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Abstract

In this paper, we introduce a new multiscale representation of surfaces using tight wavelet frames.
Both triangular and quadrilateral (quad) surfaces are considered. The multiscale representation for
triangulated surfaces is generalized from the non-tensor-product tight wavelet frame representation
of functions (of two variables) that were introduced by [1], while the tensor-product tight frames
of continuous linear B-spline from [62] are used for quad surfaces representation. As one of many
possible applications of such representation, we consider surface denoising as an example.

Keywords. Multiscale representation, split Bregman, surface denoising, tight wavelet frames

1 Introduction

1.1 Multiscale Representation of Surfaces

Wavelet, or more generally, multiscaled representation of functions are well studied in the past thirty
years. However, when one deals with surfaces instead of functions (such as images), most of the existing
theories and numerical algorithms cannot be directly applied. The major difficulty is that there is not
a trivial way of associating each surface with a function that preserves important geometric features of
the surface, and such association is often non-unique.

Many attempts have been made in the literature, some of which are quite successful in computer
graphics and (medical) shape/surface analysis. One attempt was to map each surface to a regular surface
that is easily parameterized, such as the unit sphere. Then, the multiscale representation can be given
by the spherical wavelets [2] via lifting scheme [3]. As proposed in [4,5], the authors first used conformal
mapping to map the surface onto the unit sphere. Then, they applied spherical wavelet decomposition
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to each (x, y, z)-components of the mapping. Another similar method was proposed by [6], where the
surface was first map to the unit sphere using a conformal mapping developed by [7]; then, instead of
decomposing the function on the sphere, the sphere was cut open and transformed to a square via a
method introduced by [8]. In this way, one associates each surface with a vector-valued image, and
standard wavelet transforms can be applied to each of (x, y, z)-components of the vector-valued image.
The major drawback of the aforementioned approaches is that the mapping between surfaces and the
unit sphere is non-unique and not trivial to find. A low quality mapping associated to a given surface
may hamper the quality of the underlying multiscale representation.

Alternatively, one can apply the idea of spherical wavelet representation directly on the surface
itself by regarding it as the vector-valued function with domain being the surface and function being
the (x, y, z)-coordinates of the vertices. With the idea of the lifting scheme, biorthogonal wavelets with
high symmetry for surface multiresolution processing have been constructed in [9–14]. If the biorthog-
onal wavelets have certain smoothness, they will have big supports. In other words, the corresponding
multiscale algorithms have large templates, and this is not desirable for surface processing. Loop’s
scheme-based biorthogonal wavelets have been considered in [15] with the biorthogonal dual wavelets
constructed in [16]. However the corresponding highpass filters do not have desirable symmetry for sur-
face processing with extraordinary vertices. This undesirable property will cause problems in designing
the associated algorithms for extraordinary vertices. More recently in [17], 6-fold symmetric bi-frames
with 4 framelets (frame generators) for triangulated surfaces were introduced. Such 6-fold symmet-
ric bi-frames yield frame decomposition and reconstruction algorithms (for regular vertices) with high
symmetry, which is required for the design of the corresponding frame multiresolution algorithms for
extraordinary vertices on the triangular mesh. Compared with biorthogonal wavelets, the constructed
bi-frames have better smoothness and smaller supports. In addition, frame multiresolution algorithms
for extraordinary vertices are provided.

Although the bi-frames representation of surfaces by [17] has the properties of short-support and
high-symmetry, it is relatively sensitive to perturbations of the coefficients, since most of the bi-frames
constructed in [17] are not using the canonical duals. Canonical dual of a frame system has the least
sensitivity to perturbations of the coefficients, while the frame functions may have very large supports
which is unacceptable in many applications. In this paper, we shall propose a tight wavelet frame
representation for triangular and quad surfaces. Tight wavelet frame systems are self-dual system,
which means its canonical dual system is identical to its primal system. In other words, the proposed
representation is not sensitive to perturbations of the coefficients. In addition, each of the tight frame
functions in the system also has very short support and desirable symmetry. These properties are
desirable for many surface processing applications such as surface denoising.

In recent years, multiscale representation on graphs has been well studied in the literature. Since tri-
angulated or quad surfaces are special cases of graphs, these methods provide multiscale representation
for surfaces as well. Successful examples include the wavelets on unweighted graphs by [18], the multi-
scale scheme on graphs based on lifting by [19], the Haar wavelet transform for rooted binary trees [20]
and its generalization treelets [21], the diffusion wavelets [22] and diffusion polynomial frames [23], the
wavelets on compact differentiable manifolds [24], the spectral graph wavelet transform by [25,26], Haar
transform for coherent matrices [27], and orthogonal polynomial systems for weighted trees [28].

We finally note that, an alternative representation of surfaces is implicit representation using, for
instance, level set functions. Although implicit representation of surfaces is commonly not as efficient
as triangular meshes, it is free of parametrization which is a huge advantage for the applications where
topology change occurs during the numerical computations. In [29], the authors introduced a new
multiscale representation for implicitly represented surfaces via level set motions and nonlinear PDEs.
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The main idea of [29] is to generate a sequence of multiscaled approximation of the original surface
via level set motions, such as mean/average curvature motion, and then define the wavelet coefficients
as the tangents of the characteristic curves which are vector fields living on the surfaces at different
scales. Based on such multiscale representation, they designed a surface inpainting algorithm to recover
3D geometry of blood vessels. For surface inpainting problems, topology changes may occur during
the processing and thus multiscale representations for triangulated surfaces may not be suitable for
inpainting problems. However, the drawback of the multiscale representation by [29] is the approximated
reconstruction, instead of exact reconstruction, for the inverse transformation.

In this paper, we propose a multiscale representation of triangulated and quad surfaces by generaliz-
ing various types of existing tight wavelet frame systems for functions. We will discuss how convolutions
of wavelet frame masks with standard grid data can be generalized to surface data, and how multiple
level transforms can be defined in a similar way as classical wavelets. The new wavelet frame transform
can be perfectly parallelized and computed rather efficiently.

1.2 Surface Denoising

As one of many potential applications of the proposed tight wavelet frame representation of surfaces,
we shall consider surface denoising in this paper.

Variational and partial differential equations (PDEs) based image denoising models have had great
success in the past thirty years (see e.g. [30–33]). The objective of image denoising is to remove noise
and artifacts from an observed image, while preserving key image features such as sharp edges. Some
of the models used for image denoising have been extended to denoising surfaces (see [34–39]). Based
on ideas of nonlocal means introduced in [40] for image denoising, a nonlocal averaging algorithm
for denoising triangulated surfaces were introduced by [41]. The nonlocal means was also generalized
to implicit surface denoising in [42], which has the advantage over [41] in restoring surface topology.
In [43], a nonlocal discrete regularization framework was introduced, which is the discrete analogue of
the continuous Euclidean nonlocal regularization functionals by [44]. This method is applied to image
and manifold processing using weighted graphs of arbitrary topologies. In [45], a variational model
for triangulated surface denoising by minimizing the L1-norm of the Gaussian curvature on the given
surface were proposed, which is analogous to the well-known Rudin-Osher-Fatemi model [30] for image
denoising. Other approaches for surface denoising include Laplacian smoothing based on Winer-filter-
type shrinkage [46], bilateral filtering [47,48].

In this paper, we propose an analysis based model based on the proposed new tight wavelet frame
representation of surfaces. The analysis based model is a generalized from the model used in image
restoration [49, 50], which can be solved efficiently using the split Bregman algorithm [49, 51]. Other
than the analysis based model, the balanced model [52–56] and the synthesis based model [57–61] are
also widely used with success in image restoration.

1.3 Organization of the paper

We start in Section 2 with a review of some basic concepts and theories of tight wavelet frames, and
a review of the construction of non-tensor-product tight wavelet frames of [1]. We elaborate how to
generalize the tight wavelet frame representation for functions to triangulated surfaces in Section 3. In
Section 4, we present the analysis based model for surface denoising and the associated fast optimization
algorithm. Numerical experiments will also be presented. In Section 5, we consider quad surface wavelet
frame representation and surface denoising problem.
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2 Tight Wavelet Frames on Rd

In this section, we briefly introduce the concept of tight frames and tight wavelet frames on Rd. The
interested readers should consult [62–64] for theories of frames and wavelet frames, [65] for a short
survey on the theory and applications of frames, and [66] for a more detailed survey. Then we recall
examples of tensor-product tight frames from [62] and non-tensor-product tight wavelet frames of [1].

2.1 Tight Frames and Unitary Extension Principle (UEP)

A countable set X ⊂ L2(Rd), with d ∈ N, is called a tight frame of L2(Rd) if

f =
∑
g∈X
〈f, g〉g ∀f ∈ L2(Rd), (2.1)

where 〈·, ·〉 is the inner product of L2(Rd). For given Ψ := {ψ1, · · · , ψL} ⊂ L2(Rd), the corresponding
quasi-affine system X(Ψ) generated by Ψ is defined by the collection of the dilations and the shifts of
Ψ as

X(Ψ) = {ψ`,n,k : 1 ≤ ` ≤ L;n ∈ Z,k ∈ Zd}, (2.2)

where ψ`,n,k is defined by

ψ`,n,k :=

{
2

nd
2 ψ`(2

n · −k), n ≥ 0;
2ndψ`(2

n · −2nk), n < 0.
(2.3)

When X(Ψ) forms a (tight) frame of L2(Rd), each function ψ`, ` = 1, · · · , L, is called a (tight) framelet
and the whole system X(Ψ) is called a (tight) wavelet frame system.

The constructions of framelets Ψ, which are desirably (anti)symmetric and compactly supported
functions, are usually based on a multiresolution analysis (MRA) that is generated by some refinable
function φ with refinement mask a0 satisfying

φ = 2d
∑
k∈Zd

a0[k]φ(2 · −k). (2.4)

The idea of an MRA-based construction of framelets Ψ = {ψ1, · · · , ψL} ⊂ L2(Rd) is to find masks a`,
which are finite sequences, such that

ψ` = 2d
∑
k∈Zd

a`[k]φ(2 · −k), ` = 1, 2, · · · , L. (2.5)

The sequences a1, · · · ,aL are called wavelet frame masks, or the highpass filters of the system, and the
refinement mask a0 is also known as the lowpass filter. The set {a0,a1, · · · ,aL} is called a frame filter
bank.

The unitary extension principle (UEP) of [62] provides a general theory of the construction of MRA-
based tight wavelet frames. Roughly speaking, as long as {a1, · · · ,aL} are finitely supported and their
Fourier series satisfy

L∑
`=0

∣∣â`(ξ)∣∣2 = 1, and (2.6)

L∑
`=0

â`(ξ)â`(ξ + ν) = 0, (2.7)
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for all ν ∈ {0, π}d\{0} and ξ ∈ [−π, π]d, the quasi-affine system X(Ψ) (as well as the traditional wavelet
system) with Ψ = {ψ1, · · · , ψL} defined by (2.5) forms a tight frame in L2(Rd).

2.2 Tight Wavelet Frames on R2

In this paper, we shall consider tight frames of L2(Rd) with d = 2 since surfaces are essentially 2-
dimensional objects. One common way to construct tight frames for L2(R2) (or L2(Rd) in general) is by
taking tensor-products of univariate tight frames. Given a set of univariate masks {a` : ` = 0, 1, · · · , r},
define the 2-dimensional masks ai[k], with i := (i1, i2) and k := (k1, k2), as

ai[k] := ai1 [k1]ai2 [k2], 0 ≤ i1, i2 ≤ r; (k1, k2) ∈ Z2. (2.8)

Then the corresponding 2-dimensional refinable function and framelets are defined by

ψi(x, y) = ψi1(x)ψi2(y), 0 ≤ i1, i2 ≤ r; (x, y) ∈ R2,

where we have let ψ0 := φ for convenience. We denote

Ψ := {ψi; 0 ≤ i1, i2 ≤ r; i 6= (0, 0)}.

If the univariate masks {a`} are constructed from UEP, then it is easy to verify that {ai} satisfies (2.6)
and (2.7) and thus X(Ψ) is a tight frame for L2(R2).

Example 2.1. Let a0, a1, a2 be the univariate tight frame filters constructed in [62]:

a0 = [
1

4
,
1

2
,
1

4
], a1 = [

√
2

4
, 0,−

√
2

4
], a2 = [−1

4
,
1

2
,−1

4
]. (2.9)

a0 is the refinement mask of univariate continuous linear spline supported on [−1, 1].
Taking tensor-products of these filters, we have 2-dimensional tight frame filters:

p =
1

16

 1 2 1
2 4 2
1 2 1

 , q1 =

√
2

16

 1 0 −1
2 0 −2
1 0 −1

 ,
q2 =

√
2

16

 −1 −2 −1
0 0 0
1 2 1

 , q3 =
1

16

 −1 2 −1
−2 4 −2
−1 2 −1

 ,
q4 =

1

8

 −1 0 1
0 0 0
1 0 −1

 , q5 =
1

16

 −1 −2 −1
2 4 2
−1 −2 −1

 , (2.10)

q6 =

√
2

16

 1 −2 1
0 0 0
−1 2 −1

 , q7 =

√
2

16

 −1 0 1
2 0 −2
−1 0 1

 ,
q8 =

1

16

 1 −2 1
−2 4 −2

1 −2 1

 . �
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Tensor-product wavelet frames usually works well for quad surface processing, but not for triangu-
lated surfaces. In addition, wavelet frames constructed from tensor-product usually have many highpass
filters. For example, as shown in Example 2.1, eight 2-dimensional highpass filters are generated by the
tensor-product process from a univariate tight frame with two highpass filters. Furthermore, wavelet
frames constructed from tensor-product have in general larger support than necessary. In other words,
the corresponding filters have more non-zero entries than necessary. This leads to higher computation
cost to compute the wavelet frame decomposition and reconstruction algorithm than non-tensor-product
wavelet frames.

Since each finitely supported mask corresponds to a Laurant polynomial in Fourier domain, many
existing constructions are based on matrix completions with matrix’s entries being Laurant polynomials,
so that the UEP conditions (2.6) and (2.7) are satisfied. More recently in [1], the authors introduced
a much simpler way of constructing non-tensor-product tight wavelet frames. Their construction is
supported by the generic theory they developed in [1] on dual Gramian analysis on Hilbert spaces.
We refer the interested readers to [1] for details. Here, we shall recall the refinement masks of the
non-tensor-product tight wavelet frames on R2 constructed in [1] using linear bivariate box spline with
directions (1, 0)>, (0, 1)> and (1, 1)>.

Example 2.2. The refinement mask of this box spline is

a0 =
1

8

 1 1
1 2 1

1 1


and the six wavelet frame masks are

a1 =
1

8

 −1 −1
1 2 1
−1 −1

 , a2 =
1

8

 1 −1
−1 2 −1

−1 1

 ,
a3 =

1

8

 −1 1
−1 2 −1

1 −1

 , a4 =

√
3

12

 −1 −1
1 0 −1

1 1

 ,
a5 =

√
6

24

 1 1
2 0 −2
−1 −1

 , a6 =

√
2

8

 1 −1
0 0 0

1 −1

 . �

2.3 Fast Transform

We focus on the case d = 2. In the discrete setting, the data considered is a 2-dimensional array. We
denote by

I2 := RN1×N2

the set of all 2-dimensional arrays of size N1×N2. We will further assume that N1 = N2 = N . Note that
these assumptions are not essential, and all arguments and results in this paper can be easily extended
to more general cases. We denote the 2-dimensional fast (discrete) frame transform (see, e.g., [66]) with
levels of decomposition J as

Wu = {Wj,iu : 0 ≤ j ≤ J − 1, 0 ≤ i1 ≤ r1, 0 ≤ i2 ≤ r2}, u ∈ I2. (2.11)
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We denote the wavelet frame bands (high frequency bands) as B = {i : 0 ≤ i1 ≤ r1, 0 ≤ i2 ≤ r2} \ {0}.
The fast frame transform W is a linear operator with Wj,iu ∈ I2 denoting the frame coefficients of u
at level j and band i. Furthermore, we have

Wj,iu := aj,i[−·]~ u, (2.12)

where ~ denotes the convolution operator with a certain boundary condition, e.g., periodic boundary
condition, and aj,i is defined as

aj,i = ãj,i ~ ãj−1,0 ~ · · ·~ ã0,0 with ãj,i[k] =

{
ai[2

−jk], k ∈ 2jZ2;
0, k /∈ 2jZ2.

(2.13)

Notice that a0,i = ai. The wavelet frame transform (2.12) is known as the undecimated wavelet frame
transform in the literature. When (2.6) holds, W TW = I. That is u can be recovered from Wu by
the tight frame inverse transform W>.

In the literature of wavelets and wavelet frames, there are generally two types of wavelet frame
transforms that are most frequently used, namely the decimated and undecimated wavelet/frame trans-
forms (2.12). Decimation on triangulated surfaces can be done in a similar manner as regular cartesian
mesh. However, if the triangulation of a given surface is not generated by subdividing a coarser mesh,
then the mesh is not readily available for decimated wavelet/frame transform and the surface needs to
be remeshed/sampled to have a subdivision connectivity. The undecimated wavelet/frame transform,
on the other hand, always operates on the original triangulation. We only need to define dilation of
masks on triangular meshes, which is in general easier to do. The same issue arises when decimated
wavelet/frame transforms are applied to quad surfaces which in general do not have a subdivision
connectivity. Therefore, we shall focus on the undecimated wavelet frame transform of a given triangu-
lated/quad surface S.

3 Tight Wavelet Frame Representation for Triangulated Surfaces

In this section, we introduce our tight wavelet frame representation for triangulated surfaces. Given a
triangulated surface S = {V ,T }, where V is the set of vertices and T the set of triangles. The major
challenge of generalizing the fast algorithm given in the previous section to triangulated surfaces is the
definition of convolution of the wavelet frame masks (e.g. the ones in Example 2.2) on triangles.

To properly generalize convolution on triangulated surfaces, we introduce a so-called data-matrix
generation procedure that converts a given surface to a data-matrix. Then, we introduce one-level,
followed by multiple-level wavelet frame transforms. The data-matrix generation operation is associated
with the support of the masks. More precisely, let

supp(a)=
⋃

i

{
[j, k] : ai[j, k] 6= 0

}
(3.1)

be the support of a frame filter bank a = {ai}i. Then each column of the data-matrix is a set of vertices
neighboring a vertex. The size of the neighborhood matching the support of the frame filter bank. For
the simplicity of presentation, in Section 3.1 and Section 3.2, we shall focus on the specific example
of Example 2.2 and define our wavelet frame representation for triangulated surfaces using this tight
frame. In Section 3.3, we will discuss how we can define wavelet frame representations for surfaces using
masks other than those given in Example 2.2.
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3.1 One-Level Tight Wavelet Frame Transform

Notice from the masks given in Example 2.2, the masks generally have seven nonzero elements that
match with the standard 6-valence triangulation (see Fig.1). Based on such observation, given a surface
S, we first conduct a data-matrix generation procedure associated with the support of these masks
before the actual wavelet frame transforms are performed. Such procedure converts a given surface
S to a data-matrix. This process is to ready the surface for convolution with wavelet frame masks.
We note that the data-matrix generation operator and the tight wavelet frame transforms given below
do apply to general triangulated surfaces whose vertices may or may not have exactly 6 immediate
neighbors.

Figure 1: This figure illustrates how the neighboring vertices (forming the set P ) of a given vertex
V ∈ V are ordered.

Data-Matrix Generation

Given a triangulated surface S = {V ,T }, we perform the following operations that produce a data-
matrix D. We shall denote the following operations as C, i.e. C(S) = {D,T }. Note that during this
process, as well as the actual wavelet frame transforms that we shall define afterwards, we do not alter
the original triangulation T . Therefore, we omit T and simply write C(S) = D.

1. Given V , we let V =: {V [k] | k = 1, 2, · · ·N}, where

V [k] = (V1[k], V2[k], V3[k])>

is the (x, y, z)-coordinates of the vertex V [k].

2. For each k = 1, 2, · · · , N , if V [k] is regular (meaning it has valence 6), we find the six (immediate)
neighboring vertices of the vertex V [k]. The set of neighboring vertices is denoted as

Pk = {P [k, 1], P [k, 2], P [k, 3], P [k, 4], P [k, 5], P [k, 6]},
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where P [k, l] = (P1[k,m], P2[k,m], P3[k,m])>. These six vertices are ordered clockwise as shown
in Fig.1. We shall refer to these six vertices, or in general the set of immediate neighboring
vertices, as the 1-ring of V [k].

� If V [k] is an extraordinary vertex, which means its valence is not 6, we generate Pk with
elements P [k, l], 1 ≤ l ≤ 6 as follows. Let P̃k = {P̃ [k, j] : j = 1, 2, · · · , J} with K 6= 6 be the
set of vertices on the 1-ring of V [k]. Define

P̂ [k] =
1

K

J∑
j=1

P̃ [k, j]. (3.2)

Then we set Pk = {P [k, j] : 1 ≤ j ≤ 6} with

P [k, j] = P̂ [k], 1 ≤ j ≤ 6.

3. For each i = 1, 2, 3, the data-matrix Di is a matrix in R7×N defined by

Di =



Vi[1] · · · Vi[k] · · · Vi[N ]
Pi[1, 1] · · · Pi[k, 1] · · · Pi[N, 1]
Pi[1, 2] · · · Pi[k, 2] · · · Pi[N, 2]
Pi[1, 3] · · · Pi[k, 3] · · · Pi[N, 3]
Pi[1, 4] · · · Pi[k, 4] · · · Pi[N, 4]
Pi[1, 5] · · · Pi[k, 5] · · · Pi[N, 5]
Pi[1, 6] · · · Pi[k, 6] · · · Pi[N, 6]


.

Finally we let D = {D1,D2,D3}.

Inversion of Data-Matrix Generation

Let D = C(S), the left inversion operator, denoted as C−1, is simply defined as

C−1({D,T }) =
{{(

D1[1, k]
)N
k=1

,
(
D2[1, k]

)N
k=1

,
(
D3[1, k]

)N
k=1

}
,T
}
. (3.3)

Note that C−1({D,T }) simply extracts the first rows of Di for each i = 1, 2, 3, which can also be written
as

C−1({D,T }) =
{
δ0D,T

}
=
{{
δ0D1, δ0D2, δ0D3

}
,T
}

where
δ0 = [1, 0, . . . , 0] ∈ R7.

It is obvious that C−1(C(S)) = S. For simplicity, we shall denote

Di[j, ·] := (Di[j, k])Nk=1

as long as the dimension of Di is clear.
Now, with the data-matrix D corresponding to a given surface S, we can define the associated

wavelet frame transform using the tight wavelet frame filters given in Example 2.2. In this paper,
instead of (2.12), we use the convolution with masks as the frame transform for simplicity:

Wj,iu := aj,i ~ u. (3.4)

9



One-Level Tight Wavelet Frame Transform of S

Let D be the associated data-matrix of the given surface S. According to the order of the set of
neighboring vertices of a vertex as shown in Fig.1, we arrange the coefficients of each of masks ai, 0 ≤
i ≤ 6 given by Example 2.2 into a row vector, and put all vectors of the masks together to form the
following 7× 7 matrix:

M =
1

8



2 1 1 1 1 1 1
2 −1 −1 1 −1 −1 1
2 1 −1 −1 1 −1 −1
2 −1 1 −1 −1 1 −1

0 −2
√
3

3 −2
√
3

3 −2
√
3

3
2
√
3

3
2
√
3

3
2
√
3

3

0
√
6
3

√
6
3 −2

√
6

3 −
√
6
3 −

√
6
3

2
√
6

3

0
√

2 −
√

2 0 −
√

2
√

2 0


. (3.5)

We call M the mask-matrix. Observe that the order of the coefficients of each mask should match that
for the neighborhood of a vertex V [k] which forms the column of the data-matrix. Then we define the
following wavelet frame transform of a given surface S and D = C(S):

W(S) = MC(S) = {{MD1,MD2,MD3},T } = {α,T } Decomposition (3.6)

where α = {α1,α2,α3} with αi = MDi. Note that the reconstruction W−1 can be easily defined as

W−1α = δ0M
−1α.

This is not the conventional tight frame inverse transform W T . For surface processing, a simple recon-
struction algorithm is desirable. We will elaborate this point in later sections.

The matrix MDi ∈ R7×N , for each i = 1, 2, 3, has rows correspond to different wavelet frame bands.
The first row corresponds to the low frequency band and the triangulated surface{(

(MD1)[1, ·], (MD2)[1, ·], (MD3)[1, ·]
)>
,T

}
is a smooth approximation of the original surface S; and

{(MD1)[k, ·], (MD2)[k, ·], (MD3)[k, ·]} , for 2 ≤ k ≤ 7,

is the wavelet frame coefficients of S in band k.

Remark 3.1.

1. Since throughout the data-matrix generation process and the wavelet frame transformations, the
triangulation T is not changed, we hence denote C, C−1, W simply as

C(S) = D, C−1(D) = S, W(S) = MC(S) = {MD1,MD2,MD3} = α.

Therefore, throughout the rest of this paper, we shall drop T wherever the specific triangulation
of a surface is irrelevant.

2. When implementing the wavelet frame transform W, we do not need to compute the entire data-
matrix D. Each vertex, or in other words, each column of D, can be handled independently.
Therefore, the transform W can be computed in a paralleling fashion. �
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3.2 Multiple-Level Tight Wavelet Frame Transform

Same as the previous subsection, we consider the masks given by Example 2.2. Dilations of the masks
required to define multiple-level tight wavelet frame transform are given by (2.13). To generalize such
mask dilations to a triangulated surface, we need to introduce data-matrix generation associated to
each of the dilation level.

Figure 2: This figure shows examples of dilated neighboring vertices P l
k of a given vertex (solid red dot)

with dilation level l = 0, 1, 2.

Data-Matrix Generation with Dilations

The procedure is similar to that described in Section 3.1. Given a triangulated surface S = {V ,T }, we
perform the following operations that produce a data-matrix Dl that corresponds to the dilation level
l, where l is a positive integer. Such operation is denoted as Cl, i.e. Cl(S) = Dl. For convenience of
notation, we let C0 = C and D0 = D, where C is the data-matrix generation operation without dilation
(given in Section 3.1) and C(S) = D. For a vertex V on S, the m-ring of V is the set of vertices on S
which can be connected with V by m (minimum) edges. See Fig.2.

1. Let V = {V [k] | k = 1, 2, · · ·N}, where

V [k] = (V1[k], V2[k], V3[k])>

is the (x, y, z)-coordinates of the vertex V [k]. Let

P 0
k = {P [k, 1], P [k, 2], · · · , P [k, J ]},

where P [k, j] = (P1[k,m], P2[k,m], P3[k,m])>, be the set of K immediate neighbors of V [k] with
valence K (i.e. 1-ring of V [k]).

2. For l ≥ 1 and for each k = 1, 2, · · · , N , we generate P l
k, which is the l-dilation of P 0

k living on the
2l-ring of V [k] (illustration is given in Fig.2). The point set P l

k is obtained through the following
iterative procedure:
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(a) Let P̃ j
k , 0 ≤ j ≤ l − 1 be the set of K vertices neighboring V [k] in the 2j-ring that we have

already found, with P̃ 0
k = P 0

k .

(b) For each vertex P̃ j [k,m] ∈ P̃ j
k , we find one of the vertices in 2j+1-ring of V [k], denoted by

P̃ j+1[k,m], such that the angle between the vectors P̃ j+1[k,m]−P̃ j [k,m] and P̃ j [k,m]−V [k]
is the smallest.

(c) Let P̃ j+1
k denote the set of P̃ j+1[k,m],m = 1, · · · ,K found in step (b).

(d) Repeat (a) to (c) until we obtain P̃ l
k.

(e) If K = 6, let P l
k = P̃ l

k. Otherwise, generate P l
k from P̃ l

k by (3.2) in Section 3.1.

3. For each i = 1, 2, 3, the data-matrix Dl
i is a matrix in R7×N defined by

Dl
i =



Vi[1] · · · Vi[k] · · · Vi[N ]
P li [1, 1] · · · P li [k, 1] · · · P li [N, 1]
P li [1, 2] · · · P li [k, 2] · · · P li [N, 2]
P li [1, 3] · · · P li [k, 3] · · · P li [N, 3]
P li [1, 4] · · · P li [k, 4] · · · P li [N, 4]
P li [1, 5] · · · P li [k, 5] · · · P li [N, 5]
P li [1, 6] · · · P li [k, 6] · · · P li [N, 6]


.

With
Dl = {Dl

1,D
l
2,D

l
3},

we finally define Cl(S) = Dl. �

We note that, by construction, we have C−1(Dl) = S for all l = 0, 1, · · · , where C−1 is given in (3.3),
the operation of extracting the first rows of Dj .

Multiple-Level Tight Wavelet Frame Transform of S

Let Dj , 0 ≤ j ≤ l − 1 with l ≥ 1, be the associated data-matrix of the given surface S at dilation level
j. Let M ∈ R7×7 be given by (3.5). Then we define the l-level tight wavelet frame decomposition of a
given surface S as follows:

W l(S) = {W j(S)| 0 ≤ j ≤ l − 1} =: {αj , 0 ≤ j ≤ l − 1} =: α, (3.7)

where

W j(S) =

{
MCj ◦ Lj−1 ◦ · · · ◦ L0(S) for j = l − 1

R
(
MCj ◦ Lj−1 ◦ · · · ◦ L0(S)

)
for 0 ≤ j ≤ l − 2

with Lj := C−1 ◦ (MCj) and the operator R : R3×7×N 7→ R3×6×N defined by

R(D) :=



D1[2, ·]
D1[3, ·]

...
D1[7, ·]

 ,

D2[2, ·]
D2[3, ·]

...
D2[7, ·]

 ,

D3[2, ·]
D3[3, ·]

...
D3[7, ·]


 .
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Note that R(D) simply extracts the 2nd to 7th row of Di for each i = 1, 2, 3. By definition of the
transform (3.7), the wavelet frame coefficients α = {αj | 0 ≤ j ≤ l − 1} satisfy

αj ∈

{
R3×7×N for j = l − 1

R3×6×N for 0 ≤ j ≤ l − 2
,

where {αl−11 [1, ·],αl−12 [1, ·],αl−13 [1, ·]} is the low frequency approximation of S, while the rest are wavelet
frame coefficients at different scales 0 ≤ j ≤ l − 1.

3.3 Tight Wavelet Frame Transforms with Generic Masks

Here, we discuss how we can generalize our wavelet frame transform for surfaces to masks other than
those given in Example 2.2. In fact, the ideas and the actual transformations are rather similar to the
case we considered above.

First let us consider the one-level frame transform. Same as before, we generate the mask-matrix
first. Suppose a = {a0,a1, · · · ,ar} is a tight frame filter bank. Let supp(a) be its support defined by
(3.1). By shifting the indices of the coefficients of all ai, we may assume that [0, 0] ∈ supp(a) and [0, 0]
is the “center” of supp(a). Next, we select an ordering for the set {[j, k] : [j, k] ∈ supp(a)} with [0, 0]
being the first term in this order. With this ordering, write the coefficients {ai[j, k] : [j, k] ∈ supp(a)}
as a row vector

Ai = [ai[0, 0], · · · ].

Then we have the mask-matrix

M =


A0

A1
...
Ar

 .
After we fix the order of the indices in supp(a), we select the vertices P [k,m], 1 ≤ m ≤ #supp(a),
the nearest neighbors of the vertex V [k], based on such ordering. The selected P [k,m] should match
with the indices in supp(a). (When V [k] is an extraordinary vertex, we then select the neighborhood
of V [k] as in Section 3.1.) Then we arrange each of the x, y, z components Pi[j,m] of P [j,m] =
(P1[j,m], P2[j,m], P3[j,m])> as a column vector to form the data-matrix Di. Then one-level frame
transform can be written as the product of M and Di.

For the multi-level frame transform, it will be better to consider the indices [j, k] in [−s, s]× [−s, s],
where s is a positive integer such that

supp(a) ⊆ [−s, s]× [−s, s].

Then we give an order of [j, k] ∈ [−s, s]× [−s, s] with [0, 0] being the first term to form the mask-matrix
M . After that we define Cl as in Section 3.2. Here, we skip the details. Instead, we consider a specific
case where the masks are 3×3 with possibly all 9 non-zero entries. Same as before, we need to first define
the neighboring vertex set P l

k for each vertex V [k]. Now the cardinality of the set P l
k is eight instead

of six. Then, the data-matrix generation operator Cl can be defined similarly as before. Illustration of
the set P lk for l = 0 and l = 1, i.e. the 1-ring and 2-ring, are shown in Fig.3. The resulting data-matrix
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Dl = Cl(S) is in R9×N and takes the form

Dl
i =



Vi[1] · · · Vi[k] · · · Vi[N ]
P li [1, 1] · · · P li [k, 1] · · · P li [N, 1]
P li [1, 2] · · · P li [k, 2] · · · P li [N, 2]
P li [1, 3] · · · P li [k, 3] · · · P li [N, 3]
P li [1, 4] · · · P li [k, 4] · · · P li [N, 4]
P li [1, 5] · · · P li [k, 5] · · · P li [N, 5]
P li [1, 6] · · · P li [k, 6] · · · P li [N, 6]
P li [1, 7] · · · P li [k, 7] · · · P li [N, 7]
P li [1, 8] · · · P li [k, 8] · · · P li [N, 8]


.

Finally, the corresponding multiple-level tight wavelet frame transforms take the exact same form as
those given in Section 3.2.

Figure 3: This figure shows examples of dilated neighboring vertices P l
k of a given vertex (solid red dot)

with dilation level l = 0, 1. The masks considered here are supported on [−1, 1]× [−1, 1].

Note that M does not necessary need to be a square matrix. The following is an example with
canonical highpass filters considered in [67].

Example 3.1. The scaling function is linear bivariate box spline B111 with directions (1, 0)>, (0, 1)>

and (1, 1)>. The mask a0 for B111 and the first three highpass filters a1, a2, a3 are given in Example
2.2. The remaining 4 highpass filters are

a4 =
1

8

 1 −1
−1 0 1

1 −1

 , a5 =
1

8

 −1 −1
1 0 −1

1 1

 ,
a6 =

1

8

 −1 1
−1 0 1

−1 1

 , a7 =
1

8

 1 1
1 0 −1
−1 −1

 .
14



With the order of P [k, i], 1 ≤ i ≤ 6 given in Fig.1, the corresponding mask-matrix, denoted by M̃ , is
given by

M̃ =
1

8



2 1 1 1 1 1 1
2 −1 −1 1 −1 −1 1
2 1 −1 −1 1 −1 −1
2 −1 1 −1 −1 1 −1
0 1 −1 1 −1 1 −1
0 −1 −1 −1 1 1 1
0 −1 1 1 1 −1 −1
0 1 1 −1 −1 −1 1


. � (3.8)

In the next example, let us look at tight frame filters from [1]. The scaling function is the bivariate
box spline with directions (1, 0)>, (0, 1)>, (1, 1)> and (1,−1)>.

Example 3.2. The refinement mask of this box spline and the corresponding wavelet frame masks are

a0 =
1

16


1 1

1 2 2 1
1 2 2 1

1 1

 ,a1 =
1

16


1 −1

1 −2 2 −1
−1 2 −2 1

−1 1

 ,

a2 =
1

16


−1 −1

−1 2 2 −1
−1 2 2 −1

−1 −1

 ,a3 =
1

16


−1 1

−1 −2 2 1
1 2 −2 −1

1 −1

 ,

a4 =
1

16


−1 −1

−1 −2 −2 −1
1 2 2 1

1 1

 ,a5 =
1

16


−1 1

−1 2 −2 1
−1 2 −2 1

−1 1

 ,

a6 =
1

16


1 1

1 −2 −2 1
−1 2 2 −1

−1 −1

 ,a7 =
1

16


1 −1

1 2 −2 −1
1 2 −2 −1

1 −1

 ,

a8 =

√
2

16


1 −1

−1 0 0 1
1 0 0 −1
−1 1

 ,a9 =

√
2

16


−1 −1

1 0 0 1
1 0 0 1
−1 −1

 ,

a10 =

√
2

16


1 −1

−1 0 0 1
−1 0 0 1

1 −1

 ,a11 =

√
2

16


−1 −1

1 0 0 1
−1 0 0 −1

1 1

 .
Arranging the nonzero coefficients of each of ai as a row vector with certain order, we have a 12 by 12
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matrix M :

M =
1

16


2 2 2 2 1 1 1 1 1 1 1 1
2 −2 2 −2 −1 1 1 −1 −1 1 1 −1

...

0 0 0 0 −
√

2
√

2 −
√

2 −
√

2
√

2 −
√

2
√

2
√

2

 . �

4 Triangulated Surface Denoising: Model, Algorithm and Simula-
tions

In this section, we propose the analysis based model for surface denoising using the tight wavelet frame
transformation defined in Section 3.1 with masks given by Example 2.2.

4.1 Triangulated Surface Denoising: Model and Algorithm

Let S̃ = {Ṽ ,T } be the observed noisy surface. In our experiments, the noise are added to the original
noise-free surface S = {V ,T } by randomly perturbing each vertex in V in the normal direction. The
amount of perturbation satisfy a Gaussian distribution with 0 mean. The triangulation T is assumed
to be unchanged, which is reasonable if the noise level is moderate.

Given the noisy surface S̃ = {Ṽ ,T }, we propose the following analysis based model:

min
S

1

2

∥∥∥S − S̃∥∥∥2
2

+ λ‖WS‖1, (4.1)

where S = {V ,T }, ∥∥∥S − S̃∥∥∥2
2

=
3∑
i=1

N∑
j=1

∣∣∣Vi[j]− Ṽi[j]∣∣∣2
and

‖WS‖1 = ‖α‖1 =

N∑
l=1

3∑
i=1

( 7∑
j=2

∣∣αi[j, l]∣∣2) 1
2
. (4.2)

Note that the minimization with respect to S in (4.1) is in fact only with respect to V , since T is assumed
to be unchanged. In addition, the addition/subtraction of two surfaces with the same triangulation, i.e.
S = {V ,T } and S̃ = {Ṽ ,T }, is defined as

S ± S̃ = {V ± Ṽ ,T }.

The analysis based model (4.1) can be solved using the following split Bregman algorithm [49,51]:
S(k+1) = arg min

S

1
2

∥∥∥S − S̃ + c(k)
∥∥∥2
2

+ µ
2‖WS − d

(k) + b(k)‖22,

d(k+1) = arg min
d
λ‖d‖1 + µ

2‖d−WS
(k+1) − b(k)‖22,

b(k+1) = b(k) +WS(k+1) − d(k+1),

c(k+1) = c(k) + δ
(
S(k+1) − S̃

)
.

(4.3)
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Here, the variables b, c and d have the same structure as α = WS, and the addition and subtraction
of them are defined as α ± d = {α1 ± d1,α2 ± d2,α3 ± d3} (the addition and subtraction operations
of b, c,d and α are defined in the same way). Note that the `2-norm of α is defined as

‖α‖22 =

3∑
i=1

7∑
j=1

N∑
l=1

∣∣αi[j, l]∣∣2.
The `2-norms of b and d are defined similarly.

The second optimization problem of (4.3) has a closed form solution which is defined by the so-called
isotropic shrinkage of wavelet frame coefficients [50]:

d(k+1) = T λ/µ

(
WS(k+1) + b(k)

)
, (4.4)

where
T ν(β) = (Tν(β1), Tν(β2), Tν(β3))

> ,

and Tν(βi) is defined as

Tν(βi)[j, l] =
βi[j, l]

ril
max

(
ril − ν, 0

)
(4.5)

with ril =
√∑7

j=2

∣∣βi[j, l]∣∣2.
When W is linear, the first optimization of (4.3) has the solution (see [66])

S(k+1) =
(
1 + µWTW

)−1 (
S̃ − c(k) + µWT (d(k) − b(k))

)
. (4.6)

When the frame is tight, we have WTW = I. However, when W is applied to a surface which has
extraordinary vertices in general ,WT often does not have a closed form. However, for surface denoising,
it is desirable that WT has a simple closed form.

Here, we will replace WT by an operator V which has a simple expression and satisfies

VW = I.

Suppose v is a row vector satisfying

vM = δ0 = [1, 0, · · · , 0].

For M given by (3.5), M is nonsingular, and v is the first row of M−1, which is

v = [1, 1, 1, 1, 0, 0, 0]. (4.7)

Recall that α = {α1,α2,α3} are the frame coefficients defined by (3.6) after the frame decomposition.
We may define V as

V(α) = vα = {vα1,vα2,vα3} . (4.8)

Obviously, we have VWS = S.
Next, we use the following formula to approximate the solution of the first sub optimization problem

of (4.3):

S(k+1) =
1

1 + µ

(
S̃ − c(k) + µV(d(k) − b(k))

)
=

1

1 + µ

(
S̃ − c(k) + µv(d(k) − b(k))

)
.

(4.9)
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Putting (4.9) and (4.4) together, we have the following algorithm for surface denoising
S(k+1) = 1

1+µ

(
S̃ − c(k) + µv(d(k) − b(k))

)
,

d(k+1) = T λ/µ

(
WS(k+1) + b(k)

)
,

b(k+1) = b(k) +WS(k+1) − d(k+1),

c(k+1) = c(k) + δ
(
S(k+1) − S̃

) (Algorithm-Tri-1) (4.10)

where v is given by (4.7).

Remark 4.1. Observe that the last three components of v in (4.7) are zero, and hence, a4,a5,a6 do
not play any role in the algorithm (4.10). Thus to save the computation cost, one may replace W in
(4.10) by W1 which is defined by

W1(S) = M1C(S) = {M1D1,M1D2,M1D3} , (4.11)

where M1 is the submatrix of M consisting of the first 4 rows of M , and replace v by v1 = [1, 1, 1, 1].
Thus the surface denoising algorithm (4.10) can be simplified as

S(k+1) = 1
1+µ

(
S̃ − c(k) + µv1(d

(k) − b(k))
)
,

d(k+1) = T λ/µ

(
W1S

(k+1) + b(k)
)
,

b(k+1) = b(k) +W1S
(k+1) − d(k+1),

c(k+1) = c(k) + δ
(
S(k+1) − S̃

)
.

(4.12)

where b(k) and d(k) have the same structure as W1S. �

4.2 Simulations

In this subsection, we show experimental results on the surface denoising with our wavelet frame based
algorithm. As in [47], the Gaussian noise (with σ = 1/5 of the mean edge length) is added to the normal
vectors. We also compare our method with the bilateral filtering [47] (with five iterations). From Fig.4,
we see that our method has a better performance than the bilateral filtering in denoising the bunny. For
the fandisk, our method preserves certain features better (see Fig.5), while the edges are slightly smeared
out comparing to bilateral filtering. The smearing effect can be reduced by proper modification of the
data-matrix generation process and the shrinkage operator. Next we propose another way of generating
data-matrices which preserves edges better.

Alternative generation process of data-matrix

We can generate the data around an extraordinary in a different way:

� If V [k] is an extraordinary vertex, i.e. its valence is not 6, we generate Pk with elements P [k, l], 1 ≤
l ≤ 6 in an alternative way provided below. Let P̃k = {P̃ [k,m] | m = 1, 2, · · · ,K} with K 6= 6.
If K = 3, we let P [k, 4], P [k, 5], P [k, 6] be the middle points of the three edges with vertices
P [k, 1], P [k, 2], P [k, 3]. When K = 4, let P [k, 5], P [k, 6] be the middle points of the two longest
edges among the fours edges P [k, 1]P [k, 2], P [k, 2]P [k, 3], P [k, 3]P [k, 4], P [k, 4]P [k, 1]. For K ≥ 5,

we look at the angles of
−−−−−−−→
V [k]P [k, l] and

−−−−−−−→
V [k]P [k, l′] and choose three pairs of P [k, l] and P [k, l′]

such that the angles are the largest with each vertex P [k, l] selected only once (except for the case
K = 5).
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Figure 4: The bunny model (top-left) is artificially corrupted by Gaussian noise (σ = 1/5 of the
mean edge length) (top-right), then smoothed by bilateral filtering (bottom-left) and Algorithm-Tri-1
(bottom-right).
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Figure 5: The fandisk model (top-left) is artificially corrupted by Gaussian noise (σ = 1/5 of the
mean edge length) (top-right), then smoothed by bilateral filtering (bottom-left) and Algorithm-Tri-1
(bottom-right).
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In this case when W is applied to a surface which has in general extraordinary vertices, W is nonlinear.
If we use the shrinkage T ν(β) = (Tν(β1), Tν(β2), Tν(β3))

> defined by

Tν(βi)[j, l] =
βi[j, l]

sjl
max

(
sjl − ν, 0

)

with sjl =
√∑3

i=1

∣∣βi[j, l]∣∣2 in (4.10), the denoising algorithm with the above new data-matrix generation
preserves edge features better. We shall refer to this new algorithm as Algorithm-Tri-2. See Fig.6,
where edge features are better preserved by our new method. Such shrinkage can be derived by the
second optimization problem of (4.3) with a modified `1 norm of α defined by

‖WS‖1 = ‖α‖1 =

N∑
l=1

7∑
j=2

( 3∑
i=1

∣∣αi[j, l]∣∣2) 1
2
.

5 Quad Surface Denoising: Representation, Model, Algorithm and
Simulations

Quad surfaces or quad meshes have been widely used in many areas including CAD and animation movie
production. Quad surfaces are preferred in some graphics applications because they can be aligned to
two dominant local directions in a geometry (see [68]). Wavelet frame representation and the denoising
model and algorithm for triangulated surfaces presented in Sections 3 and 4 can be easily modified to
handle quad surfaces. In this section we consider quad surface tight wavelet frame representation and
denoising.

5.1 Wavelet Frame Representation for Quad Surfaces

We focus on the quad surface processing by tensor-product tight frames of linear splines with the
2-dimensional tight frame filter bank p, q1, · · · , q8 given in (2.10) of Example 2.1.

Let S = {V ,Q} be a given quad surface. According to the nonzero coefficients of the masks
p, q1, · · · , q8, for each vertex V [k] = (V1[k], V2[k], V3[k])> in S, if V [k] is regular (meaning it has valence
4), we find the 8 (nearest) neighboring vertices of the vertex V [k]. The set of neighboring vertices is
denoted by

Pk = {P [k, 1], P [k, 2], P [k, 3], P [k, 4], P [k, 5], P [k, 6], P [k, 7], P [k, 8]},

where as in the previous sections, P [k, l] = (P1[k, l], P2[k, l], P3[k, l])
>. These eight vertices are selected

and ordered in a way as illustrated in Fig.7.

� If V [k] is an extraordinary vertex, that this its valence K 6= 4, we generate Pk with elements
P [k, l], 1 ≤ l ≤ 8 as follows. Let Q[k,m],m = 1, 2, · · · ,K denote the vertices which can be
connected with V [k] by one edge, and let W [k,m], m = 1, 2, · · · ,K be the vertices which can be
connected with V [k] by a quad and face V [k] on the quad, see Fig.8. Let v̂1 and v̂2 be the vertices
defined by (3.2) based on V [k], Q[k,m],m = 1, · · · ,K and based on V [k],W [k,m],m = 1, · · · ,K
respectively. Finally, we set Pk = {P [k, l] : 1 ≤ l ≤ 8} with

P [k, 2l − 1] = v̂1, P [k, 2l] = v̂2, 1 ≤ l ≤ 4.
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Figure 6: The bunny model is smoothed by bilateral filtering (top-left) and Algorithm-Tri-2 (top-right);
the fandisk model is smoothed by bilateral filtering (bottom-left) and Algorithm-Tri-2 (bottom-right).
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Figure 7: This figure illustrates how the neighboring vertices (forms set Pk) of a given vertex V [k] ∈ V
in a quad surface are ordered.

Figure 8: This figure illustrates how Q[k,m],W [k,m], 1 ≤ m ≤ K (K = 3) are defined.
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The data-matrix Di for each of he x, y and z coordinates is a matrix in R9×N defined by

Di =



Vi[1] · · · Vi[k] · · · Vi[N ]
Pi[1, 1] · · · Pi[k, 1] · · · Pi[N, 1]
Pi[1, 2] · · · Pi[k, 2] · · · Pi[N, 2]
Pi[1, 3] · · · Pi[k, 3] · · · Pi[N, 3]
Pi[1, 4] · · · Pi[k, 4] · · · Pi[N, 4]
Pi[1, 5] · · · Pi[k, 5] · · · Pi[N, 5]
Pi[1, 6] · · · Pi[k, 6] · · · Pi[N, 6]
Pi[1, 7] · · · Pi[k, 7] · · · Pi[N, 7]
Pi[1, 8] · · · Pi[k, 8] · · · Pi[N, 8]


,

and we denote D = {D1,D2,D3} and C(S) = D.
According to the order of the set of neighboring vertices as shown in Fig.7, we arrange the coefficients

of each of masks p, q1, · · · , q8 into a row vector, and put the vectors of all masks together to form the
following mask-matrix:

E =
1
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4 2 1 2 1 2 1 2 1

0 2
√

2
√

2 0 −
√

2 −2
√

2 −
√

2 0
√

2

0 0 −
√

2 −2
√

2 −
√

2 0
√

2 2
√

2
√

2
4 −2 −1 2 −1 −2 −1 2 −1
0 0 −2 0 2 0 −2 0 2
4 2 −1 −2 −1 2 −1 −2 −1

0 0
√

2 −2
√

2
√

2 0 −
√

2 2
√

2 −
√

2

0 2
√

2 −
√

2 0
√

2 −2
√

2
√

2 0 −
√

2
4 −2 1 −2 1 −2 1 −2 1


. (5.1)

Then, the tight wavelet frame transform of a quad surface S = {V ,Q} with filters in (2.10) is written
as

W(S) = EC(S) =
{
{ED1, ED2, ED3},Q

}
=
{
α,Q

}
Decomposition. (5.2)

We recall another tight frame filter bank from [69] with the same scaling function but having fewer
highpass filters:

p =
1

16

1 2 1
2 4 2
1 2 1

 , q1 =

√
2

16

1 0 −1
2 0 −2
1 0 −1

 , q2 =

√
2

8

−1 0 −1
0 0 0
1 0 1

 ,
(5.3)

q3 = − 1

16

1 −2 1
2 −4 2
1 −2 1

 , q4 =

√
2

8

−1 0 1
0 0 0
1 0 −1

 , q5 = −1

4

0 1 0
0 −2 0
0 1 0

 .
The corresponding mask-matrix is

E =
1

16



4 2 1 2 1 2 1 2 1

0 2
√

2
√

2 0 −
√

2 −2
√

2 −
√

2 0
√

2

0 0 −2
√

2 0 −2
√

2 0 2
√

2 0 2
√

2
4 −2 −1 2 −1 −2 −1 2 −1

0 0 −2
√

2 0 2
√

2 0 −2
√

2 0 2
√

2
8 0 0 −4 0 0 0 −4 0

 . (5.4)
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Then, the associated tight wavelet frame transform W(S) for a given quad surface S is defined as in
(5.2) with E defined in (5.4).

5.2 Quad Surface Denoising: Model and Algorithm

Given the noisy surface S̃ = {Ṽ ,Q}, we use the following analysis based model based on the wavelet
frame decomposition defined in (5.2):

min
S

1

2

∥∥∥S − S̃∥∥∥2
2

+ ‖WS‖1, (5.5)

where

‖WS‖1 = ‖α‖1 =
3∑
i=1

N∑
l=1

9∑
k=2

∣∣αi[k, l]∣∣.
To solve (5.5), we use the split Bregman algorithm. If W is linear, then following the discussion in
Section 4.1, we can reach the following algorithm

S(k+1) =
(
1 + µWTW

)−1 (
S̃ − c(k) + µWT (d(k) − b(k))

)
,

d(k+1) = T λ/µ

(
WS(k+1) + b(k)

)
,

b(k+1) = b(k) +WS(k+1) − d(k+1),

c(k+1) = c(k) + δ
(
S(k+1) − S̃

)
.

(5.6)

Since W is not linear in general, and WT does not have a closed form, we replace WT by an operator
U which has a simple expression and satisfies UW = I.

Suppose u is a row vector satisfying

uE = [1, 0, · · · , 0]. (5.7)

For E given by (5.1), u is the first row of E−1, which is

u = [1, 0, 0, 1, 0, 1, 0, 0, 1]. (5.8)

Let α = {α1,α2,α3} be the frame coefficients defined by (5.2) after the frame decomposition. We may
define U as

U(α) =
{
{uα1,uα2,uα3} ,Q

}
. (5.9)

Then we have UWS = S. Thus, we have the following algorithm for quad surface denoising:
S(k+1) = 1

1+µ

(
S̃ − c(k) + µu(d(k) − b(k))

)
,

d(k+1) = T λ/µ

(
WS(k+1) + b(k)

)
,

b(k+1) = b(k) +WS(k+1) − d(k+1),

c(k+1) = c(k) + δ
(
S(k+1) − S̃

)
,

(Algorithm-Quad-1) (5.10)

where u is given by (5.8).
Following similar discussion in Remark 4.1, (5.10) can be reduced to

S(k+1) = 1
1+µ

(
S̃ − c(k) + µu1(d

(k) − b(k))
)
,

d(k+1) = T λ/µ

(
W1S

(k+1) + b(k)
)
,

b(k+1) = b(k) +W1S
(k+1) − d(k+1),

c(k+1) = c(k) + δ
(
S(k+1) − S̃

)
,

(5.11)
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with u1 = [1, 1, 1, 1], and

W1(S) = E1C(S) = {{E1D1, E1D2, E1D3},Q} , (5.12)

where E1 is a submatrix of E:

E1 =
1

16


4 2 1 2 1 2 1 2 1
4 −2 −1 2 −1 −2 −1 2 −1
4 2 −1 −2 −1 2 −1 −2 −1
4 −2 1 −2 1 −2 1 −2 1

 . (5.13)

5.3 Quad Surface Denoising with Wavelet Frame Transforms of Generic Masks

As in Section 3.3, we can generalize our wavelet frame transforms for quad surfaces to masks other
than those given in (2.10) and (5.3). Here we focus on the separable 2-dimensional tight frame filters
of B-splines.

First let us recall univariate tight frames constructed in [62]. Let m ∈ N. The tight frame filters
with even-length are given by

q̂n(ω) = in

√(
2m

n

)
sinn

ω

2
cos2m−n

ω

2
, 0 ≤ n ≤ 2m.

The scaling function corresponding to the lowpass filter q0 is the 2m-order B-spline supported on
[−m,m]. When m = 1, q0, q1, q2 are the filters in (2.9) (except for the − sign for q2).

The tight frame filters of odd-length are given by

ĝn(ω) = in

√(
2m− 1

n

)
sinn

ω

2
cos2m−1−n

ω

2
e−i

ω
2 , 0 ≤ n ≤ 2m− 1.

The scaling function corresponding to the lowpass filter g0 is the (2m− 1)-order B-spline supported on
[1−m,m].

Taking tensor-products of qn, 0 ≤ n ≤ 2m and tensor-products of gn, 0 ≤ n ≤ 2m − 1, we have
2-dimensional tight frame filters:

q̂jk(ω1, ω2) = q̂j(ω1)q̂k(ω2), 0 ≤ j, k ≤ 2m, (5.14)

and
ĝjk(ω1, ω2) = ĝj(ω1)ĝk(ω2), 0 ≤ j, k ≤ 2m− 1. (5.15)

To express the wavelet frame transform as the the product of a mask-matrix E and the data-matrix
D of the surface, we first give an order of the coefficients of a filter. For the “even-length” filters qjk,
their coefficients could be arranged as a row vector with an order given as follows. Starting with index
[0, 0], we go over clockwise the first ring around [0, 0], then go over the second ring, and so on. For
example, for m = 2, the coefficients q[k1, k2],−2 ≤ k1, k2 ≤ 2 of a filter q are arranged as the following
row vector: [

q[k]
]
{k=[0,0],[−1,0],[−1,1],[0,1],[1,1],[1,0],[1,−1],[0,−1],[−1,−1],[−2,0],[−2,0],[−2,1],[−2,2],

[−1,2],[0,2],[1,2],[2,2],[2,1],[2,0],[2,−1],[2,−2],[1,−2],[0,−2],[−1,−2],[−2,−2],[−2,−1]}.
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Then we have the matrix E from the from filters qjk, 0 ≤ j, k ≤ 2m:

E =


q0,0[0, 0] q0,0[−1, 0] q0,0[−1, 1] · · · q0,0[−m,−1]
q−1,0[0, 0] q−1,0[−1, 0] q−1,0[−1, 1] · · · q−1,0[−m,−1]

...
...

...
...

...
q−m,−1[0, 0] q−m,−1[−1, 0] q−m,−1[−1, 1] · · · q−m,−1[−m,−1]

 . (5.16)

For a vertex V [k] = (V [k, 1], V [k, 2], V [k, 3])> on a given quad surface S, (2m + 1)2 − 1 vertices
P [k, l] = (P1[k, l], P2[k, l], P3[k, l])

>, 1 ≤ l ≤ (2m + 1)2 − 1 on the m-ring neighborhood of V [k] are
selected and they are ordered with a way consistent with that for the filter coefficients. Then we have

the data-matrix Di ∈ R(2m+1)2×N for each of the x, y, z components:

Di =



Vi[1] · · · Vi[k] · · · Vi[N ]
Pi[1, 1] · · · Pi[k, 1] · · · Pi[N, 1]
Pi[1, 2] · · · Pi[k, 2] · · · Pi[N, 2]
Pi[1, 3] · · · Pi[k, 3] · · · Pi[N, 3]

...
...

...
...

...
Pi[1, (2m+ 1)2 − 1] · · · Pi[k, (2m+ 1)2 − 1] · · · Pi[N, (2m+ 1)2 − 1]


for i = 1, 2, 3. Then the wavelet frame transform of a given quad surface S = {V ,Q} with filters in

(5.14) can be written in the same formulation (5.2) with E given by (5.16). Note that the wavelet frame
transform with filters in (5.14) can be written in the same formulation as (5.2) with E given by (5.16).

Similarly, we can arrange coefficients of the “odd-length” filters gjk in (5.15) as a row vector with
a similar order to a matrix E, and arrange accordingly the vertices in a neighborhood of a vertex as a
column vector to the data matrices Di, i = 1, 2, 3. Then, the wavelet frame transform of quad surface
with filters in (5.15) can be written in the form of (5.2). The details are omitted here.

One can use algorithm (5.10) for surface denoising, where u is a row vector satisfying (5.7). Next
we show that for tensor-product tight frame filters in (5.14) and (5.15), there is always a vector u such
that (5.7) holds, which is equivalent to that there are constants cjk such that∑

j,k

cjkq̂jk(ω1, ω2) = 1, ω1, ω2 ∈ R.

Proposition 1. Let qjk, 0 ≤ j, k ≤ 2m and gjk, 0 ≤ j, k ≤ 2m − 1 be the tight frames given by (5.14)
and (5.15) respectively. Then we have

m∑
k1,k2=0

(−1)k1+k2

(
m
k1

)(
m
k2

)√(
2m
2k1

)(
2m
2k2

) q̂2k1,2k2(ω1, ω2) = 1, ω1, ω2 ∈ R; (5.17)

and

m−1∑
k1,k2=0

(−1)k1+k2
(
m− 1

k1

)(
m− 1

k2

){
ĝ2k1,2k2(ω1, ω2)√(

2m−1
2k1

)(
2m−1
2k2

) +
ĝ2k1+1,2k2(ω1, ω2)√(

2m−1
2k1+1

)(
2m−1
2k2

) (5.18)

+
ĝ2k1,2k2+1(ω1, ω2)√(

2m−1
2k1

)(
2m−1
2k2+1

) +
ĝ2k1+1,2k2+1(ω1, ω2)√(

2m−1
2k1+1

)(
2m−1
2k2+1

) }
= 1, ω1, ω2 ∈ R.
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Proof. It is straightforward to show that

m∑
k=0

(−1)k
(
m
k

)√(
2m
2k

) q̂2k(ω) = 1, ω ∈ R.

Then expanding (
m∑

k1=0

(−1)k1

(
m
k1

)√(
2m
2k1

) q̂2k1(ω1)

)(
m∑

k2=0

(−1)k2

(
m
k2

)√(
2m
2k2

) q̂2k2(ω)

)
= 1

leads to (5.17).
Similarly, (5.18) follows from

m−1∑
k=0

(−1)k
(
m− 1

k

){
ĝ2k(ω)√(

2m
2k

) +
ĝ2k+1(ω)√(

2m
2k+1

)} = 1, ω ∈ R,

which can be proved straightforwardly.

5.4 Simulations

In this subsection, we show one experimental result on quad surface denoising using our tight wavelet
frame based algorithm. The top left of Fig.9 shows the quad mesh from [70]. The Gaussian noise
(with σ = 1/5 of the mean edge length) is added to each vertex along the normal direction. We also
compare our method with the bilateral filtering [47]. From Fig.9, we see that our method has a better
performance.

Alternative generation process of data-matrix

As in Section 4.2, we consider generating the data around an extraordinary in a different way:

� Suppose V [k] is an extraordinary vertex, i.e. its valence is not 4. First we consider K ≥ 5. Let
P̃k = {P̃ [k,m] | m = 1, 2, · · · , 2K} be the vertices on the quads of which V [k] is one vertex, see
top-left picture of Fig.10. (a) We split each quad into two triangles with V [k] be the vertex of
both triangles, see top-middle picture of Fig.10. (b) Then, with this 2K triangles, as in Section
4.2, we select 4 pairs of P̃ [k,m], see top-right picture of Fig.10. (c) After that, we have 8 triangles
each having V [k] as a vertex, see bottom-left picture of Fig.10. (d) Finally, we drop 4 edges to
form 4 quads from these 8 triangles, see see bottom-right picture of Fig.10. There are two possible
choices of dropping the 4 edges. We dropping these 4 edges whose sum is larger than the sum of
other 4 edges.

When K = 3, let P̃ [k, 7], P̃ [k, 8] be the middle points of the two longest edges among the six edges

P̃ [k, 1]P̃ [k, 2], P̃ [k, 2]P̃ [k, 3], · · · , P̃ [k, 5]P [k, 6], P̃ [k, 6]P̃ [k, 1].

With these eight vertices P̃ [k, 1], · · · , P̃ [k, 8], we form 4 quads following Step (d) above.

28



Figure 9: The botijo4 model (top-left) is artificially corrupted by Gaussian noise (σ = 1/5 of the
mean edge length) (top-right), then smoothed by bilateral filtering (bottom-left) and Algorithm-Quad-
1 (bottom-right).
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Figure 10: This figure shows how to generate data around an extraordinary vertex (K = 5).Top-left:
1-ring neighborhood of an extraordinary vertex; Top-middle: convert quad mesh to a triangular mesh;
Top-right: selected 4 pairs of vertices; Bottom-left: selected 8 triangles; Bottom-right: 4 quads after 4
edges dropped.
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Again in this case, when W is applied to a surface which has in general extraordinary vertices, W
is nonlinear. For quad models, the denoising algorithm with the new data-matrix generation preserves
edge features better, see Fig.11. Here, we use the isotropic shrinkage T ν(β) = (Tν(β1), Tν(β2), Tν(β3))

>

defined as

Tν(βi)[j, l] =
βi[j, l]

sjl
max

(
sjl − ν, 0

)
with sjl =

√∑3
i=1

∣∣βi[j, l]∣∣2 in (5.10). The `1 norm of α corresponding to this isotropic shrinkage is

‖WS‖1 = ‖α‖1 =
N∑
l=1

9∑
j=2

( 3∑
i=1

∣∣αi[j, l]∣∣2) 1
2
.

We refer to the algorithm that uses the above new data-matrix generation and the shrinkage operator
as Algorithm-Quad-2.

Figure 11: The botijo model smoothed by Algorithm-Quad-1 (left) and Algorithm-Quad-2 (right).
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[2] P. Schröder, W. Sweldens, “Spherical wavelets: efficiently representing functions on the sphere”,
In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques,
ACM New York, NY, USA, 1995, pp. 161–172.

31



[3] W. Sweldens, “The lifting scheme: A construction of second generation wavelets”, SIAM Journal
on Mathematical Analysis, 1998, vol. 29, pp. 511–546.

[4] D. Nain, S. Haker, A. Bobick, A.R. Tannenbaum, “Multiscale 3D shape analysis using spherical
wavelets”, Lecture Notes in Computer Science, 2005, vol. 3750, pp. 459–467.

[5] D. Nain, S. Haker, A. Bobick, A.R. Tannenbaum, “Multiscale 3D shape representation and seg-
mentation using spherical wavelets”, IEEE Transactions on Medical Imaging, 2007, vol. 26, pp.
598–618.

[6] B. Dong, Y. Mao, I. Dinov, Z. Tu, Y. Shi, Y. Wang, A. Toga, “Wavelet-based representation of
biological shapes”, Advances in Visual Computing, 2009, pp. 955–964.

[7] X. Gu, Y. Wang, T.F. Chan, P.M. Thompson, S.T. Yau, “Genus zero surface conformal mapping
and its application to brain surface mapping”, IEEE Transactions on Medical Imaging, 2004, vol.
23, pp. 949–958.

[8] E. Praun, H. Hoppe, “Spherical parametrization and remeshing”, ACM Transactions on Graphics,
2003, vol. 22, pp. 340–349.

[9] M. Bertram, “Biorthogonal Loop-subdivision wavelets”, Computing, 2004, vol. 72, pp. 29–39.

[10] M. Bertram, M.A. Duchaineau, B. Hamann, K.I. Joy, “Generalized B-spline subdivision-surface
wavelets for geometry compression”, IEEE Transacation on Visualization and Computer Graphics,
2004, vol. 10, pp. 326–338.

[11] Q.T. Jiang, “Biorthogonal wavelets with 4-fold axial symmetry for quadrilateral surface multires-
olution processing”, Advances in Computational Mathematics, 2011, vol. 34, pp. 127–165.

[12] Q.T. Jiang, “Biorthogonal wavelets with 6-fold axial symmetry for hexagonal data and triangle
surface multiresolution processing”, International Journal of Wavelets, Multiresolution and Infor-
mation Processing, 2011, vol. 9, pp. 773–812.

[13] H.W. Wang, K.H. Qin, K. Tang, “Efficient wavelet construction with Catmull–Clark subdivision”,
The Visual Computer, 2006, vol. 22, pp. 874–884.

[14] H.W. Wang, K.H. Qin, H.Q. Sun, “
√

3-subdivision-based biorthogonal wavelets”, IEEE Transac-
tions on Visualization and Computer Graphics, 2007, vol. 13, pp. 914–925.
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