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Quasi-conformal Surface Remeshing
Chi Po Choi, Xianfeng Gu and Lok Ming Lui

Abstract—Curvilinear surfaces in 3D Euclidean spaces are commonly represented by triangular meshes. The quality of the
triangulation is important, since it affects the accuracy of the numerical computation on the surface. Surface remeshing refers
to the process of optimizing the regularity of the triangulation from an irregular mesh. A popular technique is by conformally
parameterizing the surface onto a simple parameter domain. A regular triangulation on the parameter domain is then projected
onto the surface through interpolation. For a highly irregular mesh, the conformal parameterization is difficult to compute, causing
the technique impractical. This work proposes an effective algorithm to obtain a conformal parameterization of a highly irregular
mesh, using quasi-conformal Teichmüller theories. The conformality distortion of an initial parameterization is corrected by a
quasi-conformal map, and hence the conformal parameterization can be robustly obtained. However, another major issue is
the area distortions introduced under the conformal map. Direct projection of an arbitrary regular mesh may cause a serious
loss of geometric details. An adaptive triangulation on the parameter domain is necessary. In this paper, we propose to obtain
a regular triangulation on the conformal parameter domain, which is adaptive to the area distortion of the parameterization,
through the landmark-matching Teichmüller map. Experiments have been carried out to parameterize and remesh several surface
meshes representing real 3D geometric objects using the proposed algorithms. Results show the efficacy of the algorithms to
parameterize and optimize the regularity of an irregular triangulation.

Index Terms—Surface remeshing, Teichmüller map, Beltrami holomorphic flow, Beltrami coefficient, conformal, quasi-conformal.
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1 INTRODUCTION

W ITH the advance of image acquisition technolo-
gies, 3D geometric objects from the real world

can now be effectively captured. The captured geo-
metric data are commonly represented by triangular
meshes. With these digital geometric data, systematic
shape analysis of the geometric objects and numerical
computations on it can be carried out. Applications
can be found in different areas, such as medical
imaging, computer graphics and computer visions.

In order to ensure the accuracies of the shape
analysis and numerical computations, a high quality
triangular mesh that represents the geometric object
is crucial. For example, numerical analysts often focus
on the mesh quality as it affects the numerical accura-
cies of the computations. Mesh quality also affects the
accuracies of computing geometric quantities, such
as curvatures, which further affects the accuracies of
shape analysis results. In practical situations, triangu-
lation from 3D raw geometric data are sometimes ir-
regular. It is therefore necessary to develop algorithms
to improve the regularity of the triangulation from
an irregular mesh. Such as process is called surface
remeshing.

A commonly used method for surface remeshing
is done by surface parameterization. The surface is
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firstly parameterized onto a simple parameter do-
main, for instance, a 2D rectangle. A regular triangula-
tion on the parameter domain is then built, which can
be projected onto the original surface through interpo-
lation. To preserve the regularity of the triangulation
after the projection, the parameterization has to pre-
serve the local geometry as much as possible. A popu-
lar choice is the conformal parameterization. For sur-
face meshes satisfying certain regularity conditions,
conformal parameterizations can be obtained using
conventional parameterization algorithms. However,
for highly irregular meshes, conformal parameteri-
zations are generally difficult to compute (see Table
1). As a result, the remeshing algorithm through
parameterization becomes impractical. For example,
Figure 1 shows two examples of irregular meshes,
on which conventional conformal parameterization
methods fail.

In this paper, our goal is to develop an effective
algorithm to obtain an optimal conformal parame-
terization of a highly irregular mesh, using quasi-
conformal Teichmüller theories. The irregular mesh is
firstly embedded in R2 using the Tutte’s embedding.
This initial parameterization is expected to introduce
conformality distortions. To fix the conformality dis-
tortions, the initial parameterization is composed with
a quasi-conformal map from the initial parameter
domain to the unit disk. An optimal conformal param-
eterization can be obtained. A regular triangulation on
the conformal parameter domain can be built, which
is then projected onto the original surface through
interpolation. However, one important issue is that
the conformal parameterization often introduces area
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distortions. When an arbitrary regular mesh on the
conformal parameter domain is projected onto the
surface, the resolution at some regions may get
coarsen. This results in a serious loss in the geometric
details (see Figure 7). An adaptive triangulation on the
parameter domain is thus necessary. For this purpose,
we propose in this work a method to build a regular
triangulation on the conformal parameter domain,
which is adaptive to the area distortions under the
conformal parameterization. The basic idea is to trans-
form a regular mesh with a constrained Teichmüller
map (T-Map) that matches landmarks consistently.
The landmarks are chosen such that their distribution
follows the area distortion of the conformal param-
eterization. A T-Map is the ”most conformal” map
subject to the landmark constraints. It transforms the
regular mesh to another regular mesh, which follows
the area density of the conformal parameter domain.
With this triangulation, a remeshed surface can be
constructed through interpolation, which keeps the
original geometry well. To test the effectiveness of the
proposed algorithm, experiments have been carried
out on surface meshes extracted from real 3D geomet-
ric objects. Results show the efficacy of our proposed
algorithm to parameterize and optimize the regularity
of an irregular triangular mesh.

In short, the contributions of this paper are two-
folded. Firstly, we propose an effective algorithm
to robustly compute conformal parameterizations of
irregular meshes, even for meshes with highly skinny
triangles, using quasi-conformal theories. Secondly,
we propose an efficient algorithm to obtain an adap-
tive regular mesh on the conformal parameter domain
based on the area distortion of the parameterization,
using the landmark-matching Teichmüller maps (T-
Maps). The algorithm also allows us to build subdivi-
sion regular meshes of different resolutions to remesh
the original surface.

The rest of the paper is organized as follows. In
section 2, some related works are presented. In section
3, the basic mathematical background is described.
The proposed algorithm for surface remeshing is ex-
plained in details in section 4. Experimental results
are reported in section 5. The paper is concluded in
section 6.

2 PREVIOUS WORK

Surface remeshing is an important pre-processing in
computer graphics and scientific computing on sur-
faces. Many remeshing algorithms have been pro-
posed by various research groups. Existing remeshing
algorithms can mainly be divided into two categories,
namely, 1. the parameterization approach and 2. the
explicit approach. The parameterization approach pa-
rameterizes the surface mesh onto a simple param-
eter domain, on which a structured mesh is built.
Surface remeshing is then achieved by projecting the

structured mesh onto the surface [5], [4], [3], [6], [8]
For example, Praun et al. [5] proposed to remesh
genus-0 closed surfaces by mapping it to the spherical
domain conformally. Hormann et al. [4] proposed to
remesh triangulated topologically disk-like surfaces
by parameterizing the surface onto a planar domain,
using the most isometric parameterization strategy
(MIPS). Eck et al. [3] presented a remeshing algo-
rithm based on partitioning the meshes into several
triangular regions followed by parameterizing each
regions using harmonic maps. Gu et al. [2] proposed
to remesh an arbitrary surface onto a completely
regular structure, through cutting the mesh along
a network of edge paths, and parametrize the re-
sulting single chart onto a square. Alliez et al. [6]
proposed an isotropic remeshing algorithm with lo-
cally uniform edges, through building a weighted
centroidal Voronoi tessellation in a conformal pa-
rameter space, where the specified density function
is used for weighting. Later, Alliez et al. [8] pro-
posed an algorithm that uses curvature directions
to drive the remeshing process. The algorithm can
produce meshes ranging from isotropic to anisotropic,
from coarse to dense, and from uniform to curvature
adapted.

Another category of remeshing algorithms is the ex-
plicit mesh modification approach, in which vertices
are progressively adjusted until it matches some spec-
ified properties [7], [9], [10], [11], [12], [13], [14], [15],
[17]. For example, Peyrè et al. [7] proposed a fast al-
gorithm for the remeshing of a surface with a uniform
or adaptive distribution, which is based on iteratively
choosing the farthest point according to a weighted
distance on the surface. Yan et al. [9] proposed a fast
isotropic remeshing method, based on an efficient al-
gorithm for the Restricted Voronoi Diagram (RVD) for
computing the centroidal Voronoi tessellation (CVT).
Chen et al. [10] proposed a parameterization-free
remeshing algorithm by progressively optimizing an
initial resampled mesh through alternatively recover-
ing the Delaunay mesh and moving each vertex to the
centroid of its 1-ring neighborhood.

In this work, surface remeshing is carried out
based on the conformal parameterization. Different
algorithms for conformal parameterization has been
recently proposed. For instance, Haker et al. pro-
posed a finite element approximation of conformal
parameterization in [21]. They linearized the Laplace-
Beltrami operator and solved the sparse linear system
for conformally parameterizing brain surfaces. In [18],
Lévy et al. proposed a parameterization method by
approximating the Cauchy-Riemann equations using
the least-squares method. Desbrun et al. [19] intro-
duced the intrinsic parameterizations which mini-
mize the distortion of different intrinsic measures of
the surface patches. In [20], Hurdal and Stephenson
proposed a discrete mapping approach for spherical
conformal parameterization which uses circle packing
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Fig. 1: Examples of irregular meshes. Conventional
conformal parameterization methods fail on these
examples.

to produce “flattened” images of cortical surfaces on
the sphere, the Euclidean plane, and the hyperbolic
plane. Gu and Yau [22], [25] introduced a nonlinear
algorithm for spherical conformal parameterization.
They performed the optimization in the tangent space
of the sphere by gradient descent. The computation is
more stable and accurate. In [23], Lai et al. reported
an approach to obtain a folding-free global conformal
mapping. Curvature flow methods, which deform the
Riemannian metric conformally to the uniformization
metric, have also recently been studied to obtain
conformal parameterizations of surface with arbitrary
topologies [26], [28], [29].

Quasi-conformal theories will also be applied in our
proposed remeshing algorithm. The computation of
quasi-conformal mappings has been recently studied
to obtain smooth 1-1 correspondences with bounded
conformality distortion [30], [31], [32], [33]. For ex-
ample, Lui et al. [31] proposed to compute quasi-
conformal registration between hippocampal surfaces
based on the holomorphic Beltrami flow method,
which matches geometric quantities (such as cur-
vatures) and minimizes the conformality distortion
[30]. Wei et al. [32] proposed the Quasi-Yamabe
flow method to compute quasi-conformal mapping
for high-genus surfaces. Quasi-conformal mapping
that matches landmarks consistently has also been
proposed[30], [34]. In [30], the authors proposed to
compute the brain landmark-matching registration,

which minimizes L2 norm of the Beltrami coeffi-
cients. Wei et al. [34] also proposed to compute quasi-
conformal mappings for feature matching face regis-
tration. The Beltrami coefficient associated to a land-
mark points matching parameterization is approx-
imated. However, either exact landmark matching
or the bijectivity of the mapping cannot be guaran-
teed, especially when very large deformations occur.
Later, the extremal QC mapping, which minimizes
the conformality distortion has been proposed. Zorin
et al. [35] proposes a least square algorithm to com-
pute mapping between connected domains with given
Dirichlet condition defined on the whole boundaries.
The extremal mapping is obtained by minimizing a
least square Beltrami energy, which is non-convex.
The algorithm can obtain an extremal mapping when
initialization is carefully chosen. Recently, Lui et al.
[36] proposed to compute the unique T-Map between
simply-connected Riemann surfaces of finite type. The
convergence of the algorithm has also been proven
in [38]. The proposed algorithm was applied for
landmark-based surface registration. Later, Ng et al.
[37] extended the algorithm to compute the quasi-
conformal extremal map between multiply-connected
domains.

3 BASIC MATHEMATICAL BACKGROUND

In this work, conformal and quasi-conformal geome-
try theories will be applied. We describe briefly the
basic mathematical theories mostly related to our
proposed models in this section. For details, we refer
the readers to [24].

Let Ω1 and Ω2 be simply-connected domains in C.
A map f : Ω1 → Ω2 is conformal if it satisfies the
Cauchy-Riemann equation:

∂u

∂x
= −∂v

∂y
;
∂u

∂y
=
∂v

∂x
(1)

where f = u+ iv. In term of metric, a conformal map
f preserves the metric up to a multiplicative factor.
Mathematically,

|dw|2 = λ|dz|2 (2)

where z and w are the coordinates on Ω1 and Ω2

respectively. λ is called the conformal factor. An imme-
diate consequence of this property is that a conformal
map preserves angles. Let S be a Riemann surface.
The conformal parameterization of S can also be defined.
A parameterization f : S → C is conformal if every
every local chart φ : U ⊂ S → C, f ◦φ−1 : φ(U) ⊂ C→
C is conformal.

A natural generalization of the conformal map
is the quasi-conformal map. A quasi-conformal map
is an orientation preserving homeomorphism with
bounded conformality distortions, in the sense that
their first order approximations takes small circles to
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small ellipses of bounded eccentricity [24]. Mathemat-
ically, f : Ω1 → Ω2 is quasi-conformal provided that it
satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (3)

for some complex-valued function µ satisfying
||µ||∞ < 1. µ is called the Beltrami coefficient, which
is a measure of non-conformality. µf measures how
far the map is deviated from a conformal map. µ ≡ 0
if and only if f is conformal. Infinitesimally, around a
point p, f may be expressed with respect to its local
parameter as follows:

f(z) = f(p) + fz(p)(z + µ(p)z). (4)

Obviously, f is not conformal if and only if µ(p) 6= 0.
A quasi-conformal map f maps a small circle to a
small ellipse. From µ(p), we can determine the direc-
tions of maximal magnification and shrinking and the
amount of their distortions as well. Specifically, the
angle of maximal magnification is arg(µ(p))/2 with
magnifying factor 1 + |µ(p)|; The angle of maximal
shrinking is the orthogonal angle (arg(µ(p)) − π)/2
with shrinking factor 1 − |µ(p)|. Thus, the Beltrami
coefficient µ gives us all the information about the
properties of the map. The maximal dilation of f is
given by:

K(f) =
1 + ||µ||∞
1− ||µ||∞

. (5)

Given a smooth BC µ : Ω1 → C with ‖µ‖∞ < 1.
There is always a diffeomorphism of C that satisfies
the equation (3) [24].

4 PROPOSED ALGORITHM

In this section, we describe our proposed algorithm
for surface remeshing in details. The algorithm can
be divided into three main steps.

1) Optimal conformal parameterization of an irreg-
ular surface mesh: the surface mesh with an
irregular triangulation is firstly mapped onto a
unit disk using the optimal conformal parame-
terization.

2) Building an adaptive mesh on the parameter
domain: a regular triangulation is built on the
conformal parameter domain, which is adaptive
to the area distortions under the conformal pa-
rameterization.

3) Projection of the regular triangulation to the
surface: the adaptive regular triangulation on
the parameter domain is projected to the surface
through interpolation.

We will explain the procedures in each steps in
details.

4.1 Optimal conformal parameterizations of irreg-
ular meshes

Suppose KS is an irregular mesh representing a
surface S embedded in R3. Our goal is to remesh
KS to obtain a regular triangulation representing S.
Our strategy is to parametrize KS conformally and
project a regular mesh on the parameter domain back
to the original surface through interpolation. How-
ever, parameterizing an irregular mesh conformally
is challenging. Existing algorithms are sensitive to the
quality of the triangulation. For example, for meshes
with skinny triangles (that is, one of the three inner
angles of the triangle is close to π), the cotangent
formula that approximates the Laplace-Beltrami op-
erator usually leads to a singular matrix. As a result,
algorithms, which rely on the cotangent formula,
would fail on irregular meshes with too irregular
triangulation. Figure 1 shows two irregular meshes
with skinny triangular faces. Conventional conformal
parmeterization methods proposed in [22], [25], [26]
and [28] all fail on these two irregular meshes.

To tackle with this problem, we propose an al-
gorithm, under which the numerical computation of
the optimal parameterization can be carried out on a
regular triangulation. Our strategy is to project KS

to a regular mesh KΩ in R2. The projection is not
necessarily conformal. The parameterization is then
adjusted by computing a quasi-conformal map from
KΩ onto another mesh KΩ′ , such that its composition
with the initial parameterization becomes conformal.

Denote the collection of vertices of KS by V =
{vi}mi=1; the collection of all edges of KS by E =
{ej}nj=1 and the collection of all faces by F = {Tk}pk=1.
The conformal parameterization of KS depends on its
angle structure, which captures the information of the
angles of each faces. The angle structure depends on
the lengths of each edges, which is often called the
discrete metric defined as follows.

Definition 4.1: The discrete metric on a triangular
mesh is a positive real-valued function l : E → R+

defined on the collection of all edges that satisfies the
following triangle inequality:

l([vi, vj ]) + l([vj , vk]) ≥ l([vi, vk]) (6)

where [u,w] denotes the edge joining the vertices u ∈
V and w ∈ V , and vi, vj and vk forms a triangular
face.

The conformal parameterization depends on the
discrete metric. An accurate computation of the con-
formal parameterization relies on the regularity of
the triangulation. A triangulation is regular if every
triangular faces are close to equilateral triangles. In
our case, KS is highly irregular. To find an initial
parameterization, we first assign KS with a fake
discrete metric by setting l ≡ 1. In other words, we
presume all edges have lengths equal to 1. Hence,
all triangular faces are presumed to be equilateral.
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With this fake metric, we conformally parameterize
KS onto a domain KΩ in R2. In this work, we solve the
Laplace-Beltrami equation with the fake discrete met-
ric to approximate the parameterization KS onto the
unit disk. This initial parameterization ϕ : KΩ → KS

under the fake discrete metric is also called the Tutte’s
embedding, which is guaranteed to be bijective.

Since all faces of KS are presumed to be equilateral
with the fake discrete metric, most faces are mapped
to almost equilateral triangles in R2 under the Tutte’s
embedding. Thus, KΩ is a much more regular trian-
gular mesh in R2. For example, Figure 4(a) shows
the parameterization of the foot mesh with the fake
discrete metric, which gives a much more regular
triangular mesh of D.

However, under the original discrete metric of KS ,
ϕ is not conformal, since angles are not preserved un-
der the mapping. This is obvious since the triangular
faces of KS are highly irregular, whereas the faces
of KΩ are much more regular. Our goal is to obtain
a conformal parameterization of KS onto a simple
domain in R2.

To obtain such a parameterization, we compose
our initial parameterization ϕ with a quasi-conformal
map g that fixes the conformality distortions. More
precisely, suppose the Beltrami coefficient of ϕ is given
by µϕ. Let g : KΩ → D be a quasi-conformal map with
Beltrami coefficient µg . Then, the Beltrami coefficient
of ϕ ◦ g−1 is given by:

µϕ◦g−1 ◦ g =
µg−1 ◦ g + ( gzgz )µϕ

1 + ( gzgz )µϕ ◦ gµϕ
. (7)

Note that the above formula is valid whenever
||µϕ||∞ < 1. This is guaranteed since ϕ is a Tutte’s
embedding, which is bijective. In particular, if g has
Beltrami coefficient equals to µϕ, then

µg−1 ◦ g = −(
gz
gz

)µg = −(
gz
gz

)µϕ. (8)

Combining Equations (7) and (8), we obtain µϕ◦g−1◦
g = 0. Hence, the composition map ϕ ◦ g−1 is confor-
mal.

Note that both ϕ and ϕ ◦ g−1 are mappings from a
2D domain to the surface KS in R3. Their Beltrami
coefficients can be computed by locally parameter-
izing KS . More specifically, let D ⊂ KΩ and γ :
ϕ(D) → Σ ⊂ R2 be the local chart for varphi(D).
Then the Beltrami coefficient of ϕ on D is defined as
the Beltrami coefficient of ϕ ◦ γ−1. We can show that
this definition is independent of the choice of γ and
hence it is well-defined. The Beltrami coefficient of
ϕ ◦ g−1 can be similarly defined.

Motivated by the above observation, we first com-
pute the Beltrami coefficient µϕ of the initial parame-
terization ϕ. We then compute a quasi-conformal map
g from KΩ to D. The composition map g ◦ϕ−1 : KS →
D is then a conformal parameterization of KS . Note
that the computation of the quasi-conformal map g is

carried out on KΩ, which is regular. Hence, numerical
inaccuracies due to the irregular triangulation (such as
skinny triangles) can be avoided.

The associated quasi-conformal map g : KΩ → D
can be obtained by solving the Beltrami’s equation:

∂g

∂z
= µ

∂g

∂z
(9)

In this work, we apply the Beltrami holomorphic
flow (BHF) algorithm to solve Equation (9). We will
explain the BHF algorithm briefly. For details, we
refer the readers to [37]. The basic idea of the BHF
algorithm is to iteratively compute a sequence of
mappings converging to our desired quasi-conformal
map with the prescribed Beltrami coefficient. In each
iteration, the algorithm finds a vector field to de-
form the mapping, so that its Beltrami coefficient
gets closer to the prescribed one. In practice, we
choose the initial map as the harmonic map. Suppose
gn : KΩ → D is obtained at the nth iteration, whose
Beltrami coefficient is µn. We proceed to look for a
mapping gn+1, whose Beltrami coefficient is close to
νn = (1 − ε)µn + εµ (ε > 0). Hence, the Beltrami
coefficient of gn+1 gets closer to the target one. gn+1

can be computed as follows. Assume gn+1 = gn+Vn.
The variation Vn can be found by solving the Beltrami
equation. It follows from the Beltrami equation that:

AVn = −Agn. (10)

where A := ∂
∂z̄ − νn

∂
∂z .

In other words, finding Vn is equivalent to solving
the partial differential equation (10) subject to the
boundary condition that

(g0 + Vn)|∂KΩ = ∂D (11)

Note that the point-wise correspondence between
∂KΩ and ∂D is not required in (11). Equation (11)
simply means Vn has to be tangential to ∂D. Note that
in each step, ε can be chosen so that ||µn+1 − µ||∞ is
minimized. In practice, we choose ε = 1. A sequence
of quasi-conformal maps {gn}∞n=1is obtained, whose
Beltrami coefficients converge to µ.

Once the quasi-conformal map g is computed, our
desired conformal parameterization of KS can be
obtained from the composition map φ := ϕ ◦ g−1 :
KΩ′ → KS , where KΩ′ := g(KΩ).

Our algorithm to compute a conformal parameter-
ization of an irregular triangular mesh can now be
summarized as follows.

Algorithm 1 : (Conformal parameterization of irregular
surface mesh)
Input : Irregular triangular mesh: KS .
Output : Conformal parameterization φ : KΩ′ → KS

1) Compute an initial parameterization ϕ : KΩ → KS

of KS with the fake discrete metric l ≡ 1. Compute
the Beltrami coefficient µϕ of ϕ.
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2) Using BHF, obtain a quasi-conformal map g : KΩ →
KΩ′ with Beltrami coefficient µϕ.

3) Compute the conformal parameterization of KS by
φ := ϕ ◦ g−1.

4.2 Adaptive regular triangulation of the parame-
ter domain

Once the irregular triangular surface mesh is param-
eterized conformally, a regular triangular mesh can
be constructed on the parameter domain. The regular
triangulation on the parameter domain can then be
projected onto the original surface mesh through in-
terpolation. Since the parameterization is conformal,
the regularity of the triangulation is well-preserved.
Hence, the original surface can be remeshed to a
regular triangular mesh.

However, an important issue is the area distortion
under the conformal parameterization. Although a
conformal map preserves angles, it does not preserve
area. Thus, a large number of triangular faces of the
original surface mesh may possibly be squeezed to
a small region on the conformal parameter domain
(see Figure 4 and 5). If a uniform mesh is built
on the parameter domain, some regions would have
insufficient faces to approximate the original surface.
As a result, geometric features might be lost after
remeshing. A regular triangulation of the parameter
domain that is adaptive to the area distortion is
therefore necessary.

In this work, we propose an algorithm to obtain
the adaptive regular triangulation of the parameter
domain based on the centroidal Voronoi tessellation
and the Teichmüller mapping. We will first briefly
describe the centroidal Voronoi tessellation (CVT) and
the Teichmüller mapping (T-Map). Our proposed Te-
ichmüller adaptive remeshing algorithm will then be
explained in details.

4.2.1 Centroidal Voronoi tessellation (CVT)

In this work, centroidal Voronoi tessellation (CVT)
will be used. We explain the concept of CVT briefly.
We refer the readers to [39] for details.

CVT is a special kind of Voronoi tessellation. Given
a set S and k elements zi in S (i = 1, 2, ..., k). The idea
of Voronoi tessellation is to divide S into k subsets
V1, V2, ..., Vk such that:

1) S =
⋃k
i=1 V i and Vi ∩ Vj = φ if i 6= j;

2) Vi = {x ∈ S : d(x, zi) < d(x, zj) for j =
1, 2, ..., k, j 6= i}.

zi’s are called the generators and Vi’s are called the
Voronoi region with respect to zi.

Given a region V in Rn and a density function ρ(w)
defined on V . The mass centroid z∗ of V is given by:

z∗ =

∫
V
wρ(w)dw∫
V
ρ(w)dw

. (12)

A centroidal Voronoi tessellation (CVT) is a Voronoi
tessellation whose generators zi’s are the same as the
mass centroids z∗i ’s of each Voronoi regions Vi’s.

The CVT generators are local uniformly distributed
according to the density function ρ(w). This property
was conjectured by Gersho [40] and was later proven
for the 2D cases [41].

CVT is used in this work to find sparse sample
points, called landmarks, which are distributed accord-
ing to the area distortion of the conformal parameter-
ization.

4.2.2 Landmark-matching Teichmüller mapping (T-
Map)
Teichmüller map (T-Map) is used to project a regu-
lar mesh onto the conformal parameter domain. We
briefly describe the idea of the T-Map. For details, we
refer the readers to [24], [36], [37]

Suppose Ω1 and Ω2 are two simply-connected do-
mains in R2. Let {pi ∈ Ω1}ni=1 and {qi ∈ Ω2}ni=1 be the
corresponding landmarks on Ω1 and Ω2 respectively.
One might be interested in looking for a bijective map
f : Ω1 → Ω2 satisfying f(pi) = qi (i = 1, 2, ..., n),
which minimizes the conformality distortion. Math-
ematically, we look for such a landmark-matching
bijective map f such that: ||µ(f)||∞ ≤ ||µ(g)||∞ over
all landmark-matching bijective map g : Ω1 → Ω2,
where µ(f) and µ(g) are the Beltrami coefficients of f
and g respectively. f is called the extremal map.

The extremal map is closely related to the Te-
ichmüller map (T-Map). A T-Map is a quasi-conformal
map whose Beltrami coefficient is of the form:

µ = k
ψ̄

|ψ|
, (13)

where 0 ≤ k < 1 is a postive constant, ψ : Ω1 → C is a
holomorphic function on Ω1. In other words, a T-Map
has a uniform conformality distortion (|µ| = k).

Given any prescribed landmark correspondences
(say, {pi ∈ Ω1}ni=1 ↔ {qi ∈ Ω2}ni=1 with n ≥ 3),
there exists a unique T-Map f : Ω1 → Ω2 satisfying
f(pi) = qi for i = 1, 2, ..., n, which is also the extremal
map.

The landmark-matching T-Map is the “most confor-
mal” bijective map satisfying the prescribed landmark
constraints. This property is particularly important in
our case, since a regular triangulation is required to
be mapped to the parameter domain that preserves
the angle structure.

4.2.3 Teichmüller adaptive remeshing
We develop a method to build an adaptive mesh on
Ω, which is called the Teichmüller adaptive remeshing.
Our goal is to build a regular mesh on D according
to the area distortion under φ. In other words, more
vertices are places on regions with larger squeezing.

We start with choosing k landmark points {pi ∈
K ′Ω}ki=1 on KΩ′ such that {φ(pi)}ki=1 are uniformly
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distributed on KS . These uniform sampled landmark
points give information about the area density of
the conformal parameter domain KΩ′ . To get the
landmark points, our strategy is to apply CVT to
get k generators distributed according to the density
function, which is given by the area distortion under
φ. The density function ρ : KΩ′ → R+ is defined as:

ρ(vi) =
∑

Tj∈N(vi)

A(φ(Tj))

A(Tj)
, (14)

where N(vi) is the 1-ring neighbourhood faces of vi
and A(Tj) is the area of the triangular face Tj . This
idea is similar to [7]. However, in this work, only a
small amount of sample points (k is much less than
the vertex number) are chosen. The sample points are
considered as landmarks, which give us information
about the area density of the conformal parameter
domain. T-Map will then be used to map a regular
mesh to the conformal parameter domain that fol-
lows the area density based on the landmarks, which
significantly speeds up the procedure of building an
adaptive mesh on the parameter domain.

We initially take k points on KΩ′ and choose them
as the initial generators of the CVT. We then use the
Lloyd’s method to compute the CVT with respect to
the density function ρ, which is a simple iterative
scheme as follows:

1) Start with an initial set of k landmark points
{zi}ki=1;

2) Construct the Voronoi tessellation {Vi}ki=1 of S
associated to {zi}ki=1;

3) Construct the mass centroids {z∗i }ki=1 of {Vi}ki=1

and set zi = z∗i for i = 1, 2, ..., k;
4) Go back to Step 2 until convergence.
After the CVT associated to the k generators {pi}ki=1

is computed, the delaunnay triangulation KCVT of
{pi}ki=1 can be constructed. KCVT is called the base
mesh. We then sub-divide KCVT to get a refined mesh
Krefine

CVT . Krefine
CVT has a good connectivity. However, the

triangle quality of it may not be optimized. In some
cases, sharp triangular faces may occur (see Figure 4).

To further improve the qualities of the triangu-
lar faces, we compute the Tuette’s embedding Φ :
Krefine

CVT → K tutte
CVT ⊂ D from Krefine

CVT into D. A regular
triangulation K tutte

CVT ⊂ D of the conformal parameter
domain with the same connectivity as Krefine

CVT can be
obtained.

Note that the vertex valencies of the subdivision
mesh Krefine

CVT are mostly equal to 6. Its Tutte’s em-
bedding K̃ tutte

CVT gives a regular triangular mesh on
the parameter domain D (see Figure 2). However,
the vertices of K̃ tutte

CVT does not follow the density
function ρ. We propose to deform K̃ tutte

CVT to another
mesh K̃regular of D, whose vertices follow ρ while pre-
serving the regular angle structure of K̃ tutte

CVT as much
as possible. Ideally, it is desirable to get a conformal
map to deform K̃ tutte

CVT according to the density function

(a) (b)

Fig. 2: (a) Subdivision mesh Krefine
CVT of the base mesh

KCVT; (b) Tutte’s embedding K̃ tutte
CVT of the subdivision

mesh.

ρ. But practically, such a conformal map does not
exist. Thus, we look for an extremal Teichmüller map,
which minimizes the conformality distortion. Mathe-
matically, we search for a diffeomorphism T : D→ D
that minimizes ||µ(T )||∞ while the area density of
T (K̃ tutte

CVT ) resembles ρ as good as possible.
Note that the k generators give us information

about the density of φ. The above problem can be
solved by finding a landmark-matching T-Map. More
specifically, we search for an extremal T-Map T : D→
D satisfying the landmark constraints:

T (Φ(pi)) = pi, i = 1, 2, ..., k. (15)

T is then the optimized conformal map to transform
K̃ tutte
CV T to another mesh K̃regular := T (K̃ tutte

CV T ) that
follows the required density, while preserving the
regularity of the triangulation as much as possible.
Note again that the extremal T-Map T is computed
on K̃ tutte

CV T , which is regular. The problem of numerical
inaccuracies due to irregular triangulation can be
avoided.

To compute T , the Quasi-conformal (QC) iteration can
be used [36]:

1) Start with an initial landmark-matching map f0 :

K̃ tutte
CV T → D;

2) Suppose fn is obtained at the nth iteration. Com-
pute νn = µ(fn). Let µn = L ◦ A(νn), where
A(ν) =

∫
Ω
|ν|dx∫

Ω
dx

and L is the Laplace smoothing
operator.
Set fn+1 = LBSLM (µn) where LBSLM (µn) find
the closest landmark-matching map fn+1 sat-
isfying the Beltrami equation corresponding to
µn (in the L2-sense). More precisely, suppose
µn := ρn + iτn and fn = un + ivn. The Beltrami
equation can be reformulated as follows.

∇·
(
A

(
(un)x
(un)y

))
= 0; ∇·

(
A

(
(vn)x
(vn)y

))
= 0

(16)

where, A =

(
α1 α2

α2 α3

)
;
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(a) Foot (b) Hand

(c) Human face (d) Venus

Fig. 3: Original surface meshes: Foot, hand, human
face and venus.

(a) (b)

Fig. 4: Parameterization of Foot: (a) Tutte’s embedding
and (b) conformal prameterization.

α1 =
(1−ρn)2+τ2

n

1−ρ2
n−τ2

n
; α2 = − 2τn

1−ρ2
n−τ2

n
; and

α3 =
(1+ρn)2+τ2

n

1−ρ2
n−τ2

n
.

Together with the landmark constraints, LBSLM
solves the elliptic PDEs (16) using the least
square method.

3) Repeat Step 2 until ||νn+1 − νn||∞ < ε.
The convergence of the above iterative scheme was

proven in [38]. Once T is computed, an adaptive mesh
on D can be constructed, which is given by K̃regular :=

T (K̃ tutte
CV T ).

The proposed Teichmüller adaptive remeshing of
the parameter domain can now be summarized as
follows.

Algorithm 2 : (Teichmüller adaptive remeshing)
Input : Conformal parameterization φ : KΩ′ ⊂ D→ KS .
Output : Teichmüller adaptive mesh K̃regular on D

1) Compute the density function ρ of φ
2) Using CVT with the density function ρ, obtain k

landmark points {pi ∈ KΩ′}ki=1 such that {φ(pi) ∈
KS}ki=1 are uniformly distributed on KS . Construct
the delaunnay triangulation KCVT of {pi ∈ KΩ′}ki=1.

3) Refine KCVT by subdivision to get Krefine
CVT .

4) Compute the Tutte’s embedding of Krefine
CVT into D to

obtain K̃ tutte
CVT .

5) Compute the extremal T-Map T : K̃ tutte
CVT → D such

that T (φ(pi)) = pi for i = 1, 2, ..., k. Compute the
Teichmüller adaptive mesh K̃regular = T (K̃ tutte

CVT ).

The regular mesh K̃regular can then be projected
to the surface S using φ to get a remeshed surface
Kremesh. Again, since the parameterization φ is con-
formal, the projected triangulation Kremesh is a regular
triangular mesh approximating the original surface
S. Note also that our proposed Teichmüller adap-
tive remeshing algorithm involves the subdivision of
the base mesh. Our proposed algorithm can easily
produce subdivision regular triangulation of various
resolutions that remesh the original surface.

4.3 Numerical Implementation
In this subsection, we briefly describe the numerical
implementation of the proposed algorithms.

The computation of conformal parameterization of
the irregular surface mesh requires approximating the
Beltrami coefficient of the initial parameterization ϕ.
The Beltrami coefficient µ is related to the Riemannian
metric on S. Suppose S has a metric

ds2 = Edx2 + 2Fdy2 +Gdy2. (17)

under the parameterization. Let dz = dx + idy and
dz = dx− idy. The metric can be written as:

ds2 = λ|dz + µdz|2, (18)

where λ = 1
4 (E +G+ 2

√
EG− F 2) and µ = (E −G+

2iF )/4λ. Hence,

µ =
E −G+ 2iF

E +G+ 2
√
EG− F 2

. (19)

Assume that ϕ(u, v) = (x(u, v), y(u, v), z(u, v)).
Then: E(u, v) =< (xu, yu, zu), (xu, yu, zu) >,
F (u, v) =< (xu, yu, zu), (xv, yv, zv) > and G(u, v) =<
(xv, yv, zv), (xv, yv, zv) >. In the discrete setting, ϕ :
KΩ → KS is a piecewise linear homeomorphism. The
first order derivatives of x, y and z can be easily
computed, which are constants on each triangular
faces. E,F,G and hence µ can then be computed.
Therefore, in the discrete setting, the Beltrami coef-
ficient is piecewise constant on each triangular face.
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(a) (b)

Fig. 5: Parameterization of Venus: (a) Tuttel embed-
ding and (b) conformal prameterization.

Next, when applying CVT for the Teichmüller adap-
tive remeshing, the Voronoi tessellation of the k gen-
erators has to be computed. To ensure the efficiency,
we use a quantized version of Voronoi tessellation. Let
{pi}ki=1 be the chosen k generators in D. We compute
the quantized Voronoi cell V qi (1 ≤ i ≤ k) as follows:

V qi := {vj ∈ KΩ′ : d(vj , vi) < d(vj , vk), 1 ≤ j ≤ k, j 6= i}.
(20)

Besides, the mass centroid z∗ has to be computed.
Using the integral formula (12) to compute z∗ is time-
consuming. We simplify the approximation of z∗ as
follows:

z∗i =

∑
vj∈V q

i
ρ(zi)vj

|V qi |ρ(zi)
, (21)

where |V qi | denotes the number of elements in V qi .
We leave the details of the numerical implementa-

tions for Ricci flow, BHF and QC iterations but refer
readers to related references. The numerical imple-
mentation for Ricci flow, BHF and QC iterations can
be found in [26], [37] and [36] respectively.

5 EXPERIMENTAL RESULTS

We test the proposed remeshing algorithm on differ-
ent surface meshes embedded in R3. All our experi-
ments are carried out on a machine with the following
configuration: AMD CPU 3.2 GHz and 16GB RAM.
The algorithms are implemented using MATLAB. In
this section, we report the remeshing results on six
surface meshes, namely, 1. foot, 2. hand, 3. human
face, 4. Venus, 5. mask and 6. lion. The original surface
meshes of 1, 2, 3 and 4 are shown in Figure 3. The
original meshes of 5 and 6 are shown in Figure 1.
The surface meshes are visualized using the software
MeshLab.

5.1 Surface parameterization
We first test Algorithm 1 to parameterize irregular
surface meshes. Figure 4 shows the parameterization
results of the irregular surface mesh of a foot, whose
original surface mesh is shown in Figure 3(a). The
Tutte’s embedding ϕ : KΩ → KS is firstly computed
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(a) Foot
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(c) Mask
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Fig. 6: Histogram for ‖µ(φ)‖∞

by endowing a fake metric (with all edge lengths
equal to 1), which is shown in Figure 4(a). Note
that the triangulation of the Tutte’s embedding KΩ

is regular and has no flipping triangles. From KΩ, we
compute a quasi-conformal map g : KΩ → KΩ′ whose
Beltrami coefficient is given by the conformality dis-
tortion of ϕ. The composition map φ = ϕ ◦ g−1 is our
desired conformal parameterization of KS , which is
shown in Figure 4(b).

The parameterization results of the irregular surface
meshes of Venus are also shown in Figure 5. The
Tutte’s embeddings are shown in Figure 5(a), which
again has no flipping triangle.. The conformal param-
eterization is shown in Figure 5(b).

Table 1 gives the quantitative comparison of the
parameterization results of the six surface meshes
with other state-of-the-art approaches. The quantita-
tive measurement is taken as the mean of the Beltrami
cofficient of the parameterization. A parameterization
is conformal if the value is 0. As shown in the table,
our proposed method succeeded in computing the
conformal parameterization for all six irregular sur-
face meshes with good conformality. Yamabe flow [27]
and inverse distance Ricci flow [28] often fail on the
irregular meshes. The conventional Ricci flow [26] is
robust in computing the conformal parameterization,
however, the conformality is not satisfactory. The
double-covering approach, which converts the surface
to a genus-0 closed surface and parameterize it using
spherical harmonic map (with cotangent formula)[25],
is also sensitive to the mesh quality. It fails on the
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(a) Remeshed foot surface with non-adaptive regular
mesh on the parameter domain

(b) Remeshed hand surface with non-adaptive regular
mesh on the parameter domain

Fig. 7: Remeshed surface with a uniform mesh on the
parameter domain

hand and venus meshes. Also, the conformalities
for the successful cases are worse than ours. These
experimental results demonstrate that our proposed
parameterization method is robust and accurate for
computing conformal parameterizations of highly ir-
regular surface meshes.

Mesh Ricci Yamabe IDRF Double Ours
Foot 0.2653 0.0238 0.0238 0.0304 0.0247

Hand 0.3328 fail fail fail 0.0976
Face 0.2420 fail fail 0.0679 0.0109

Venus 0.2837 fail fail fail 0.0064
Mask 0.2379 fail fail 0.1104 0.0057
Lion 0.2029 fail fail 0.0959 0.0323

TABLE 1: The conformality distortion of different
parameterization methods.

Figure 6(a), (b), (c) and (d) shows the histograms
of the Beltrami coefficient norm for the conformal
parameterizations of the foot, Venus, mask and lion
respectively. The norms of their Beltrami coefficients
are close to 0 for most vertices, illustrating that our
proposed algorithm can give good approximations of
conformal parameterizations.

5.2 Teichmüller adaptive remeshing
Once the conformal parameterization is obtained, the
irregular surface mesh can be remeshed by project-
ing a regular triangulation on the parameter domain

(a) (b)

(c) (d)

Fig. 8: Remeshing on the parameterization domain of
the hand surface: (a) Parameterization mesh; (b) base
mesh; (c) subdivision mesh; (d) Teichmüller adaptive
mesh

onto the surface using the obtained parameterization.
However, the regular mesh on the parameter do-
main should be adaptive to the area distortion under
the conformal parameterization. Otherwise, geometric
losses may occur. Figure 7(a) and (b) show the surface
remeshing results of the foot and hand respectively
by projecting a uniform mesh on D onto the surfaces.
Note that since the uniform mesh on D is not adaptive
to the area distortions of the conformal parameteriza-
tions, serious geometric losses near the fingers and
toes can be observed.

Figure 8 shows the Teichmüller adaptive remeshing
results on the parameter domain of the foot. The con-
formal parameterization of the foot surface is shown
in Figure 8(a). The parameterization is conformal but
introduces area distortion. Using CVT, we pick sparse
sample points according to the density function on
the parameter domain and construct the delaunnay
triangulation of the sample points to obtain the base
mesh, which is shown in 8(b). In 8(c), we build a
denser mesh by subdividing. Note that the geometry
of the mesh is not optimized. Some triangular faces
have sharp angles. Also, the mesh is not smooth.
Jumps across the edges of the base mesh can be
obviously seen. Using the T-Map, we compute the Te-
ichmüller adaptive mesh on the conformal parameter
domain, which is shown in 8(d). The obtained mesh
is comparatively much more regular and smooth.
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5.3 Surface remeshing results

With the conformal parameterization and the Te-
ichmüller adaptive mesh on the parameter domain,
the regular mesh can be projected onto the surface
to obtain a remeshed surface. Figure 9(a) shows the
remeshed surface by projecting the base mesh onto
the surface. Figure 9(b) is obtained by projecting the
subdivision mesh of the base mesh onto the surface.
Note that the surface remesh is not smooth. Jumps can
be seen across the edges of the base mesh. Figure 9(c)
shows our remeshing result of our proposed method.
The surface mesh is much more regular and smooth.
Figure 10 and Figure 11 show the remeshing results
of the foot surface at different viewing angles. The left
column shows the original mesh at different angles.
The right column shows the remeshed surface at the
corresponding viewing angles.

Figure 12 and 13 show the remeshing results of
the hand surface at different viewing angles. Figure
14, 15, 16 and 17 show the remeshing results of the
face, Venus, mask and lion surfaces respectively. The
remeshed surfaces have much better triangle qualities
than their original surface meshes.

To quantitatively measure the quality of the remesh-
ing result, we consider a triangle quality measure-
ment, the radius-ratio [42]:

τi := 2
Rins
i

Rcir
i

for the i-th triangle in Kremesh (22)

where Rins
i is the radius of the inscribed circle and

Rcir
i is the radius of the circumscribed circle of the i-

th triangle. The radius-ratio τi satisfies 0 ≤ τi ≤ 1.
An equilateral triangle has τi = 1 and a degenerated
triangle has τi = 0. Figure 18, 19 and 20 show the
histograms of the radius-ratio for surface meshes of
the foot, hand and Venus respectively. (a) show the
histogram of the radius-ratio of the original mesh.
The histograms of the radius-ratio of the remeshed
surfaces using our proposed algorithm are plotted
in (d), which shows that most triangular faces have
radius-ratio close to 1. It means the triangular meshes
are much improved compared to the original mesh.

Fig. 10: Surface remeshing results of the foot surface.

Furthermore, note that our proposed Teichmüller
adaptive remeshing algorithm has two major com-
ponents, namely, 1. the subdivision mesh and 2. the
T-Map. In turns out both components are crucial. In
fact, building the subdivision mesh helps to improve
the triangle qualities of the remeshed surface. (b)
show the triangle qualities of the remeshed surfaces
obtained by adjusting the vertex positions using CVT
and the T-Map while keeping the original mesh topol-
ogy. The triangle qualities are only slightly improved
when compared to the original meshes, and they are
in general worse than those obtained by our proposed
algorithm. Also, deforming the base mesh using the T-
Map benefits for improving the qualities of the trian-
gulations. (c) show the triangle qualities of the surface
meshes obtained by projecting the subdivided mesh
of the base mesh. Notice that the triangle qualities are
not as good as our proposed algorithm.

As for the computational times, for surface meshes
with less than 20k faces, the proposed parameteriza-
tion algorithm takes less than 10s to compute. And
the computation for the remeshing algorithm takes
less than 2 minutes.

(a) Base mesh (b) Subdivision mesh (c) Teichmüller adaptive mesh

Fig. 9: Remeshing results for the foot surface with different meshes on the parameter domain
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Fig. 11: More surface remeshing results of the foot
surface at different viewpoint angles.

6 CONCLUSION

This paper proposes a method for surface remeshing
based on quasi-conformal theories. The main idea is to
conformally parameterize the irregular surface mesh
onto a simple domain. A regular mesh on the param-
eter domain can then be projected onto the surface
using the obtained parameterization. Obtaining con-
formal parameterization of a highly irregular surface
mesh is challenging. In this work, we propose an ef-
fective algorithm to obtain optimal conformal param-
eterizations of highly irregular surface meshes using
quasi-conformal Teichmüller theories. After obtaining
the parameterization, a regular mesh on the parameter
domain, which is adaptive to the area distortion of
the parameterization, has to be built. In this work, we
propose an algorithm, called the Teichmüller adaptive
remeshing, to obtain an adaptive regular mesh on
the conformal parameter domain using the landmark-
matching Teichmüller map. Experiments have been
carried out to remesh several surface meshes, which
show the efficacy of the algorithm to optimize the
regularity of an irregular triangulation.
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