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Abstract

Many high dimensional classification techniques have been proposed in the litera-

ture based on sparse linear discriminant analysis (LDA). To efficiently use them, spar-

sity of linear classifiers is a prerequisite. However, this might not be readily available

in many applications, and rotations of data are required to create the needed sparsity.

In this paper, we propose a family of rotations to create the required sparsity. The

basic idea is to use the principal components of the sample covariance matrix of the

pooled samples and its variants to rotate the data first and to then apply an exist-

ing high dimensional classifier. This rotate-and-solve procedure can be combined with

any existing classifiers, and is robust against the sparsity level of the true model. We

show that these rotations do create the sparsity needed for high dimensional classifi-

cations and provide theoretical understanding why such a rotation works empirically.

The effectiveness of the proposed method is demonstrated by a number of simulated

and real data examples, and the improvements of our method over some popular high

dimensional classification rules are clearly shown.

Keywords: Classification, Equivariance, Principal Components, High Dimensional Data,

Linear Discriminant Analysis, Rotate-and-Solve.
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1 Introduction

Linear discriminant analysis (LDA) is a useful classical tool for classification. Consider two

p-dimensional normal distributions with the same covariance matrix, N(µ1,Σ) for class 1

and N(µ2,Σ) for class 2. Given a random vector X which is from one of these distributions

with equal prior probabilities, a linear discriminant rule

ψω,ν(X) = I{(X− ν)⊤ω ≥ 0}, ω,ν ∈ Rp, (1.1)

assigns X to class 1 when ψω,ν(X) = 1 and class 2 otherwise. Geometrically, the equation

(x − ν)⊤ω = 0 defines an affine space passing through a point ν with a normal vector ω,

which is the discriminant boundary of the classification rule.

When µ1, µ2 and Σ are known, the optimal classifier, namely the Fisher linear discrim-

inant rule, is

ψF (X) = I{(X− µ)⊤Σ−1δ ≥ 0}, (1.2)

where µ = 1
2
(µ1+µ2), δ = µ1−µ2. In practice, these parameters are unknown and replaced

by their estimates. Let {X(1)
i : 1 ≤ i ≤ n1} and {X(2)

i : 1 ≤ i ≤ n2} be independent and

identically distributed (IID) observations from N(µ1,Σ) and N(µ2,Σ), respectively. In the

classical setting with n1, n2 ≫ p, µ1, µ2 and Σ−1 are usually estimated by sample means

µ̂1 = X̄(1), µ̂2 = X̄(2) and the inverse pooled sample covariance matrix Σ̂−1. The standard

linear discriminant analysis (LDA) uses an empirical version of (1.2)

ψF̂ (X) = I{(X− µ̂)⊤Σ̂−1δ̂ ≥ 0}, (1.3)

where µ̂ = 1
2
(µ̂1 + µ̂2), δ̂ = µ̂1 − µ̂2.

Although the standard LDA has been widely used in applications, it does not work well

for high dimensional data when p is comparable to or larger than the sample size. The

reason is that, with limited number of observations, it is impossible to estimate too many

parameters simultaneously and accurately. In particular, Σ̂ is singular and not invertible

when n1 + n2 < p− 1. One may use pseudo-inverse Σ̂−, but Bickel & Levina (2004) showed

the LDA performs as poorly as random guessing when p/(n1 + n2) → ∞. Since the work
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of Bickel & Levina (2004), a series of LDA-based methods have been proposed for the high

dimensional classification problem. The main idea is to find methods which work well when

the original classification problem is (nearly) sparse so that µ or β = Σ−1δ in the optimal rule

(1.2) can be well estimated. Ignoring the covariances among the features, Bickel & Levina

(2004) proposed an independence rule (IR) which outperforms standard LDA in the high

dimensional setting. Fan & Fan (2008) proposed the features annealed independence rule

(FAIR) that selects a subset of features before applying the independence rule. In spite

of the clear interpretations of the sparsity of the covariance matrix Σ and difference of

centroids δ, in practice, it might be more efficient to find the sparse discriminant affine space

directly (see Trendafilov & Jolliffe (2007); Wu et al. (2009); Cai & Liu (2011); Fan et al.

(2012); Mai et al. (2012) among others). Here, a sparse discriminant affine space is an affine

space with a sparse normal vector. In particular, Fan et al. (2012) and Cai & Liu (2011)

clearly illustrated the advantages of their direct approaches over IR and FAIR, which over-

simplify the problem in many scenarios.

For all aforementioned LDA-based high dimensional classification rules, various explicit

sparsity conditions on one or some of Σ, Σ−1, δ and β are crucial to the classification accu-

racy. For example, IR (Bickel & Levina, 2004) works well only when Σ is nearly diagonal;

FAIR (Fan & Fan, 2008) needs ideally diagonalΣ and sparse δ; ROAD (Fan et al., 2012) and

LPD (Cai & Liu, 2011) need β to be sparse to achieve optimal classification. We shall refer

to all of these methods as sparse LDA methods. They are efficient when the corresponding

sparsity conditions are granted. However, they may not work well when the sparsity con-

ditions are violated. Although these sparse assumptions make sense in some applications,

they can be too restrictive in many scenarios (see Hall et al. (2009) and reference therein).

It is a natural and challenging question how and to what extent we can sparsify a possibly

non-sparse problem.

To solve a non-sparse model, a natural idea is to rotate the data to a nearly sparse setting

before applying sparse LDA methods. For example, the classification problem can be easily

solved by ROAD and LPD if the normal vector of the optimal discriminant affine space, β, is

sparse after a rotation. In order to do this, we need an oracle that can rotate the data to such

a sparse setting. For the ideal case when β is known, there are infinitely many orthogonal

matrices which can rotate β to a sparse vector (||β||2, 0, ..., 0)⊤. However, it is not realistic
to approximate such rotations before estimating β itself. An alternative way might be to

make Σ diagonal after a rotation, which is related to principal component analysis (PCA).
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However, such a rotation does not combine the information of the centroids and tends to get

wrong directions with small variances, which may actually be crucial for classification.

In this paper, we propose a class of rotations which balance both mean and variance

information. Intuitively, both δ and Σ should play essential roles in a rotation to make β

sparse. In particular, if Σ is spiked (Johnstone, 2001), its principal components and δ span

a linear space, which contains key information on the rotation. Following this intuition, we

define Σtot
ρ = Σ+ ρδδ⊤ for ρ > 0 , whose principal components are determined by the ones

of Σ as well as δ. Consider an orthogonal matrix Uρ, formed by the eigenvectors of Σtot
ρ ,

which diagonalizes Σtot
ρ . We shall show that U⊤

ρ β is sparse when the covariance matrix Σ

is spiked. In other words, the eigenvectors of Σtot
ρ are good directions to rotate. Similarly,

we can define the empirical version Ûρ which diagonalizes Σ̂tot
ρ = Σ̂ + ρδ̂δ̂⊤. The rotation

Ûρ is a reasonably good approximation to Uρ when p≪ n (Johnstone & Lu, 2009) or p > n

with some additional conditions (Zou et al., 2006; Fan et al., 2013). In other words, under

some conditions on Σ, Û⊤
ρ β is nearly sparse, regardless of the sparsity level of the original β.

Therefore, we propose to rotate the data by Û⊤
ρ first before applying ROAD or LPD, when

the sparsity level of β is unknown. While our original motivation is to make β sparse by

rotation, we find that our procedure is equivariant with respect to orthogonal transformation

group O(p) consisting of all rotations. This feature makes our method robust against the

sparsity level of β. The advantage of our method is illustrated by numerous simulated and

real data examples. An implementation of the proposed rotations using MATLAB language

can be found on the web http://math.arizona.edu/~dongbin/Data/HDF_Rotation.m.

The rest of our paper is organized as follows. Section 2 introduces a family of ideal

rotations and analyzes their theoretical properties. In Section 3, we study a rotate-and-

solve procedure for classification. Numerical studies on both simulated and real data are

demonstrated in Section 4. All proofs are given in the appendix. Various norms of vectors

and matrices appear frequently in the paper. For a vector a, ||a||p denote the standard

ℓp-norm. For a matrix A, ||A|| is the spectral norm.
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2 A family of oracle rotations and their properties

As mentioned in the introduction, the performance of the sparse LDA methods depend highly

on the sparsity of β, which is unknown and hard to verify in practice. High dimensional

classifiers will work more efficiently if an oracle rotates the data to a sparse setting before

applying sparse LDA methods. If β is known, we can easily rotate β to a sparse vector

(||β||2, 0, ..., 0)⊤. Of course, it is meaningless to mimic such oracle, which motivates us to

find other ideal rotations that can be estimated more easily.

Recall that the distributions of two classes are N(µ1,Σ) for class 1 and N(µ2,Σ) for

class 2. Let µ = 1
2
(µ1 + µ2), δ = µ1 − µ2, and

Σtot
ρ = Σ+ ρδδ⊤, for a given ρ > 0.

Consider an orthogonal matrix Uρ, formed by the eigenvectors of Σtot
ρ , which diagonal-

izes Σtot
ρ . Then, without loss of generality by rearranging columns in Uρ, we assume that

U⊤
ρ Σ

tot
ρ Uρ = Dρ where Dρ = diag(η1, ..., ηp) is the diagonal matrix, consisting of eigenvalues

in descending order.

Let {λj}pj=1 be eigenvalues of Σ, arranged from the largest to the smallest, and {ξj}pj=1

be their corresponding eigenvectors. Note that, for repeated eigenvalues, say λr = λr+1 =

· · · = λs, {ξj}sj=r can be chosen as any orthonormal basis of the corresponding eigenspace.

Johnstone (2001) considered a spiked covariance model, where a few large eigenvalues clearly

standing out of the rest.

Condition 1 (Spiked Covariance Structure): Assume that λ1 ≥ · · · ≥ λk > λk+1 = · · · =
λp for some integer k < p.

Theorem 1 Under Condition 1, we have ||U⊤
ρ β||0 ≤ k + 1.

Theorem 1 shows the sparsity property of U⊤
ρ β when Σ is spiked and k + 1 < p. In

particular, it implies that ||U⊤
ρ β||1/||U⊤

ρ β||2 ≤
√
k + 1 by Cauchy-Schwarz inequality. The

boundedness of the ℓ0 or ℓ1 norm is crucial for sparse LDA methods such as ROAD and LPD

to be efficient. For a vector randomly picked on the unit sphere in Rp, the expectation of

its ℓ1 norm is of order
√
p. Therefore, both ℓ0 and ℓ1 norms of β have been greatly reduced
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after rotation when k ≪ p.

The condition of Theorem 1 can still be relaxed somehow while keeping ||U⊤
ρ β||1/||U⊤

ρ β||2
bounded. This is shown in Theorem 2 below.

Condition 2 (Quasi-Spiked Covariance Structure): Assume that λk ≥ λk+1 + d and

λk+1 − λp ≤ ϵ for some integer k < p, where d, ϵ > 0.

Let W1 and W2 be two linear spaces spanned by {ξj}1≤j≤k and {ξj}k+1≤j≤p, respectively.

Then, we have Rp = W1 ⊕ W2 and the mean difference vector δ can be decomposed as

δ = δ1 + δ2 with δ1 ∈ W1 and δ2 ∈ W2.

Theorem 2 If δ ∈ W1 and λk > λk+1, then ||U⊤
ρ β||0 ≤ k and

||U⊤
ρ β||1/||U⊤

ρ β||2 ≤
√
k.

If δ /∈ W1 and Condition 2 holds, then

||U⊤
ρ β||1/||U⊤

ρ β||2 ≤
√
k + 1 +

√
p− k − 1

λp + ϵ

λp

(
ϵ

λp
+

√
ϵ

d̃− 2ϵ

)
,

provided ϵ < d̃/2, where d̃ = d
ρ||δ2||22
d+ρ||δ||22

.

Theorem 1 and the first part of Theorem 2 demonstrate that the sparsity can be achieved

after rotation even measured by the strong notion ℓ0-norm. However, the weaker measure

of sparsity using ℓ1-norm is needed in order to obtain more general results, as shown in the

second part of Theorem 2.

As a direct consequence of Theorem 2, we have the following corollary.

Corollary 1 If ϵ
λp

= O(
√
k/p) and

ϵ||δ||22
d||δ2||22

= O(k/p), then ||U⊤
ρ β||1/||U⊤

ρ β||2 = O(
√
k).

Note that the construction of Uρ is independent of k, and conclusions of Theorem 2 hold

for any k satisfying the technical conditions. Define dk = λk − λk+1, ϵk = λk+1 − λp, and

Wk
1 = span{ξj}1≤j≤k, W

k
2 = span{ξj}k+1≤j≤p, δ = δk

1 + δk
2 with δk

m ∈ Wk
m, m = 1, 2. Let

d̃k = dk
ρ||δk2 ||22

dk+ρ||δ||22
. Define Ck =

√
k + 1 +

√
p− k − 1λp+ϵk

λp
( ϵk
λp

+
√

ϵk
d̃k−2ϵk

) if d̃k − 2ϵk > 0, and
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Ck = ∞ otherwise. Theorem 2 implies the following corollary.

Corollary 2 If K is the least integer such that δ ∈ WK
1 , then ||U⊤

ρ β||1/||U⊤
ρ β||2 ≤

min{C,
√
K}, where C = min1≤k<K{Ck}.

Theorems 1 and 2 show that the classification problem is reduced to a sparse one after

rotation by U⊤
ρ when the covariance structure is spiked. And the sparsity level of U⊤

ρ β can

be controlled by the spiked covariance structure (k and eigenvalue distribution in Conditions

1 and 2).

Moreover, the procedure is invariant under orthonormal transformations. In other words,

the normal vector of the optimal discriminant affine space after rotation, i.e., U⊤
ρ β, is in-

variant with respect to any rotation. Indeed, when the data are rotated by an arbitrary

orthogonal matrix V, then the new mean vectors and common covariance matrix are Vµ1,

Vµ2 and VΣV⊤. Since

Dρ = U⊤
ρ Σ

tot
ρ Uρ = (VUρ)

⊤VΣtot
ρ V⊤(VUρ),

the rotation matrix should be (VUρ)
⊤, and the rotated normal vector (VUρ)

⊤Vβ = U⊤
ρ β,

which is independent of V.

3 A Rotate-and-Solve Procedure

In this section, we introduce a two-stage rotate-and-solve (RS) procedure for classification.

The idea is to mimic the oracle rotations in the previous section and rotate the data such

that β is nearly sparse. Namely, we first use the orthogonal matrix Ûρ, consisting of the

eigenvectors of the empirical total covariance Σ̂tot
ρ = Σ̂ + ρδ̂δ̂⊤ to rotate the data and then

apply sparse LDA methods such as ROAD and LPD to the rotated data.

Let µ̂1 and µ̂2 be the sample mean vectors of classes 1 and 2 respectively. Set

µ̂ = (µ̂1 + µ̂2)/2, and δ̂ = µ̂1 − µ̂2.
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Similarly, let Σ̂(1) and Σ̂(2) be their sample covariance matrices and

Σ̂ =
1

n1 + n2

(n1Σ̂
(1) + n2Σ̂

(2))

be the pooled sample covariance matrix. The degree of freedom can be adjusted, but the

version of the maximum likelihood estimate (MLE) is used here to facilitate the expression

in Remark 1 below. We then estimate Σtot
ρ by

Σ̂tot
ρ = Σ̂+ ρδ̂δ̂⊤.

Perform singular-value decomposition

Û⊤
ρ Σ̂

tot
ρ Ûρ = D̂ρ, (3.1)

where D̂ρ = diag(η̂1, ..., η̂p) is the diagonal matrix with sorted eigenvalues.

The two-stage rotate-and-solve procedure can be implemented as follows.

Stage one: Calculate Ûρ and rotate the data to get {Û⊤
ρ X

(m)
i }nm

i=1 for m = 1 and 2.

Stage two: apply ROAD, LPD or other sparse LDA methods to the rotated data

X Ûρ to get a prediction rule.

Remark 1: Define

X̄ =
1

n1 + n2

(n1X̄
(1) + n2X̄

(2)),

Σ̂tot
sample =

1

n1 + n2

2∑
m=1

nm∑
i=1

(X
(k)
i − X̄)(X

(k)
i − X̄)⊤

which is the sample total covariance (ignoring the classes). It is straightforward to see

Σ̂tot
sample = Σ̂+ n1n2

(n1+n2)2
δ̂δ̂⊤.

When p≪ n = n1 + n2, Ûρ and Uρ are similar when the eigenvalues are separated from

each other, and hence Û⊤
ρ β is similar to U⊤

ρ β. The property of Û⊤
ρ β is much more compli-

cated when p ∼ n or p≫ n. In this case, it is hard to guarantee all estimated eigenvectors are

close to the true ones. However, the eigenvectors that correspond to spiked eigenvalues can be

consistently estimated. See for example Zou et al. (2006); Karoui (2008); Johnstone & Lu
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(2009); Agarwal et al. (2012); Fan et al. (2013); Shen et al. (2013). As these eigenvectors

point at most important directions, the consistent estimation of these directions ensures the

correct rotations in these important directions. This explains our empirical results that the

RS procedure performs very well compared to several state-of-the-art methods, even when

p≫ n.

To understand better the mathematics behind the excellent performance of RS procedure,

the classification error of the idealized Fisher classifier depends on γ ≡ δ⊤Σ−1δ. Let Uρ1 be

a (k+1)×p matrix, consisting of the eigenvectors of Σtot
ρ that correspond to the largest k+1

eigenvalues {ηj}k+1
j=1 . If we restrict the information to the first k+1 dimensions of the rotated

data U⊤
ρ1X|m ∼ N(U⊤

ρ1µm,U
⊤
ρ1ΣUρ1), m = 1, 2, then the classification error depends on

γ1 ≡ (U⊤
ρ1δ)

T (U⊤
ρ1ΣUρ1)

−1(U⊤
ρ1δ).

Clearly, γ1 ≤ γ. How much is the information loss when {ηj}k+1
j=1 are spiked? Under Condi-

tions in Theorem 1, there is no information loss if the first k + 1 most important features

are used. Furthermore, the cited literatures above give the conditions under which Uρ1 can

be consistently estimated.

The above argument is based on the fact that U⊤
ρ1δ preserves the energy of δ. The

result holds more generally for the covariance matrix Σ admitting spiked eigenvalues, in-

cluding covariance matrices derived from approximate factor models (Fan et al., 2013) or

admitting low rank plus sparse matrix decomposition (Agarwal et al., 2012). Recall that

Σ =
∑p

i=1 λiξiξ
⊤
i with ξi being the eigenvector of Σ. Let λi(B) be the ith largest eigenvalue

of a symmetric matrix B.

Theorem 3 If λk+1(
∑k

i=1 λiξiξ
⊤
i + ρδδ⊤) > aλk+1 for some a > 2, then ||Uρ1δ||2 ≥

a−2
a−1

∥δ∥2 and γ1 ≥ (a−2)2

(a−1)2λ1
∥δ∥22.

The condition of Theorem 3 holds relatively easily. We can take k = 0 when ρ∥δ∥22 ≥
a∥Σ∥2. This holds easily by taking a sufficiently large ρ.

Note that γ ≤ λ−1
p ∥δ∥22 and γ is usually significantly smaller than this upper bound.

Therefore, when λ1/λp is bounded, the loss of information by using rotated data is lim-

ited. Yet, we reduce significantly the noise accumulation in classification (Fan & Fan, 2008).
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As noted above, the rotation Uρ1 can be consistently estimated by regularization. These

together provide theoretical endorsement of the advantages of using rotation.

Remark 2: (Dimensionality reduction) When p > n, Ûρ is not unique since Σ̂tot
ρ is

singular. (The null space of Σ̂tot
ρ is large and we can choose arbitrary basis of the null

space as the columns of Ûρ.) Since the last p − n columns in Ûρ are arbitrary and can

not be controlled, we define Ũρ as the first n columns (or even fewer) of Ûρ and conduct

classification on the rotated data {Ũ⊤
ρ X

(m)
i }nm

i=1 for m = 1 and 2. From the theoretical

analysis in the last section, we see that, under ideal conditions, U⊤
ρ β is sparse with non-

vanishing part concentrated on the first k+1 components. This implies that only first k+1

columns of the rotated data are useful to estimate U⊤
ρ β, which motivates us to use Ũρ

instead of Ûρ as a practical approach with reduced dimensionality. Theorem 3 further shows

that the loss of classification power due to this dimensionality reduction is limited. Let ψ̃ be

a classification rule constructed by some (fixed) sparse LDA method based on X̃ = X Ũρ. It

is straightforward to see that ψ̃ is equivariant.

Remark 3 (Computation of transform) When p > n, the computation of Ũρ can be

performed as follows. First of all, Σ̂tot
ρ can be written as Y⊤Y for a given (n+1)× p matrix

Y (suitable scaling of centered observations and sample mean). Note that Y⊤Y and YY⊤

have the same non-vanishing eigenvalues. Let Ũρ = Y⊤V̂, where V̂ is the orthogonal matrix

consisting of eigenvectors of non-vanishing eigenvalues of the (n+1)× (n+1) matrix YY⊤.

Then, the columns of Ũρ contain the eigenvectors of nonvanishing eigenvalues of Y⊤Y and

are orthogonal. In other words, Ũρ can be used to transform the data. The reduction of

computation cost is significant when p≫ n, since the singular value decomposition of YY⊤

is much faster.

Remark 4 (Sensitivity of ρ). Our empirical studies show that the rotate-and-solve

procedure is not sensitive to ρ in a broad range. For a large range of choices of ρ, the

classification errors are significantly improved over the existing LDA algorithms, as will

be shown by our numerical experiments in the next section. Ideally, ρ can be estimated

using data-adaptive methods such as cross-validation. However, cross-validation on ρ may

be computationally intractable for high dimensional data where p is huge. As noted from

Remark 3, we may use Ũρ to rotate the data which reduces the dimension from p to n.

Thus cross-validation on ρ is more tractable using the modified rotate-and-solve procedure,

and the classification quality can be noticeably improved as to be shown by our numerical
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experiments.

4 Numerical Studies

In this section, we compare the rotate-and-solve (RS) procedure with a number of popu-

lar LDA-based methods including standard LDA (1.3) (using Moore-Penrose pseudoinverse

when Σ̂ is singular), IR, nearest shrunken centroids (NSC) (Tibshirani et al., 2002), ROAD

and LPD, via simulation and real data examples. For the RS procedure, two variants RS-

ROAD and RS-LPD are included. For simulated examples using the toy models, we also

consider the oracle RS methods (O-RS-ROAD and O-RS-LPD) where the oracle rotation

shown in Section 2 are used to rotate the data. Moreover, the oracle Fisher’s rule (1.2) is

used as a benchmark method. In all RS-related methods, the parameter ρ is fixed to 1
2
unless

explicitly defined. The same number of observations are generated for both classes for all

simulated data in Section 4.1, i.e. n1 = n2. All simulation settings have been repeated 100

times unless noted otherwise.

4.1 Simulated Data

4.1.1 Toy Models

We begin with several toy models with relatively small n and p to illustrate the performance

of the RS procedures versus aforementioned LDA methods. We consider the following three

toy models:

• Toy Model 1. Σ = Ip; µ1 = 0p and µ2 = a11p.

• Toy Model 2. Σ = (σi,j) with σi,i = 1 and σi,j = 0.5 for i ̸= j; µ1 = 0p and

µ2 = (a21
⊤
ℓ ,0

⊤
p−ℓ)

⊤, where ℓ = 5.

• Toy Model 3. The setting is the same as 2 except ℓ = p/2, µ2 = (a31
⊤
ℓ ,0

⊤
p−ℓ)

⊤.

The values of a1, a2 and a3 in each of the toy models are chosen such that the expected

classification errors of the oracle Fisher’s rule (1.2) are 1%, 5% and 10%. For each model,
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we take p = 50 and n1 = 20 or 30. The same number of observations have been collected

independently as the testing set.

We apply IR, Standard LDA, NSC, ROAD, LPD, RS-ROAD, RS-LPD, O-RS-ROAD and

O-RS-LPD to 100 replicates of every simulation scenario. Simulation results are presented

in Figure 1 (for n1 = 20) and Figure 2 (for n1 = 30). The Oracle rule always performs best

and gives a benchmark for other methods. The O-RS methods perform very well and are

comparable with oracle rule. For toy model 1, the features are independent, so IR performs

best besides the oracle rule. But RS methods are comparable with IR. For model 2, the true

β is nearly sparse. Therefore, ROAD and LPD perform well but RS methods still improve

their performance. For model 3, neither the covariance matrix nor true β is sparse. RS

methods work significantly better than their competitors. We observe that the RS methods

are uniformly good in all the three models.

Figure 1: Simulation results for the three toy models with n1 = 20 and p = 50. 1=ROAD,
2=RS-ROAD, 3=O-RS-ROAD, 4=LPD, 5=RS-LPD, 6=O-RS-LPD, 7=IR, 8=Standard
LDA, 9=NSC, 10=Oracle.
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Figure 2: Simulation results for the three toy models with n1 = 30 and p = 50. 1=ROAD,
2=RS-ROAD, 3=O-RS-ROAD, 4=LPD, 5=RS-LPD, 6=O-RS-LPD, 7=IR, 8=Standard
LDA, 9=NSC, 10=Oracle.

To see why RS methods outperform their direct sparse competitors, we plot the per-

centages of sum squares of the first several largest components of true β before and after

rotation. For a rotation R = Uρ or Ûρ, define βR = R⊤β. Denote by |β|(1), · · · , |β|(p) and
|βR|(1), · · · , |βR|(p) the reversed order statistics (from largest to smallest) of {|βj|}pj=1 and

{|βR
j |}

p
j=1, respectively. For each setting, we plot

∑k
i=1 |β|2(i)/||β||22,

∑k
i=1 |βUρ|2(i)/||βUρ ||22

and 1
100

∑100
j=1

∑k
i=1 |βÛρj |2(i)/||βÛρj ||22 for k = 1,..., p, where Ûρj is the rotation matrix for

jth replicate and Uρ is the oracle rotation matrix. In Figure 3, we see, after rotation, β is

more concentrated in its largest components. U⊤
ρ β is extremely sparse, and Û⊤

ρ β is sparser

than the original β. Obviously, ROAD/LDP is more efficient after the rotation.
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Figure 3: Sparsity levels of β before (black) and after rotation using Uρ (blue) and Ûρ (red).
The top row corresponds to the case n1 = 20, p = 50; while the bottom row corresponds to
n1 = 30, p = 50.

4.1.2 More Simulations

In our next numerical simulations, we consider the following three covariance structures:

Model 1: Σ = (σi,j) with σi,i = 1 and σi,j = 0.5 for i ̸= j.

Model 2: Σ = (σi,j) with σi,j = 0.7|i−j|.

Model 3: Σ = I +AA⊤ where I is the identity matrix and A is p × 5 matrix with

entries generated independently from N (0, 1).

Without loss of generality, we set µ1 = 0 and µ2 = (a1⊤
p/2, 0⊤

p/2)
⊤, where a is chosen

specifically for each model such that the expected classification error of the oracle rule is

2%. Similar as before, for each simulation, we generate 2n1 independent observations for

each class, where n1 observations are used as training data and the other n1 observations are

used for testing. Results of Models 1-3 are presented in Figures 4-6 respectively, with various

sample sizes and dimensionality. For Models 1 and 3 where the covariance structure is spiked,

the improvement of the RS methods over the ROAD/LPD is remarkable. For Model 2 where
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the covariance structure is far from being spiked, the RS methods still generally outperform

their counterparts.
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Figure 4: Simulation results of Model 1: the boxplots from left to right correspond to the
cases (n1, p) = (30, 200), (50, 200), (50, 400), (100, 200) and (100, 400).
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Figure 5: Simulation results of Model 2: the boxplots from left to right correspond to the
cases (n1, p) = (30, 200), (50, 200), (50, 400), (100, 200) and (100, 400).

In order to show that the improvement by applying RS is relatively general, we consider

the following two scenarios with randomly generated covariance matrices
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Figure 6: Simulation results of Model 3: the boxplots from upper-left to lower-right corre-
spond to the cases (n1, p) = (30, 200), (50, 200), (50, 400), (100, 200) and (100, 400).

Random Model 1: Σ =
(

M
∥M∥

)⊤ (
M

∥M∥

)
+ diag(v) with each entry of p × p matrix

M being generated independently from N (0, 1) and v from U(0, 1), where ∥M∥ is the

operator norm of M .

Random Model 2: Σ = 4
(

M
∥M∥

)⊤ (
M

∥M∥

)
with each entry of M being generated

independently from N (0, 1).

We fix n1 = 30 and p = 300 and consider different sparsity levels of β with ||β||0/p =

5%, 10%, . . . , 95%, 100%. We randomly generate β with a given sparsity level , whose nonzero

entries are IID from N (0, 1). We then normalize β such that β⊤Σβ = 12. We fix µ1 = 0

and let µ2 = −Σβ. We repeat our data generation and classification 100 times for each

scenario and record the average classification errors and their standard deviations.

We compare the results of ROAD and RS-ROAD which are shown in Figure 7. As one

can see when β is very sparse, ROAD outperforms RS-ROAD as expected. However, the

performance of ROAD highly depends on the sparsity level. On the other hand, RS-ROAD

has significantly smaller overall error rates, and has the same qualitative behavior as the

ORACLE. In particular, RS-ROAD is robust against the sparsity level of the true data

generating procedure.
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Figure 7: Average classification errors of “Random Model 1” (left) and “Random Model 2”
(right) for ||β||0/p = 5%, 10%, . . . , 95%, 100%, with ROAD in blue, RS-ROAD in red and
ORACLE in green. Bars indicate the standard deviations of classification errors across 100
simulations.

4.2 Real Data: Leukemia and Lung Cancer

We now evaluate the performance of our proposed RS procedure on two popular gene expres-

sion data set: Leukemia (Golub et al., 1999) and lung cancer (Gordon et al., 2002). The two

data sets come with separate training and testing sets of data vectors. The Leukemia data set

contains p = 7129 genes with n1 = 27 acute lymphoblastic leukemia (ALL) and n2 = 11 acute

myeloid leukemia (AML) vectors in the training set. The testing set includes 20 ALL and 14

AML vectors. The Lung Cancer data set contains p = 12533 genes with n1 = 16 adenocarci-

noma (ADCA) and n2 = 16 mesothelioma training vectors. The testing set has 134 ADCA

and 15 mesothelioma vectors. These two data sets can be downloaded from the web sites

http://www.bioconductor.org/packages/release/data/experiment/html/golubEsets.html

and http://www.chestsurg.org/publications/2002-microarray.aspx, respectively.

In our experiments, we put all the 47 (27 training + 20 testing data) ALL vectors and 25

(11 training + 14 testing data) AML vectors together and randomly select 23 ALL and 12

AML as training and the rest as testing. We repeat the experiments 20 times. We conduct a

similar experiment on Lung cancer data by randomly select 75 ADCA and 15 mesothelioma

data vector as training and the rest as testing, and repeat 20 times. The classification results

of the aforementioned experiments using IR, NSC, ROAD and RS-ROAD are presented in

Table 1, where RS-ROAD has the best overall performance.
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Table 1: Classification errors for cancer data.
Errors % (std %) IR NSC ROAD RS-ROAD

Leukemia 4.2708 (2.9998) 8.5135 (8.4232) 6.3514 (5.9650) 4.4595 (3.0721)
Lung Cancer 3.4669 (1.4381) 10.4396 (7.2675) 1.3736 (1.0621) 0.9341 (0.8931)

4.3 Real Data: Shape Classifications

We also evaluate the performance of RS on shape classification, which is one of the most fun-

damental and important problems in computer vision and machine learning. All the shapes

are represented by 2D binary images. We downloaded the MPEG-7 CE Shape-1 Part-B data

set (Thakoor et al., 2007) from web site http://visionlab.uta.edu/shape_data.htm and

selected a subset of it for our tests. Since the images in the dataset generally have different

sizes, we resized them to the same size 50× 50 (i.e., p = 2500) using the Matlab command

imresize with bi-cubic interpolation. All the selected and resized shape images are shown

in Figure 8.

There are 20 images for each shape class. After being loaded, each image is a matrix, with

elements taking integer values in [0, 255]. In order to test the robustness of the classifiers,

we also added Gaussian noise N(0, 502) to all the selected images. For every pair of shapes,

we randomly select 10 from each class as testing data and the rest as training data (i.e.,

n1 = n2 = 10). We repeat this 50 times for each of the shape pairs. The average classification

errors by IR, NSC, ROAD and RS-ROAD are summarized in Table 2. We observe that RS-

ROAD has the best overall performance, and it consistently improves ROAD in all scenarios.

Table 2: Classification errors for shapes.
Errors (%) IR NSC ROAD RS-ROAD
Shape Pairs: mean std mean std mean std mean std
Apple & Bell 7.9 3.0 7.7 3.1 8.3 4.5 7.8 3.4

Pencil & Watch 19.2 6.1 20.4 7.1 18.2 6.9 16.0 7.1
Personal Car & Shoe 7.7 5.1 11.3 6.6 13.2 6.9 6.1 4.2
Camel & Elephant 8.8 6.6 12.1 9.1 20.3 11.0 6.9 4.0
Camel & Horse 9.6 7.1 11.8 9.5 22.0 10.6 7.7 5.6

Elephant & Horse 8.8 6.4 11.9 8.4 15.1 10.1 6.9 5.9
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Figure 8: Selected shape images: resized to 50× 50 with additive Gaussian noise.

4.4 Choice of ρ

Here we shall mainly discuss two issues related to the choice of ρ in Σtot
ρ : (1) the sensitivity

of the classification results to the choices of ρ; (2) data-adaptive selection of ρ by cross-

validation.

4.4.1 Sensitivity to ρ

In the following simulations, we take the toy models 1-3 with ai’s chosen such that the

oracle error rate is 10%, and use the method RS-ROAD as an example. Let Ûρ be the

eigenvectors of Σ̂+ ρδ̂δ̂⊤ with various values of ρ. The average classification errors (among

100 replicates) of RS-ROAD with various ρ are shown in Figure 9, where the blue curves
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show the errors associated to ρ and the red horizontal lines indicate the errors of ROAD. As

we can see, the best choice of ρ depends on the scenario. Although it seems that choosing

ρ optimally is a complicated issue, the plots in Figure 9 do indicate that for a large range

of ρ, the classification results have significant improvements over a non-rotated classifier

such as ROAD. This also indicates the robustness of the RS procedure to the choices of

the parameter ρ. In general, any reasonable positive value of ρ should work well in most

applications (Figure 9 shows the workable range of log ρ ∈ [−1, 10]), if one does not have the

resources or time to perform cross-validation.
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Figure 9: Classification errors of RS-ROAD with various ρ (blue curves) v.s. ROAD (red
lines). Plots in the first row correspond to the case n1 = n2 = 30 and plots in the second
row correspond to n1 = 30 and n2 = 45. Columns 1-3 correspond to the Toy Models 1-3.

4.4.2 Cross-Validation choice of ρ

Cross-validation on ρ is computationally expensive when p is large. See Remark 4 for re-

duction of computation. When Σ has a (quasi)-spiked covariance structure, i.e. there are

k eigenvalues that are significantly larger than the rest p − k eigenvalues, and if k is much

less than the number of observations n, then we may use Ũρ to rotate the data instead of

using Ûρ. Recall that Ũρ is the collections of the n eigenvectors of Σ̂tot corresponding to the

n largest eigenvalues. Then after rotating the data using Ũρ, we reduce the dimension of
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the problem from p to n which will be significant reduction when n ≪ p (e.g. the real data

considered in the previous two sections). We can also take Ũρ to be principal components,

with dimensionality much less than n.

Our first simulations show that using Ũρ instead of Ûρ does not hurt the classification

error. We take the toy model 1-3 with ai’s chosen such that the oracle error rate is 10%, and

use the method RS-ROAD as an example. We set n1 = n2 = 10 (i.e. n = 20) and p = 50.

The results are summarized in Table 3.

Table 3: Classification errors and their standard deviations.
Errors % (std %) Toy Model 1 Toy Model 2 Toy Model 3

Using Ûρ 24.9500 (11.3817) 26.8500 (12.6861) 26.7000 (12.5171)

Using Ũρ 25.0000 (11.5470) 26.5000 (12.5831) 26.9500 (12.5508)

The previous simulation shows that we can reduce the size of the problem from p to n

without sacrificing much of the classification quality. Since the computation cost can be

greatly reduced in this way, cross-validation on ρ is now a computationally viable approach.

In our next experiments, we take the data of Leukemia and Lung cancer in Section 4.2, and

conduct a similar experiment as we did before, except that we use Ũρ and choose ρ using

5-folds cross-validation. The classification results are summarized in Table 4, where we also

reproduce the results in Table 1 for comparison. We also presented therein the average values

of ρ chosen by cross-validation along with their standard deviations. We repeat the same

simulation to the shape data we presented in Section 4.3 and present comparisons and the

estimated values of ρ in Table 5. As one can see that the choice of ρ is generally different

for different type of data, and using cross-validation to select ρ, we can further reduce the

classification errors.

Table 4: Classification errors and their standard deviations for Leukemia and Lung cancer.
Errors % (std %) Leukemia Cancer Lung cancer

W/O Cross-Validation 4.4595 (3.0721) 0.9341 (0.8931)
Cross-Validation 4.0541 (3.9702) 0.6593 (0.7479)
Estimated ρ 0.2241 (0.2630) 0.0848 (0.0890)
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Table 5: Classification errors for shapes and the average values of ρ.
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5 Appendix

The parameter ρ is a fixed positive constant through the appendix. So for easy presentation,

we drop it from the notations Σtot
ρ , Uρ, etc.

Proof of Theorem 1: Let a = λp > 0 and ai = λi − λp > 0. It then follows directly

from Condition 1 and the singular value decomposition that

Σ = aI+
k∑

i=1

aiξiξ
⊤
i (5.1)

and

Σtot = aI+ ρδδ⊤ +
k∑

i=1

aiξiξ
⊤
i . (5.2)

It can be shown that

(aI+
k∑

i=1

aiξiξ
⊤
i )

−1 = a−1I−
k∑

i=1

ai
a(a+ ai)

ξiξ
⊤
i . (5.3)
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This can be directly verified by

(aI+
k∑

i=1

aiξiξ
⊤
i )(a

−1I−
k∑

i=1

ai
a(a+ ai)

ξiξ
⊤
i )

= I+
k∑

i=1

a−1aiξiξ
⊤
i −

k∑
i=1

ai
a+ ai

ξiξ
⊤
i −

k∑
i=1

a2i
a(a+ ai)

ξiξ
⊤
i

= I,

using the orthogonality

ξ⊤i ξj =

{
0, i ̸= j;

1, i = j.

By (5.3),

β = Σ−1δ = a−1δ −
k∑

i=1

aiξ
⊤
i δ

a(a+ ai)
ξi. (5.4)

In other words, β is in the space spanned by {δ, ξ1,..., ξk}. On the other hand, by (5.2),

it is easy to see that the space spanned by eigenvectors of Σtot corresponding to eigenvalues

greater than a is exactly the space spanned by {δ, ξ1,..., ξk}. Therefore, β is perpendicular

to the p− k− 1 dimensional eigenspace corresponding to eigenvalue a, i.e. ||U⊤β||0 ≤ k+1.

�

Before proving Theorem 2, we need a couple of results on the eigenvalues and eigenspaces

of hermitian/symmetric matrices.

Lemma 1 (Weyl, 1912) If A and B are symmetric p×p matrices that differ by a matrix

of rank at most r, then their eigenvalues (in descending order) {αj}1≤j≤p and {γj}1≤j≤p

satisfy

αj+r ≤ γj and γj+r ≤ αj for 1 ≤ j, j + r ≤ p.

In particular, if r = 1 and A ≥ B, it implies an interlacing property

α1 ≥ γ1 ≥ α2 ≥ · · · ≥ αp ≥ γp.
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Lemma 2 (Davis & Kahan, 1970) Let A and B be symmetric matrices with A−B = H

and eigenvalues {αj}1≤j≤p and {γj}1≤j≤p, respectively. If there exist a subset S ⊂ {1, ..., p},

an interval [s, t] and a positive constant z, such that αj, γj ∈ [s, t] when j ∈ S and αj, γj ∈

(−∞, s− z]∪ [t+ z,∞) when j /∈ S, then ||P −Q|| ≤ ||H||/z, where P and Q are projection

matrices to the subspaces spanned by eigenvectors corresponding to {αj}j∈S and {γj}j∈S ,

respectively.

The following lemmas are crucial in the proof of Theorem 2.

Lemma 3 Under Condition 2, if δ ∈ W1, then the eigenvalues of Σtot satisfy

η1 ≥ η2 ≥ · · · ≥ ηk ≥ ηk+1 + d > ηk+1 ≥ · · · ≥ ηp; (5.5)

otherwise,

η1 ≥ η2 ≥ · · · ≥ ηk+1 ≥ ηk+2 + d
ρ||δ2||22

d+ ρ||δ||22
− ϵ ≥ ηk+2 ≥ · · · ≥ ηp. (5.6)

Proof of Lemma 3: Recall that {λj}1≤j≤p are eigenvalues of Σ in descending order and ξj

is the eigenvector corresponding to λj. W1 and W2 are linear spaces spanned by {ξj}1≤j≤k

and {ξj}k+1≤j≤p, respectively. δ = δ1 + δ2 with δm ∈ Wm, m = 1, 2.

If δ ∈ W1, then δ ⊥ ξj for k + 1 ≤ j ≤ p. Therefore, {ξj}k+1≤j≤p are eigenvectors of

Σtot = Σ+ρδδ⊤ as well, and the corresponding eigenvalues satisfy ηj = λj for k+1 ≤ j ≤ p.

Moreover, by Lemma 1, η1 ≥ λ1 ≥ η2 ≥ · · · ≥ ηk ≥ λk. Thus, Condition 2 implies

η1 ≥ η2 ≥ · · · ≥ ηk ≥ ηk+1 + d > ηk+1 ≥ · · · ≥ ηp.

If δ /∈ W1, i.e., δ2 ̸= 0, define W = W1 ⊕ δ2. For all w ∈ W, with ||w||2 = 1, we may
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write w = w1 +w2 where w1 ∈ W1 and w2 = cδ2 ∈ W2. It follows that

w⊤Σtotw = w⊤Σw + ρw⊤δδ⊤w

= w⊤
1 Σw1 +w⊤

2 Σw2 + ρ
(
(w⊤

1 +w⊤
2 )(δ1 + δ2)

)2
= w⊤

1 Σw1 +w⊤
2 Σw2 + ρ

(
w⊤

1 δ1 +w⊤
2 δ2

)2
≥ λk||w1||22 + λp||w2||22 + ρ

(
w⊤

1 δ1 +w⊤
2 δ2

)2
≥ λp + d||w1||22 + ρ

(
|w⊤

1 δ1| − |w⊤
2 δ2|

)2

It is easy to see that

inf
{
ρ
(
|w⊤

1 δ1| − |w⊤
2 δ2|

)2}
=

{
0, if ||w1||2 ≥ ||δ2||2/||δ||2;
ρ(||w2||2||δ2||2 − ||w1||2||δ1||2)2, if ||w1||2 < ||δ2||2/||δ||2.

Therefore, if ||w1||2 ≥ ||δ2||2/||δ||2,

w⊤Σtotw ≥ λp + d||w1||22 ≥ λp + d
||δ2||22
||δ||22

;

if ||w1||2 < ||δ2||2/||δ||2,

w⊤Σtotw ≥ λp + d||w1||22 + ρ(||w2||2||δ2||2 − ||w1||2||δ1||2)2

≥ λp + d||w1||22 + ρ(||δ2||2 − ||w1||2||δ||2)2

≥ λp + d
ρ||δ2||22

d+ ρ||δ||22
.

Overall, we have

w⊤Σtotw ≥ λp + d̃ for all w ∈ W, (5.7)

where d̃ = d
ρ||δ2||22
d+ρ||δ||22

. Since dimW = k+1, (5.7) implies that there are k+1 eigenvalues that

25



are greater than λp + d̃ for Σtot. Together with Lemma 1, we conclude

η1 ≥ η2 ≥ · · · ≥ ηk ≥ ηk+1 ≥ λp + d̃ > λk+1 ≥ ηk+2 ≥ · · · ≥ ηp.

which leads to (5.6). �

Similarly, we have

Lemma 4 Under Condition 1, if δ ∈ W1, then the eigenvalues of Σtot satisfy

η1 ≥ η2 ≥ · · · ≥ ηk ≥ ηk+1 + d > ηk+1 = · · · = ηp; (5.8)

otherwise,

η1 ≥ η2 ≥ · · · ≥ ηk ≥ ηk+1 ≥ ηk+2 + d
ρ||δ2||22

d+ ρ||δ||22
≥ ηk+2 = · · · = ηp. (5.9)

Proof of Lemma 4: The only difference is that the last p− k− 1 eigenvalues are equal,

which is implies by Lemma 1 and the fact that λk+1 = λk+2 = · · · = λp. �

Proof of Theorem 2: Again, let ξj be the eigenvector of Σ corresponding to λj for

1 ≤ j ≤ p. a = λp and aj = λj − λp.

Part I: δ ∈ W1 implies δ ⊥ ξj for k < j ≤ p, so the eigenvectors {ξj}k<j≤p are also

eigenvectors of Σtot. Write U = (U1 U2) where U2 is submatrix of U, consisting of right

p− k columns. Then U2 = (ξk+1, · · · , ξp). Therefore,

U⊤
2 β = U⊤

2 Σ
−1δ = D−1

2 U⊤
2 δ = 0,

where D2 = diag(λk+1, ..., λp).

Part II: Under Condition 2, we can write Σ = Σ0 +∆ where Σ0 = aI +
∑k

j=1 ajξjξ
⊤
j

and ∆ =
∑p

j=k+1 ajξjξ
⊤
j . Thus, Σ0 satisfies Condition 1, and ∆ is a semipositive matrix

with maximal eigenvalue less than ϵ. Define

Σtot
0 = Σ0 + ρδδ⊤ and Σtot = Σ+ ρδδ⊤.
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And let {η0j}1≤j≤p and {ηj}1≤j≤p be their eigenvalues, in the descending order, respectively.

Moreover, let V and U be orthogonal matrices such that

V⊤Σtot
0 V = D0 and U⊤ΣtotU = D,

where D0 = diag(η01, ..., η0p) and D = diag(η1, ..., ηp).

Here is the strategy of the proof. By Theorem 1, V⊤Σ−1
0 δ is sparse so its ℓ1-norm can

be well controlled. Because of the results on the separated eigenvalues (Lemmas 3 and 4),

we can show U⊤β is similar to V⊤Σ−1
0 δ using Lemma 2. Therefore, the ℓ1-norm can be

controlled as well.

Write U = (U1 U2) and V = (V1 V2) where U2 and V2 are submatrices of U and V

respectively, consisting of right p− k − 1 columns. Note that

||U⊤β||1 = ||U⊤
1 β||1 + ||U⊤

2 β||1,

where ||U⊤
1 β||1 ≤

√
||U⊤

1 β||0 · ||U⊤
1 β||22 ≤

√
k + 1||β||2. So it is crucial to control ||U⊤

2 β||1.
From the proof of Theorem 1, we see that V⊤

2 Σ
−1
0 δ = 0. Hence

||U⊤
2 β||2 = ||U⊤

2 Σ
−1δ −U⊤

2 Σ
−1
0 δ +U⊤

2 Σ
−1
0 δ||2

≤ ||U⊤
2 Σ

−1δ −U⊤
2 Σ

−1
0 δ||2 + ||U⊤

2 Σ
−1
0 δ||2

≤ ||U⊤
2 Σ

−1δ −U⊤
2 Σ

−1
0 δ||2 +

√
||U⊤

2 Σ
−1
0 δ||22 − ||V⊤

2 Σ
−1
0 δ||22

≤ ||Σ−1 −Σ−1
0 || · ||δ2||2 +

√
δ⊤(Σ−1

0 )⊤
(
U2U⊤

2 −V2V⊤
2

)
Σ−1

0 δ

= S1 + S2

and

||Σ−1 −Σ−1
0 || = λ−1

p − λ−1
k+1 = a−1 − (a+ ak+1)

−1 =
ak+1

a(a+ ak+1)
≤ ϵ

a2
.

Thus, S1 ≤ ϵ
a2
||δ2||2 ≤ ϵ(a+ϵ)

a2
||β||2.

To control S2, we have to show that the spaces spanned by column vectors of V2 and U2

are close to each other. By Lemmas 3 and 4, we have

η1 ≥ η2 ≥ · · · ≥ ηk ≥ ηk+1 ≥ ηk+2 + d̃− ϵ ≥ ηk+2 ≥ · · · ≥ ηp,
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η01 ≥ η02 ≥ · · · ≥ η0k ≥ η0,k+1 ≥ η0,k+2 + d̃ ≥ η0,k+2 = · · · = η0p,

where d̃ = d
ρ||δ2||22
d+ρ||δ||22

. Moreover, by Lemma 1, ηk+2 ≤ λk+1 ≤ λp + ϵ = a+ ϵ, η0,k+2 = λp = a.

On the other hand, ηk+1 ≥ ηk+2 + d̃− ϵ ≥ a+ d̃− ϵ, η0,k+1 ≥ η0,k+2 + d̃ = a+ d̃.

By Lemma 2, ||U2U
⊤
2 −V2V

⊤
2 || ≤ ||∆||/(d̃− 2ϵ) ≤ ϵ/(d̃− 2ϵ).

||Σ−1
0 δ||2 = ||Σ−1

0 Σβ||2 ≤ ||Σ−1
0 Σ|| · ||β||2 ≤ a+ϵ

a
||β||2. Thus, S2 ≤

√
ϵ

d̃−2ϵ
a+ϵ
a
||β||2.

Therefore, ||U⊤
2 β||2 ≤ a+ϵ

a
( ϵ
a
+
√

ϵ
d̃−2ϵ

)||β||2. ||U⊤
2 β||1 ≤

√
p− k − 1a+ϵ

a
( ϵ
a
+
√

ϵ
d̃−2ϵ

)||β||2.

Finally, ||U⊤β||1/||β||2 ≤
√
k + 1 +

√
p− k − 1a+ϵ

a
( ϵ
a
+
√

ϵ
d̃−2ϵ

). �

Proof of Theorem 3. Let V1 be a matrix whose columns vectors are the eigenvectors

corresponding to the nonvanishing eigenvalues of the matrixA =
∑k

i=1 λiξiξ
⊤
i +ρδδ

⊤. Recall

λi(B) be the ith largest eigenvalue of a symmetric matrix B. Then, by Lemma 2,

∥U1 −V1∥ ≤ ∥Σtot −A∥
λk+1(A)− λk+2(Σtot)

=
λk+1

λk+1(A)− λk+2(Σtot)
.

By Lemma 1, λk+2(Σ
tot) ≤ λk+1. Hence,

∥U1 −V1∥ ≤ λk+1

λk+1(A)− λk+1

≤ 1

a− 1
,

Let V2 be the eigenvectors that are orthogonal to V1. Then, V⊤
2 δ = 0, since the columns

of V1 are the linear combinations of δ and {ξi}ki=1. Consequently, ∥V⊤
1 δ∥2 = ∥δ∥2 and

∥U⊤
1 δ∥2 = ∥V⊤

1 δ + (U1 −V1)
⊤δ∥2 ≥ ∥δ∥2 − ∥U1 −V1∥∥δ∥2 =

a− 2

a− 1
∥δ∥2.

The second conclusion follows directly from the fact that ∥U⊤
1 ΣU1∥ ≤ ∥Σ∥ = λ1. �
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