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In this paper, we recover sparse signals from their noisy linear
measurements by solving nonlinear differential inclusions, which is
based on the notion of inverse scale space (ISS) developed in ap-
plied mathematics. Our goal here is to bring this idea to address
a challenging problem in statistics, i.e. finding unbiased and sign-
consistent estimators using dynamics. We call our dynamics Breg-
man ISS and Linearized Bregman ISS. A well-known shortcoming
of LASSO and any convex regularization approaches lies in the bias
of estimators. However, we show that under proper conditions, there
exists a bias-free and sign-consistent point on the solution paths of
such dynamics, which corresponds to a signal that is the unbiased
estimate of the true signal and whose entries have the same signs
as those of the true signs, i.e. the oracle estimator. Therefore, their
solution paths are regularization paths better than the LASSO reg-
ularization path, since the points on the latter path are biased when
sign-consistency is reached. We also show how to efficiently compute
their solution paths in both continuous and discretized settings: the
full solution paths can be exactly computed piece by piece, and a dis-
cretization leads to Linearized Bregman iteration, which is a simple
iterative thresholding rule and easy to parallelize. Theoretical guar-
antees such as sign-consistency and minimax optimal l2-error bounds
are established in both continuous and discrete settings for specific
points on the paths. Early-stopping rules for identifying these points
are given. The key treatment relies on the development of differential
inequalities for differential inclusions and their discretizations, which
extends the previous results and leads to exponentially fast recovering
of sparse signals before selecting wrong ones.

1. Introduction. We study a dynamic approach to recover a sparse
unknown signal β∗ ∈ Rp from its noisy linear measurements

(1.1) y = Xβ∗ + ε.
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Here, y ∈ Rn is a measurement vector, X = [x1, . . . , xp] ∈ Rn×p is a mea-
surement matrix, and ε ∼ N (0, σ2In) is Gaussian noise. We allow n < p and
assume that β∗ has s ≤ min{n, p} nonzero components. For convenience, let
S = supp(β∗) and T be its complement, i.e. T = {i : β∗i = 0}. XS denotes
the submatrix of X formed by the columns of X in S, which are assumed
to be linearly independent. Similarly define XT so that [XS XT ] = X.

Such a problem has been widely studied in applied mathematics [CDS98],
engineering, and statistics [Tib96], see for example surveys in [Don06, CW08].
In these works, convex regularization or relaxation approach has been ex-
ploited to overcome the combinatorial explosion of searching the best sparse
signals using subset least squares. However, it has been known since [FL01]
that all convex regularization approaches lead to biased estimators whose
expectation does not meet the true signal, which motivates the exploration
of using nonconvex regularization yet it may suffer from a computational
hurdle of locating the global optima [GJY11, GWYY15].

To address this dilemma between statistical accuracy and computational
hurdle, in this paper we introduce some dynamics from the Inverse Scale
Space (ISS) method, which first appeared in the image restoration litera-
ture in [BOXG05, BGOX06, BRH07, BFOS07, Bur08] and analyzed and
implemented carefully in [BMBO13]. The name refers to the observation
there that large-scale (image) features are recovered before small-scale ones.
Our goal here is to show that such dynamics provides a surprisingly sim-
ple way to statistically accurate (unbiased and sign-consistent) estimator if
equipped with a new type regularization – early stopping. Our results also
extend those early error analysis on ISS to statistical consistency, establish-
ing model selection consistency as well as minimax optimal l2 error bounds
under comparable conditions to LASSO, etc.

The first one, called Bregman ISS here, is given by the nonlinear differ-
ential inclusions:

ρ̇t =
1

n
XT (y −Xβt),(1.2a)

ρt ∈ ∂‖βt‖1,(1.2b)

where t ≥ 0 is time, ρt ∈ Rp is assumed to be right continuously differentiable
in t, ρ̇t is the right derivative of ρt, and βt is assumed to be right continuous.
The inclusion condition (1.2b) restricts ρt to a subgradient of `1-norm at βt,
t ≥ 0. The initial conditions are, typically, ρ0 = 0 and β0 = 0. As it evolves,
the component which reaches |ρt(i)| = 1 enters into our selection βt(i) 6= 0.
Hence roughly speaking, the larger magnitude XT

i (y −Xβt) has, the faster
the component is selected. In the ideal case, we hope the signals in S are
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selected faster than non-signals in T , whose conditions will be our main
concern in this paper. Under general conditions, we will see that a solution
to (1.2) exists and both ρt and Xβt, t ≥ 0, are unique. In addition, ρt
is piece-wise linear, and there exists a solution path βt that is piece-wise
constant. The entire path can be computed at finitely many break points.

A damping version of the first one, called Linearized Bregman ISS, has its
solution path {ρt, βt}t≥0 governed by the nonlinear differential inclusions:

ρ̇t +
1

κ
β̇t =

1

n
XT (y −Xβt),(1.3a)

ρt ∈ ∂‖βt‖1,(1.3b)

where κ > 0 is a constant. Compared to (1.2a), equation (1.3a) has the
additional term 1

κ β̇. As κ → ∞, (1.3) is reduced to (1.2), and the solution
path of (1.3) may converge to that of (1.2) exponentially fast as κ increases.
We will see that (1.3) has a unique solution path ρt and βt, t ≥ 0, which
are both continuous for all κ > 0. Alternatively, (1.3) can be obtained as
a differential inclusion replacing the l1-norm in (1.2b) by the Elastic Net
[ZH05] penalty ‖βt‖1 + 1

κ‖βt‖
2
2 which will be discussed later.

The discretizations of (1.2) and (1.3) are known as Bregman Iteration
(equation (3.7) of [YODG08]) and Linearized Bregman Iteration (equations
(5.19-20) of [YODG08]), respectively. They were introduced in the litera-
ture of variational imaging and compressive sensing before (1.2) and (1.3).
Through a change of variable, Bregman Iteration becomes the iteration of
the Augmented Lagrangian Method [Hes69, Pow67]. On the other hand,
Linearized Bregman Iteration is a simple two-line iteration:

ρk+1 +
1

κ
βk+1 = ρk +

1

κ
βk +

αk
n
XT (y −Xβk),(1.4a)

ρk ∈ ∂‖βk‖1,(1.4b)

which is evidently a forward Euler discretization to (1.3), where αk > 0 is a
step size. Define zk = ρk + 1

κβk. Then (1.4) can be simplified to:

zk+1 = zk +
αk
n
XT (y −Xβk)(1.5a)

βk+1 = κ · shrink(zk+1, 1),(1.5b)

where the mapping shrink is defined component-wise as

shrink(z, λ) := sign(z) max{|z| − λ, 0}, z, λ ∈ R, λ ≥ 0.

Note that shrink(z, λ) is the unique solution to the convex program:

min
x∈R
|x|+ 1

2λ
(x− z)2,
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which is called LASSO in statistics literature [Tib96].

1.1. Motivations and contributions. Our exposition is motivated by the
fact that solution path {βt}t≥0 of the differential inclusion (1.2) and the
sequence {βk}k≥0 of (1.4) are better than the points on the LASSO regu-
larization path. In particular, while LASSO regularization path is always
biased, βt can be unbiased when the correct set of variables is reached. Here
an estimator β̂ is called biased if its expectation does not equal to the true
parameter β∗, i.e. E[β̂] − β∗ 6= 0; otherwise it is called unbiased. In fact,
[OBG+05] observed in experiments that Bregman iterations may reduce
bias in the context of Total Variation image denoising, analogous to the l1
setting to be studied below.

To see this, consider the general LASSO problem [Tib96],

(1.6) min
β
λ‖β‖1 +

1

2n
‖y −Xβ‖22,

where for the convenience of comparison we replace the regularization pa-
rameter λ by t = 1/λ in the following equivalent form

(1.7) min
β
‖β‖1 +

t

2n
‖y −Xβ‖22.

Aside from the obvious relation t = 1/λ, solution β is piece-wise linear in
λ [EHJT04] though not so in t. Despite this, t will be convenient to our
analysis by reflecting a nature of time evolution of the solution.

Since (1.7) is a convex program, β̂t is a solution to (1.7) if and only if it
obeys the first-order optimality conditions

ρ̂t
t

=
1

n
XT (y −Xβ̂t),(1.8a)

ρ̂t ∈ ∂‖β̂t‖1,(1.8b)

which are obtained by taking the subdifferential of the objective in (1.7).
It is well-known that LASSO solution β̂t is biased [FL01]. For example,

considering the simple case that n = p = 1, X is the identity and y ≥ 0,
then (1.8) yields

(1.9) β̂t =

{
0, if t < 1/y;
y − 1/t, otherwise,

while (1.2) has the solution

(1.10) βt =

{
0, if t < 1/y;
y, otherwise,
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which is unbiased for t ≥ 1/y as E[βt] = E[y] = β∗.
Moreover, the Linearized Bregman ISS (1.3) has the solution,

(1.11) βt =

{
0, if t < 1/y;

y(1− e−κ(t−1/y)), otherwise,

which converges to the unbiased Bregman ISS estimator exponentially fast.
Let us discuss this phenomenon in the general setting. First, let the or-

acle estimator be the subset least-squares solution β̃∗ given the true set of
variables S by an oracle, whose nonzero entries are given by

(1.12) β̃∗S =

(
1

n
XT
SXS

)−1 1

n
XT
S y = β∗S +

(
1

n
XT
SXS

)−1 1

n
XT
S ε.

Clearly β̃∗S ∼ N (β∗S ,Σn) where Σn = σ2

n

(
1
nX

T
SXS

)−1
. Since in expectation

with respect to noise, E[β̃∗] = β∗, β̃∗ is an unbiased estimate of β∗.
In reality we are not given the support set S, so the following two prop-

erties are used to evaluate the performance of an estimator β̂.

1. Model selection consistency: supp(β̂) = S;
2. Asymptotic normality:

√
n(β̂ − β∗)→ N (0,Σ∗), where

Σ∗ = lim
n→∞

nΣn = σ2

(
lim
n→∞

1

n
XT
SXS

)−1

.

Since these properties hold for the oracle estimator, they are often referred
to as the oracle properties.

A solution mapping β̂t : [0,∞) → Rp gives a regularization path. Model
selection consistency, also known as path consistency, refers to the exis-
tence of a point β̂τ on this path that selects the correct variables, namely,
supp(β̂τ ) = S. Path consistency has been obtained for LASSO by establish-
ing the stronger property of sign consistency, that is, sign(β̂τ ) = sign(β∗),
under certain conditions such as those in [ZY06, Zou06, YL07, Wai09]. Pro-
vided that path consistency is reached at τ , the LASSO estimate β̂τ is
nonetheless biased since

(1.13) β̂τ,S =

(
1

n
XT
SXS

)−1 1

n
XT
S y −

(
1

n
XT
SXS

)−1 ρ̂τ
τ
,

where ρτ = sign(β̂τ ) ∈ ∂‖β̂τ‖1. The first-term on the right-hand side equals
the oracle estimator β̃∗S , which is unbiased, whereas the second-term never
vanishes and is the bias. Hence, the oracle properties are never completely
met by LASSO.
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The bias can be removed by a simple differentiation of LASSO solution.
To see this, by multiplying t on both sides of (1.8a) and differentiating it
with respect to t, any point on the LASSO path satisfies

(1.14) ˙̂ρt =
1

n
XT (y −X(β̂t + t

˙̂
βt)).

With path consistency assumed at time t = τ , we have βτ,i = 0, ∀ i 6∈ S,
and from (1.14) we have

(1.15) ˙̂ρτ,S =
1

n
XT
S (y −XS(β̂τ,S + τ

˙̂
βτ,S)).

Generically, sign consistency occurs in a neighborhood and thus ρ̇τ,S = 0.
Therefore,

β̂τ,S + τ
˙̂
βτ,S =

(
1

n
XT
SXS

)−1 1

n
XT
S y = β̃∗S ,

which is the oracle estimator without bias! This motivates us to replace

(β̂t + t
˙̂
βt) in (1.14) by just βt, which gives the differential inclusions

(1.2a) of Bregman ISS. Later we will show that the resulting βt in (1.2)
indeed reaches sign-consistency under nearly the same condition as LASSO
and hence gives the unbiased oracle estimator.

Compared to LASSO, our dynamic approach has great advantages in
algorithmic simplicity and estimate quality. In practice, while LASSO is
solved for a sequence of regularization parameters (i.e. regularization path),
with or without extra debiasing steps such as subset least squares, a single
run of our algorithms gives the entire path or, in the case of (discrete) lin-
earized Bregman, a (discrete) approximate path. In addition, the linearized
Bregman algorithms such as the simple iterative scheme in (1.5) are readily
parallelizable. Such regularization paths can be unbiased, or, in the case of
(discrete) linearized Bregman, have less bias than LASSO paths. Generally
speaking, our algorithms return regularization paths of improved quality at
just a fraction of cost by LASSO.

In addition, [FL01] points out that it is impossible to achieve unbiased es-
timator with convex regularization. To avoid bias in regularized least square
problem, it is thus necessary to introduce non-convex penalties (e.g. SCAD
etc.) which however suffers from the computational difficulty (typically NP-
hardness [GJY11, GWYY15]) on locating the global optima. In a contrast,
the dynamic approach studied in this paper, without optimizing any objec-
tive function, will be seen to play the same role as non-convex regularization
but using a new regularization – early stopping. Such a debiasing ability nat-
urally inherits from the dynamic solution paths, without suffering the cost
of finding global optima in nonconvex optimization.
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Therefore, in addition to giving the basic solution properties such as exis-
tence, uniqueness, and (dis)continuity, we also attempt to explain the good
behaviors of the new solution paths and sequence by establishing their sta-
tistical path consistency property. Basically we argue that

1. Under nearly the same conditions for LASSO [ZY06, Zou06, YL07,
Wai09] that the covariates xi are sufficiently uncorrelated and the
signal β∗S is strong enough, Bregman ISS (1.2) with a proper early
stopping rule will return the oracle estimator ;

2. Sign consistency and l2-error bounds of minimax rates can be general-
ized to the Linearized Bregman iteration (1.4) and its limit dynamics
(1.3), under similar conditions.

1.2. Notation and assumptions. Define 〈u, v〉 = uT v and 〈u, v〉n = 1
nu

T v
for u, v ∈ Rn. Hence ‖u‖n = 1√

n
‖u‖. Let X∗ = 1

nX
T be the adjoint op-

erator of X with respect to inner product 〈·, ·〉n. Let the largest and the
smallest nonzero magnitudes of β∗ be β∗max := max(|β∗i | : i ∈ S) and
β∗min := min(|β∗i | : i ∈ S), respectively. Similarly define β̃max and β̃min for
the oracle estimator β̃∗ in (1.12). The dependence of ρt and βt (or equiv-
alently ρ(t) and β(t)) on t is omitted where it is clear from the context.
For the reason to be discussed in Section 2, we shall assume that ρt is right
continuously differentiable and βt is right continuous.

Throughout the paper, given two numbers a and b, let a∨ b := max(a, b).

1.3. Outline. In the rest of this paper, we establish basic solution prop-
erties of Bregman and Linearized Bregman ISS in Section 2. Section 3 and
Section 4 describe statistical consistency properties of Bregman ISS and
their generalizations to Linearized Bregman ISS/discretization, respectively.
Section 5 is dedicated to the ideas of proofs. Section 6 presents some prelim-
inary data-dependent stopping rules and Section 7 collects some comments
on related works. Section 8 provides some preliminary numerical results.
Conclusions are summarized in Section 9.

2. Bregman and Linearized Bregman solution paths. It has been
pointed out in [BMBO13] that the solution to Bregman ISS (1.2) is a piece-
wise regularization path given iteratively by the following nonnegative least
squares, starting with k = 0, t0 = 0, and ρ0 = β0 = 0:

1. set tk+1 := sup{t > tk : ρtk + t−tk
n XT (y −Xβtk) ∈ ∂‖βtk‖1}; if tk+1 =

∞, then exit ;
2. set ρtk+1

:= ρtk +
tk+1−tk

n XT (y −Xβtk);
3. set Sk+1 := {i : |(ρtk+1

)i| = 1} and Tk+1 = {1, . . . , p} \ Sk+1;
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4. set βtk+1
as any solution to

(2.1)
minβ ‖y −Xβ‖22

subject to (ρtk+1
)iβi ≥ 0 ∀ i ∈ Sk+1,
βj = 0 ∀ j ∈ Tk+1.

5. set k = k + 1 and go to Step 1.

Hence the solution path to (1.2) is established by

(2.2)

{
ρt = ρtk + t−tk

tk+1−tk ρtk+1
,

βt = βtk ,
t ∈ [tk, tk+1).

where ρt is piece-wise linear and βt is piece-wise constant. As the nonneg-
ative least square in (2.1) is a convex quadratic programming with linear
constraints, the solution always exists but may not be unique, especially
in high dimensional setting n < p which fails the strong convexity in least
square. The following theorem presents some general conditions to ensure
both the existence and uniqueness of solution path.

Theorem 2.1 (Solution existence and uniqueness for Bregman ISS). Let
ρt be right continuously differentiable and βt be right continuous. Then, a so-
lution to (1.2) is given by (βt, ρt) generated by the above algorithm. Solution
ρt and Xβt are unique. In addition, if the columns xi of X for i ∈ supp(βt)
are linearly independent for t ≥ 0, then βt is also unique.

In high dimensional setting with n < p, as more and more variables are
selected in St = supp(βt), linear independence of XSt will be lost at least
when |St| > n and so is the uniqueness of βt. However, the existence and
uniqueness of Linearized Bregman ISS is much simpler as shown in the
following theorem.

Theorem 2.2 (Solution existence and uniqueness for Linearized Bregman
ISS). Let ρt be right continuously differentiable and βt be right continuous.
Then (1.3) has a unique solution.

The proofs of these theorems are collected in Appendix.
Provided that sign consistency is met by a point on the path at t = τ ,

(2.1) returns the oracle estimator βτ = β̃∗ as it is the least-squares problem
subject to only sign constraints. Hence, natural questions are: what con-
ditions will guarantee sign consistency? And, how to determine τ? In the
sequel, we are going to provide an answer to these questions. Throughout
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the remaining of this paper, we assume that ρt is right continuously differen-
tiable and βt is right continuous, so the existence and uniqueness of solution
paths are guaranteed.

3. Consistency of Bregman ISS Dynamics. In this section neces-
sary and sufficient conditions are established for noisy sparse signal recovery
with Bregman ISS (1.2).

3.1. Assumptions.

(A1) Restricted Strong Convexity: there is a γ ∈ (0, 1],

X∗SXS ≥ γI.

(A2) Irrepresentable Condition: there is a η ∈ (0, 1),∥∥∥X∗TX†S∥∥∥∞ =

∥∥∥∥∥ 1

n
XT
TXS

(
1

n
XT
SXS

)−1
∥∥∥∥∥
∞

≤ 1− η

where X†S := XS

(
1
nX

T
SXS

)−1
.

Condition A1 says that the Hessian matrix of the empirical risk 1
2n‖y −

Xβ‖22 restricted on the index set S × S is strictly positive definitive, so the
empirical risk is strongly convex when restricted on the support set S. Such
a condition is necessary in the sense that once it fails, XS will be linearly
dependent and no unique representation is possible under the basis XS .

Condition A2 says that the absolute row sums of matrix X∗TX
†
S are all

less than one. It has been proposed independently under a variety of names,
e.g. Exact Recovery Condition [Tro04], Irrepresentable Condition [ZY06],
among [YL07, Zou06]. Here we adopt the name in [ZY06] as it refers to the
fact that the regression coefficients of XS for response Xj (j ∈ T ) all have
`1-norm less than one, i.e.

β′j = arg min
β∈Rs

1

2n
‖Xj −XSβ‖2 =⇒ ‖β′j‖1 < 1,

so in this sense one cannot represent the irrelevant covariates XT by the
relevant ones XS effectively.

Neither A1 nor A2 can be checked when the support set S of signal is
not known. Alternatively we can use a more strict but checkable condition
proposed in [DH01].

(A3) Mutual Incoherence Condition:

µ := max
i,j

∣∣∣∣ 1n 〈Xi, Xj〉
∣∣∣∣ < 1

(2s− 1)
, s = |S|.
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It can be shown [Tro04, CW11] that once A3 holds, then A1 and A2
simultaneously hold with

γ = 1− µ(s− 1)

since (1− µ(s− 1))IS ≤ X∗SXS ≤ (1 + µ(s− 1))IS , and

η =
1− µ(2s− 1)

1− µ(s− 1)
.

We note that condition A3 is shown to be sharp in the noisy case in [CWX10].
With these one can translate all the theoretical results with condition A1
and A2 into condition A3.

With these assumptions, the following stopping time is crucial throughout
this section

(3.1) τ :=
η

2σ

√
n

log p

(
max
j∈T
‖Xj‖n

)−1

.

In applications, we often normalize the measurement matrix X such that
‖Xj‖n = 1. So the crucial dependence is τ ∼ η

√
n/ log p/σ, which is equiv-

alent to the optimal choice of LASSO parameters [Wai09].
In the sequel, we shall see that the Irrepresentable condition (A2) is essen-

tial to ensure the dynamics of ISS firstly evolves on the signal support set S,
which will be called no-false-positive (supp(βt) ⊆ S for t ≤ τ̄); if in addition
the signal is strong enough, then all the signals in S will be identified before
the wrong ones show up in the paths, indicated by the sign-consistency that
sign(βτ̄ ) = sign(β∗). The latter case is also called as no-false-negative in
statistics. In this case, an l2 error bound of minimax optimal rates can be
achieved.

We will examine two scenarios for establishing these results: the first is an
interesting mean Bregman ISS path, which is another biased path, distinct
to LASSO, yet qualitatively equivalent; the second is the unbiased Bregman
ISS path itself, which meets the consistency results above under nearly the
same conditions as LASSO.

3.2. Mean Bregman ISS Path versus LASSO Path. As we have seen in
Section 1.1 near equation (1.14), Bregman ISS (1.2) can be derived by differ-
entiating LASSO’s KKT conditions. Such a relation can be seen precisely by
considering the consistency conditions of LASSO on the following temporal
mean path of Bregman ISS:

(3.2) β̄(t) :=
1

t

∫ t

0
β(s)ds.
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According to Theorem 2.1 and Condition A1, Bregman ISS path βt is unique
and thus β̄(t) is well defined as long as supp(β(s)) ⊆ S, s ∈ [0, t), where S
is the true support.

A connection between Bregman ISS and LASSO lies in the same condition
under which their paths from start to time t are supported within the true
support S. In addition, the Bregman ISS mean path β̄(t) is identical to
the LASSO path if the Bregman ISS path is incremental with only adding
variables, but without dropping. In general, the two paths are distinct.

Theorem 3.1. Let (βt, ρt) be either the Bregman ISS path (1.2) or the
LASSO path (1.8) with ρ(t) ∈ ∂‖βt‖1. Assume that for all t ≤ τ ,

(3.3) ‖X∗TX
†
SρS(t) + tX∗TPT ε‖∞ < 1,

where PS⊥ = I − PS = I − X†SX∗S is the projection matrix onto im(XS)⊥.
Then for all t ≤ τ ,

A. the Bregman ISS path, its mean path, and the LASSO path all have
supports in S;

B. the mean Bregman ISS path β̄(1/λ) is piecewise linear with λ = 1/t;
C. if the Bregman ISS path is incremental in the sense that St = supp(βt)

satisfies St ⊆ St′ ⊆ S for all t ≤ t′ ≤ τ , then the mean Bregman ISS
path is identical to the LASSO path; but they are distinct in general.

Remark 3.1. In particular in noiseless setting, ε = 0, (3.3) becomes

‖X∗TX
†
SρS(t)‖∞ < 1

or dropping ρS(t) by

‖X∗TX
†
S‖∞ = ‖X∗TXS(X∗SXS)−1‖∞ < 1

which is sufficient and necessary to guarantee that both Bregman ISS, LASSO,
and OMP [Tro04] recovers the sparse signal in noiseless setting; once it is
violated there is some S-sparse signal for which these methods fail.

Proof of Theorem 3.1. Assume there exists a τ ≥ 0, such that for all
t ≤ τ , solution path β(t) satisfies supp(β(t)) ⊆ S. Then Bregman ISS (1.2)
splits into

ρ̇S = −X∗SXS(βS − β∗S) +X∗Sε,(3.4a)

ρ̇T = −X∗TXS(βS − β∗S) +X∗T ε.(3.4b)
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From (3.4a) one gets the Bregman ISS solution

(3.5) βS(t) = β∗S − (X∗SXS)−1ρ̇S + (X∗SXS)−1X∗Sε,

which leads to the following equation by plugging into (3.4b)

(3.6) ρ̇T = X∗TX
†
S ρ̇S +X∗TPT ε.

Integration on both sides of this equation and setting

(3.7) ‖ρT (t)‖∞ = ‖X∗TX
†
SρS(t) + tX∗TPT ε‖∞ < 1

which ensures that βT (t) = 0. So is the mean path.
On the other hand, LASSO starts from the KKT condition (1.8) which

splits into

ρ̂S/t = −X∗SXS(β̂S − β∗S) +X∗Sε(3.8a)

ρ̂T /t = −X∗TXS(β̂S − β∗S) +X∗T ε(3.8b)

Following the same trick above one can see the same condition (3.7) is met
for LASSO to ensure β̂T (t) = 0. This finishes the proof of part A.

As to part B, for t ≤ τ , the mean path is obtained by integration on (3.4a)

(3.9) β̄S(t) =
1

t

∫ t

0
βS(s)ds = β∗S −

1

t
(X∗SXS)−1ρS(t) + (X∗SXS)−1X∗Sε.

Equation (2.2) implies that 1
t ρt = 1

t ρtk + 1−tk/t
tk+1−tk ρtk+1

, which is piecewise

linear with respect to λ = 1/t.
To see part C, let St = supp(βt) for Bregman ISS. If for all s ≤ t ≤ τ ,

Ss ⊆ St ⊆ S, then similar reasoning as above implies that the Bregman ISS
path satisfies

(3.10) β̄St(t) = β∗St −
1

t
(X∗StXSt)

−1ρSt(t) + (X∗StXSt)
−1X∗Stε.

For such incremental processes, ρSt(t) = sign(βSt(t)) = sign(β̄St(t)) which
meets the LASSO path equation

(3.11) β̂Ŝt(t) = β∗
Ŝt
− 1

t
(X∗

Ŝt
XŜt

)−1ρ̂Ŝt(t) + (X∗
Ŝt
XŜt

)−1X∗
Ŝt
ε,

where Ŝt = supp(β̂t) for LASSO. But such a relation is lost when variable
dropping happens.
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Despite of the difference to the LASSO path, the mean Bregman ISS path
may reach statistical model-selection consistency under the same conditions
as LASSO.

Theorem 3.2 (Sign Consistency of Mean Path). Assume that both (A.1)
and (A.2) hold. Then the following holds.

A. (No-false-positive) the mean path has no-false-positive before time
τ , i.e., ∀t ≤ τ supp(β̄t) ⊆ S, with probability at least 1− 2

p
√
π log p

;

B. (Sign-Consistency) moreover if the signal is strong enough such that
β∗min > c1/τ̄ ,

c1 =

(
η

√
γmaxj∈T ‖Xj‖n

+ ‖(X∗SXS)−1‖∞
)
,

then with probability at least 1 − 2
p
√
π log p

, the mean path β̄τ̄ has no

false-negative, i.e. sign(β̄τ̄ ) = sign(β∗).

Remark 3.2. Under the same conditions as LASSO with λ∗ = 1/τ̄
[Wai09], the mean path β̄ of Bregman ISS reaches sign-consistency. These
conditions are sufficient and necessary in the sense that once violated, there
exists an instance such that the probability of failure will be larger than 1/2
due to noise. In this sense, the mean path estimator β̄(τ̄) is “statistically
equivalent” to the LASSO estimator.

The mean Bregman ISS path geometrically sheds light on why LASSO
incurs bias while Bregman ISS can avoid it. The LASSO path, likes the mean
Bregman ISS path, involves some kind of averaging that ensures the path
continuity but causes bias. The Bregman ISS path is piecewise constant,
allows it to be bias-free.

Now we need to answer the following question: what are conditions to
ensure the sign consistency of the Bregman ISS path?

3.3. Consistency of Bregman ISS. The following theorem tells us that
under the irrepresentable (incoherence) condition, the Bregman ISS dynam-
ics always evolves in the support of true signals in the early stage; further-
more if the signal is strong enough then the dynamics will pick up all the true
variables before selecting any incorrect ones. When such a sign consistency
is reached, Bregman ISS returns the oracle estimator which is unbiased.

Theorem 3.3 (Sign Consistency of Bregman ISS). Assume that both
(A.1) and (A.2) hold. Then Bregman ISS (1.2) has paths satisfying:
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A. (No-false-positive) the path has no-false-positive before time τ , i.e.
∀t ≤ τ supp(βt) ⊆ S, with probability at least 1− 2

p
√
π log p

;

B. (Sign-consistency) moreover if the signal is strong enough such that

(3.12) β∗min ≥
(

4σ

γ1/2
∨

8σ(2 + log s) (maxj∈T ‖Xj‖n)

γη

)√
log p

n

Then with probability at least 1− 2
p
√
π log p

, sign(βτ̄ ) = sign(β∗).

Remark 3.3. Once the sign consistency holds, β(t) meets the oracle
estimator β̃∗ which is unbiased and has a l2-error rate ‖β(t) − β∗‖2 ≤
O(σ

√
s log s/n), even better than the l2-error rate O(σ

√
s log p/n) for the

biased LASSO estimator which is already minimax optimal up to a loga-
rithmic factor [RWY11].

To have sign consistency, Theorem 3.3 makes a strong signal condition
with a lower bound on β∗min. However even without such a strong signal
assumption, the minimax optimal l2-error rates can be achieved disregarding
sign consistency.

Theorem 3.4 (Minimax Optimal l2-Error Bound). Assume that both
(A1) and (A2) hold. There is a τ ∈ [0, τ ] such that with probability at least
1− 2

p
√
π log p

,

‖βτ − β∗‖2 ≤
2σ

ηγ

(
4 max
j∈T
‖Xj‖n + η

√
γ

)√
s log p

n
.

The existence of such τ does not ensure us to find it easily. However one
can use τ̄ at a cost of enlarging the constants by a square root of condition
number of ΣS = X∗SXS .

Corollary 3.1. Under the same condition of Theorem 3.4 and assum-
ing an upper eigenvalue bound X∗SXS ≤ γmaxIS, then the following holds for
all t ∈ [τ, τ̄ ] with probability at least 1− 2

p
√
π log p

‖βt − β∗‖2 ≤
2σ
√
K(X∗SXS)

ηγ

(
4 max
j∈T
‖Xj‖n + η

√
γ

)√
s log p

n

where K(X∗SXS) = γmax/γ is the condition number of X∗SXS.

All the results in this subsection follow from the more general results on
Linearized Bregman ISS (1.3) in the next section by taking κ → ∞, whose
proofs will be summarized in Section 5.
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4. Generalizations to Linearized Bregman ISS and Its Discretiza-
tion. In this section, we state a general consistency result for Linearized
Bregman ISS (1.3) and Linearized Bregman Iterations (1.4) whose proofs
will be given in the next section.

The following new stopping time replaces (3.1) throughout this section.

(4.1) τ :=
(1−B/(κη))η

2σ

√
n

log p

(
max
j∈T
‖Xj‖n

)−1

.

Clearly when κ→∞, it reduces to (3.1).

4.1. Consistency of Linearized Bregman ISS. The following theorem es-
tablishes general conditions for statistical consistency of Linearized Bregman
ISS (LBISS) (1.3).

Theorem 4.1 (Consistency of LBISS). Assume (A1), (A2), and κ is
big enough such that

β∗max + 2σ

√
log p

γn
+
‖Xβ∗‖2 + 2σ

√
s log n

n
√
γ

, B ≤ κη.

Then (1.3) has paths satisfying:

A. (No-false-positive) the path has no-false-positive before time τ ,i.e.,
∀t ≤ τ , supp(βt) ⊆ S, with probability at least 1− 2

p
√
π log p

− 1
n
√
π logn

;

B. (No-false-negative for Mean Path) moreover if the signal is strong
enough such that β∗min > c1/τ̄ ,

c1 =

(
(1−B/(κη))η
√
γmaxj∈T ‖Xj‖n

+ (1 +B/κη)‖(X∗SXS)−1‖∞
)
,

then with probability at least 1− 2
p
√
π log p

− 1
n
√
π logn

, the mean path β̄(t)

satisfies sign(β̄τ̄ ) = sign(β∗);
C. (Sign-consistency for LBISS) moreover if the smallest magnitude

β∗min is strong enough and κ big enough such that

β∗min ≥
4σ

γ1/2

√
log p

n
,

8 + 4 log s

β∗min

+
1

κ
log(

3‖β∗‖2
β∗min

) ≤ τ ,

then with probability at least 1− 2
p
√
π log p

− 1
n
√
π logn

, sign(βτ̄ ) = sign(β∗);
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D. (l2-bound) for some constant C and κ large enough to satisfy

4

Cγ

√
n

log p
+

1

2κγ
(1 + log

n‖β∗‖22 + 4σ2s log p/γ

C2s log p
) ≤ τ ,

there is a τ ∈ [0, τ ] such that ‖βτ − β∗‖2 ≤ (C + 2σ
γ1/2

)
√

s log p
n with

probability at least 1− 2
p
√
π log p

− 1
n
√
π logn

.

Remark 4.1. A. For sign-consistency of LBISS,

β∗min ≥
(

4σ

γ1/2
∨

8σ(2 + log s) (maxj∈T ‖Xj‖)
γη

)√
log p

n

is enough to guarantee the existence of κ.
B. For l2-consistency

C ≥
8σ (maxj∈T ‖Xj‖n)

ηγ

is enough to guarantee the existence of κ.
C. Taking κ =∞, we get the Theorem 3.3 for Bregman ISS.
D. An l2-error bound of the same rate for estimator β(τ̄) can be established

using the monotonicity of ‖XS(β̃∗S−βS(t))‖2 (see Appendix) for t ≤ τ̄ ,

‖β(τ̄)− β̃∗‖2 ≤
‖XS(βS(τ̄)− β̃∗S)‖2√

nγ
≤
‖XS(βS(τ)− β̃∗S)‖2√

nγ
, τ ≤ τ̄

≤
√
K(X∗SXS)

(
C +

2σ
√
γ

)√
s log p

n
,

where K(X∗SXS) is the condition number of X∗SXS.

4.2. Consistency of Linearized Bregman iterations. The following the-
orem establishes statistical consistency conditions for Linearized Bregman
Iteration (1.4).

Theorem 4.2 (Consistency of Linearized Bregman Iterations). Let tn =∑n−1
k=0 αk. Assume (A1), (A2), and κ is big enough such that

β∗max + 2σ

√
log p

γn
+
‖Xβ∗‖2 + 2

√
s log n

n
√
γ

, B ≤ κη,

and step size α is small such that κα‖XSX
∗
S‖ < 2. Then any solution path

of (1.3) satisfies
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A. (No-false-positive) for all n s.t. tn ≤ τ , the path has no-false-
positive with probability at least 1− 2

p
√
π log p

− 1
n
√
π logn

, supp(βk) ⊆ S;

B. (Sign-consistency) moreover if the smallest magnitude β∗min is strong
enough and κ is big enough to ensure

β∗min ≥
4σ

γ1/2

√
log p

n
,

8 + 4 log s

γ̃β∗min

+
1

κγ̃
log(

3‖β∗‖2
βmin

) + 3α ≤ τ ,

where γ̃ := γ(1 − κα‖XSX
∗
S‖/2), then with probability at least 1 −

2
p
√
π log p

− 1
n
√
π logn

, sign(βk∗) = sign(β∗) for k∗ = max{k : tk ≤ τ̄}.
C. (l2-bound) for some large enough constants κ and C such that

4

Cγ̃

√
n

log p
+

1

2κγ̃
(1 + log

n‖β∗‖22 + 4σ2s log p/γ

C2s log p
) + 2α ≤ τ ,

with probability at least 1− 2
p
√
π log p

− 1
n
√
π logn

, there is a k∗, tk∗ ≤ τ̄ ,

such that ‖βk∗ − β∗‖2 ≤ (C + 2σ
γ1/2

)
√

s log p
n .

Remark 4.2. A. Taking α→ 0, we have γ̃ = γ, and Theorem 4.1 for
Linearized Bregman ISS follows.

B. The condition κα‖XSX
∗
S‖ < 2 is necessary to ensure the convergence

of LB algorithm in the noiseless case. This condition also guarantees
the monotonic descent of ‖XS(βS,k − β̃∗S)‖ before τ .

5. Analysis of ISS Dynamics. The general idea to analyze differen-
tial inclusions in (1.2) and (1.3) is to associate these dynamics with some
potential or Lyapunov functions, which control a fast convergence of solu-
tions to the oracle estimator. When the solution path β(t) evolves in the
support set S, a suitable choice of potential functions should be expected
with exponentially fast decay, which enables us to estimate the stopping
time of reaching sign consistency and small l2-error.

The difficulty lies in that ISS dynamics are differential inclusions, hence
we exploit differential inequalities of such a potential function to derive the
bounds.

5.1. Potential function. One would like to study the dynamics of the
following differential inclusion

ρ̇t +
1

κ
β̇t = −X∗X(βt − β̃∗)(5.1a)

ρt ∈ ∂‖βt‖1,(5.1b)
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where β̃∗ is the oracle estimator. Assuming the right continuity of solutions
and multiplying both sides above by β(t) − β̃∗, one obtains a potential or
Lyapunov function Ψ : Rp → R+

0 associated with the dynamics

d

dt
(Ψ(βt)) = − 1

n
‖X(βt − β̃∗)‖22,

where

(5.2) Ψ(β) = D(β̃∗, β) +
‖β − β̃∗‖2

2κ

and D(β̃∗, β) is the Bregman distance

(5.3) DV (β̃∗, β) := V (β̃∗)− V (β)− 〈∂V (β), β̃∗ − β〉

induced by the particular convex function V (β) = ‖β‖1. Note thatD(β̃∗, β) =
〈β̃∗, ρ̃−ρ〉 where ρ̃ ∈ ∂‖β̃∗‖1 and ρ ∈ ∂‖β‖1. Hence sign-consistency sign(β) =
sign(β̃∗) implies that D(β̃∗, β) = 0.

As n � p, matrix X has a large null-space, and to ensure the station-
ary point of the dynamics being the oracle solution, one must restrict the
dynamics evolving outside the subspace ker(X).

5.2. Differential inequality with restricted exponential decay of potential.
Define the following Oracle Dynamics as if an oracle discloses the true vari-
able set S such that we restrict our attention on a subspace defined by S,

(5.4) ρ̇′S +
1

κ
β̇′S = −X∗SXS(β′S − β̃∗S), ρ′S(t) ∈ ∂‖β′S(t)‖1.

Here X∗SXS is a s × s symmetric matrix satisfying the strong convexity
X∗SXS ≥ γIs, which will lead to exponentially fast decay of potential func-
tion.

To reach this goal, our key treatment here is a differential inequality
associated differential inclusion in Oracle Dynamics which is tight enough
to ensure the exponential decay of potential function. This is a Bihari’s type
[Bih56] nonlinear differential inequality, which generalizes the linear cases of
Grönwall-Bellman inequalities [Gro19, Bel43]. In our treatment, a piecewise
continuous bound is given which leads to the tight rates in this paper.

Lemma 5.1 (Generalized Bihari’s Inequality). The potential Ψ of the
Oracle Dynamics above satisfies the following differential inequality

d

dt
(Ψ(β′S)) ≤ −γF−1(Ψ(β′S)),
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where F−1 is the right-continuous inverse of the following strictly increasing
function

(5.5) F (x) =
x

2κ
+


0 0 ≤ x < β̃2

min

2x/β̃min β̃2
min ≤ x ≤ sβ̃2

min

2
√
xs x ≥ sβ̃2

min.

Remark 5.1. An early analysis of ISS convergence in [BRH07] found
the following rate on Bregman distance, D(β̃∗, βt) ≤ O(t−1). In fact, this
rate can be derived from the third bound above, which leads to

d

dt
D(β̃∗, βt) ≤ −

γ

2s
D(β̃∗, βt)

2, κ→∞,

when βt evolves on S. However such a rate is not fast enough to tight bounds
on sign-consistency, which requires D(β̃∗, βt) = 0 for some t ≤ τ̄ . The key
treatment in the piecewise bounds above lies in the second bound, which gives

d

dt
D(β̃∗, βt) ≤ −

γβ̃min
2

D(β̃∗, βt), κ→∞,

and hence an exponential decay of Bregman distance. As we shall see in the
proof, such a fast rate is crucial to ensuring all the strong signals selected
before wrong components. Therefore one can achieve the tight stopping rules
below for sign-consistency under nearly the same conditions as LASSO.

Such an inequality ensures a decrease of the potential function at a fast
enough speed which leads to the following tight estimates on stopping time.

We are concerned with the following stopping time reaching sign-consistency
and l2-consistency of Oracle Dynamics, respectively. Define

(5.6) τ̃1 := inf{t > 0 : sign(β′S) = sign(β̃∗S)},

(5.7) τ̃2(C) := inf

{
t > 0 : ||β′S − β̃∗S ||2 ≤ C

√
s log p

n

}
.

Equipped with the generalized Bihari’s inequality, one can build up the
following bounds for stopping time on sign-consistency and l2-consistency,
respectively.

Lemma 5.2. The following bounds hold for the Oracle Dynamics (5.4)

τ̃1 ≤
4 + 2 log s

γβ̃∗min
+

1

κγ
log(
‖β̃∗‖2
β̃∗min

),
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τ̃2(C) ≤ 4

Cγ

√
n

log p
+

1

2κγ
(1 + log

n‖β̃∗‖22
C2s log p

).

Remark 5.2. A. τ̃1 ≤ O(log s/β∗min) says that β(t) will reach sign-
consistency after t ≥ O(log s/β̃min). The factor log s is due to the
potential method above which converts a multidimensional dynamics
into a one-dimensional differential inequality, and dropping potential
exponentially from at least ‖β̃∗S‖1 ≥ sβ̃∗min to 0 requires necessarily the
O(log s) time.

B. τ̃2(C) ≤ O( 1
C

√
n
p ) says that l2-consistency can be reached before τ =

O(
√

n
p ) as long as C is a sufficiently large constant.

5.3. Sign-consistency and l2-error bound. Now we are ready to reach the
sign-consistency and l2-error bound for β(t) by setting τ̃1 ≤ τ̄ and τ̃2(C) ≤ τ̄ ,
respectively. In these cases, Oracle Dyanmics (5.4) β′S(t) meets the original
path βS(t) when restricted on S. The complete proofs of Theorem 4.1 and
its discrete version of Theorem 4.2 will be found in Appendix A, together
with their supporting lemmas.

6. Data-dependent Stopping Rules for Bregman ISS. All the
previous results enable us to select τ̄ as a stopping time which however
depends on unknown parameters γ, η, and noise level σ, hence is not a
data-dependent stopping rule. In this section we present two preliminary
results with early stopping rules comparable to [CW11], which only depend
on the noise level σ and thus can be estimated from data. We leave it our
future work to explore fully adaptive stopping rules.

In the following, define the residue r(t) := y −Xβ(t). The first theorem
adopts the stopping rule based on ‖r(t)‖2 and the second theorem is based
on ‖Xr(t)‖∞.

Theorem 6.1. Suppose

β∗min ≥
(

4σ

γ1/2
∨

8σ(2 + log s) (maxj∈T ‖Xj‖n)

γη

)√
log p

n
,

and

β∗min ≥
2σ
√
γ

√1 + 2

√
log n

n
+

√
log s

n

 .

Then Bregman ISS with the stopping rule ‖r(t)‖2 ≤ σ
√
n+ 2

√
n log n selects

the true subset S with probability at least 1−O(1/n).
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Remark 6.1. • This result is comparable to Theorem 7 in [CW11].
• The first condition on the minimum of magnitude of signals ensures

the model selection consistency of the Bregman ISS path and thus indi-
cates that one can find some t along the path so that the residual term
satisfies ‖r(t)‖2 ≤ σ

√
n+ 2

√
n log n. Once the path achieves sign con-

sistency, the Bregman ISS must stop.

• The second condition β∗min ≥ 2σ√
γ

(√
1 + 2

√
logn
n +

√
log s
n

)
guaran-

tees that one can not stop earlier before Bregman ISS achieves a full
recovery. Note that as n → ∞, one needs β∗min ≥ 2σ/

√
γ which is a

constant.

Theorem 6.2. In addition to (3.12), suppose

β∗min ≥
2σmaxi ‖Xi‖n

√
2(1 + c)s log p√

nγ
+ 2σ

√
log s

nγ
.

Then Bregman ISS with the stopping rule ‖XT r(t)‖∞ ≤ 2σ
√

maxi ‖Xi‖ log p
(δ > 0) selects the true subset S with probability at least 1−O(1/p+ 1/n).

Remark 6.2. This result is comparable to Theorem 8 in [CW11], though
the lower bound β∗min ≥ O(σ

√
s log p/n) loses a factor

√
s here. As n→∞,

the lower bound can be arbitrarily small.

The remaining of this section presents the proofs of the theorems above.

Proof of Theorem 6.1. Lemma 3 in [CW11] or Lemma 5.2 in [CXZ09]
shows that with probability at least 1−1/n, ε is essentially l2 upper bounded

‖ε‖2 ≤ σ
√
n+ 2

√
n log n.

Hence with the same probability,

‖r(τ∗)‖ = ‖(I −XS(X∗SXS)−1XS)ε‖2 ≤ ‖ε‖2 ≤ σ
√
n+ 2

√
n log n

We have now shown that the Bregman ISS stops once the path acheives sign
consistency.
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Next we are going to show that the algorithm will not stop whenever there
is some i ∈ S such that βi(t) = 0. By Lemma A.5,

‖rt‖ ≥ ‖XS(β̃∗S − βS(t))‖
≥ √

nγ‖β̃∗S − βS(t)‖
≥ √

nγβ̃∗min

≥ 2σ

√
n+ 2

√
n log n

provided that β̃∗min ≥ 2σ

√
1+2
√

logn/n

γ . Note that

‖(X∗SXS)−1X∗Sε‖∞ ≤ 2σ

√
log s

nγ
, w. p. at least 1− 2n−1,

so it suffices to have β∗min ≥
2σ(
√
n+2
√
n logn+

√
log s)√

nγ .

Proof of Theorem 6.2. By assumptions

β∗min ≥
(

4σ

γ1/2
∨

8σ(2 + log s) (maxj∈T ‖Xj‖n)

γη

)√
log p

n
.

Hence, according to Theorem 4.2, the Bregman ISS achieves the sign con-
sistency with high probability. Assume that at time τ∗, β(τ∗) has the same
sign as the underlying sparse signal β. For each t,

rt = (I −XS(t)(X
∗
S(t)XS(t))

−1X∗S(t))(XSβS + ε) = st + nt,

where st = (I − PS(t))XSβS is the signal part of the residual and nt =
(I − PS(t))ε is the noise part of the residual. Then rτ∗ = nτ∗ . Let b∞ =

σ
√

2(1 + c) maxi ‖Xi‖ log p.

Prob(‖XTnt‖∞ = ‖XT (I − Pt)ε‖∞ ≥ b∞) ≤
∑
i

Prob(|XT
i (I − Pt)ε| ≥ b∞)

≤
∑
i

Prob(|XT
i ε| ≥ b∞)

≤ 2

pc
√

2 log p
,

which means the algorithm stops at τ∗.
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Next we are going to show that the algorithm will not stop whenever there
is some i ∈ At ⊆ S such that βi(t) = 0. By Lemma A.5,

‖XT rt‖∞ = ‖XT [XS(β̃∗S − βS(t)) + (I − PS)ε]‖∞,
≥ ‖XT

S [XS(β̃∗S − βS(t)) + (I − PS)ε]‖∞,
= ‖XT

SXS(β̃∗S − βS(t))‖∞, XT
S (I − PS)ε = 0,

≥ 1√
s
‖XT

SXS(β̃∗S − βS(t))‖2,

≥ nγ√
s
‖β̃∗S − βS(t)‖2,

≥ nγ√
s
β̃∗min ≥ b∞,

provided that β̃∗min ≥
√
sb∞
nγ . Note that

‖(X∗SXS)−1X∗Sε‖∞ ≤ 2σ

√
log s

nγ
, w. p. at least 1− 2n−1,

so it suffices to have

β∗min ≥ b∞ + 2σ

√
log s

nγ
=
σ(maxi

‖Xi‖√
n

√
2(1 + c)s log p/γ +

√
log s)

√
nγ

with probability at least 1−O(p−1 + n−1).

7. Related work.

7.1. Regularization and other algorithms. For general penalized least
square problems, [FL01] has shown that no convex penalty functions can
fully achieve the oracle properties and thus one has to resort to non-convex
regularization, whose global minimizer is, however, algorithmically difficult
to locate. Alternatively, one can apply LASSO for variable selection and then
remove the bias in LASSO by solving a subset least squares in the second
stage. On the other hand, [OBG+05] noticed that Bregman iteration may
reduce bias, also known as contrast loss, in the context of Total Variation
image denoising. In this paper, we shall see that dynamics (1.2) can au-
tomatically remove bias without any non-convexity or second-stage subset
least squares. It is a different kind of regularization via early stopping.

Early stopping regularization has been studied widely in linear inverse
problems, e.g. [EHN96], and recently in Boosting, e.g. [Fri01, BY02, YRC07].
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In fact, Linearized Bregman iterations can be viewed as an extension of
Landweber iteration (also called L2-Boost in statistics),

βk+1 = βk +
αk
n
XT (y −Xβk),

which follows the primal path βt as a gradient descent method solving least
square problem. To have solution sparsity, Linearized Bregman iterations
(1.4) adds the dual path ρt in favor of sparse solutions. For ISS, [BGOX06]
notices that early stopping regularization is needed as the Bregman distance
between the signal β∗ and the path βt will first decrease and then increase
after the prediction error ‖Xβ − y‖ drops below the noise level. A further
quantification of such early stopping regularization is given in [BRH07] under
a source condition.

Linearized Bregman iteration (1.5) is shown in [Yin10] equivalent to the
gradient ascent iteration applied to the Lagrange dual of the problem

(7.1) min
β
‖β‖1 +

1

2κ
‖β‖22 subject to Xβ = y.

Such a combined l1 and l2 penalty is called Elastic Net in statistics [ZH05].
In particular, βk converges to the unique solution of (7.1) at a linear rate
(as long as X 6= 0 and Xβ = y has a solution); see [LY13]. In addition,
for sufficiently large κ, the solution to (7.1) is a solution to the basis pur-
suit model [CDS98], which is (7.1) without 1

2κ‖β‖
2
2. In noisy settings, early

stopping regularization is necessary for signal recovery. The introduction of
Elastic Net in statistics is due to a limitation of LASSO that can select at
most s = n variables from p� n candidates, where the additional l2-penalty
(‖β‖22) enables one to select s > n variables which might be highly corre-
lated, at the cost of a biased estimator. This scenario is beyond the scope
of this paper with the assumption s ≤ n < p and is left to be explored in
the future. However we note that although the Inverse Scale Space (1.3) can
be equivalently viewed as differential inclusions (with a discretization (1.5))
associated with the Elastic Net penalty, its dynamics does not follow the
regularization paths of Elastic Net. The results in this paper basically say
that under nearly the same condition as LASSO, Bregman ISS (1.2) with
early stopping regularization may recover the signal without bias, while the
bias in (1.3) and (1.5) can be controlled to be arbitrarily small by increasing
κ with the same sign-consistency. Finally, we note that such iterative algo-
rithms can be easily extended to general settings with differentiable convex
loss and non-differentiable convex penalty, e.g. Linearized Bregman iteration
in matrix completion [CCS10].
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One should not confuse Linearized Bregman iteration (1.5) with itera-
tive soft-thresholding algorithm (ISTA), which has appeared under different
names in the literature (for example, see [DJ95, Don95, CDLL98, DD02,
DDD04, HYZ08]),

βk+1 = shrink(βk +
αk
n
XT (y −Xβk), λk).

Both have an iterative thresholded dynamics with similar computational
costs. However by moving the shrinkage operator to a different place in
(1.5), Linearized Bregman iteration generates a sparse solution path, while
ISTA treats λk as the regularization parameter and its iterates converge to
a LASSO solution with a regularization parameter λ = limk→∞ λk. Most
ISTA-based LASSO solvers simply use a fixed λk through out the iteration.
Although the others update λk over the iterations, they do so not aiming to
provide a full regularization path but to accelerate convergence; this tech-
nique is known as “continuation” or homotopy method [HYZ08].

7.2. Parallel and distributed computing. It is very easy to implement
iteration (1.5) in parallel and distributed manners and apply it to very large-
scale datasets. Suppose

X = [X1, X2, . . . , XL] ∈ Rn×p,

where X`’s are submatrices stored in a distributed manner (on a set of
networked workstations). The sizes of X`’s are flexible and can be chosen
for good load balancing. Let each workstation ` hold data y and X`, and
variables zk,` and wk,` := X`βk,`, which are parts of zk and summands of
wk := Xβk, respectively. The iteration (1.5) is carried out as

for ` = 1, . . . , L in parallel:

{
zk+1,` = zk,` + αk

n X
T
` (y − wk),

wk+1,` = 1
κX`shrink(zk+1,`, 1),

all-reduce summation: wk+1 =
L∑
`=1

wk+1,`,

where the all-reduce step collects inputs from and then returns the sum to
all the L workstations. It is the sum of L n-dimensional vectors, so no matter
how the all-reduce step is implemented, the communication cost is indepen-
dent of p. It is important to note that the algorithm is not changed at all. In
particular, distributing the data into more computing units, i.e., increasing
L, does not increase the number of iterations. Therefore, the parallel imple-
mentation is nearly embarrassingly parallel and truly scalable. In addition,
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it is also possible to develop implementations for data divided into blocks of
rows of X or even smaller subblocks that split both rows and columns. Re-
cently, (1.5) has also been extended in [YLYR13] to a decentralized setting
where not only data and computation are distributed but communication
is restricted to computing units with direct communication links so there is
no data fusion center or long distance communication. The scheme fits sen-
sor network or multi-party regression over the internet, where long-distance
communication incurs long delays and high costs.

8. Experiments. In this section we provide some experimental results
to illustrate the relations among LASSO, Bregman ISS (ISS) and Linearized
Bregman iteration (LB). The LASSO paths in comparison are computed by
R-package ‘lars’, while LB paths are computed with our R-package ‘libra’.

In this experiment we choose n = 80, p = 100 and only the first s =
30 elements of β are nonzero (βj = rj + sign(rj), where rj ∼ N (0, 1),
j = 1, . . . , 30). Each sample xi is drawn from the distribution N (0,Σp).
We choose Σp = (σij), where σij = 1 if i = j, and σij = 1/(3p) otherwise. In
such a setting, the Irrepresentable (Incoherence) Condition holds with high
probability, since Σp is nearly identity matrix. We choose noise level σ = 1
here, considering the choice that the magnitude of βi is O(1).

Figure 1 is an example of regularization path of three methods. As κ
goes bigger, the LB path becomes closer to that of ISS. For LB we choose
κα = 1/10 such that the step size of gradient decent is 1/10, to satisfy the
convergence condition. Note that if α is too big, the solution is oscillating.

To compare the performance of three methods quantitatively, we choose
the AUC of ROC curve, to measure the goodness of three regularization
paths. ROC (receiver-operating-characteristic) curve is plotted by thresh-
olding the regularization parameter λ in LASSO, t in ISS, or k in LB at
different levels which create different true positive rates (TPR) and false
positive rates (FPR):

TPR =
#{Selected True V ariables}

#{True V ariables}
, FPR =

#{Selected False V ariables}
#{False V ariables}

.

ROC is a curve from (0, 0) to (1, 1). AUC (Area Under the Curve) means
the area under the ROC curve. Large AUC values indicate that the signals
are picked out earlier than noise on regularization paths. Repeating the
experiments for 100 times, in Table 1 we report the mean AUC with standard
deviations for the three methods at different noise levels. It shows that all
the three methods work reasonably well in this example, while Bregman ISS
performs slightly better than LASSO. As κ becomes bigger, the performance
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Fig 1. Regularization path of LASSO, Bregman ISS, and Linearized Bregman Iterations
with different choices of κ (κα = 1/10). As κ grows, the paths of Linearized Bregman
iterations approach that of Bregman ISS.

of LB gets closer to that of Bregman ISS. Notice that as noise level σ gets
larger, all the methods have their performance decay since signal and noise
get confused.
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σ LB(κ = 4) LB(κ = 64) LB(κ = 1024) ISS LASSO

1 0.8747(0.0386) 0.916(0.0366) 0.9197(0.0361) 0.9213(0.0359) 0.9134(0.0375)

2 0.8604(0.0422) 0.8931(0.0422) 0.8958(0.0421) 0.8967(0.0421) 0.8935(0.0438)

3 0.8306(0.0432) 0.8513(0.0455) 0.8524(0.0457) 0.8521(0.0467) 0.8529(0.0464)

Table 1
Mean AUC (standard deviation) for three methods at different noise levels (σ): ISS has a

slightly better performance than LASSO in terms of AUC and as κ increases, the
performance of LB approaches that of ISS. As noise level σ increases, the performance of

all the methods drops.

9. Conclusion and Future Directions. In this paper, noisy sparse
signal recovery is approached via dynamics, called Bregman ISS, which can
be viewed as a dual gradient descent derived from LASSO KKT conditions.
A damped version of this dynamics, Linearized Bregman ISS, can be viewed
as a dual gradient descent associated with Elastic Nets. A discretization of
Linearized Bregman ISS leads to the widely used Linearized Bregman Iter-
ation algorithm. Equipped with an early stopping regularization, Bregman
ISS can simultaneously achieve model selection consistency and unbiased es-
timation, under nearly the same conditions as LASSO whose estimators are
biased though. As a discretization of Linearized Bregman ISS paths, model
selection consistency and minimax optimal l2-error bounds for Linearized
Bregman Iteration are also established. Some data-dependent stopping rules
are given for Bregman ISS solution paths.

Future directions of our study include fully data-dependent stopping rules
and generalization of our results in nonlinear settings.

APPENDIX A: PROOFS

A.1. Proof of Theorem 2.1 and 2.2.

Proof of Theorem 2.1. The existence part follows from [BMBO13],
noticing the nonnegative least squares always have solutions.

We show that the uniqueness part. Define f(β) := 1
2n‖y − Xβ‖

2. Then,
the differential inclusion (1.2) is equivalent to

ρ̇t = −∇f(βt),(A.1a)

ρt ∈ ∂‖βt‖1,(A.1b)

Let S+
t := {i : (ρt)i = 1}, S−t := {i : (ρt)i = −1}, and St = S+

t ∪ S
−
t . By

(1.2b), in the case of St = ∅, we have βt = 0, so −∇f(βt) = −∇f(0) is
unique. In the case of St 6= ∅, we show below that Xβt and −∇f(βt) are
both unique. The uniqueness of ρt follows from these results and (A.1a).
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In fact, (1.2a) and (1.2b) impose the following constraints on βt:

(A.2)


(βt)i ≥ 0 and (∇f(βt))i ≥ 0, ∀i ∈ S+

t ,

(βt)i ≤ 0 and (∇f(βt))i ≤ 0, ∀i ∈ S−t ,
(βt)i = 0, ∀i 6∈ St.

To see how ∇f(βt) is involved, notice that (∇f(βt))i ≥ 0 must hold for
∀i ∈ S+

t since (ρt)i ∈ [−1, 1] is already at its maximal value 1 and∇f(βt) < 0
is forbidden as it would further increase (ρt)i to an impossible value. The
same argument holds for (∇f(βt))i ≤ 0 for ∀i ∈ S−t .

Furthermore, we will have (βt)i ·(∇f(βt))i = 0 for all i. To see this, assume
(βt)i 6= 0. Then by the right continuity assumption, there exists an interval
[t, t + ε) in which βi remains nonzero with the same sign. By (A.1b), (ρt)i
will remain either +1 or −1 in the same interval, so (∇f(βt))i = 0. On the
other hand, assume (∇f(βt))i 6= 0. Then by (A.1a), ρi will change and thus
it cannot stay either +1 or −1. By the right continuity of β, it must hold
that (βt)i = 0. Therefore, we have the addition constraints

(A.3) (βt)i · (∇f(βt))i = 0.

Conditions (A.2) and (A.3) are precisely the KKT optimality conditions for

min
β

f(β)

subject to


βi ≥ 0, ∀i ∈ S+

t ,

βi ≤ 0, ∀i ∈ S−t ,
βi = 0, ∀i 6∈ St,

(A.4)

which is identify to (2.1) except (2.1) specifies the time tk+1. Let βt be the
solution to problem (A.4).

In general, if f is strictly convex, then the solution βt is unique. In our
case, f is not necessarily strictly convex, but f = g(Xβ) for a strictly convex
function g. Therefore, Xβt is unique, and thus so is ∇f(βt) = XT∇g(Xβt).
Lastly, βt is unique if the columns of X corresponding to nonzero entries of
βt are linearly independent since Xβt is unique.

Proof of Theorem 2.2. Let zt = f(ρt, βt) = ρt + 1
κβt, then f is an

injective function from the admissible set (ρ, β) to C1 in variable t and
βt = κshrink(zt, 1). Now differential inclusion (1.3) becomes the ODE

żt =
1

n
XT (y − κX · shrink(zt, 1)) =: g(zt)
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Obviously, g(x) is Lipschitz continuous. Therefore, the Picard-Lindelöf The-
orem implies that there exists a unique solution to this ODE, which leads
to the solution of (1.3).

We note that the solution of (1.3), though not piece-wise linear or con-
stant, can still be computed in a piece-wise closed form where on each piece,
the signs of βt remain unchanged. This is left to the reader.

A.2. Proof of Consistency of LBISS.

Lemma A.1. Assume that XS has full column rank.
(A) For all t ≤ τ , solution of (1.3) β(t) contains no false positive if

‖X∗TX
†
S(ρS + βS/κ) + tX∗TPT ε‖∞ < 1, ∀t ≤ τ,

where PT = I−X†SX∗S is the projection operator onto the column space
of XT .

(B) Mean path β̄(τ) is sign-consistent if

sign(β̄S(τ)) = sign(β∗S + Φ−1
S X∗Sε−

1

τ
Φ−1
S (ρS(τ) +

1

κ
βS(τ)) = sign(β∗S)

where ΦS = X∗SXS = 1
nX

T
SXS.

No-false-positivity and the sign-consistency for mean path in Theorem
4.1, directly follow this lemma.

Proof of Lemma A.1. Consider the differential inclusion (1.3)

ρ̇+
1

κ
β̇ = − 1

n
XT (Xβ − y) = −X∗X(β − β∗) +X∗ε.

Assume there exists a τ ≥ 0, such that for all t ≤ τ , solution path β(t)
contains no false-positive, i.e. supp(β(t)) ⊆ S. Then for all t ≤ τ ,

(A.5) ρ̇S + β̇S/κ = −X∗SXS(βS − β∗S) +X∗Sε,

and

(A.6) ρ̇T + β̇T /κ = −X∗TXS(βS − β∗S) +X∗T ε.

From (A.5) one gets −(βS − β∗S) = (X∗SXS)−1(ρ̇S + β̇S/κ)− (X∗SXS)−1X∗Sε,
which leads to the following equation by plugging into (A.6)

ρ̇T + β̇T /κ = X∗TX
†
S(ρ̇S + β̇S/κ) +X∗TPT ε,
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where PT = I − PS = I −X†SX∗S is the projection matrix onto im(XT ).
Integration on both sides and setting

‖ρT (t) + βT (t)/κ‖∞ = ‖X∗TX
†
S(ρS(t) + βS(t)/κ) + tX∗TPT ε‖∞ < 1,

the first part follows from βT (t) = κ · shrink(ρT (t) + βT (t)/κ, 1).
The second part is obtained by integration on (A.5)

β̄S(τ) =
1

τ

∫ τ

0
βS(t)dt = β∗S −

1

τ
Φ−1
S (ρS(τ) +

1

κ
βS(τ)) + Φ−1

S X∗Sε,

followed by taking sign(β̄S(τ)) = sign(β∗S).

Lemma A.2. Suppose ε ∼ N (0, σ2In), and X ∈ Rn×p

Prob(‖XT ε‖∞ > σ
√

2(1 + µ) log pmax
j
‖Xj‖) ≤

1

pµ
√
π log p

;(A.7)

Prob(‖XT ε‖2 > σ
√

2(1 + µ)tr(XTX) log p) ≤ 1

pµ
√
π log p

.(A.8)

Proof of Lemma A.2. From the Gaussian tail probability bound,

Prob(|XT
j ε| > σ

√
2(1 + µ) log p‖Xj‖) ≤ 2

1√
2(1 + µ) log p

√
2π
e−

2(1+µ) log p
2

≤ 1

p1+µ
√
π log p

.

The first inequality is directly the union bound of index j. The second in-
equality is obtained by the fact

{ε : ‖XT ε‖2 > σ
√

2(1 + µ)tr(XTX) log p} ∈
⋃
j

{ε : |XT
j ε| > σ

√
2(1 + µ) log p‖Xj‖},

which ends the proof.

Proof of Lemma 5.1. Denote

At = {i ∈ S|sign(β̃∗i ) 6= sign(β′i)} ⊆ S.

Noticed that

‖β̃∗S − β′S‖22 ≥
∑
i∈At

β̃∗2i

≥ max{β̃min

∑
i∈At

|β̃∗i |, (
∑
i∈At

|β̃∗i |)2/s}

≥ max{β̃minD(β̃∗S , β
′
S)/2, D(β̃∗S , β

′
S)2/4s},
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and

‖β̃∗S − β′S‖2 < β̃min ⇒ At = ∅ ⇒ β̃∗S = β′S ⇒ D(β̃∗S , β
′
S) = 0,

then according to the definition of Ψ and F , we have

Ψ(β′S) =
‖β̃∗S − β′S‖22

2κ
+D(β̃∗S , β

′
S) ≤ F (‖β̃∗S − β′S‖22)

which implies
F−1(Ψ(β′S)) ≤ ‖β̃∗S − β′S‖22.

Combining the following result from right continuous differentiability〈
dρ′S
dt

, β′S

〉
= 0,

and the strong convexity conditions of X∗sXs, we have

d

dt
(Ψ(β′S)) = −

〈
β′S − β̃∗S , X∗sXs(β

′
S − β̃∗S)

〉
≤ −γ‖β̃∗S−β′S‖22 ≤ −γF−1(Ψ(β′S)),

as desired.

Proof of Lemma 5.2. From the generalized Bihari’s inequality

τ̃1 ≤ −
∫ τ̃1

0

d
dt(Ψ(β′S))

γF−1(Ψ(β′S))
dt =

1

γ

∫ Ψ(0)

Ψ(t̃∞)

dx

F−1(x)
.

Note that Ψ(0) = ‖β̃∗S‖1 +
‖β̃∗S‖

2

2κ . so F−1(Ψ(0)) ≤ ‖β̃∗S‖22. By continuity

and monotonicity of F (x) on (β̃2
min,+∞) and Ψ(t̃1) ≥ β̃2

min
2κ , we have

γτ̃1 ≤
∫ β̃2min

2κ
+2β̃min

β̃2
min
2κ

dx

F−1(x)
+

∫ sβ̃2
min

β̃2
min

dF

x
+

∫ ‖β̃∗‖22
sβ̃2

min

dF

x

≤
∫ β̃2min

2κ
+2β̃min

β̃2
min
2κ

dx

β̃2
min

+

∫ sβ̃2
min

β̃2
min

(
1

2κx
+

2

β̃minx
)dx+

∫ ‖β̃∗‖22
sβ̃2

min

(
1

2κx
+

√
s

x
3
2

)dx

≤ 4 + 2 log s

β̃min

+
1

κ
log(
‖β̃∗‖2
β̃min

).

Proof of τ̃2 is straightforward now. For t < τ̃2,

dΨ

dt
≤ −γ‖β̃∗ − β‖22 ≤ −γ

C2s log d

n
.
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Let
F̃ (x) =

x

2κ
+ 2
√
xs ≥ F (x), ∀x > 0.

Let F̃−1 be the right-continuous inverse. Then ‖β(t)− β̃∗‖22 ≥ F−1(Ψ(β)) ≥
F̃−1(Ψ(β)). By generalized Bihari’s inequality

−1

γ

dΨ

dt
≥ ‖β̃∗ − β‖22 ≥ F̃−1(Ψ).

Therefore

−1

γ

dΨ

dt
≥ max

{
F̃−1(Ψ),

C2s log d

n

}
.

Again, we have

τ̃2 ≤
1

γ

∫ Ψ(0)

Ψ(t̃2)

dx

max{F̃−1(x), C
2s log d
n }

.

Noticed that
F̃−1(Ψ(0)) ≤ F−1(Ψ(0)) ≤ ‖β̃∗‖22.

Therefore,

γτ̃2 ≤
∫ F̃ (C2s log d/n)

0

dx
C2s log d

n

+

∫ Ψ(0)

F̃ (C2s log d/n)

dx

F̃−1(x)

≤
∫ (C2s log d/n)/2κ+2Cs

√
log d/n

0

dx
C2s log d

n

+

∫ ‖β̃∗‖22
C2s log d/n

dF̃

x

≤ 1

2κ
+

2

C

√
n

log d
+

∫ ‖β̃∗‖22
C2s log d/n

(
1

2κx
+

√
s

x3/2
)dx

≤ 4

C

√
n

log d
+

1

2κ
(1 + log

n‖β̃∗‖22
C2s log d

)

which gives the bounds.

Proof of Theorem 4.1.

A = {ε : ‖XS(X∗SXS)−1X∗Sε‖2 > 2σ
√
s log n};

B = {ε : ‖(X∗SXS)−1X∗Sε‖∞ > 2σ

√
log p

nγ
};

C = {ε : ‖X∗TPT ε‖∞ > 2σ

√
log p

n
max
j∈T
‖Xj‖n}.
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Note tr(XS(X∗SXS)−1X∗S) = s, (X∗SXS)−1X∗S ·XS(X∗SXS)−1 = (X∗SXS)−1 �
1/γ, and X∗TPT · PTXT � X∗TXT , using Lemma A.2, we have

Prob(A) ≤ 1

n
√
π log n

, Prob(B) ≤ 1

p
√
π log p

, Prob(C) ≤ 1

p
√
π log p

.

(1) (no-false-positivity for β(t) up to τ) First consider the LB-ISS

(A.9)
dρS
dt

+
1

κ

dβS
dt

= −X∗SXS(βS − β̃∗S)

where β̃∗S = β∗S+(X∗SXS)−1X∗Sε. It is easy to conclude ‖XS(β̃∗S−βS)‖2
is monotonically decreasing based on the following observation

d

dt

‖XS(β̃∗S − βS)‖22
2n

= −
〈
dρS
dt

,
dβS
dt

〉
− 1

κ

∥∥∥∥dβSdt
∥∥∥∥2

2

= −1

κ

∥∥∥∥dβSdt
∥∥∥∥2

2

≤ 0

using 〈dρS(t)/dt, dβS(t)/dt〉 = 0 from the assumption of Bregman ISS
paths. On the set Ac

⋃
Bc,

‖βS‖∞ ≤ ‖β̃∗S‖∞ + ‖β̃∗S − βS(t)‖2

≤ β̃max +
‖XS(β̃∗S − βS(t))‖2√

nγ

≤ β̃max +
‖XS β̃

∗
S‖2√
nγ

≤ β∗max + 2σ

√
log p

γn
+
‖XSβ

∗‖2 + 2σ
√
s log n

√
nγ

.

Denote this upper bound as B. Returning to the original problem, by
Lemma A.1, it suffices to have for all t ≤ τ ,

1 > ‖X∗TX
†
S(ρS + βS/κ) + tX∗TPT ε‖∞.

The first part

‖X∗TX
†
S(ρS + βS/κ)‖∞ ≤ (1− η)(1 + ‖βS‖∞/κ) ≤ 1− (1−B/κη)η

and for the second part, since

t ≤ τ :=
1−B/κη

2
ησ−1

√
n/ log p

(
max
j∈T
‖Aj‖

)−1

= O(ησ−1
√
n/ log p),

which leads to that on the set Cc, t‖X∗TPT ε‖∞ < (1−B/κη)η.
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(2) (no-false-negativity for the mean path) it suffices to ensure

β∗min > ‖Φ−1
S X∗Sε‖∞ + ‖1

τ
Φ−1
S (ρS + βS/κ)‖∞,

where ΦS = X∗SXS . The second part on the right hand side is ‖ 1
τΦ−1

S (ρS+
βS/κ)‖∞ ≤ 1

τ ‖Φ
−1
S ‖∞(1 + B/κ). The first part is bounded on the set

Bc.
(3) (l2-error bound) Lemma 5.2 implies if C >

8σ(maxj∈T ‖Xj‖n)
ηγ , when κ

is big enough, we have

t̃2(C) ≤ 4

Cγ

√
n

log p
+

1

2κγ
(1 + log

n‖β̃∗‖22
C2s2 log p

)

≤ 4

Cγ

√
n

log p
+

1

2κγ
(1 + log

n‖β∗‖22 + 4σ2s log p/γ

C2s log p
)

≤ τ .

Thus ∃τ ∈ [0, τ ]

‖βS(τ)− β̃∗S‖2 ≤ C
√
s log(p)/n.

Note that with high probability

‖β∗S − β̃∗S‖2 ≤ 2σ
√
s log(p)/nγ−1/2.

(4) (Sign Consistency for βt) The condition

β∗min ≥
4σ

γ1/2

√
log p

n

implies that β̃∗ has the same sign as β∗ as well as 1/2|β∗i | ≤ |β̃∗i | ≤
3/2|β∗i | for each component i. Thus sign consistency is reached when
t̃∞ ≤ τ , or

4 + 2 log s

γβ̃min

+
1

κγ
log(
‖β̃∗‖2
β̃min

) ≤ 8 + 4 log s

β∗minγ
+

1

κγ
log(

3‖β∗‖2
β∗min

)

≤ τ ,

which is ensured by κ big enough and

β∗min ≥ 2β̃min ≥
(

4σ

γ1/2
∨

8σ(2 + log s) (maxj∈T ‖Xj‖n)

γη

)√
log p

n
.

This completes the proof.
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A.3. Proof of Consistency of Linearized Bregman Iterations.
First of all, we give a discrete version of generalized Bihari’s inequality which
is useful for Linearized Bregman iterations (1.4).

Lemma A.3 (Discrete Generalized Bihari’s inequality). Consider the LB

(ρk+1 − ρk) + (βk+1 − βk)/κ = −αkX∗SXS(βk − β̃∗),

where X∗SXS ≥ γI. Let the potential (or Lyapunov) function be

Ψk = D(β̃, βk) +
||βk − β̃∗||2

2κ
.

Then the following difference inequality holds

Ψk+1 −Ψk ≤ −αkγ(1− καk‖XSX
∗
S‖/2)F−1(Ψk),

where F is defined by (5.5).

Proof of Lemma A.3. Similar to continue case, we have

‖βk − β̃∗‖22 ≥ F−1(Ψk).

Since `1-norm is homogeneous of degree 1, its subgradient ρ ∈ ∂‖β‖1
satisfies 〈ρ, β〉 = ‖β‖1. Multiplying βk − β̃∗ on the both sides of iteration
equation, it leads to

Ψk+1−Ψk+(ρk+1−ρk)βk−‖βk+1−βk‖2/2κ = −αk
〈
βk − β̃∗, X∗SXS(βk − β̃∗)

〉
Note that for i ∈ S, (ρ

(i)
k+1 − ρ

(i)
k )β

(i)
k+1 = |β(i)

k+1| − ρ
(i)
k β

(i)
k+1 ≥ 0

‖βk+1 − βk‖2/κ− 2(ρk+1 − ρk)βk
≤ ‖βk+1 − βk‖2/κ+ 2(ρk+1 − ρk)(βk+1 − βk)
≤ ‖βk+1 − βk‖2/κ+ 2(ρk+1 − ρk)(βk+1 − βk) + ‖ρk+1 − ρk‖2

≤ κ‖ρk+1 − ρk + (βk+1 − βk)/κ‖2

= κα2
k‖X∗SXS(βk − β̃∗)‖2

Ψk+1 −Ψk ≤ −αk
n

〈
XS(βk − β̃∗), XS(βk − β̃∗)

〉
+
α2
kκ

2n2

〈
XT
SXS(βk − β̃∗), XT

SXS(βk − β̃∗)
〉

= −αk
n

〈
XS(βk − β̃∗), (I − καkXSX

∗
S/2)XS(βk − β̃∗)

〉
≤ −αk

n
(1− καk‖XSX

∗
S‖/2))‖XS(βk − β̃∗)‖2

≤ −αkγ(1− καk‖XSX
∗
S‖/2))‖βk − β̃∗‖2

≤ −αkγ(1− καk‖XSX
∗
S‖/2))F−1(Ψk)

which gives the result.
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Next we present a discrete stopping time bound from the inequality above.

Lemma A.4 (Discrete Stopping Time Bounds). Consider the LB

(ρk+1 − ρk) + (βk+1 − βk)/κ = −αkX∗SXS(βk − β̃),

where X∗SXS ≥ γI and αk ≤ α, for all k > 0.
Define

τ̃1 := inf

{
k−1∑
t=0

αt : sign(βk) = sign(β̃∗)

}
and

τ̃2(C) := inf

{
k−1∑
t=0

αt : ||βk − β̃∗||2 ≤ C
√
s log p

n

}
.

Then the following bounds hold,

τ̃∞ ≤
4 + 2 log s

γ̃β̃min

+
1

κγ̃
log(
‖β̃∗‖2
β̃min

) + 3α,

τ̃2(C) ≤ 4

Cγ̃

√
n

log p
+

1

2κγ̃
(1 + log

n‖β̃∗‖22
C2s log p

) + 2α,

where γ̃ = γ(1− κα‖XSX
∗
S‖/2).

Remark A.1. Taking α → 0, it recovers the stopping time bounds in
continuous case, Lemma 5.2.

Proof of Lemma A.4. Consider

Ψk = D(β̃, βk) +
‖βk − β̃∗‖2

2κ
.

For a uniform upper bound on step sizes αt ≤ α, by the discrete Bihari’s
inequality in Lemma A.3

Ψk+1 −Ψk ≤ −αkγ̃F−1(Ψk) ≤ −αkγ̃F̃−1(Ψk),

where γ̃ = γ(1− κα‖XX∗‖/2) and F̃ (x) = x
2κ + 2

√
xs ≥ F (x), ∀x > 0.

For k such that Ψk ≥ 2β̃min + β̃2
min/2κ, denote Lk = F−1(Ψk), which is

non-increasing. Define tm =
∑m−1

t=0 αt. Let n1 = sup{n : Ln > sβ̃2
min}, then

γ̃αk ≤
F (Lk)− F (Lk+1)

Lk
,
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then for 0 ≤ k ≤ n1 − 1,

F (Lk)− F (Lk+1)

Lk
≤ (

logLk
2κ

− 2

√
s

Lk
)− (

logLk+1

2κ
− 2

√
s

Lk+1
).

This is because of
Lk − Lk+1

Lk
≤ log(

Lk
Lk+1

),

using 1− x ≤ − log x for x ≤ 1,

√
Lk −

√
Lk+1

Lk
≤
√
Lk −

√
Lk+1√

Lk
√
Lk+1

=
1√
Lk+1

− 1√
Lk
,

and

γ̃tn1 ≤ (
logL0

2κ
− 2

√
s

L0
)− (

logLn1

2κ
− 2

√
s

Ln1

)

≤ (
log ‖β̃∗‖2

2κ
− 2

√
s

‖β̃‖2
)− (

log sβ̃2
min

2κ
− 2

√
s

sβ̃2
min

).

Let n2 = sup{n : Ln > β̃2
min},

γ̃αk ≤
F (Lk)− F (Lk+1)

Lk
.

Then similarly, we have

γ̃(tn2 − tn1+1) ≤ (
1

2κ
+

2

β̃min

)(logLn1+1 − logLn2)

≤ (
1

2κ
+

2

β̃min

)(log sβ̃2
min − log β̃2

min).

Let n3 = sup{n : Ψn > β̃2
min/2κ},

γ̃(tn3 − tn2+1) ≤
n3−1∑

k=n2+1

Ψk −Ψk+1

β̃2
min

≤
β̃2
min
2κ + 2β̃min −

β̃2
min
2κ

β̃2
min

=
2

β̃min

.
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To sum up, we have

τ̃1 ≤ tn3+1 ≤
4 + 2 log s

γ̃β̃min

+
1

κγ̃
log(
‖β̃∗‖2
β̃min

) + 3α.

Similarly, we have

τ̃2(C) ≤ 4

Cγ̃

√
n

log d
+

1

2κγ̃
(1 + log

n‖β̃∗‖22
C2s2 log d

) + 2α,

which ends the proof.

Proof of Theorem 4.2. The proof is the same to the continue case.
The only difference is the decreasing of ‖X(βk − β̃∗)‖2 needs the condition
κα‖XSX

∗
S‖ < 2.

Consider the LB

(ρk+1 − ρk) + (βk+1 − βk)/κ = −αkX∗SXS(βk − β̃∗),

where X∗SXS ≥ γI.

‖XS(βk+1 − β̃∗)‖2 − ‖XS(βk − β̃∗)‖2

= ‖XS(βk+1 − βk)‖2 + 2(βk+1 − βk)TXT
SXS(βk − β̃∗)

= ‖XS(βk+1 − βk)‖2 − 2n/αk(βk+1 − βk)T [(ρk+1 − ρk) + (βk+1 − βk)/κ]

≤ ‖XS(βk+1 − βk)‖2 − 2n/αk(βk+1 − βk)T (βk+1 − βk)/κ
= n(βk+1 − βk)T (X∗SXS − 2/αKκ)(βk+1 − βk)
≤ 0,

where we have used ‖XSX
∗
S‖ = ‖X∗SXS‖. Hence ‖XS(β̃∗S − βk)‖2 is mono-

tonically nonincreasing.

Note that this implies that ‖rt‖ := ‖y − Xβt‖ is monotonically nonin-
creasing for all t ∈ (0, τ̄). The following lemma makes it precise.

Lemma A.5. For t ∈ [0, τ̄ ], the residue admits an orthogonal decompo-
sition

‖rt‖2 = ‖y −Xβt‖2 = ‖XS(β̃∗S − βS(t))‖2 + ‖PT ε‖2

and is monotonically nonincreasing.

Proof. By Pythagorean Theorem,

‖rt‖2 = ‖XS(β∗ − βt) + ε‖2 = ‖PSXS(β∗ − βt) + PSε‖2 + ‖(I − PS)ε‖2

= ‖XS(β∗ − βt) +XS(X∗SXS)−1X∗Sε‖2 + Cε,S

= ‖XS(β̃∗S − βS(t))‖2 + Cε,S
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and the conclusion follows from that ‖XS(β̃∗S − βS(t))‖ is monotonically
nonincreasing.
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[BMBO13] Martin Burger, Michael Möller, Martin Benning, and Stanley Osher, An adap-
tive inverse scale space method for compressed sensing, Mathematics of Com-
putation 82 (2013), no. 281, 269–299.

[BOXG05] Martin Burger, Stanley Osher, Jinjun Xu, and Guy Gilboa, Nonlinear inverse
scale space methods for image restoration, Variational, Geometric, and Level
Set Methods in Computer Vision, Springer, 2005, pp. 25–36.

[BRH07] Martin Burger, E. Resmerita, and L. He, Error estimation for bregman iter-
ations and inverse scale space methods in image restoration, Computing 81
(2007), no. 2-3, 109–135.

[Bur08] Martin Burger, A note on sparse reconstruction methods, Journal of Physics
Conference Series 124 (2008), no. 1, 012002.

[BY02] Peter Bühlmann and Bin Yu, Boosting with the l2-loss: Regression and clas-
sification, Journal of American Statistical Association 98 (2002), 324–340.

http://www.math.ucla.edu/~{}wotaoyin/software.html
https://cran.r-project.org/web/packages/Libra/index.html


SPARSE RECOVERY VIA DIFFERENTIAL INCLUSIONS 41

[CCS10] Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen, A Singular Value
Thresholding Algorithm for Matrix Completion, SIAM Journal on Optimiza-
tion 20 (2010), no. 4, 1956–1982 (en).

[CDLL98] Antonin Chambolle, Ronald A. DeVore, Nam-Yong Lee, and Bradley J.
Lucier, Nonlinear wavelet image processing: variational problems, compres-
sion, and noise removal through wavelet shrinkage, IEEE Transactions on
Image Processing 7 (1998), no. 3, 319–335.

[CDS98] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders, Atomic
decomposition by basis pursuit, SIAM Journal on Scientific Computing 20
(1998), 33–61.

[CW08] Emmanuel J. Candès and Michael B. Wakin, An introduction to compressive
sampling, IEEE Signal Processing Magazine 25 (2008), no. 2, 21–30.

[CW11] Tony Cai and Lie Wang, Orthogonal matching pursuit for sparse signal recov-
ery, IEEE Transactions on Information Theory 57 (2011), no. 7, 4680–4688.

[CWX10] Tony Cai, Lie Wang, and Guangwu Xu, Stable recovery of sparse signals and
an oracle inequality, IEEE Transactions on Information Theory 56 (2010),
no. 7, 3516–3522.

[CXZ09] Tony Cai, Guangwu Xu, and Jun Zhang, On recovery of sparse signals via
l1 minimization, IEEE Transactions on Information Theory 55 (2009), no. 7,
3588–3397.

[DD02] Christine De Mol and Michael Defrise, A note on wavelet-based inversion
algorithms, Contemporary Mathematics 313 (2002), 85?6.

[DDD04] Ingrid Daubechies, Michel Defrise, and Christine De Mol, An iterative thresh-
olding algorithm for linear inverse problems with a sparsity constraint, Comm.
Pure Appl. Math. 57 (2004), no. 11, 1413–1457.

[DH01] David L. Donoho and Xiaoming Huo, Uncertainty principles and ideal atomic
decomposition, IEEE Transactions on Information Theory 47 (2001), no. 7,
2845–2862.

[DJ95] David L. Donoho and Iain M. Johnstone, Adapting to unknown smoothness
via wavelet shrinkage, J. Amer. Statist. Assoc. 90 (1995), 1200–1224.

[Don95] David Donoho, De-noising by soft-thresholding, IEEE Transactions on Infor-
mation Theory 41 (1995), no. 3, 613–627.

[Don06] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006),
no. 4, 1289–1306.

[EHJT04] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani, Least
angle regression, Annals of Statistics 32 (2004), no. 2, 407–499.

[EHN96] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems,
Kluwer Academic Publishers, 1996.

[FL01] Jianqing Fan and Runze Li, Variable selection via nonconcave penalized like-
lihood and its oracle properties, Journal of American Statistical Association
(2001), 1348–1360.

[Fri01] J. H. Friedman, Greedy function approximation: A gradient boosting machine,
The Annals of Statistics 29 (2001), 1189–1232.

[GJY11] D. Ge, X. Jiang, and Y. Ye, A note on the complexity of lp minimization,
Math. Program. 21 (2011), 1721–1739.

[Gro19] Thomas Hakon Gronwall, Note on the derivatives with respect to a parameter
of the solutions of a system of differential equations, Annals of Mathematics
20 (1919), no. 2, 292–296.

[GWYY15] Dongdong Ge, Zizhuo Wang, Yinyu Ye, and Hao Yin, Strong np-hardness
result for regularized lq-minimization problems with concave penalty functions,



42 OSHER, RUAN, XIONG, YAO AND YIN

arXiv:1501.00622 (2015).
[Hes69] Magnus R Hestenes, Multiplier and gradient methods, Journal of optimization

theory and applications 4 (1969), no. 5, 303–320.
[HYZ08] Elaine T Hale, Wotao Yin, and Yin Zhang, Fixed-point continuation for \ell 1-

minimization: Methodology and convergence, SIAM Journal on Optimization
19 (2008), no. 3, 1107–1130.

[LY13] Ming-Jun Lai and Wotao Yin, Augmented `1 and Nuclear-Norm Models with
a Globally Linearly Convergent Algorithm, SIAM Journal on Imaging Sciences
6 (2013), no. 2, 1059–1091 (en).

[OBG+05] Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao Yin,
An iterative regularization method for total variation-based image restoration,
SIAM Journal on Multiscale Modeling and Simulation 4 (2005), no. 2, 460–
489.

[Pow67] Michael JD Powell, A method for non-linear constraints in minimization prob-
lems, UKAEA, 1967.

[RWY11] Garvesh Raskutti, Martin J. Wainwright, and Bin Yu, Minimax rates of es-
timation for high-dimensional linear regression over `q-balls, IEEE Transac-
tions on Information Theory 57 (2011), no. 10, 6976–6994.

[Tib96] R. Tibshirani, Regression shrinkage and selection via the lasso, J. of the Royal
Statistical Society, Series B 58 (1996), no. 1, 267–288.

[Tro04] Joel A. Tropp, Greed is good: Algorithmic results for sparse approximation,
IEEE Trans. Inform. Theory 50 (2004), no. 10, 2231–2242.

[Wai09] Martin J. Wainwright, Sharp thresholds for high-dimensional and noisy spar-
sity recovery using l1-constrained quadratic programming (lasso), IEEE Trans-
actions on Information Theory 55 (2009), no. 5, 2183–2202.

[Yin10] Wotao Yin, Analysis and Generalizations of the Linearized Bregman Method,
SIAM Journal on Imaging Sciences 3 (2010), no. 4, 856–877 (en).

[YL07] Ming Yuan and Yi Lin, On the nonnegative garrote estimator, Journal of the
Royal Statistical Society, Series B 69 (2007), no. 2, 143–161.

[YLYR13] Kun Yuan, Qing Ling, Wotao Yin, and Alejandro Ribeiro, A Linearized Breg-
man Algorithm for Decentralized Basis Pursuit, EUSIPCO (2013).

[YODG08] Wotao Yin, Stanley Osher, Jerome Darbon, and Donald Goldfarb, Bregman
iterative algorithms for compressed sensing and related problems, SIAM Jour-
nal on Imaging Sciences 1 (2008), no. 1, 143–168.

[YRC07] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto, On early stopping in
gradient descent learning, Constructive Approximation 26 (2007), no. 2, 289–
315.

[ZH05] Hui Zou and Trevor Hastie, Regularization and variable selection via the elas-
tic net, Journal of the Royal Statistical Society, Series B 67 (2005), 301–320.

[Zou06] Hui Zou, The adaptive lasso and its oracle properties, Journal of the American
Statistical Association 101 (2006), no. 476, 1418–1429.

[ZY06] Peng Zhao and Bin Yu, On model selection consistency of lasso, J. Machine
Learning Research 7 (2006), 2541–2567.

School of Mathematical Sciences
Peking University
Beijing, China 100871
E-mail: fengruan@stanford.edu

xiongjiechao@pku.edu.cn
yuany@math.pku.edu.cn

URL: http://www.math.pku.edu.cn/teachers/yaoy/

Department of Mathematics
University of California
Los Angels, CA 90095
E-mail: sjo@math.ucla.edu

wotaoyin@math.ucla.edu

mailto:fengruan@stanford.edu
mailto:xiongjiechao@pku.edu.cn
mailto:yuany@math.pku.edu.cn
http://www.math.pku.edu.cn/teachers/yaoy/
mailto:sjo@math.ucla.edu
mailto:wotaoyin@math.ucla.edu

	Introduction
	Motivations and contributions
	Notation and assumptions
	Outline

	Bregman and Linearized Bregman solution paths
	Consistency of Bregman ISS Dynamics
	Assumptions
	Mean Bregman ISS Path versus LASSO Path
	Consistency of Bregman ISS

	Generalizations to Linearized Bregman ISS and Its Discretization
	Consistency of Linearized Bregman ISS
	Consistency of Linearized Bregman iterations

	Analysis of ISS Dynamics
	Potential function
	Differential inequality with restricted exponential decay of potential
	Sign-consistency and l2-error bound

	Data-dependent Stopping Rules for Bregman ISS
	Related work
	Regularization and other algorithms
	Parallel and distributed computing

	Experiments
	Conclusion and Future Directions
	Proofs
	Proof of Theorem 2.1 and 2.2
	Proof of Consistency of LBISS
	Proof of Consistency of Linearized Bregman Iterations

	Acknowledgements
	Supplementary Material
	References
	Author's addresses

