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Abstract. We propose a weighted difference of anisotropic and isotropic total variation (TV) as a regularization for
image processing tasks, based on the well-known TV model and natural image statistics. Due to the difference form of
our model, it is natural to compute via a difference of convex algorithm (DCA). We draw its connection to the Bregman
iteration for convex problems, and prove that the iteration generated from our algorithm converges to a stationary
point with the objective function values decreasing monotonically. A stopping strategy based on the stable oscillatory
pattern of the iteration error from the ground truth is introduced. In numerical experiments on image denoising, image
deblurring, and magnetic resonance imaging (MRI) reconstruction, our method improves on the classical TV model
consistently, and is on par with representative start-of-the-art methods.
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1. Introduction. Many image processing tasks can be formulated as an inverse problem, in
which the data f is assumed to be obtained approximately by applying a linear operator A on an
image u with additive noise. For example, A is the identity matrix for image denoising, a convolution
matrix for deblurring, and subsampling of Fourier transform for a magnetic resonance image (MRI)
reconstruction problem. In most scenarios, solving u from Au = f is ill-posed in the sense that directly
inverting A would result in bad and possibly multiple solutions. It is necessary and even desirable to
constrain the solutions through regularization, with the help of prior knowledge of images that one
wants to reconstruct. A general model for such inverse problem is

û := argminuJ(u) +
µ

2
‖Au− f‖22 , (1.1)

where J(u) is the regularization term, µ is a positive parameter to balance J(u), the data fidelity
term ‖Au − f‖22, and û is an optimal solution of the model or a reconstructed result. A classical
regularization is the total variation (TV) proposed by Rudin-Osher-Fatemi [37], which is referred to
as the ROF model. It is widely used in image processing applications, such as deconvolution [9,20,28],
inpainting [8] and super-resolution [29], just to name a few. The TV model originated in [37] is
isotropic, and later an anisotropic formulation has been addressed in the literature [12, 33] among
others. We give mathematical definition for both the isotropic and anisotropic TV in the discrete
setting. Denoting u as the column vector by a lexicographical ordering of a 2D image, we have

Jiso(u) := ‖Du‖2,1 = ‖
√
|Dxu|2 + |Dyu|2‖1, (1.2)

Jani(u) := ‖Du‖1 = ‖Dxu‖1 + ‖Dyu‖1 , (1.3)

where Dx, Dy denote the horizontal and vertical partial derivative operators respectively, and D =

[Dx;Dy] is the gradient operator∇ in the discrete setting. We shall use ‖∇u‖2,1 and ‖
√
|Dxu|2 + |Dyu|2‖1

interchangeably throughout this paper.

∗Department of Mathematical Sciences, University of Texas at Dallas, Dallas, TX 75080. Email:
yifei.lou@utdallas.edu. YL is partially supported by NSF grants DMS-0928427 and DMS-1222507.
† Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong. Email: zeng@hkbu.edu.hk.

TZ is partially supported by NSFC 11271049, RGC 211911, 12302714 and RFGs of HKBU.
‡Department of Mathematics, UCLA, Los Angeles, CA 90095. Email: sjo@math.ucla.edu. SO is supported by the

Keck Foundation, ONR N000141410683, N000141110749, and NSF DMS-1118971.
§Department of Mathematics, UC Irvine, Irvine, CA 92697. Email: jxin@math.uci.edu. JX is partially supported by

NSF grants DMS-0928427 and DMS-1222507.

1



2 Y. Lou, T. Zeng, S. Osher and J. Xin

Another interpretation of TV can be given from the perspective of compressive sensing (CS)
[3, 14], which is to reconstruct a signal from an under-determined system provided that the signal is
sufficiently sparse or sparse in a transform domain. For example, a natural image is mostly sparse
after taking gradient. Mathematically, it amounts to minimizing the L0 norm of the image gradient,
i.e., J(u) = ‖∇u‖0. To bypass the NP-hard L0 norm, the convex relaxation approach in CS is to
replace L0 by L1, and L1 on the gradient is the total variation. The restricted isometry property
(RIP) condition [3] theoretically guarantees the exact recovery of sparse solutions by L1. The RIP
regime is where the sensing matrix is incoherent, such as a random Gaussian matrix. Several non-
convex penalties have been proposed and studied as alternatives to L1, [22]. A few notable examples
are Lp for p ∈ (0, 1) [10,24,46], L1/L2 (scale invariant L1) and L1−L2 [15,25,26,47,48]. In particular,
L1 − L2 penalty is found to be the best among existing methods for recovering sparse solutions when
the sensing matrix is highly coherent or significantly violating the RIP condition [26,48].

The TV-regularization has been a very active research topic in the past two decades. Though a
gradient descent approach in the original paper can be slow to converge, a projection algorithm is later
proposed by Chambolle [5] to speed up convergence based on duality. More recently, the Bregman and
split Bregman methodology [11, 18, 32] offers another line of fast algorithms equivalent to the role of
alternating direction method of multipliers (ADMM) and Douglas-Rachford splitting algorithm in the
optimization literature dating back to the 1970’s. The connection among these optimization algorithms
has been observed in different contexts, among which [38,40,41] are the first few papers that explicitly
address the connection between ROF and Bregman Splitting. There are also some approaches to solve
the L0 minimization directly. In [45], a special alternating minimization strategy with half-quadratic
splitting is adopted for image smoothing. Image restoration via L0 is considered in [34], which uses
hard shrinkage for L0 as opposed to soft shrinkage for L1. In addition, the L0 on the gradient can be
interpreted as the length of the partition boundaries, which leads to the classical Potts model [35] or
piece-wise constant Mumford-Shah model [31] for image segmentation or partition. Recently, Storath
et. al. [39] propose a hybrid ADMM and dynamic programming method to solve the Potts model.

Motivated from L1 − L2 minimization of coherent CS [26, 48], we propose the following weighted
difference of convex regularization,

J(u) := Jani − αJiso = ‖Dxu‖1 + ‖Dyu‖1 − α‖
√
|Dxu|2 + |Dyu|2‖1 , (1.4)

where α ∈ [0, 1] is a parameter for a more general model. When α = 1, J(u) is to apply L1−L2 on the
gradient. Two advantages of L1 − L2 over other nonconvex measures are its Lipschitz regularity, and
guaranteed convergence via the difference of convex algorithm (DCA) [42, 43], which is analogous to
a convex splitting technique [16] for gradient systems. We find that the DCA requires solving the L1

type of minimization as a subproblem, which can be handled efficiently by utilizing the split Bregman
technique. We prove that the DCA approach converges to stationary points, a typical situation for
nonconvex problems. In practice, the DCA iterations, when properly stopped, are often close to global
minima and produce excellent results. The stopping issue is discussed later based on the oscillatory
pattern of the iteration errors.

The rest of the paper is organized as follows. Section 2 describes our model in detail including
numerical algorithms and convergence analysis. Section 3 is devoted to numerical experiments, where
three image processing applications (denoising, deblurring and MRI reconstruction) are examined.
Finally, discussions and conclusions are given in Section 4 and Section 5 respectively.

2. Our model. To better understand the novel L1 − αL2 metric, we plot the level curves corre-
sponding to L1 − L2 and L1 − 0.5L2 in comparison with L0 and L1 in Figure 2.1. The level lines of
L0 norm are 0 at origin, 1 at axes, and 2 elsewhere. The level lines corresponding to α < 1 in (1.4)
is closer to L0 than that of α = 1 in the sense that the latter yields 0 at both axes. L1 is the best
convex approximation of L0, which has certain limitations. For example, vast literature shows that
the L1 norm on the gradient, which is the anisotropic TV, will produce “blocky” artifacts as it prefers
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L0 L1

L1 − L2 L1 − 0.5L2

Fig. 2.1. Level curves of different metrics. The level lines corresponding to α < 1 in (1.4) is closer to L0 than
that of α = 1 in the sense that the latter yields 0 at both axes.

a piece-wise constant image, where gradient at every pixel is 1-sparse. For blocky images, it could
be true that the gradients are 1-sparse due to the fact that most of the gradient vectors inside the
“blocks” are 1-sparse. However, for these images, the gradient vectors at the edges are more important
and they may not be 1-sparse. For this reason, we propose a weighted difference model (1.4) with a
constant α taking into account the occurrence of non-sparse gradient vectors.

Let (ujx, ujy) be gradient vector at pixel j. Then equation (1.4) can be rewritten as

J(u) =
∑
j

(
|ujx|+ |ujy| − α

√
u2
jx + u2

jy

)
. (2.1)

This point-wise formulation suggests that sparsity is enforced on every gradient vector. More specifi-
cally, we encourage the gradient to be 1-sparse at every pixel, which implies that horizontal or vertical
edges are more preferable in this model. In order to understand the image gradient and 1-sparsity, we
plot the histogram of gradient angles over the range of [0, 90] degree in Figure 2.2 for a large number
of natural images. The angle distribution in other quadrants is similar. As shown in Figure 2.2, the
two largest peaks are at 0 and 90 degrees, which implies that gradient vectors are 1-sparse at a fairly
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Fig. 2.2. The histogram of gradient angles over 300 images from Berkeley segmentation dataset [30]. Two largest
peaks are at 0 and 90 degrees, indicating that gradient vectors are mostly 1-sparse.

good chance, with non-sparse occurrences also at positive probability. Hence we insert a constant α
in (1.4) to reflect such behavior in the histogram.

2.1. Numerical algorithms. We define an objective function in eq. (1.1) with J(u) defined in
eq. (1.4),

F (u) := ‖Dxu‖1 + ‖Dyu‖1 − α‖
√
|Dxu|2 + |Dyu|2‖1 +

µ

2
‖Au− f‖22 . (2.2)

We then decompose F (u) into difference-of-convex (D.C.) components, i.e., F (u) = G(u) − H(u),
where {

G(u) = ‖Dxu‖1 + ‖Dyu‖1 + c‖u‖22 + µ
2 ‖Au− f‖

2
2

H(u) = α‖
√
|Dxu|2 + |Dyu|2‖1 + c‖u‖22,

(2.3)

and c is a positive constant to ensure strong convexity of G and H. After linearizing the H term, we
obtain an iterative scheme

un+1 = arg min
u
‖Dxu‖1 + ‖Dyu‖1 + c‖u‖22 − α〈Du, qn〉 − 2c〈u, un〉+

µ

2
‖Au− f‖22 , (2.4)

where qn = (qnx , q
n
y ) = (Dxu

n, Dyu
n)/
√
|Dxun|2 + |Dyun|2 at step un. Note that qn is a point-

wise calculation; and we adopt the convention that if the denominator is zero at some point, the
corresponding qn value is set to be zero. It means that we select the center of the L2 norm subgradient
(unit ball on the plane) to define q in the algorithm. Each DCA subproblem, eq. (2.4), amounts
to solving a TV type of minimization. We employ the split Bregman technique [18] to do the job.
Specifically, we introduce two auxiliary variables dx, dy as well as two Lagrange multipliers bx, by, while
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splitting the anisotropic term as,

un+1 = arg min
u,dx,dy,bx,by

‖dx‖1 + ‖dy‖1 + c‖u‖22 − α(dTx · qnx + dTy · qny )

−2c〈u, un〉+
µ

2
‖Au− f‖22 +

λ

2
‖dx −Dxu− bx‖22 +

λ

2
‖dy −Dyu− by‖22 . (2.5)

Note that dx, dy can be updated via soft shrinkage, defined as

shrink(s, γ) = sgn(s) max{|s| − γ, 0} . (2.6)

The pseudo-code is summarized in Algorithm 1. The algorithm is efficient for many applications where
the matrix to be inverted is diagonal or can be diagonalized by Fourier transform, which is true for
image denoising, deconvolution, and MRI reconstruction.

Algorithm 1 for solving the unconstrained problem (2.4)

Define u = qx = qy = 0 and MaxDCA, MaxBregman
for 1 to MaxDCA do
bx = by = 0
for 1 to MaxBregman do
u = (µATA− λDTD + 2c · Id)−1(µAf + λDT

x (dx − bx) + λDT
y (dy − by) + 2cu)

dx = shrink(Dxu+ bx + αqx/λ, 1/λ)
dy = shrink(Dyu+ by + αqy/λ, 1/λ)
bx = bx +Dxu− dx
by = by +Dyu− dy

end for
(qx, qy) = (Dxu,Dyu)/

√
|Dxu|2 + |Dyu|2

end for

For the corresponding constrained problem,

min ‖Dxu‖1 + ‖Dyu‖1 − α‖Du‖2,1 s.t. Au = f , (2.7)

the DCA is expressed as

un+1 = arg min
u

{
‖Dxu‖1 + ‖Dyu‖1 + c‖u‖22 − α〈Du, qn〉 − 2c〈u, un〉 s.t. Au = f

}
. (2.8)

Each DCA subproblem could be reduced to a sequence of unconstrained problems of the form

un+1 = arg min
u
‖Dxu‖1 + ‖Dyu‖1 + c‖u‖22 − α〈Du, qn〉 − 2c〈u, un〉+

µ

2
‖Au− zn‖22 , (2.9)

zn+1 = zn + f −Aun+1 . (2.10)

The variable z is introduced as a Lagrange multiplier to enforce the constraint Au = f , and is updated
every step. Again the first equation can be solved by the split Bregman method. Algorithm 2 for
solving the constrained problem (2.8) is almost the same as Algorithm 1, except for an additional
update on z.

2.2. Convergence analysis. We want to show that the sequence of {un} obtained from the
DCA iterations, or DCA sequence in short, converges.

We first introduce Lemma 2.1 [42, Theorem 3.7], whose proof is provided to make the paper
self-contained.

Lemma 2.1. If the sequence {un} is generated by the DCA algorithm (2.4), then F (un) −
F (un+1) > 2c‖un − un+1‖22.
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Algorithm 2 for solving the constrained problem (2.8)

Define u = qx = qy = 0, z = f and MaxDCA, MaxBregmanInner, MaxBregmanOuter
for 1 to MaxDCA do
bx = by = 0
for 1 to MaxBregmanOuter do
for 1 to MaxBregmanInner do
u = (µATA− λDTD + 2c · Id)−1(µAz + λDT

x (dx − bx) + λDT
y (dy − by) + 2cu)

dx = shrink(Dxu+ bx + αqx/λ, 1/λ)
dy = shrink(Dyu+ by + αqy/λ, 1/λ)
bx = bx +Dxu− dx
by = by +Dyu− dy

end for
z = z + f −Au

end for
(qx, qy) = (Dxu,Dyu)/

√
|Dxu|2 + |Dyu|2

end for

Proof. It follows from the first-order optimality condition at un+1 that there exist pn+1 ∈
∂‖Dun+1‖1 such that

pn+1 − αDT qn + 2c(un+1 − un) + µAT (Aun+1 − f) = 0 . (2.11)

A simple calculation shows that

F (un)− F (un+1) =
µ

2
‖A(un − un+1)‖22 + µ〈A(un − un+1), Aun+1 − f〉

+‖Dun‖1 − ‖Dun+1‖1 − α(‖Dun‖2,1 − ‖Dun+1‖2,1). (2.12)

Left multiplying (2.11) by (un − un+1)T , and plugging into (2.12), we get

F (un)− F (un+1) =
µ

2
‖A(un − un+1)‖22 − 〈pn+1 − αDT qn, un − un+1〉+ 2c‖un − un+1‖22

+‖Dun‖1 − ‖Dun+1‖1 − α(‖Dun‖2,1 − ‖Dun+1‖2,1). (2.13)

Due to the convexity of ‖Du‖1 and ‖Du‖2,1, we have the following two inequalities:

‖Dun‖1 ≥ ‖Dun+1‖1 + 〈pn+1, un − un+1〉, (2.14)

and

‖Dun+1‖2,1 ≥ ‖Dun‖2,1 + 〈DT qn, un+1 − un〉, (2.15)

which conclude the proof.
We then prove the coercivity of the objective function.
Lemma 2.2. Suppose µ > 0, 0 < α < 1, and ker(A)

⋂
ker(D) = {0}. Then the objective function,

defined in eq. (2.2), is coercive.
Proof. Since ‖Du‖1 = ‖Dxu‖1 + ‖Dyu‖1 > ‖

√
|Dxu|2 + |Dyu|2‖1, we get

F (u) > (1− α)‖Du‖1 +
µ

2
(‖Au‖22/2− ‖f‖22).

The functional on the right-hand side is coercive, which is a classical theorem for the original ROF
model [6, 7]. Here we provide a simple proof to make the paper self-contained. Suppose there exists
a sequence {un} such that ‖un‖2 → ∞, and F (un) is bounded. Let vn = un/‖un‖2, and vn → v∗
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up to a subsequence with ‖v∗‖2 = 1. As F (un) is bounded, there exists a constant C > 0 such that
‖Dun‖1 < C and ‖Aun‖2 < C. As a result, we have ‖Dvn‖1 < C/‖un‖2 → 0 as n → ∞, which
implies that ‖Dv∗‖1 = 0. Similarly, we have ‖Av∗‖2 = 0. By assumption ker(A)

⋂
ker(D) = {0}, we

get v∗ = 0, which contradicts with ‖v∗‖ = 1.

The following theorem gives a weak convergence result of the DCA sequence. The weak convergence
refers to the fact that

∂(‖Du∗‖1 − α‖Du∗‖2,1) ⊆ ∂‖Du∗‖1 − α∂‖Du∗‖2,1. (2.16)

Please refer to Appendix for the proof of this inclusion.

Theorem 2.3. Under the assumptions in Lemma 2.2, any limit point u∗ of {un} satisfies a weak
first-order optimality condition,

0 ∈ ∂‖Du∗‖1 − α∂‖Du∗‖2,1 + µAT (Au∗ − f). (2.17)

Proof. It is easy to check that both D.C. components defined in eq.(2.3) have modulus of strong
convexity of 2c. It follows from Lemma 2.1 that F (un) − F (un+1) > 2c‖un − un+1‖22. Consequently,
the objective function F is monotonically decreasing. As F is bounded from below, F (un) converges,
which implies that ‖un − un+1‖22 → 0. In addition, the sequence {un} is bounded due to Lemma 2.2.
Then it follows from Bolzano-Weierstrass Theorem that there exists a subsequence of {un}, denoted
as {unk}, converging to a limit point u∗.

We look at the optimality condition at the (nk + 1) step of DCA, i.e.,

0 ∈ ∂‖Dunk+1‖1 − αDT qnk + 2c(unk+1 − unk) + µAT (Aunk+1 − f). (2.18)

As unk → u∗ and un − un+1 → 0, we have Dunk → Du∗ and Dunk+1 → Du∗.

Let v∗ = Du∗ and vnk+1 = Dunk+1. Since vnk+1 → v∗, we have for sufficiently large nk that
supp(v∗) ⊆ supp(vnk+1) and if v∗j 6= 0 at some j, then sign(vnk+1

j ) = sign(v∗j ). Therefore, ∂‖vnk+1‖1 ⊆
∂‖v∗‖1, which means that ∂‖Dunk+1‖1 ⊆ ∂‖Du∗‖1.

Define (ujx, ujy) := Duj as gradient at pixel j, and then ∂‖Du‖2,1 =
∏
j ∂‖Duj‖2. Note that the

subgradient of the L2 norm of the gradient vector (ux, uy) has the form of

∂‖(ux, uy)‖2 =

{
(ux, uy)/

√
u2
x + u2

y if
√
u2
x + u2

y 6= 0,

u2
x + u2

y 6 1 if (ux, uy) = (0, 0).
(2.19)

At pixels j where (u∗jx, u
∗
jy) 6= (0, 0), we have qnk

j converges to (u∗jx, u
∗
jy)/

√
|u∗jx|2 + |u∗jy|2 (a unit

vector). According to the definition of qnk
j , we know it is either zero if (unk

jx , u
nk
jy ) = (0, 0) or defined

on the unit circle otherwise, both of which lie in the unit ball, corresponding to the subgradient
of L2 norm at discontinuity zero. Therefore, at pixels j where (u∗jx, u

∗
jy) = (0, 0), we have qnk

j ∈
∂‖(u∗jx, u∗jy)‖2 (a unit ball). Using the chain rule of subgradient (Corollary 16 in [19]), we have

∂‖Du∗j‖2 = DT∂‖(u∗jx, u∗jy)‖2. To sum up, if (u∗jx, u
∗
jy) 6= (0, 0), then DT qnk

j converges to ∂‖Du∗j‖2;

otherwise, DT qnk
j belongs to ∂‖Du∗j‖2.

Putting all the above together, and letting nk → ∞ in eq. (2.18), we derive that u∗ satisfies the
weak first-order optimality condition, eq. (2.17).

Remark 2.1. The subgradient used in this paper is called “regular” subgradient (r-sub), while a
general subgradient (g-sub) involves a limiting process. Please refer to the book [36] for these two types
of subgradients. The relation between the two is r-sub ⊆ g-sub. It seems that r-sub is too restrictive,
but eq. (2.16) may not always hold if g-sub is considered.
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Table 3.1
Comparisons of different denoising methods in terms of SSIM and computational time ( sec).

Denoising House Peppers
SSIM Time SSIM Time

L0 [45] 0.9046 0.07 0.8702 0.08
L1 + L2

2 [2] 0.9214 0.33 0.9452 0.41
L1 0.9195 0.67 0.9387 0.77
L1 − 0.5L2 0.9347 1.80 0.9564 1.82

3. Experiments. We apply the proposed method1 to three applications: image denoising, decon-
volution, and the MRI construction. The matrix A in these examples can be diagonalized by Fourier
transform, and hence Algorithm 1 or Algorithm 2 can be efficiently implemented. We compare L1

and L1 − αL2 for α = 0.5 or 1 (the rationale for α = 0.5 is given in Section. 4.3) with some existing
methods, such as L0 for image smoothing in [45], L0 in [34], Lp for p = 2/3 in [24], and L1 +L2

2 in [2]
for image deblurring. We use structural similarity (SSIM) index [44] as a quantitative measure for
image quality. Let us first define local similarity index computed on windows x and y,

ssim(x, y) :=
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (3.1)

where µx, µy are the average of x, y, σ2
x, σ

2
y are the variance, σxy is covariance of x, y, and c1, c2 are

two variables to stabilize the division with weak denominator. The overall SSIM is the mean of local
similarity indexes, i.e.,

SSIM(X,Y ) :=
1

N

N∑
i=1

ssim(xi, yi) , (3.2)

where X is a reference image, Y is a distorted one, xi, yi are corresponding windows indexed by i, and
N is the number of windows. Here we consider windows of size 8× 8.

Image denoising. We examine the problem of image denoising using three piece-wise constant
images: Shapes, Peppers, and House, in Figure 3.1–Figure 3.3 as well as a Lena image in Figure 3.4. We
assume zero-mean additive Gaussian noise with standard deviations being 0.2, 0.03, 0.03, and 0.05 for
Figure 3.1–3.4 respectively. Not only does our method work particularly well on horizontal or vertical
edges by design, it can deal with natural images as well. To verify convergence analysis, the difference
of un and un−1 versus (outer/DCA) iterations is plotted in logarithm scale for denoising Shape and
Lena images in Figure 3.5, which shows that L1 − 0.5L2 converges faster than L1 − L2. Furthermore,
we observe numerically that the algorithm still converges without strong convexity requirement, i.e.,
c = 0 in (2.8). As the ground-truth is available, we plot the relative errors versus cpu runtime for
L1, L1−L2, L1−0.5L2 in Figure 3.6. This figure implies that our solutions oscillate around the ground
truth due to the nonconvex nature of our model. Additionally we observe that the larger α is (say
approaching 1), the less well-behaved DCA becomes due to more weight on the nonconvex term. On
the other hand, L1 − L2 yields better results than L1 − 0.5L2 for the first few DCA iterates. The
denoising results presented in Figure 3.1 and Figure 3.4 are from stopping DCA after 2 iterations.
The computational time2 of denoising two images (House and Peppers) is recorded in Table 3.1, which
shows that L1 − 0.5L2 gives the best results with extra computational time.

Image deblurring. In Figure 3.7, a Binary image is vertically blurred by motion blur of 15 pixels
plus Gaussian additive noise with zero mean and standard deviation 0.1. Our method outperforms
L0 in [34], Lp for p = 2/3 in [24], L1 + L2 in [2], and the state-of-the-art deblurring method BM3D
[13]. In Figure 3.8–3.9, we compare all the methods on two piece-wise constant images: House and

1Source codes can be downloaded at https://sites.google.com/site/louyifei/Software.
2All experiments are performed using Matlab 2014a on a desktop (Windows 7, 3.6GHz CPU, 24GB RAM).
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noisy, SSIM = 0.140 L0, SSIM = 0.148 L1 + L2
2, SSIM = 0.943

L1, SSIM = 0.881 L1 − L2, SSIM = 0.962 L1 − 0.5L2, SSIM = 0.928

Fig. 3.1. Denoising results with comparison to L0 in [45] and L1 + L2
2 in [2].

Peppers, where the original images are blurred by 9 × 9 Gaussian blur whose standard deviation
is 1.5 plus Gaussian additive noise with zero mean and standard deviation 0.05. In Figure 3.11,
we present deblurring results for a natural image: Cameraman. The original image is blurred by
15 × 15 Gaussian blur whose standard deviation is 1.5 plus Gaussian additive noise with zero mean
and standard deviation 0.05. In all deblurring examples, our method is better than the classical L1

approach. We find that our method looks sharper and produces less ringing artifacts, compared to
L0, L2/3 and BM3D, though these three methods have better SSIM values. The relative errors versus
computational time is plotted in Figure 3.10 for deblurring Binary and Cameraman images. It shows
similar behavior as in the denoising problem that L1 − L2 tends to worsen beyond certain iterations
while L1−0.5L2 is more stable. The deblurring results presented in Figure 3.7 and Figure 3.11 are from
stopping DCA after 2 and 10 iterations for L1 − 0.5L2 and L1 − L2 respectively. The computational
time is listed in Table 3.2, which suggests that one future direction is accelerating our algorithm.

MRI reconstruction. In Figure 3.12, we investigate the MRI reconstruction problem using a
Shepp-Logan phantom from 7 and 8 radial projections. There is no noise when we synthesize the data.
Consequently we adopt the constrained formulation, i.e., Algorithm 2 for solving eq.(2.8). Due to the
presence of complex values in MRI reconstruction problem, SSIM is no longer applicable; instead we
use root-mean-square (RMS) error to measure the performance quantitatively. RMS between reference
and distorted images X,Y is defined as RMS(X,Y ) = 1√

M
‖X − Y ‖2 where M is the number of pixels

in images X,Y . Figure 3.12 shows that our method can get a perfect reconstruction using only 8
projections, while a similar work [10] reports that 10 projections are required. When the number
of projections is down to 7, L1 − 0.5L2 is much better than L1 and L1 − L2 visually as well as in
terms of RMS. The relative errors versus cpu time is plotted in Figure 3.13. The relative errors
of L1 − L2 iterations in the constrained formulation appear as stable oscillations in contrast to the
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noisy, SSIM = 0.8756 L0, SSIM = 0.8702 L1 + L2
2, SSIM = 0.9452

L1, SSIM = 0.9387 L1 − L2, SSIM = 0.9442 L1 − 0.5L2, SSIM = 0.9564

Fig. 3.2. Denoising results with comparison to L0 in [45] and L1 + L2
2 in [2].

Table 3.2
Comparisons of different deblurring methods in terms of SSIM and computational time ( sec). We find that our

method looks sharper and produces less ringing artifacts, compared to L0, L2/3 and BM3D, though these three methods
have better SSIM values.

Deblurring Binary Peppers
SSIM Time SSIM Time

BM3D [13] 0.917 1.19 0.873 1.05
L0 [34] 0.879 7.11 0.875 5.26
L2/3 [24] 0.887 0.09 0.884 0.45
L1 + L2

2 [2] 0.934 0.33 0.859 0.54
L1 0.945 5.88 0.841 6.06
L1 − 0.5L2 0.967 8.69 0.848 8.82

unstable oscillations in the unconstrained problems.

4. Discussions. Let us draw some connections of this work to two existing methods, Lysaker-
Osher-Tai (LOT) model [27] and Bregman iterations [32]. Additionally, we will comment on the
stopping criterion and discuss the parameter setting. As we claim to promote 1-sparse gradient vectors
via L1 − αL2, we evaluate the sparsity of the results Du, and compare with the ones obtained with
other sparsity promoting metrics.

4.1. Relation to existing methods. At first, the iterative scheme (2.5) for α = 1 resembles
the work of denoising the normals, proposed by Lysaker-Osher-Tai [27],

un+1 = argminu ‖Du‖2,1 − qn ·Du+
µ

2
‖Au− f‖22 , (4.1)
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noisy, SSIM = 0.8332 L0, SSIM = 0.9046 L1 + L2
2, SSIM = 0.9214

L1, SSIM = 0.9195 L1 − L2, SSIM = 0.9270 L1 − 0.5L2, SSIM = 0.9347

Fig. 3.3. Denoising results with comparison to L0 in [45] and L1 + L2
2 in [2].

where qn = (qnx , q
n
y ) = (Dxu

n, Dyu
n)/
√
|Dxun|2 + |Dyun|2 is the surface normal. Notice that the TV

norm in (4.1) is isotropic, while the first term in our model is the anisotropic TV; and hence L1 − L2

applied to the gradient with linearized L2 term is different from the LOT.
On the other hand, the LOT model leads to the discovery of Bregman iterations [32], which relates

to the DCA as well. Specifically, the Bregman distance [1] based on a convex functional J(·) between
two points u and v is defined as

Dp
J(u, v) := J(u)− J(v)− 〈p, u− v〉 , (4.2)

where p ∈ ∂J(v) is the subgradient of J at the point v. Osher et. al. [32] suggest an iterative refinement
procedure to update u as follows,

un+1 = argmin Dpn

J (u, un) +
µ

2
‖Au− f‖22 , (4.3)

= argmin J(u)− 〈pn, u〉+
µ

2
‖Au− f‖22 , (4.4)

which is referred to as the Bregman iterations. Let J(u) = ‖Du‖2 be the isotropic TV as in the LOT

model, and its subgradient has the form −∇ · Du
|Du|

. Consequently, we rewrite the second term in Eq.

(4.4) as

〈pn, u〉 = 〈−D · Du
n

|Dun|
, u〉 = 〈 Du

n

|Dun|
, Du〉 , (4.5)

which coincides with the second term in the LOT model (4.1).
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noisy, SSIM = 0.7317 L0, SSIM = 0.875 L1 + L2
2, SSIM = 0.913

L1, SSIM = 0.923 L1 − L2, SSIM = 0.926 L1 − 0.5L2, SSIM = 0.939

Fig. 3.4. Denoising results with comparison to L0 in [45] and L1 + L2
2 in [2].

Fig. 3.5. The difference of un and un−1 versus (outer/DCA) iterations is plotted in logarithm scale for denoising
examples in Figure 3.1 (left) and Figure 3.4 (right). L1 − 0.5L2 converges faster than L1 − L2.

Bregman iterations can be viewed as an optimization technique. Computing the optimality con-
dition for each subproblem (4.4), we obtain

pn+1 − pn + µAT (Aun+1 − f) = 0 . (4.6)

Summing up to n + 1, we have pn+1 − µAT (un+1 − zn) for p0 = 0 and zn+1 = zn + (f − Aun). It is
the optimality condition for solving un+1 from argmin J(u) + µ

2 ‖Au − z
n‖22. In short, the Bregman
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Fig. 3.6. The relative errors versus runtime for methods L1, L1−L2, L1−0.5L2 for denoising examples in Figure 3.1
(left) and Figure 3.4 (right). Our model solutions are seen to oscillate around the ground truth due to nonconvexity.

iterations can be rewritten as

un+1 = argmin J(u) +
µ

2
‖Au− zn‖22 , (4.7)

zn+1 = zn + (f −Aun) . (4.8)

The DCA for solving L1 − L2 minimization can be derived from a similar way of the Bregman
iterations. Let p and q be the subgradient of anisotropic Jani and isotropic Jiso respectively. Lagging
the isotropic term gives us

pn+1 − pn − α(qn − qn−1) + µAT (Aun+1 − f) = 0 . (4.9)

We apply the same summation technique as in (4.6) and obtain

pn+1 − αqn + µAT (Aun+1 − zn+1) = 0 , (4.10)

zn+1 = zn + (f −Aun) . (4.11)

for p0 = q0 = z0 = 0. The subproblem (4.10) is equivalent to

un+1 = arg min Jani(u)− α〈qn, u〉+
µ

2
‖Au− zn‖22 , (4.12)

which looks very similar to applying the DCA for a constrained problem, eq. (2.8), when c = 0.
The algorithm derived from the Bregman iterations is summarized in Algorithm 3. Its difference to
Algorithm 2 lies in the update of z and q. For Algorithm 2, z is updated MaxBregmanOuter iterations
and then q is updated, while Algorithm 3 is to update z and q simultaneously. The comparison between
the Bregman and DCA iterations for solving such constrained nonconvex problems is a subject of
further study.

4.2. Stopping criterion. We discuss the stopping conditions of Algorithm 1 and Algorithm 2
for unconstrained and constrained problems respectively. Both algorithms have an outer DCA loop,
which iteratively updates q, and inner iterations for updating u. We use un and uk to specify the
outer and inner outputs of u, and set the max inner/outer iterations to be 200 and 20 respectively,
i.e., MaxBregman=200, and MaxDCA=20 in Algorithm 1.

The inner loop is easier to impose a proper stopping criterion for, because the inner loop solves
a convex subproblem. Some standard stopping criteria are either the relative error being small or
objective function being stagnant or both i.e.,

‖uk+1 − uk‖
‖uk‖

< εu and/or
|F (uk+1)− F (uk)|

|F (uk)|
< εF (4.13)
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original blurry noisy, SSIM = 0.2596 BM3D, SSIM = 0.917

L0, SSIM = 0.879 L2/3, SSIM = 0.8871 L1 + L2
2, SSIM = 0.934

L1, SSIM = 0.945 L1 − L2, SSIM = 0.974 L1 − 0.5L2, SSIM = 0.967

Fig. 3.7. Deblurring results with comparison to L0 in [34], Lp for p = 2/3 in [24], L1 + L2
2 in [2] and the

state-of-the-art deblurring method BM3D [13].

with pre-defined tolerance values εu, εF . In this paper, we choose to stop the inner iteration when the
relative error is smaller than 1e−6.

As for the outer iterations, Figures 3.6, 3.10, and 3.13 show that the relative error develops
an oscillatory pattern, Figure 3.5 suggests that the DCA sequence usually converges in a few outer
iterations (10-20). One can estimate the onset time tb of the oscillation stage of the error based on
training images. In the denoising (deblurring) example, tb = 2 (= 10). Hence, a good stopping time
for the outer iteration is at the end of an inner loop when the cpu time exceeds tb.

More generally, if the error does not follow a clear oscillatory pattern, one could inject random
perturbations with slowly reduced magnitudes to steer away from unstable stationary points or direc-
tions to help convergence towards the ground truth [21]. This approach is closely related to simulated
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original blurry noisy, SSIM = 0.5763 BM3D, SSIM = 0.8593

L0, SSIM = 0.8668 L2/3, SSIM = 0.8778 L1 + L2
2, SSIM = 0.8649

L1, SSIM = 0.8618 L1 − L2, SSIM = 0.8315 L1 − 0.5L2, SSIM = 0.8675

Fig. 3.8. Deblurring results with comparison to L0 in [34], Lp for p = 2/3 in [24], L1 + L2
2 in [2] and the

state-of-the-art deblurring method BM3D [13].

annealing [17,23].

4.3. Parameter estimation. Let us derive the value of α based on the gradient distribu-
tion. Suppose that the gradient value Dxu follows the distribution [24], p

2Γ( 1
p )
e−|x|

p

where Γ(t) =∫ +∞
0

xt−1e−x. It is Gaussian distribution for p = 2, Laplacian distribution for p = 1, and hyper-
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original blurry noisy, SSIM = 0.6455 BM3D, SSIM = 0.8731

L0, SSIM = 0.8750 L2/3, SSIM = 0.8846 L1 + L2
2, SSIM = 0.8595

L1, SSIM = 0.8410 L1 − L2, SSIM = 0.8019 L1 − 0.5L2, SSIM = 0.8480

Fig. 3.9. Deblurring results with comparison to L0 in [34], Lp for p = 2/3 in [24], L1 + L2
2 in [2] and the

state-of-the-art deblurring method BM3D [13].

Laplacian for 0 < p < 1. We have

E1 = E|Dxu| =
p

2Γ
(

1
p

) ∫ +∞

−∞
e−|x|

p

|x|dx =
1

Γ( 1
p )

∫ +∞

0

e−tt
2
p−1dt =

Γ( 2
p )

Γ( 1
p )

, (4.14)

E2 = E|Dxu|2 =
p

2Γ
(

1
p

) ∫ +∞

−∞
e−|x|

p

|x|2dx =
1

Γ( 1
p )

∫ +∞

0

e−tt
3
p−1dt =

Γ( 3
p )

Γ( 1
p )

. (4.15)



Anisotropic-isotropic TV 17

Fig. 3.10. The relative errors versus runtime for methods L1, L1 − L2, L1 − 0.5L2 for deblurring examples in
Figure 3.7 (left) and Figure 3.11 (right).

Algorithm 3 for solving constrained problem (2.8) using Bregman method

Define u = qx = qy = 0, z = f and MaxDCA, MaxBregman
for 1 to MaxDCA do
bx = by = 0
for 1 to MaxBregman do
u = (µATA− λ4)−1(µAz + λDT

x (dx − bx) + λDT
y (dy − by))

dx = shrink(Dxu+ bx + αqx/λ, 1/λ)
dy = shrink(Dyu+ by + αqy/λ, 1/λ)
bx = bx +Dxu− dx
by = by +Dyu− dy

end for
z = z + f −Au
(qx, qy) = (Dxu,Dyu)/

√
|Dxu|2 + |Dyu|2

end for

As α is a weighting parameter to balance the anisotropic and isotropic TV terms, it can be estimated
using the ratio of E1 and

√
E2, i.e.,

α =
E1√
E2

=
Γ(2/p)√

Γ(3/p)Γ(1/p)
. (4.16)

Table 4.1 lists the values of α based on gradient distributions for p = 0.5, 1, 2. We analyze the gradient
distribution in Figure 4.1 which shows that the distribution of image gradient data matches the p = 1/2
distribution better than classical Gaussian (p = 2) or Laplacian (p = 1) distribution. This observation
is consistent with the choice of hyper-Laplacian [4, 24] for image processing (p ∈ [0.5, 0.8]). In the
rest of the paper, we shall fix the weighting coefficient α = 1/2 to approximate the desired value in
Table 4.1.

As for the parameter c in (2.8), theoretically we need c to be positive so that strong convexity
leads to the proof of DCA convergence (Lemma 2.1). Without strong convexity at c = 0, we can only
show that the objective function is monotonically non-increasing, while unable to get that ‖un+1−un‖
converges to zero. In practice, we observe numerically that the algorithm still converges if c = 0 (refer
to Figure 3.5), and the algorithm converges slowly if c is large, so we choose c = 0 in experiments. The
convergence analysis without strong convexity is left to future exploration.

4.4. Sparse gradients. We examine the sparsity of the gradient vectors Du of the results ob-
tained in the denoising and deblurring experiments. Define a gradient vector to be non-sparse if both
Dxu and Dyu at that pixel are larger than 0.01. Then we can calculate the percentage of non-sparse
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original blurry noisy, SSIM = 0.5459 BM3D, SSIM = 0.849

L0, SSIM = 0.833 L2/3, SSIM = 0.8317 L1 + L2
2, SSIM = 0.81

L1, SSIM = 0.819 L1 − L2, SSIM = 0.827 L1 − 0.5L2, SSIM = 0.828

Fig. 3.11. Deblurring results with comparison to L0 in [34], Lp for p = 2/3 in [24], L1 + L2
2 in [2] and the

state-of-the-art deblurring method BM3D [13].

gradient vectors over the total number of pixels. The sparsity percentage of all testing images is
recorded in Table 4.2–4.3 for both denoising and deblurring examples respectively. In the denoising
case, the L0 and L1 norms yield the least non-sparse gradient vectors, though the reconstructed images
look over-smoothed with lower SSIM values. As for a more difficult deblurring problem, the methods
of BM3D, L0, L2/3, and L1 +L2

2 do not promote sparsity, while L1−0.5L2 produces the more 1-sparse
gradients, and L1 is comparable in this regard. The sparsity of L1 − L2 is always worse than that of
L1 − 0.5L2, possibly due to the unstable behavior of the algorithm, as illustrated in Figure 3.6 and
Figure 3.10.

5. Conclusion. We proposed a weighted difference of anisotropic and isotropic total variation as
a regularization term for image processing applications. We presented a difference of convex algorithm
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L1, RMS = 0.481 L1 − L2, RMS = 0.384 L1 − 0.5L2, RMS=0.355

L1, RMS = 0.23 L1 − L2, RMS = 4e-4 L1 − 0.5L2, RMS=5e-4

Fig. 3.12. MRI reconstruction using 7 (top) and 8 projections (bottom). The root-means-error (RMS) is provided
for comparison.

Fig. 3.13. The logarithm of relative errors versus runtime for methods L1, L1−L2, L1−0.5L2 in MRI reconstruction
problem using 7 (left) and 8 (right) projections. All are solved under constrained formulation.

Table 4.1
The value of α based on the gradient distribution.

p α
0.5 0.5477
1 0.7071
2 0.7979
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Fig. 4.1. The plot of log probability v.s. gradient in comparison with different distributions, indicating that the
gradient distribution of a large natural image dataset matches L1/2 or the p = 1/2 hyper-Laplacian distribution better
than classical Gaussian or Laplacian distribution.

Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4
Shapes Peppers House Lena

Original 1.65 28.26 18.94 29.28
L0 84.95 13.53 6.27 14.12

L1 + L2
2 6.70 23.86 10.77 24.97

L1 2.73 16.01 7.29 15.72
L1 − L2 2.10 19.71 9.63 25.62
L1 − 0.5L2 1.90 17.58 7.84 21.64

Table 4.2
The percentages (%) of non-sparse gradient vectors Du of the denoising results obtained with L0, L1 + L2

2, L1,
L1 − L2 and L1 − 0.5L2 regularization terms in comparison to Du of the original image.

(DCA) for both the constrained and unconstrained formulations. We proved the convergence of the
algorithm to ensure that each limiting point is a stationary point and the values of the objective function
monotonically decrease. The behavior of the iterations was observed numerically to be oscillatory
around the ground truth. The deviation occurs at the beginning of outer loops of DCA. A stopping
criterion was introduced based on such oscillatory pattern of the errors.

In the numerical experiments, we examined three particular applications: image denoising, deblur-
ring and MRI reconstruction. By design, our method works particularly well for piecewise constant
images. For natural images, it improved the classical TV model, and is comparable to the state-of-
the-art methods. In future work, we plan to carry out a detailed comparison between the DCA and
Bregman methods, analyze convergence without strong convexity, accelerate the algorithm, and further
study the error pattern and the resulting stopping criterion for other imaging science problems.

Appendix. We want to prove that if f(ux, uy) = |ux|+ |uy|, g(ux, uy) =
√
u2
x + u2

y and α ∈ (0, 1),

then

∂(f − αg) ⊆ ∂f − α∂g. (5.1)

Proof. The discontinuity of both f and g is at (0, 0), which means that we only need to demonstrate
eq. (5.1) at the origin. Let (hx, hy) be the subgradient of function (f−αg) at zero. By the subgradient’s
definition, we have

|ux|+ |uy| − α
√
u2
x + u2

y > hxux + hyuy ∀(ux, uy). (5.2)
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Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.11
Binary House Peppers Cameraman

Original 0.38 18.94 28.26 22.99
BM3D 6.68 13.44 27.23 17.88
L0 8.50 14.21 28.93 18.23
L2/3 41.09 10.67 21.24 12.71

L1 + L2
2 8.47 10.73 23.28 11.65

L1 1.36 3.35 7.72 3.84
L1 − L2 0.83 3.85 8.32 4.91
L1 − 0.5L2 0.80 3.10 7.09 3.97

Table 4.3
The percentages (%) of non-sparse gradient vectors Du of the deblurring results obtained with BM3D, L0, L2/3,

L1 + L2
2, L1, L1 − L2 and L1 − 0.5L2 regularization terms in comparison to Du of the original image.

It suffices to discuss the case where one of ux, uy is equal to zero. Without loss of generality,
ux = 0. Then eq. (5.2) reduces

(1− α)|uy| > hyuy ∀uy, (5.3)

and hence hy ∈ [−1 + α, 1 − α]. Similarly we have hx ∈ [−1 + α, 1 − α] if uy = 0. When (ux, uy) is
along x-axis or y-axis, the corresponding subgradient set is S0 = [−1 + α, 1 − α] × [−1 + α, 1 − α],
which shows that ∂(f − αg) ⊆ S0.

On the other hand, we know ∂f(0, 0) = [−1, 1] × [−1, 1] and ∂g(0, 0) is unit ball (see eq.(2.19)),
so the set of ∂f − α∂g is

S =
⋃

a,b∈[−1,1]

{
(x, y)|(a− x)2 + (b− y)2 6 α2

}
. (5.4)

In other words, the set S consists of all the circles of radius α, each centered inside [−1, 1] × [−1, 1],
and hence [−1, 1]× [−1, 1] is in S.

In summary, we get ∂(f − αg) ⊆ S0 ⊂ [−1, 1] × [−1, 1] ⊂ S = ∂f − α∂g. The equality holds for
non-degenerate points where (ux, uy) 6= (0, 0).

In fact, we can show that the subgradient of (f−αg) is indeed the set [−1+α, 1−α]×[−1+α, 1−α]
with additional discussion on (ux, uy) located at different quadrants. The details are omitted here.

Acknowledgments. We would like to thank the anonymous referees for useful suggestions, which
significantly clarify the presentation of the paper. JX would like to thank Profs. Krishna Nayak and
Angel Pineda for their hospitality during a visit to USC in March 2014, and their suggestion to
consider a weighted variant of L1−L2 for compressed sensing and the SSIM measure for image quality
evaluation.

REFERENCES

[1] L. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution
of problmes in convex programming, USSR. Comp. Math. Math. Phys., 7 (1967), pp. 200–217.

[2] X. Cai, R. Chan, and T. Zeng, A two-stage image segmentation method using a convex variant of the mumford-
shah model and thresholding, SIAM J. Imaging Sci., 6 (2013), pp. 368–390.

[3] E. Candes, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements,
Comm. Pure Appl. Math., 59 (2006), pp. 1207–1223.

[4] W. Cao, J. Sun, and Z. Xu, Fast image deconvolution using closed-form thresholding formulas of lq(q=1/2,2/3)
regularization, J. Vis. Comun. Image Represent., 24 (2013), pp. 31–41.

[5] A. Chambolle, An algorithm for total variation minimization and applications, J. Math Imaging Vision, 20 (2004),
pp. 89–97.

[6] A. Chambolle and P-L Lions, Image recovery via total variation minimization and related problems, Numerische
Mathematik, 76 (1997), pp. 167–188.



22 Y. Lou, T. Zeng, S. Osher and J. Xin

[7] T. Chan and J. Shen, Image processing and analysis: variational, PDE, wavelet, and stochastic methods, Siam,
2005.

[8] T. F. Chan and J. Shen, Mathematical models for local non-texture inpainting, SIAM J. Appl. Math, 62 (2002),
pp. 1019–1043.

[9] T. F. Chan and C. K. Wong, Total variation blind deconvolution, IEEE Trans. on Image Process., 7 (1998),
pp. 370–375.

[10] R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Process. Lett, 10
(2007), pp. 707–710.

[11] Y. Chen, W. W. Hager, M. Yashtini, X. Ye, and H. Zhang, Bregman operator splitting with variable stepsize
for total variation image reconstruction, comput. Optim. Appl., 54 (2013), pp. 317–342.

[12] R. Choksi, Y. van Gennip, and A. Oberman, Anisotropic total variation regularized l1-approximation and
denoising/deblurring of 2d bar codes, Inverse Probl. and Imaging, 3 (2011), pp. 591–617.

[13] K. Dabov, A. Foi, and K. Egiazarian, Image restoration by sparse 3D transform-domain collaborative filtering,
in Proc. SPIE Electronic Imaging, vol. 6812-07, San Jose, California, USA, January 2008.

[14] D. L. Donoho, Compressed sensing, IEEE Trans. on Inform. Theory, 52 (2006).
[15] E. Esser, Y. Lou, and J. Xin, A method for finding structured sparse solutions to non-negative least squares

problems with applications, SIAM J. Imaging Sci., 6 (2013), pp. 2010–2046.
[16] D. J. Eyre, An unconditionally stable one-step scheme for gradient systems, Unpublished article, (1998).
[17] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,

Pattern Analysis and Machine Intelligence, IEEE Transactions on, (1984), pp. 721–741.
[18] T. Goldstein and S. Osher, The split bregman method for l1-regularized problems, SIAM Journal on Imaging

Science, 2 (2009), pp. 323–343.
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