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Abstract

Occlusions become apparent as failing regions in optical-flow models when integrated over time

because violations of the brightness-constancy constraint accumulate and grow in occluded areas. Based

on this observation, we propose a new variational model for joint occlusion and flow estimation that

emphasizes violations of the brightness constraint in order to detect occlusions by temporal integration

of both flow and occlusions. To this purpose, we estimate the flow with respect to a single reference

frame that accumulates the errors in the flow model over a short-time interval; this formulation allows

us to distinguish occlusions from noise and non-Lambertian phenomena by means of spatio-temporal

regularizers over the occlusion set. In terms of minimization, we approximate the resulting variational

problem by a sequence of convex optimizations and develop an efficient primal-dual algorithm to solve

them. Our experiments show the benefits of the proposed formulation, both the single-frame formulation

and the occlusion regularizers, in comparison to the state of the art.

Index Terms

Occlusion Detection, Optical Flow.

I. INTRODUCTION

Given two consecutive frames of a video sequence, optical-flow techniques estimate the apparent motion

of the scene by matching pixel intensities under smoothness assumptions of the estimated flow [1]. This

intensity matching fails in regions that are only visible in one frame because an object in the scene

occludes another one. Occlusions appear because no single two-dimensional image can fully capture the

content of a three-dimensional scene; therefore, when we match the content of two images by optical

flow, occlusions are not a residual to be neglected but a source of information of the geometry of the

scene.
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Unfortunately, given only two video frames, it is not possible to know if the violation of the brightness

constraint of optical flow is due to occlusions, noise, changes of illumination, or non-Lambertian phe-

nomena. Our key idea originates from the hypothesis that it is possible to detect the cause of brightness

violations by an extended temporal observation of the scene. Occlusions then become apparent by

integrating the flow over time as consistent failing regions of the model. The first novelty of our approach

lies in the temporal integration of optical flow with respect to a single reference frame, which accumulates

the violations of the brightness constraint over time in order to emphasize occlusions. As a result, our

formulation trades-off flow accuracy for occlusion accuracy, as occlusions are easier to detect for the

large displacements –that result from estimating the flow from a single frame–, while the flow is easier

to estimate for pairs of consecutive frames.

Previous occlusion models [2], [3], [4], [5], [6], [7] neglect the temporal dimension of the occlusion

problem and primarily detect areas of brightness violation. Our method, instead, models the spatial and

temporal regularity of occlusions to distinguish them from noise and non-Lambertian phenoma. This

constitutes the second novelty of our method, giving us a competitive advantage at the prize of a more

complex model.

We formalize this idea as a joint minimization problem to estimate both optical flow and occlusions

from a video. The objective functional of the minimization has a data term that penalizes violations of the

optical-flow model in co-visible regions and spatio-temporal regularizers for both flow and occlusions.

The functional is minimized with respect to each variable independently, and the problem is reduced to

a sequence of convex minimizations that are efficiently solved with a new primal-dual algorithm–to be

release upon publication– adapted to the characteristics of the problem.

Our contributions are thus threefold: first, a new brightness-constancy constraint, Equation (2), that

is integrated in an optical flow model to emphasize occlusions; second, the introduction of a temporal

model for occlusions; third, the development of efficient and easy-to-code algorithms to solve the resulting

minimization problem.

The rest of the paper is organized as follows: Section II reviews related methods and puts the paper

in context; Sections III and IV present the proposed model and its variational formulation, Section V

develops a numerical algorithm for its minimization, and Sections VI and VII present experimental results

and conclusions.
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II. LITERATURE REVIEW

Variational methods [8], [9] are the state-of-the-art in optical-flow because they provide accurate dense

estimates and result in minimization problems that can be efficiently solved [10], [11]. Two key issues,

however, remain open: the robustness of the method to large displacements, and the computation of the

flow in occlusion areas.

Large displacements are difficult to detect because the brightness constraint of optical-flow models

cannot be linearized, the resulting minimization problem is not convex, and numerical algorithms converge

to a local minimum close to the initialization point. To alleviate the effects of initialization, classical

techniques adopt a multi-resolution strategy that finds a minimum of the model present at large scales

but ignores small structures not present at the coarsest-resolution level. Large-displacement methods [9],

[12], [13] solve this issue by introducing a descriptor-matching step – previous to the variational model

– that guides the multi-resolution to a local minimum relevant for small structures. Variational methods

are thus still the core of optical flow, but few of them include occlusions explicitly in the model. This is

the goal of this paper.

Flow errors appear in occlusion areas because the brightness constraint forces intensity matching in

areas where no correspondence is possible. Occlusion-aware techniques avoid these errors by taking into

account occlusions in the model. This can be done implicitly by ignoring the brightness constraint in

areas where the flow model breaks down [2], [5], [6], or explicitly by introducing an occlusion variable

in the model [14], [3], [7], [15], [16]. A second criterion that differenciates these techniques is how

occlusions are incorporated into the model: multiple-step procedures first estimate the flow ignoring

occlusions, use the unreliable flow to detect occlusions, and then correct the flow in occlusion areas [14],

[15], [16]; whereas joint methods [3], [7] explicitly introduce occlusions in the model and formulate a

single minimization where flow and occlusion variables interact. The optimization of joint methods is

more difficult, but the models are more robust because flow and occlusions jointly explain the data. For

this reason, we propose a joint model but design it to emphasize occlusion detection rather than flow

estimation.

Independently of the level of interaction between flow and occlusions, there are two criteria to detect

occlusions from optical flow: the first one detects occlusions as unexplained pixels by the flow [3], [5], and

the second detects occlusions as pixels where there is no correspondence between forward and backward

flows [2], [6], [17]. We adopt the first criterion and introduce a temporal model for the occlusion set; this

differentiates our model from existing techniques that only handle two images and neglect the temporal
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dimension of occlusions in video.

Although related, techniques to detect occlusion boundaries [18], [19], [20], [21], [22], [23] and layered

models [24], [25], [26], [27], [20], [28], [18] solve a different problem. They detect occlusion boundaries

from a segmentation of the image in order to find the objects in the scene and their relative order; as a

result, they are closer to image and motion segmentation than to our method. Recently, machine-learning

classifiers have also been used for occlusion detection in [15], [16]. The learning-from-data nature of

these approaches is far from our model, which is designed from physical constraints instead of data

analysis and does not require a training stage.

In summary, we propose a variational method for joint occlusion detection and flow estimation, but

focus on occlusions in the design of our model. As a variational model, our method has the flexibility

to incorporate large-displacement techniques [9], [12], [13] and more robust data terms [29] to improve

flow estimation.

III. A FLOW MODEL TO EMPHASIZE OCCLUSIONS

A. Optical-flow Correspondence

Optical-flow techniques estimate the apparent motion of a scene by solving a correspondence problem

between the pixels of consecutive images [30], [1]. This correspondence, however, is only valid under

three assumptions: (i) the same points are visible in both images, (ii) the scene is Lambertian, and

(iii) scene illumination is constant. In such conditions, there exists a local differentiable mapping between

the domains of both images that describes their pixel correspondence. In general, given two images I1

and I2, this is formulated with the following brightness-constancy constraint:

I2(x) = I1(x+ u1(x)) ∀x ∈ D \ Ω, (1)

where Ω⊂D is the subset of the image domain where conditions (i)-(iii) are violated. Unfortunately, it

is not possible to determine which of conditions (i)-(iii) fail from two images, and occlusions cannot be

distinguished from other phenomena.

B. Occlusion Detection and Temporal Integration

Our main hypothesis is that it is possible to detect the cause of the brightness violation by an

extended temporal observation of the scene. If the observation interval is short, the illumination can

be assumed constant, and violations of the brightness constraint are only due to occlusions or non-

Lambertian phenomena. That is, Ω is partitioned into occlusions Θ and non-Lambertian effects Ω \Θ.
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Both sets are multiply connected and change as a function of time, but their temporal behavior is

different. While occlusions accumulate and grow from initial occluded points; non-Lambertian phenoma

depend on the shape of the underlying surface and, without additional information, are better modeled

by independent random noise in the image domain. As a result, the temporal behavior of occlusions can

be exploited to differentiate them from non-Lambertian phenoma in flow models that integrate multiple

frames.

To this purpose, we must choose a reference frame to define flow and occlusions, as pixels in one

image are occluded or visible only with respect to a reference image. Rather than computing flow and

occlusions between pairs of consecutive frames [8], [31], [32], [33], [34], we compute the flow with

respect to a single frame for the purpose of occlusion detection. For instance, the flow between frames

I1 and I3 can be decomposed into intermediate flows between intermediate images, as suggested by [35]

and [36] for non-rigid objects:

I3(x) = I2(x+u2(x)) = I1(x+ u1(x+u2(x)) + u2(x)).

Given frames I1,. . ., IT from a video sequence {Ii}, we propose estimate the flow with respect to the

central frame Ic with the following brightness constraint:

Ic(x) =


Ii(x+

c−1∑
j=i

uj(x+

c−1∑
l=j+1

ul(x))) i < c

Ii(x−
i∑

j=c

uj(x+

i∑
l=c+1

ul(x))) i ≥ c
x ∈ D \ Ωi, (2)

where we use forward flows for frames previous to Ic and backward flows for posterior ones. For large

sequences, we use a sliding window as suggested in [35]. This temporal integration is less accurate than

pairwise models [37], [34] for the purpose of flow estimation, but it emphasizes occlusions because the

regions where the flow model is violated, Ωi, are all defined in the domain of the reference image. As

a result, flow errors accumulate in a single frame and the model can differentiate occlusions from other

phenoma by temporal integration.

To this purpose, we describe the occlusion regions by their characteristic functions – for each Θi, its

characteristic function χi : D → {0, 1} satisfies χi(x) = 1⇔ x ∈ Θi– and propose an occlusion models

with the following terms:

Size regularization: The size of the occlusion region is small in comparison to the image domain; that

is, for certain cβ > 0 ∫
D
χi(x) dx ≤ cβ. (3)
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Occlusion models [4], [7] propose a similar penalty for occlusions, but they only compute the flow

between two images and neglect the time variable.

Spatial regularization: The shape of the occlusion regions is restricted by the geometric regularity

of the occluding objects in the scene. We formalize this assumption with a regularizer that measures

the perimeter of the occlusion region and penalizes irregular shapes in a similar manner than layered

models [24], [25], [26], [27], [20], [28], [18]; it is algebraically described by
T∑
i=1

∫
D
‖∇χi‖ dx < cγs . (4)

Temporal regularization: The size of the occlusion regions grows because the relative motion of the

occluded objects with respect to the camera is regular in time, not arbitrary. We exploit this idea with

the following penalty ∫
D
|χi(x)− χi−1(x)| dx < cγt . (5)

We consider also consider a constrained model (MC) that requires occlusions to grow from occluded

pixels, that is, χi ≥ χi+1, i < c and χi ≤ χi+1, i ≥ c. The relaxed constraint that forces the area

of occlusions to grow results in additional dual variables in the minimization algorithms, while its

experimental performance is similar to the proposed model; for this reason we consider the simpler MC

constraint.

IV. VARIATIONAL FORMULATION

We formulate occlusion detection as a variational model, i.e., as a minimization problem described by

the three components: the minimization variables, the objective function, and the minimization algorithm.

The minimization variables are the flow fields {ui = (ui, vi)} and the characteristic functions {χi},

possibly subject to constraint MC. The objective function is described by (6); it measures the violation

of the brightness constraint in co-visible areas with Bk, includes spatio-temporal regularizers J and R

for the flow and occlusions, and a penalty term
∫
D χk for the size-regularization constraint.

T∑
k=1

(
Bk(χk, {ui}) +R(χk) + J (uk) + β

∫
D
χk

)
. (6)

The term Bk penalizes violations of the brightness constraint (2) with an `1 norm to ensure robustness

to outliers as follows:

Bk(χk, {ui}) =

∫
D
wk(1− χk)|εk| (7)
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where

εk(x) =

{
Ic(x)−Ik(x+

∑c−1
j=k uj(x+

∑c−1
l=j+1 ul(x))) k<c

Ic(x)−Ik(x−
∑k
j=c uj(x+

∑k
l=c+1 ul(x))) k≥c , (8)

and the scalars wk = e−|c−k| assign increasing weights to model violations in frames closer to Ic; we

have chosen a negative exponential for simplicity.

The flow regularizer

J (uk) =

∫
D
αsgµ(‖∇uk‖) + αsgµ(‖∇vk‖) + αt‖uk−uk−1‖

is introduced to overcome the ill-posed nature of the optical-flow problem, as model (2) does not determine

a unique flow in textureless areas or in the direction tangent to the image gradient. We use the Huber

norm to regularize the gradients to allow sharp flow discontinuities at the boundaries of the objects and

small variations in between. In particular, the Huber penalty

gµ(‖∇uk‖) =

{
‖∇uk‖

2

2µ
if ‖∇uk‖<µ

‖∇uk‖−µ2 if ‖∇uk‖≥µ
(9)

allows flow discontinuities larger than µ while it acts as Gaussian smoothing in homogeneous flow areas.

The positive scalars αs, αt, µ are model parameters, where αt = 0 for the first frame of the sequence by

convention.

Finally, the occlusion regularizer R penalizes violations of models M2 and M3. This results in spatial

and temporal regularizers with parameters γs, γt ≥ 0

R(χk) =

∫
D
γs‖∇χk‖+ γt|χk − χk−1|. (10)

Total variation is a better regularizer than the Huber penalty for χk because the binary variables {χi}

shall be relaxed to real-valued functions in [0, 1] in Section V. Again, we assume γt = 0 for the first

frame of the sequence.

In summary, detecting occlusions requires solving the minimization problem

min
{ui,χi}
χi∈{0,1}

T∑
k=1

Bk(χk, {ui}) +R(χk) + J (uk) + β

∫
D
χk, (11)

which suffers from two main difficulties. First, variables {χi} take binary values and lead to a combi-

natorial problem computationally too expensive to solve. Second, even if we ignore the discrete nature

of {χi}, the resulting problem is not convex in {ui, χi}. This does not mean that we cannot detect

occlusions, but that we can only guarantee to find a local minimum of the objective functional, and that

out-of-the-box minimization algorithms are slow. The algorithm that we develop in Section V addresses

these two issues.
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V. NUMERICAL MINIMIZATION

We propose a multi-resolution approach to speed up the minimization and be more robust against local

minima. At the same time, at each resolution we solve the problem efficiently as a sequence of convex

optimizations.

Multi-resolution finds an approximate solution to the problem at a coarse scale and then tracks it

through scale as it solves the problem at higher resolutions. At a large scale, the problem will be less

prone to suffer from local minima and a first coarse solution is easily found, which is used to initialize

the algorithm at smaller scales. As the scale is reduced, local minima appear in the minimization, and

tracking of the initial solution guarantees that the solution is kept meaningful. Thus, multi-resolution does

not find a global minimum of the non-convex problem, only one that appears at large scales. In terms

of efficiency, the algorithm is designed to perform most of its iterations at a large scale; as the scale is

reduced, the algorithm is initialized closer to a minimum and requires less iterations to converge. The

large-displacement technique [12] can easily be incorporated here.

To speed-up minimization of (11) at each resolution, we alternate the minimization with respect to

flow and occlusion variables, as follows:

uk ← min
uk

T∑
j=1

Bj(χj , {ui}) + J (uk) 1 ≤ k ≤ T, (12a)

{χi}← min
χi∈{0,1}

T∑
j=1

Bj(χj , {ui}) +R(χj) + β

∫
D
χj . (12b)

We use sequential convex optimization for the minimization in uk, while the minimization with respect

to {χi} is relaxed to a convex problem by extending the feasibilty set to real-valued functions in [0, 1].

A. Minimization in Flow Variables

Problem (12a) is not convex because the brightness constraint depends on the minimization variable

through interpolation. We propose an iterative algorithm that linearizes the brightness constraint around

the current flow estimate, solves the resulting convex problem, and uses its solution as the flow estimate for

the next iteration. The algorithm stops when a fixed-point is encountered, which happens at a minimimizer

of the linearized brightness constraint. The resulting procedure, for pairwise flow, is equivalent to the

classic image warping [37].

Without loss of generality, we describe the minimization in uk, k < C. Let un1 ,. . . ,u
n
k be the flow
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estimates at iteration n, and

Ĩk(x) = Ik(x+

c−1∑
i=k

uni (x+

c−1∑
l=i+1

unl (x))) (13)

the image warped by these estimates, we linearize the image brightness in uk by

Ik(x+

c−1∑
i=k

ui(x+

c−1∑
l=i+1

ul(x))) ≈ Ĩk +∇Ĩk ·(uk−unk). (14)

At iteration n, the error in the brightness constraint εk (8) is approximated by the affine function enk(uk)

in order to obtain a convex minimization problem. To ensure the accuracy of the approximation

εk(x) ≈ enk(uk) = Ic − Ĩk −∇Ĩk · (uk − unk) (15)

we restrict the solution to lie in a ball Bnk around unk .

Problem (12a) is thus solved as the following sequence of convex problems:

un+1
k ← min

uk∈Bnk

∫ k∑
j=1

wj(1−χj)|enj (uk)|+ αt‖uk−uk−1‖+

αt‖uk − uk+1‖+ αs[gµ(‖∇uk‖)+gµ(‖∇vk‖)]. (16)

We solve (16) efficiently with the primal-dual algorithm [38] by providing closed-form solutions for

each proximal update. We choose a first-order method because the size of the problem –several million

variables– makes second-order methods unfeasible. In the following, we omit iteration superscripts to

lighten notation and substitute the constraint uk ∈ B0k by an equivalent proximal term

G(uk) =
r

2

∫
D
‖u− u0

k‖2. (17)

The key observation of our algorithm is the convexity of each of the terms in the objective functional

of (16), which allows us to re-formulate it as a saddle-point problem that is separable and easy to solve

in each variable. To this purpose, we define the following convex functions:

fj(u) =

∫
D
wj(1− χj)|enj (u)| (18)

f0(u) = αt

∫
D
‖u− uk−1‖ (19)

fk+1(u) = αt

∫
D
‖u− uk+1‖ (20)

fd(∇u) = αs

∫
D
gµ(‖∇u‖) + αsgµ(‖∇v‖). (21)
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To find the saddle-point formulation, we re-write (16) as the constraint minimization

min
uk,d
{ũj}

k+1∑
j=0

fj(ũj) + fd(d) +G(uk) s.t.


ũj =uk j=0. . . k+1

d=∇uk
(22)

and formulate its Lagrangian L(λ) by introducing a dual variable λ = (λ0, . . . ,λk+1,λd) for each

constraint in (22),

L = min
uk,d
ũ0,...,̃uk

k+1∑
j=0

fj(ũj) + fd(d) +G(uk)+

∫
D

[

k+1∑
j=0

λj ·(uk − ũj) + λd ·(∇uk − d)]. (23)

The Lagrangian can be simplified in terms of the conjugates of each of the convex functions f0, . . . , fk+1, fd

as follows:

L(λ) = min
uk
−
k+1∑
j=0

f∗j (λj)− f∗d (λd) +G(uk)+

∫
D

[

k+1∑
j=0

λj · uk + λd · ∇uk]. (24)

Finally, we make use of convex analysis to write (22) as the saddle-point problem

max
λ

min
uk
−

k+1∑
j=0

f∗j (λj)− f∗d (λd) +G(uk)+

∫
D

[

k+1∑
j=0

∫
D
λj · uk +

∫
D
λd · ∇uk]. (25)

This formulation allows us to apply the primal-dual algorithm of Chambolle and Pock [38], which is

designed for problems of the form:

max
λ

min
uk
−F ∗(λ) +G(uk) +

∫
D
λ ·Kuk, (26)

where K a continuous linear map, and F ∗, G proper, convex, lower- semicontinuous functions. Under

such conditions, [38] proposes the following iterative algorithm to solve (26):

λn+1 ← min
λ

σF ∗(λ) +
1

2
‖λ− λn − σKzn‖2 (27a)

un+1
k ← min

uk
τG(uk) +

1

2
‖uk − unk + τK∗λn+1‖2 (27b)

zn+1 = un+1
k + θ(un+1

k − unk), (27c)

where τ, σ, θ are algorithm parameters and z0 = u0
k.
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In our case, K∗ = [I, (k+2)
... , I,∇∗], with I the identity operator, and minimization (27a) is separable

in λj ,λd as

F ∗(λ) =

k+1∑
j=0

f∗j (λj) + f∗d (λd). (28)

As a result, each dual variable λ0, . . . ,λk+1,λd can be updated separately, and the algorithm is reduced

to

λn+1
j ← min

λj
σf∗j (λj) +

1

2
‖λj − λnj − σzn‖2 j = 0 . . . k+1

λn+1
d ← min

λd
σf∗d (λd) +

1

2
‖λd − λnd − σ∇zn‖2

un+1
k ← min

uk
τr‖uk−u0

k‖2 + ‖uk−unk+τ [

k+1∑
j=0

λn+1
j +divλn+1

d ]‖2

zn+1 = un+1
k + θ(un+1

k − unk).

The efficiency of the proposed algorithm comes from the separability of F ∗ and from the ability to find

closed-form solutions for each of the minimization problems. The derivation of closed-form solutions is

detailed next, and the resulting algorithm is summarized in Algorithm 1.

Initialize uk = 0, λ = 0, z = uk.

Choose τ, σ > 0, θ ∈ [0, 1]. Let τr = (τr + 1)−1

while ‖un+1
k − unk‖ > 1−4 do

λn+1
0 = min(αt, ‖λ̂0‖) λ̂0

‖λ̂0‖
, λ̂0 = λn0 + σ[zn − uk−1]

λn+1
j updated with (32)

λn+1
0 = min(αt, ‖λ̂k+1‖) λ̂k+1

‖λ̂k+1‖
, λ̂k+1 = λnk+1 + σ[zn − uk+1]

λn+1
du

= αs min(1,
‖λ̂du‖
αs+σµ

)
λ̂du
‖λ̂du‖

, λ̂d = λnd + σ∇zn

λn+1
dv

= αs min(1,
‖λ̂dv‖
αs+σµ

)
λ̂dv
‖λ̂dv‖

,

un+1
k = τr(τru

0
k + unk − uk+1− τ

∑k
j=0λ

n+1
j +τ divλn+1

d )

zn+1 = un+1
k + θ(un+1

k − unk )

end
Algorithm 1: Minimization algorithm in flow variables.
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1) Minimization in dual variables: We solve the minimization in λj and λd through Moreau’s identity

[39]:

λj ←min
λj

σf∗j (λj) +
1

2
‖λj − λ̂j‖2 (29)

m

λj = λ̂− σsj , sj←min
sj

σfj(sj) +
σ

2
‖sj −

λ̂j
σ
‖2. (30)

For j=1 . . . k, the minimization in sj is a two-dimensional problem that is decoupled for each pixel,

as follows:

min
sj

∫
D
wj(1− χj)|ej(0)−∇Ĩj · sj |+

σ

2
‖sj −

λ̂j
σ
‖2.

For each pixel, the first term measures the weighted distance to the line {sj : ej(0)−∇Ĩj ·sj =0}, while

the second term measures the distance to the point P = λ̂j
σ . Consequently, the minimizer lies in the

perpendicular to the line that passes through P , that is, sj = λ̂j
σ + l∇Ĩj for some scalar l. The problem

is now reduced to a 1-dimensional minimization in l.

In terms of l, the minimization is simplified to

min
l

σ

2
l2‖∇Ĩj‖2 + wj(1− χj)|ej(σ−1λ̂j)− l‖∇Ĩj‖2|.

Its optimality condition results in the following equation:

l = −wj
1− χj
σ

sign(ej(σ
−1λ̂j)− l‖∇Ĩj‖2) (31)

By analyzing the possible values of sign function, we find a closed-form solution for l,

l =


−σ−1wj(1−χj) ej(σ−1λ̂j)

‖∇Ĩj‖2
> −σ−1wj(1−χj)

σ−1wj(1−χj) ej(σ−1λ̂j)

‖∇Ĩj‖2
< σ−1wj(1−χj)

ej(σ−1λ̂j)

‖∇Ĩj‖2
otherwise

,

which results in the following closed-form solution for λj :

λj =


wj(1−χj)∇Ĩj σej(σ

−1λ̂j) > −wj(1−χj)‖∇Ĩj‖2

−wj(1−χj)∇Ĩj σej(σ
−1λ̂j) < wj(1−χj)‖∇Ĩj‖2

σej(σ
−1λ̂j)

∇Ĩj
‖∇Ĩj‖2

otherwise

(32)

For j = 0, the minimization in sj is the `2 − `22 problem

min
sj

∫
D
αt‖sj − uk−1‖+

σ

2
‖sj −

λ̂j
σ
‖2. (33)
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Its solution is given pixel-wise by the shrinkage operator:

sj = uk−1 +
1

σ
max(0, ‖λ̂j − σuk−1‖ − αt)

λ̂j − σuk−1
‖λ̂j − σuk−1‖

,

The dual variable λj = λ̂j − σsj is thus updated by

λj = min(αt, ‖λ̂j‖)
λ̂j

‖λ̂j‖
. (34)

The same minimization and updates apply for j = k + 1, substituting uk−1 for uk+1.

Let sdu , sdu be the rows of the 2× 2 matrix sd, the minimization in sd is then separable in

min
sdu

∫
D
σαsgµ(sdu) +

σ

2
‖sdu −

λ̂du
σ
‖2

min
sdv

∫
D
σαsgµ(sdv) +

σ

2
‖sdv −

λ̂dv
σ
‖2. (35)

We observe that the minimization is also decoupled for each pixel and can be solved by minimizing

the objective pixel-wise. As the objective is symmetric with respect to sdu and sdu , we only present the

derivation for sdu .

Due to the differentiability of the Hubber norm, with ∇gµ(s) = αt min(1, ‖s‖µ ) s
‖s‖ , we obtain the

following optimality conditions for (35):

αt min(1,
‖sdu‖
µ

)
sdu
‖sdu‖

+ σsdu − λ̂du = 0, (36)

which are solved by

sdu =
λ̂du
σ
− αt
σ

min(1,
‖λ̂du‖
αt + σµ

)
λ̂du

‖λ̂du‖
. (37)

We then update the dual variable: λn+1
du

= λ̂du − σsdu with

λn+1
du

= αt min(1,
‖λ̂du‖
αt + σµ

)
λ̂du

‖λ̂du‖
. (38)

2) Minimization in primal variables : The minimization in uk can be rewritten as

un+1
k ←min

uk

τr + 1

2
‖uk − û‖2, (39)

where

û = (τr + 1)−1(τru0
k + unk − uk+1− τ

k∑
j=0

λn+1
j +τ divλn+1

d ).

Its solution is thus un+1
k = û. Assembling the primal and dual updates, we obtain Algorithm 1.
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B. Minimization with respect to Occlusion Variables

In the minimization with respect to the binary functions {χi}, we find an approximate solution by

solving a relaxed problem that extends the feasibility set to real-valued functions in [0, 1]. This results

in the following convex problem

min
χ1,...,χT
χi∈[0,1]

∫
D

T∑
k=1

(
(1− χk)|εk|+R(χk)

)
. (40)

C. Size Regularization

If we only consider the assumption that the occlusion set is small (γs = γt = 0), the solution of the

relaxed problem coincides with the solution of the original binary problem. Indeed, the minimization

problem (40) is then equivalent to

min
χ1,...,χT
χi∈[0,1]

∫ T∑
k=1

(β−|εk|)χk ⇐⇒ χk =


0 β > |εk|

1 β ≤ |εk|
. (41)

The functional is defined point-wise by a linear function, and its minimizers lie in the extremes of the

constraint set [0, 1] depending on the value ρk = β − |εk|.

D. Spatial Regularization

If we introduce spatial regularization (γt = 0), the minimization problem (40) can be solved indepen-

dently at each frame as the following minimization

min
χk∈[0,1]

∫
D
ρkχk + γs‖∇χk‖. (42)

The binary problem has the form of the image segmentation model of [40], where the authors show that

the thresholded solution to the relaxed problem solves the original binary one. The same proof applies

here, showing how to obtain a minimizer of the original problem from the solution of (42).

E. Spatio-temporal Regularization

With spatial and temporal regularization, the problem reads

min
χ1,...,χT
χk∈[0,1]

∫ T∑
k=1

(
ρkχk+γs‖∇χk‖

)
+ γt

T∑
k=2

|χk−χk−1|,
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and is equivalent to the constrained minimization in χ = [χ1, · · · , χT ]

min
χ,d,t

χ∈[0,1]T

∫ T∑
k=1

ρkχk+γs‖dk‖+γt|tk| s.t.


d=Kdχ

t=Ktχ,

(43)

where d = [d1 · · ·dT ], t = [t1 · · · tT ] and

Kd =

[∇ 0 ··· 0
0 ∇ ··· 0

...
0 ··· 0 ∇

]
Kt=

[
−I I 0··· 0
0 −I I 0 ···

...
0 ··· 0 −I I

]
. (44)

The objective functional can now be minimized efficiently with the primal-dual algorithm [38] because

the different terms are convex and separable in space and time. To avoid repetition, we simply present

here each of the sub-minimization problems:

dnk ← min
dk

∫
γs‖dk‖+

σ

2
‖dk−

ν̂k
σ
‖2, ν̂k=νn−1k +σKdz̄

n−1 (45a)

tnk ← min
tk

∫
γt|tk|+

σ

2
‖tk−

η̂k
σ
‖2, η̂k= η̂n−1k +σKtz̄

n−1 (45b)

χnk← min
χk∈[0,1]

∫
τρkχk+

1

2
‖χk−χ̂k‖2, χ̂=χn−1k −τ(K∗dν

n+K∗t η
n) (45c)

z̄n = χn + θ(χn − χn−1),

where we use Moreau’s identity in the update of the dual variables νnk = ν̂k − σdnk and ηnk = η̂k − σtnk .

As before, the potential of the proposed algorithm lies on the efficient solution of problems (45c)-(45b),

as we explain next and summarized in Algorithm 2.

Initialize ν = 0, η = 0, z = χ.

Choose τ, σ > 0, θ ∈ [0, 1].

while ‖χn+1 − χn‖ > 1−4 do

νn+1
k = min( γs

‖ν̂k‖ , 1) ν̂k, ν̂k = νnk + σKdz̄
n

η̂n+1
k = min(|η̂k|, γt) sign(η̂k), η̂k = η̂nk + σKtz̄

n

χn+1
k = P[0,1](χnk − τ(K∗dν

n+1 +K∗t η
n+1 + ρk))

z̄n+1 = χn+1 + θ(χn+1 − χnk)

end
Algorithm 2: Minimization algorithm in occlusion variables for the unconstrained model.

The minimization (45a) has the same form than (33) and is solved again with the shrinkage operator:

dn+1
k =

1

σ
max(1− γs

‖ν̂k‖
, 0) ν̂k, νn+1

k = min(
γs
‖ν̂k‖

, 1) ν̂k.
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The minimization (45b) is a classic `1 − `2 problem solved by soft-thresholding:

tn+1
k =

1

σ
max(|η̂k| − γt, 0)

η̂k
η̂k
, η̂n+1

k = min(|η̂k|, γt)
η̂k
η̂k
.

In the case f the constraint model MC, the dual step (45b) is subject to the pixel-wise constraint tk ≥ 0,

and the minimizer tn+1
k = 1

σ max(|η̂k − γt, 0) sign(η̂k) must be projected into the positive orthant. This

results in the following updates:

tn+1
k =

1

σ
max(η̂k − γt, 0), η̂n+1

k = min(η̂k, γt).

Finally, the minimization (45c) is a quadratic problem decoupled for each pixel in both objective and

constraint. Its solution is thus obtained by pixel-wise projection of the minimizer into the unit interval:

χn+1
k = P[0,1](χ̂k − τρk).

VI. EXPERIMENTAL RESULTS

We compare the proposed method to different variational models for joint occlusion detection and flow

estimation: a traditional pairwise-flow model with the same spatio-temporal regularizers than our model

in order to asses the effects of the proposed single-frame formulation, and two state-of-the-art techniques

[2] and [7]. Our code will be available on http://vision.ucla.edu upon publication of the manuscript.

Our experiments are performed with videos from MPI-Sintel [41], a computer-generated database with

ground-truth occlusions. In our experiments, we use the final pass of the dataset, which includes shading,

blur, and atmospheric effects in the rendered video sequence. The sequences are 50 frames long, with 24

frames per second for 1024×436-pixel images. To focus on occlusion detection, we select 10 sequences

where no displacement larger than 100 pixels occurs, as neither ours nor [2], [7] models integrate large

displacement techniques, and the size of the occlusion set does not hinder flow estimation1. We use the

first 20% of frames of each sequence to tune the parameters of each model and test in the remaining

frames; this gives a wide range of flow and occlusion conditions to our experiments. For simplicity, we

fix the length of the sliding window to 5 frames in our model.

Figures 1 and 2 present the detected occlusions for sequences bandage 1, market 2. This qualitative

evaluation shows the benefits of the single-frame formulation, which allows us to detect the occlusions

caused by the movement of the girl’s arm, and the smoothing effects of temporal and spatial regularization,

which results in consistent occlusion regions in space and time that are more robust to noise. Figure 3

show a faire case in the bamboo 1 sequence, where the combination of the bamboo oscillations and the

1Sequences where less than 10% of the pixels are occluded.
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movement of the camera result in non-smooth displacements that do not match our temporal regularizers.

More qualitative results are available in the supplementary material.

(a) bandage 1, frame 21 (b) bandage 1, frame 22 (c) bandage 1, frame 23 (d) bandage 1, frame 24

(e) ground truth, frame 21 (f) ground truth, frame 22 (g) ground truth, frame 23 (h) ground truth, frame 24

(i) pairwise, frame 21 (j) pairwise, frame 22 (k) pairwise, frame 23 (l) pairwise, frame 24

(m) [2], frame 21 (n) [2], frame 22 (o) [2], frame 23 (p) [2], frame 24

(q) [7], frame 21 (r) [7], frame 22 (s) [7], frame 23 (t) [7], frame 24

(u) our, frame 21 (v) our, frame 22 (w) our, frame 23 (x) our, frame 24

Fig. 1: Comparison of occlusions detection methods for bandage 1 sequence. We observe how the single-

frame formulation is bale to detect the consecutive occlusions caused by the movement of the arm, while

models based in pairwise flows missed such an occlusion.

August 28, 2014 DRAFT



18

TABLE I: Effects of constraint χi ≥ χi+1 for i < c and χi ≤ χi+1 for i ≥ c: the lower F1 of the

constrained model shows that the assumption that occlusions grow is too restrictive.

constrained model unconstrained model

sequence ppv tpr F1 ppv tpr F1

alley 1 0.66 0.15 0.24 0.43 0.25 0.31

alley 2 0.49 0.24 0.31 0.43 0.31 0.34

bamboo 1 0.46 0.19 0.26 0.45 0.27 0.33

bandage 1 0.60 0.20 0.30 0.44 0.29 0.34

bandage 2 0.46 0.14 0.21 0.41 0.14 0.20

market 2 0.450 0.33 0.39 0.48 0.35 0.40

shaman 3 0.31 0.03 0.06 0.15 0.04 0.08

sleeping 1 0.03 0.07 0.04 0.03 0.08 0.04

sleeping 2 0.40 0.04 0.07 0.14 0.14 0.14

A. Evaluation Criteria

As a detection problem we can measure the number of true positives and true negatives and define

the following metrics: precision or positive predictive value (ppv), recall or true positive rate (tpr), and

F1 score. If we consider the pixels independent, precision can be interpreted as the probability that a

pixel classified as an occlusion is a true occlusion; while recall is the probability that an occluded pixel

is detected by the system. The F1 score considers both precision and recall to compute a metric that

reaches its best value at 1 and worst score at 0. The score is in fact a weighted average of precision

and recall that generalizes to different metrics by assigning different weights to type I and type II errors.

Quantitative results with these metrics are shown in Tables I-III.

Using F1 to summarize the performance of each model into a single score, we can compare and rank

them. Table I thus shows that our unconstrained model outperforms the constrained one as the assumption

that occlusions grow from a seed point is too restrictive. As a result, we consider our unconstrained

formulation for the rest of comparisons.

Table II compares the performance of our model to the standard flow formulation –pairwise brightness

constraint with spatio-temporal regularization– and shows the benefits of the proposed single-frame

formulation for occlusion detection at the price of flow accuracy, as expected.

Table III compares our model to the variational techniques [2], [7]. In terms of occlusion models,

both [2], [7] neglect the temporal nature of occlusions by computing the flow and occlusions between

August 28, 2014 DRAFT



19

TABLE II: Comparison of the classic pairwise flow with our single-frame formulation for the same

flow and occlusion regularizers. The pairwise model is more accurate on the flow –lower mean angular

and end-point flow errors (ae, epe)–, while our formulation is consistently more accurate on occlusions

–higher mean precision (ppv), recall (tpr), and F1.

pairwise flow single-frame formulation

sequence ae epe ppv tpr F1 ae epe ppv tpr F1

alley 1 0.12 0.78 0.62 0.17 0.26 0.12 0.69 0.43 0.25 0.31

alley 2 0.12 1.22 0.44 0.08 0.11 0.19 2.21 0.43 0.31 0.34

bamboo 1 0.08 0.48 0.48 0.18 0.26 0.09 0.48 0.45 0.27 0.33

bandage 1 0.18 1.09 0.29 0.19 0.22 0.20 1.22 0.44 0.29 0.34

bandage 2 0.19 0.92 0.48 0.11 0.17 0.20 0.88 0.41 0.14 0.20

market 2 0.18 1.11 0.42 0.31 0.35 0.19 1.16 0.48 0.35 0.40

shaman 3 0.30 1.09 0.11 0.03 0.04 0.24 1.08 0.15 0.04 0.08

sleeping 1 0.10 0.49 0.50 0.01 0.01 0.08 0.46 0.03 0.08 0.04

sleeping 2 0.04 0.13 0.12 0.08 0.09 0.06 0.32 0.14 0.14 0.14

TABLE III: Comparison to existing occlusion-detection methods [2], [7] optmimized for F1 score.

[2] [7] proposed model

sequence ppv tpr F1 ppv tpr F1 ppv tpr F1

alley 1 0.24 0.28 0.26 0.02 0.43 0.03 0.43 0.25 0.31

alley 2 0.10 0.09 0.09 0.02 0.15 0.03 0.43 0.31 0.34

bamboo 1 0.38 0.34 0.36 0.02 0.46 0.04 0.45 0.27 0.33

bandage 1 0.17 0.33 0.22 0.01 0.39 0.01 0.44 0.29 0.34

bandage 2 0.10 0.28 0.15 0.01 0.21 0.02 0.41 0.14 0.20

market 2 0.46 0.34 0.38 0.02 0.47 0.04 0.48 0.35 0.40

shaman 3 0.06 0.16 0.08 0.00 0.02 0.00 0.15 0.04 0.08

sleeping 1 0.08 0.01 0.02 0.00 0.02 0.01 0.03 0.08 0.04

sleeping 2 0.16 0.10 0.12 0.00 0.51 0.01 0.14 0.14 0.14

two frames. The main difference between the two models is the criterion used to detect occlusions: [2]

detects occlusions as regions where forward and backward flows mismatch, while [7] detects occlusions

as pixels non-matched by the forward flow. As a result, [2] solves a larger optimization problem to

estimate both forward and backward flows and results in a slower algorithm with more accurate results.

Our model compares favorably to both of them because it integrates information from multiple frames
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TABLE IV: Comparison of optical-flow results for our method to [2], [7]. Model [2] is more accurate

than the proposed model –lower angular and end-point errors (ae, epe)– because it estimates both forward

and backward flows at the price of a more complex model, while our method outperforms the additive

model of [7] because our multiplicative model does not combine flow and occlusions variables into a

single term where their errors can cancel each other.

[2] [7] proposed model

ae epe ae epe ae epe

alley 1 0.12 0.55 0.26 1.27 0.12 0.69

alley 2 0.30 2.48 0.52 3.81 0.19 2.21

bamboo 1 0.11 0.75 0.18 0.83 0.09 0.48

bandage 1 0.42 1.63 0.34 1.81 0.20 1.22

bandage 2 0.32 0.88 0.31 1.31 0.20 0.88

market 2 0.26 1.64 0.31 1.44 0.19 1.16

shaman 3 0.72 2.20 0.55 1.97 0.24 1.08

sleeping 1 0.10 0.42 0.30 1.33 0.08 0.46

sleeping 2 0.05 0.14 0.22 0.63 0.06 0.32

in the occlusion detection criterion: the single-frame formulation accumulates occlusions from previous

frames and the spatial and temporal regularization eliminates isolated misdetections inconsistent in time

or space.

The average processing times for each method in C, in a i7-CPU at 3.4 GHz, are the following: 61 s

per frame for our unconstrained model, 65 s for the constrained one, 15 s for the pairwise-flow model

with spatio-temporal regularization, 47 s for [7], and 110 s for [2]. As expected, our model is slower

than the pairwise flow because the single-frame formulation requires additional interpolation steps, but

the occlusions are more accurate. Compared to the literature, our model is slower than [7] because it

takes into account the temporal dimension of the problem, but faster than [2] because it uses a more

efficient minimization algorithm – convex optimization against the explicit PDE evolution of [2] – and

because it does not have to compute forward and backward flows. Consequently, in term of optical flow,

the performance of our model is comparable to [2], but considerably better than [7] because the additive

model of [7] cannot reliably estimate the flow close to occlusion boundaries. The analysis of flow results

is out of the scope of this paper, we summarize it in Table IV.

The penalty assigned to a false alarms or a missed detection depends on the end application: it is
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TABLE V: Comparison to exitsing occlusion-detection methods [2], [7] optimized for F0.1 score.

[2] [7] pairwise flow proposed model

sequence ppv tpr F.1 ppv tpr F.1 ppv tpr F.1 ppv tpr F.1

alley 1 0.06 0.10 0.10 0.01 0.31 0.19 0.10 0.32 0.14 0.18 0.36 0.35

alley 2 0.10 0.09 0.09 0.54 0.06 0.06 0.30 0.25 0.20 0.14 0.36 0.33

bamboo 1 0.38 0.34 0.34 0.42 0.19 0.19 0.13 0.36 0.18 0.10 0.40 0.39

bandage 1 0.17 0.33 0.33 0.00 0.40 0.16 0.02 0.37 0.04 0.12 0.50 0.47

bandage 2 0.15 0.35 0.35 0.38 0.12 0.12 0.03 0.21 0.06 0.04 0.28 0.26

market 2 0.46 0.34 0.34 0.54 0.23 0.23 0.05 0.26 0.07 0.12 0.48 0.42

shaman 3 0.08 0.19 0.18 0.00 0.08 0.04 0.11 0.03 0.04 0.15 0.04 0.04

sleeping 1 0.11 0.02 0.02 0.00 0.05 0.01 0.50 0.01 0.01 0.01 0.13 0.10

sleeping 2 0.16 0.10 0.10 0.01 0.50 0.24 0.01 0.18 0.02 0.07 0.24 0.23

more critical to miss an occlusion for a layer-segmentation model [24], [25], [27], [28] than to incur

wrongly detect one, while robotic exploration strategies [42] that aim to discover occluded regions are

very sensitive to false alarms. In threshold-based classification, ROC curves measure the performance of

a classifier at different conditions by varying the threshold parameter, but in our variational models the

curve becomes a 5-dimensional manifold –indexed by αs, αt, β, γs, γt– and visualization is impossible.

To overcome this issue we also present results for a generalization of the F1 score that assigns different

weights to precision and recall. While F1 is designed for a blind detector that penalizes equally a missed

detection than a false alarm, and therefore is agnostic to the end application, the proposed F0.1 suits

detectors designed to avoid false alarms by assigning a penalty 10 times higher to false positives than

false negatives. In this case, our model still outperforms [2], [7], as shown in Table V. The single-frame

formulation is still in average beneficial, we outperform [7] in every test, and the comparison to [2] is

favorable for 8 out of 10 experiments. For sequences with a high percentage of occlusions, [2] obtains

higher F0.1 scores because it is more precise, while for sequences with fewer occlusions our model ranks

higher because it is more sensitive.

VII. CONCLUSIONS

This paper proposes a variational method for occlusion detection that integrates the brightness constraint

of optical flow and detects occlusions as failing regions of the flow model. To emphasize the effects of

occlusions, we compute the flow with respect to a single reference frame that collects violations of the

brightness constraint by temporal integration; this allows us to distinguish occlusions from noise and non-
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Lambertian phenomena by means of spatio-temporal regularizers on the occlusion set. Our experiments

show the benefits of a single-frame formulation and the spatio-temporal regularization of occlusions. The

potential of our model lies in its variational formulation, which introduces occlusion detection in the core

of optical-flow systems and can be used with large displacement techniques. Future work will investigate

this integration.

The limitations of our model arise from the assumption that occlusions accumulate and grow smoothly

around the occluded object. When occlusions are not temporally consistent in the image domain – due to

the combination of the movements of the camera and the scene objects–, as in Figure 3, our formulation

under-performs a simple occlusion detector based on pairs of frames. Adapting the sliding window as a

function of the estimated displacements would alleviate this problem, but the resulting method would be

slower. Future work will investigate such a system.
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(a) market 2, frame 37 (b) market 2, frame 38 (c) market 2, frame 39 (d) market 2, frame 40

(e) ground truth, frame 37 (f) ground truth, frame 38 (g) ground truth, frame 39 (h) ground truth, frame 40

(i) pairwise, frame 37 (j) pairwise, frame 38 (k) pairwise, frame 39 (l) pairwise, frame 40

(m) [2], frame 37 (n) [2] frame 38 (o) [2] frame 39 (p) [2] frame 40

(q) [7], frame 37 (r) [7], frame 38 (s) [7], frame 39 (t) [7], frame 40

(u) our, frame 37 (v) our, frame 38 (w) our, frame 39 (x) our, frame 40

Fig. 2: Comparison of occlusions detection methods for market 2 sequence. Our single-frame formulation

detects more occlusions caused by smooth movements, while models based in pairwise flows miss these

occlusions. Our model is more robust to isolated false alarms because of the spatial regularization.
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(a) bamboo 1, frame 3 (b) bamboo 1, frame 4

(c) ground truth, frame 3 (d) ground truth, frame 4

(e) pairwise, frame 3 (f) pairwise, frame 4

(g) [2] frame 3 (h) [2] frame 4

(i) [7], frame 3 (j) [7], frame 4

(k) our, frame 3 (l) our, frame 4

Fig. 3: Failure case, bamboo 1 sequence. The combination of the bamboo oscillations and the movement

of the camera result in non-smooth displacements that do not match our temporal regularizers. Our

single-frame formulation over-detects occlusions in comparison to the forward-backward model [2], which

neglects the temporal dimension of the problem.
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