s.t. ∥Aiy + bi∥ ≤ cTi y + gi i = 1, . . . ,M
(15)

where y ∈ Rm is the optimization variable. The parameters
are f ∈ Rm, Ai ∈ R(mi−1)×m, bi ∈ Rmi−1, ci ∈ Rm,
and gi ∈ R. ∥ · ∥ denotes the Euclidean norm. The constraint
∥Aiy+bi∥ ≤ cTi y+gi is called a second-order cone constraint
of dimension mi.

The detection model (11) equals the following convex
optimization problem:

min
w

wT Ĉw + λ∥wTX∥1 s.t. wTd ≥ 1 (16)

because the optimal solution of (16) must be obtained when
wTd = 1 holds. We can see this as follows: for real
hyperspectral images, the estimated correlation matrix Ĉ is
always positive definite, thus wT Ĉw and ∥wTX∥1 are all
nonnegative. If wTd = a > 1, we can decrease the
objective function’s value by replacing w with w/a which
satisfies (w/a)Td = 1. Noting that ∥Ĉ 1

2w∥2 = wT Ĉw and
∥wTX∥1 = ΣN

n=1|xT (n)w|, (16) can be transformed to the
following equivalent constrained optimization problem:

min t1 + · · ·+ tN+1

s.t. λ|xT (n)w| ≤ tn n = 1, . . . , N

∥Ĉ 1
2w∥ ≤ tN+1

1 ≤ dTw

(17)

Similarly, (12) can be transformed to the following equivalent
constrained optimization problem:

min t1 + · · ·+ tN+1

s.t. λ|x̃T (n)w| ≤ ∥x̃(n)∥tn n = 1, . . . , N

∥w∥ ≤ tN+1

1 ≤ d̃Tw

(18)

In (17) and (18), w ∈ RL and tj ∈ R (j = 1, . . . , N +1) are
optimization variables.

Comparing (17) and (18) with the SOCP’s standard form
(15), we can find (17) and (18) are SOCP problems. Next, we
introduce a kind of interior point method named the “barrier
method” [7] for solving the SOCP problems (17) and (18).
Considering the following problems:

min
w,tj

f1(w, tj) = s
N+1∑
j=1

tj −
N∑

n=1

log{t2n − [λxT (n)w]2}

− log(t2N+1 −wT Ĉw)− log(dTw − 1)

(19)

min
w,tj

f2(w, tj) = s
N+1∑
j=1

tj

−
N∑

n=1

log{t2n∥x̃(n)∥2 − [λx̃T (n)w]2}

− log(t2N+1 − ∥w∥2)− log(d̃Tw − 1)

(20)

Algorithm 1 Barrier method for the SparseCEM and SparseACE
Initialization:
1: Select strictly feasible z of (17) or (18).

Set s > 0, µ1 > 1, 0 < µ2 < 1, tolerances ϵ1 > 0 and ϵ2 > 0.
Main iteration:

Subiteration (solve (19) or (20) by using Newton’s method):
2: Use z as the start point.
3: Set zold = z.
4: Compute the gradient ∇f and the Hessian matrix ∇2f of f1 or f2.
5: Update z← z− µ2∇2f−1∇f .
Stop subiteration if ∥z− zold∥ < ϵ2, and get z⋆(s) = z;
else go to step 3.

Stop main iteration if q/s < ϵ1;
else increase s = µ1s, and go to step 2.

where j = 1, . . . , N + 1 and s ∈ R, s > 0. Let z =
[wT , t1, . . . , tN+1]

T . Use z⋆(s) to denote the solution of (19)
or (20) with the parameter s, and use p⋆ to denote the optimal
value of the original problem (17) or (18). It can be proved
that [7]

f(z⋆(s))− p⋆ ≤ q/s (21)

where q is the number of constraints in (17) or (18), and f
denotes f1 or f2. Thus, as s → ∞, the solutions of (19) and
(20) converge to the optimal points of the original problems
(17) and (18), respectively. f1 and f2 are convex differentiable
functions, and (19) and (20) can be solved by using Newton’s
method [7]. The basic idea of the barrier method is: increase s
and solve the corresponding problems (19) and (20) repeatedly
so that the solutions of (19) and (20) tend to the optimal
points of the original problems (17) and (18) as s increases.
Algorithm 1 gives the barrier method for the SparseCEM and
SparseACE. Note that there are several efficient and robust
software packages that can handle the SOCP problem. In this
letter, we solve the SOCP problems by using the software
package [9] for convenience.

IV. EXPERIMENT RESULTS AND DISCUSSION

In this section, two real hyperspectral images collected by
the airborne visible/infrared imaging spectrometer (AVIRIS)
and the hyperspectral mapper (HyMap) are used to conduct
experiments. We compare the proposed SparseCEM and S-
parseACE with CEM and ACE. Receiver operating charac-
teristic (ROC) curves [1] are used to compare algorithms.
Based on ground truth, the ROC curve can plot the relationship
between the false alarm rate and the probability of detection.
The false alarm rate is defined as the ratio of the number of
false alarm pixels to the number of total image pixels, and the
probability of detection is defined as the ratio of the number
of correct detection target pixels to the number of total true
target pixels.

A. Real Hyperspectral Image Experiment 1

In this subsection, we use an AVIRIS Cuprite hyperspectral
image [10] to do experiments. AVIRIS collected hyperspectral
data in 224 bands with the spectral range from 0.4 to 2.5
µm. The low signal-to-noise ratio (SNR) and water absorption
bands have been removed from the experimental data, and 188
bands are left. Fig. 1(a) shows the first band of the AVIRIS
hyperspectral image which has 250× 191 pixels.
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Fig. 1. (a) The first band of the AVIRIS hyperspectral image. (b) The ground truth of the buddingtonite target. Detection results for the AVIRIS hyperspectral
image with (c) SparseCEM, (d) SparseACE, (e) CEM, and (f) ACE. The detection probabilities in (c)-(f) are all 0.5. Detection outputs for the AVIRIS
hyperspectral image with (g) SparseCEM, (h) SparseACE, (i) CEM, and (j) ACE.

Fig. 2. (a) ROC curves of the experimental algorithms for the AVIRIS hyperspectral image. ROC curves of (b) SparseCEM and (c) SparseACE at different
values of λ for the AVIRIS hyperspectral image.

We use this AVIRIS hyperspectral image to detect the
buddingtonite target. Fig. 1(b) shows the ground truth [11]
of the buddingtonite target which in total has 39 pixels.
The United States Geological Survey (USGS) Digital Spectral
Library [12] has two spectra of the buddingtonite. We use the
mean of these two spectra as the spectral signature of the target
used in the experimental algorithms. λs in the SparseCEM
and SparseACE are both set to 1. Through setting suitable
thresholds, the detection results of SparseCEM, SparseACE,
CEM and ACE in the form of binary images are shown in Fig.
1(c)-(f) respectively. In Fig. 1(c)-(f), the detection probabilities
of all algorithms are all 0.5. From Fig. 1(c)-(f), we can see
under the same detection probabilities, the false alarm pixels of
SparseCEM and SparseACE are much fewer than the original
CEM and ACE. Fig. 1(g)-(j) show the detection outputs of
SparseCEM, SparseACE, CEM and ACE, respectively. The
detection outputs have been normalized to [0, 1]. Fig. 1(g)-
(j) show SparseCEM and SparseACE make the outputs sparser
than the original CEM and ACE, respectively. From Fig. 1(g)-
(j), we also can see SparseCEM and SparseACE make the
target pixels’ outputs more separable from the background
pixels’ outputs. The ROC curves plotted in Fig. 2(a) also verify
that SparseCEM and SparseACE have better detection results.

B. Real Hyperspectral Image Experiment 2

The HyMap dataset in spectral reflectance after atmospher-
ic compensation obtained from the Rochester Institute of
Technology (RIT) Hyperspectral Target Detection Blind Test
website [13] is used to evaluate the proposed algorithms. Both
the self test set and the blind test set are used. The HyMap
image has 126 bands with 280× 800 pixels, and the spectral
range is 0.45 - 2.5 µm. The scene is the small town of Cooke
City, Montana, USA. The first band of the HyMap self test
set is shown in Fig. 3(a). The spectral signatures of targets
used in the algorithms are also provided by the website. λs in
SparseCEM and SparseACE are both set to 1.

In the HyMap dataset, there are three vehicle targets called
V1, V2 and V3. We first use the self test set to detect the V1
target. The website provides the ground truth of targets in the
self test set. The ground truth of V1 is shown in Fig. 3(b),
where the bright point in the square is the location of V1.
Since there is only one target pixel, the detection probability
can only be 0 or 1. Through setting suitable thresholds, the
detection results of V1 of SparseCEM, SparseACE, CEM and
ACE in the form of binary images are shown in Fig. 3(c)-(f),
respectively. In Fig. 3(c)-(f), the detection probabilities of all
algorithms are all 1. From Fig. 3(c)-(f), we can clearly see
that the false alarm pixels of SparseCEM and SparseACE are
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Fig. 3. (a) The first band of the HyMap self test set. (b) The ground truth
of the V1 target in the self test set. Detection results for the V1 target of the
HyMap self test set with (c) SparseCEM, (d) SparseACE, (e) CEM, and (f)
ACE. The detection probabilities in (c)-(f) are all 1.

much fewer than the other experimental algorithms.
Next, we use the blind test set to detect the other two vehicle

targets: V2 and V3. The website provides two distinctly
different spectral signatures for V2, and we use the bed color
one. Unlike the self test set, the website reserves the ground
truth of the blind test set and does not provide it to the user.
However, based on the reserved ground truth, the website
provides an online application which can score the uploaded
detection results. The score of an algorithm’s detection result
is the number of pixels whose detection outputs are equal to
or larger than the target location pixel’s detection output. A
perfect score is one, which means the target pixel has the
largest detection output. The score represents the number of
false alarm pixels when the target is detected. The smaller
the score is, the better the detection result is. We can use
the score to calculate the false alarm rate. Table I gives the
scores and false alarm rates (shown in parentheses) of different
algorithms for V2 and V3. For the target V1 in the self test set,
based on the provided ground truth, we calculate the scores
and false alarm rates by ourselves, and also give them in Table
I. From Table I, we can see that SparseCEM and SparseACE
have much smaller scores and false alarm rates than the other
experimental algorithms, thus have better detection results.

TABLE I
THE SCORES AND FALSE ALARM RATES OF DIFFERENT ALGORITHMS FOR

THE HYMAP IMAGE

Target SparseCEM SparseACE CEM ACE
V1 1479(0.0066) 2286(0.0102) 5063(0.0226) 8065(0.0360)
V2 2497(0.0111) 1771(0.0079) 5215(0.0233) 17687(0.0790)
V3 2696(0.0120) 1661(0.0074) 3338(0.0149) 5637(0.0252)

C. Parameter Setting Analysis

Fig. 2(b) and Fig. 2(c) show ROC curves of SparseCEM and
SparseACE at different values of λ for the AVIRIS dataset,
respectively. The ROC curves of CEM and ACE are also plot-
ted in Fig. 2(b) and Fig. 2(c), respectively. Fig. 2(b) and Fig.

2(c) show that the ROC curves of λ = 0 for SparseCEM and
SparseACE are overlapped with CEM and ACE, respectively.
This is because if λs are set to 0, the SparseCEM equals CEM
and the SparseACE equals ACE. For the SparseCEM, ROC
curves of λ = 10−3, λ = 10−2, λ = 10−1, λ = 1 and λ = 10
are overlapped and reflect better results than the other ROC
curves. The worst result is obtained when λ is set to 0. For the
SparseACE, ROC curves of λ = 10−3, λ = 10−2, λ = 10−1,
λ = 1 and λ = 10 are overlapped and intersect the ROC curve
of λ = 10−4. The worst result is also obtained when λ is set to
0. These results validate that the sparsity regularization terms
can indeed improve the detection results. The SparseCEM
and SparseACE are insensitive to the choices of λ in large
ranges, because ROC curves are overlapped in large ranges
of λ. This insensitivity is caused by the fact that the ℓ1 norm
regularization terms can restrict the background pixels’ outputs
to be near zero, and at the same time the constraints about the
spectral signature of the target can guarantee that the target
pixels’ outputs are large. Thus, the constraints can guarantee
that the proposed algorithms will not reduce the number of
correct detection target pixels in the outputs.

V. CONCLUSION

Based on CEM and ACE, we propose the SparseCEM
and SparseACE to restrict the outputs to be sparse. Further-
more, we reformulate the proposed detection models as SOCP
problems. The experiments on two real hyperspectral images
demonstrate the effectiveness of our proposed algorithms.
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