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Abstract

The empirical mode decomposition (EMD) is an algorithm pioneered by N. Huang et. al. as

an alternative technique to the traditional Fourier and wavelet methods for analyzing nonlinear

and non-stationary signals. It aims at decomposing a signal, via an iterative sifting procedure,

into several intrinsic mode functions (IMFs), and each of the IMFs has better behaved instan-

taneous frequency analysis. This paper presents an alternative approach for EMD. The main

idea is to replace the average of upper and lower envelopes in the sifting procedure of EMD

by a local average obtained by variational optimization framework. Therefore, an IMF can be

produced by simply subtracting the average from the signal without iteration. Our numerical

examples illustrate that the resulting decomposition is convergent and robust against noise.
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1 Introduction

It is well known that nonlinear and non-stationary signal analysis is important and difficult. His-

torically, Fourier transform has provided a general method for analyzing signals, and has achieved

unprecedented success for signals generated by linear and stationary processes. For nonlinear and

non-stationary signals, there are many methods too. For examples, windowed Fourier transform,

wavelet transform and the Wigner-Ville distribution are designed for non-stationary but linear sig-

nals. A number of nonlinear time series analysis methods, almost all of them are based on Fourier

analysis, have been studied for nonlinear but stationary systems [16, 24, 20]. Despite some re-

markable performances achieved by those methods in various applications, analyzing nonlinear and

non-stationary signals still remains challenging.

The empirical mode decomposition (EMD), first proposed by Huang et. al. in 1998, is a highly

adaptive scheme serving as a powerful complement to the existing approaches [11] . The main

idea is that any complicated data set can be decomposed into a finite, and often small, number

of intrinsic mode functions (IMFs) via the so-called sifting procedure, where an IMF is a function

that satisfies the following two conditions quoted directly from [11]:

(1) In the whole data set, the number of extrema and the number of zero crossings must either

equal or differ at most by one;

(2) At any point, the mean value of the envelope defined by the local maxima and the envelope

defined by the local minima is zero.

In recent years, the EMD has received considerable attentions in terms of interpretations ([5, 3,
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23, 18]) and applications in many disciplines such as ocean science [10], biomedicine ([14, 21, 32]),

speech signal processing [28], image processing [1], pattern recognition ([19, 30, 33]) and many

more.

Despite its remarkable success, it is still lacking of mathematical understanding of the EMD

method, such as its convergence property, dependence on the number of sifting, the stopping cri-

teria, and its stability to noise perturbations. Those shortcomings are partly due to the highly

adaptive nature of the sifting procedure as well as the ad hoc nature of using cubic splines or B-

splines [3]. This sparkles many studies to provide mathematically sounding alternatives to the EMD

method. For examples, in [4], Daubechies et. al. proposed a framework, named synchrosqueesed

wavelet transform, that combines multiresolution analysis, amplitude modulated-frequency mod-

ulated (AM-FM) signals, and shape functions to achieve signal decompositions. Hou et. al. [7]

proposed a variational approach, based on AM-FM functions and higher order total variation norms

to achieve data dependent sparse signal decompositions. Lin et. al. [17] designed adaptive iterative

filters to compute the local average, which is then used to replace the average of upper and lower

envelopes in the sifting procedure in the EMD method. In [8, 29, 15], Peng et. al. developed

a local linear operator-based method, which decomposes a signal into summation of local narrow

band signals. And Pustelnik et. al. [9, 27] proposed a non-smooth convex optimization approach

to calculate multi-components of the signal so that each one can be considered as an IMF. In their

optimization model, a constrain is used to enforce near orthogonality among the components. In

addition, many groups have conducted researches to improve the EMD method [22, 25].

In this paper, we present a new mathematical framework serving as another alternative, which

not only has closer ties to the original EMD method, i.e., its components can be guaranteed as

IMFs, but also can resolve some aforementioned mathematical challenges faced by the original EMD

method. Our approach is motivated by a recent theoretical study [31] showing that condition (2) in
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Huang’s original IMF descriptions implies condition (1) provided that in the sifting procedure, the

upper and lower envelopes are obtained by spline interpolations of the local maxima and minima

respectively. Inspired by this result, and the fact that the sifting procedure is used to generate

IMFs with zero local averages, we propose to use local variational optimization models to find local

averages directly, and then the local averages are subtracted from the signal to generate IMFs. In

other words, we use local optimization models to replace the sifting procedure in the EMD method.

In the design of our new framework, we take several factors into consideration. First, we want

our method to be flexible, so we do not use any pre-defined functions, such as AM-FM functions

or wavelets as the bases for the IMFs. This is a feature shared by the original EMD method and

the non-smooth optimization approach taken by Pustelnik et. al [9, 27]. On the other hand, many

existing alternatives, such as the methods studied in[4, 7, 8, 29, 15], use pre-defined functions as

bases for IMFs. Second, we would like to design our method adaptively and locally, so we partition

the region into subregions separated by local extreme points and then solve local optimization

problems for the local averages. This ensures that information from regions far apart does not

influence each other. And we like to stress that this is a distinguished feature in our framework

in response to the nature of nonlinear and non-stationary signals. To the best of our knowledge,

in other existing optimization based decompositions, such as the ones in [7, 8, 29, 15, 9, 27],

the objective functions are globally defined. Third, considering the possibility that the intrinsic

components in a signal may not be orthogonal to each other, we do not use any conditions to

achieve near orthogonality in the decomposition. This is different from some existing methods

in the literatures, such as the ones proposed in [9, 27], in which near orthogonality is enforced.

However, numerical examples indicate that our approach exhibits data dependent adaptivity in

producing orthogonal components, meaning it generates near orthogonal decompositions if the

intrinsic components are near orthogonal, otherwise it does not necessarily decompose orthogonal
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components. Finally, we also want to design our strategy to be robust against noise perturbations.

For this reason, we use both total variation (TV) and high order TV norms, all defined on the

subregions to avoid global influence, to account for the noise perturbations as well as possible

discontinuities in the signal. On the contrary, only higher order TV norms are used in the existing

methods. In computation, we employ the recent developed split Bregmen iteration [34, 6, 2] to

compute the solutions of the local optimization problems efficiently. Our theoretical study and

numerical experiments show that the proposed method can achieve the desirable features with

convergent, efficient, and robust against noise properties.

The rest of this paper is organized as follows. We introduce our optimization model for obtaining

the local average, and provide some details of its implementation issues in Section 2. In Section 3,

we present an alternative approach for the EMD method in data decomposition. In addition, we

apply discontinuous signal and monocomponent data to test the performance of our approach. We

also demonstrate its ability in data decomposition, which cover simulative, real and noisy data. We

present our conclusion in Section 4.

2 The novel local average based on optimization for data decom-

position

A key idea in the EMD method is to find a locally determined curve (or average) so that the

difference between the signal and average is symmetric as described by the two conditions of IMFs

given in [11]. In the original EMD algorithm, the curve is obtained by the average of upper and

lower envelopes calculated by cubic splines through the extreme points. However, overshoots and

undershoots are common, it can generate new extrema, shift or exaggerate the existing ones. The

produced difference usually does not satisfy the symmetry conditions. Hence, the EMD algorithm
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use repeated sifting procedure to achieve the goal. Inspired by this idea, we start our investigation

by finding another local average procedure to replace the sifting process.

Let x be a signal , the usual average of x defined on [a, b] is given by the following formula

x̄ =
1

b− a

∫ b

a
x(t)dt, (2.1)

or a local weighted average which will not be discussed in this paper. But for the data x covering

serval oscillations on [a, b], the average by (2.1) can not achieve our purpose mentioned above. To

vividly illustrate it, we consider a toy example

x(t) = 6t+ cos(8πt), t ∈ [0, 1]. (2.2)

The left of Figure 1 gives its profile, the average computed by (2.1), and the ideal average we are

looking for. From it, the red line, i.e., the average computed by (2.1) clearly can not be the average

we want. This is because x contains several varying vibrations, but the red line does not follow

the featured oscillations. Inspired by these, to compute the average of any oscillating signal, we

should partition it into several monotonic parts in advance. However, directly applying (2.1) on the

monotonic intervals creates the staircase problem, as the red curve depicted in the right of Figure

1, various jump points arise on it. Motivated by those observations, the average we are looking for

not only should be adaptivity and locality, but also smoothness.

Let S[a, b] be the space of all the continuous and piecewise monotonic functions. That is, for

each x ∈ S[a, b], the domain [a, b] can be partitioned into a = ax1 < ax2 < · · · < axmx+1 = b such

that x is monotonic on each Bx
i = [axi , a

x
i+1] for i = 1, · · · ,mx, where the superscripts of x express

the dependence of the partition on x. We denote by M : S[a, b]→ S[a, b] the average operator we

look for. Then, for each x ∈ S[a, b], we would likeMx to be a local, adaptive and smooth function

achieving the following goals:

goal 1:
∫
Bx

i
(x−Mx)dt = 0 for i = 1, . . . ,mx;
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Figure 1: Left, blue: x, red: the average of x obtained from (2.1), green: the average we look for; Right,

blue: x, red: the average given by utilizing (2.1) for each monotonic part of x, green: the average we look

for.

goal 2: the average of x−Mx should be zero, i.e.,M(x−Mx) = 0. Here it needs to be emphasized

that the average operator of x is different from that of x−Mx;

goal 3: x−Mx is monotone on each Bx
i , i = 1, . . . ,mx.

It must be pointed out that the operator M is data dependent. That is, different data correspond

to different average operators. Notice that, the first goal is to make Mx be a local average; and

the second one aims at ensuring x−Mx to be symmetric with respect to zero; the last goal is to

guarantee there is no new extrema appeared in x−Mx. We select optimization model to achieve

the goals, which is given in the following subsection.

2.1 Adaptive and local average based on TV and TVτ norms

For a function g(t), t ∈ [a, b], a common way to measure its smoothness is through the τ -order TV

norm

TVτ (g) =

∫ b

a
|g(τ+1)(t)|dt, τ ∈ N∪{0}. (2.3)

However, in order to ensure that the information from regions far apart does not influence each

other, we confine the TVτ norm to characterize the smoothness separately on each partitioned

monotone subinterval instead of the whole domain.
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For any x ∈ S[a, b], {Bx
i = [axi , a

x
i+1]}mx

i=1 denotes its local monotone subintervals. Let Tx be the

set of all the functions defined on [a, b] satisfying the following conditions:

(i)
∫
Bx

i
(x− g)dt = 0, i = 1, . . . ,mx;

(ii) x− g is monotone on Bx
i , i = 1, . . . ,mx;

(iii) g(axi ) = 1
|Bx

i−1|+|Bx
i |
∫
Bx

i−1∪Bx
i
x(t)dt, i = 1, . . . ,mx + 1, where Bx

0 := Bx
mx+1 := ∅.

We define the average Mx as the solution of the following optimization problem:

min
g∈Tx

α1TV0(g) + α2TVτ (g), (2.4)

where τ ∈ N+, α1, α2 are two positive penalty parameters satisfying α1 + α2 = 1.

Notice the condition (iii) in Tx, it makes the unknown function g be piecewise separable in

problem (2.4). Hence, minimizing these total variation norms of x is intrinsically imposed on each

Bx
i independently. Furthermore, taking both the 0-order and τ -order total variation norms in the

objective are resulted from the following reasons. On one hand, the 0-order total variation norm is

to account for those nonlinear and non-stationary data containing jump points. And on the other

hand, using the τ -order total variation norm is to ensure the smoothness of the average. Hence,

to make the average smooth, the parameter α2 takes a larger value than α1. When the signals are

discontinuous, we use comparable values for both α1 and α2.

According to the conditions in Tx, it is easy to find that Mx satisfies both the goal 1 and goal

3. Also, we will prove that it meets the goal 2 through the following theorem.

Theorem 1. Let x ∈ S[a, b] be the signal to be analyzed. If the average Mx is generated from the

optimization problem (2.4), then there holds M(x−Mx) = 0.

Proof. Let Bx
i = [axi , a

x
i+1], i = 1, . . . ,mx, be the intervals on which x is monotone. Then [a, b] =

∪mx

i=1B
x
i . Consider the optimization problem (2.4), for any g ∈ Tx, let x1 := x − g. Denote
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Bx1
i = [ax1i , a

x1
i+1], i = 1, . . . ,mx1 , as the intervals on which x1 is monotone. Since x1 is monotone

on each Bx
i , it is followed that each Bx1

i is a union of some Bx
i , that is, Bx1

i = ∪j∈ΛiB
x
j , where Λi

is a subset of {1, . . . ,mx}. Thus,

∫
B

x1
i

x1(t)dt =
∑
j∈Λi

∫
Bx

j

(x(t)− g(t))dt = 0, i = 1, . . . ,mx1 .

It is followed immediately that

∫
B

x1
i−1∪B

x1
i

x1(t)dt = 0, i = 1, . . . ,mx1 + 1,

where Bx1
0 = Bx1

mx1+1 := ∅. At last, x1 is naturally monotonic on each Bx1
i . These imply that

0 ∈ Tx1 .

Let g1 ∈ Tx1 be a solution of (2.4). Then

α1TV0(g1) + α2TVτ (g1) ≤ α1TV0(0) + α2TVτ (0) = 0. (2.5)

Notice that α1, α2 are positive, it concludes that g1 equals a constant on [a, b]. Using the condition

g1(a) =
∫
B

x1
1
x1(t)dt = 0, we have that g1(t) = 0,∀t ∈ [a, b]. Hence, it yields M(x−Mx) = 0.

For Theorem 1, it indicates that our average can make the residue which is the average sub-

tracted from the original signal, be symmetric with zero. That is, it meets the condition (2) of IMF

in our average sense. Furthermore, similar to the analysis in [31], we have the following conclusion.

Corollary 1. Let x ∈ S[a, b], and Tx be the set defined in problem (2.4). Then for any continuous

g ∈ Tx, the function x− g has a single zero crossing on each of its strictly monotone interval.

Proof. Let Bx
i = [axi , a

x
i+1], i = 1, . . . ,mx, be the intervals on which x is monotone and axi , i =

1, . . . ,mx, be extreme points of x satisfying axi 6= axi+1 for i = 1, . . . ,mx. Due to g ∈ Tx, we have

i) x− g is monotonic on Bx
i and

∫
Bx

i
(x− g)dt = 0, i = 1, . . . ,mx;

ii) (x− g)|t=axi = 1
|Bx

i−1|+|Bx
i |
∫
Bx

i−1∪Bx
i
[x(axi )− x(t)]dt, i = 1, . . . ,mx + 1.

9



Without loss of generality, suppose that x is increasing on Bx
i . Then x(axi ) − x(t) ≤ 0, ∀t ∈

Bx
i−1 ∪Bx

i , and x(axi )− x(axi+1) < 0. It is immediately followed that (x− g)|t=axi < 0. Similarly we

have (x− g)|t=axi+1
> 0. Since x− g is monotone on Bx

i , it is clear to find that x− g is increasing

on Bx
i as x. Hence, x− g has the same monotonicity with x.

Moreover, suppose that Bx
i is a strictly increasing interval of x − g. Since x − g is continuous

and satisfies (x− g)|t=axi < 0 and (x− g)|t=axi+1
> 0, we clearly get it has a single zero crossing on

Bx
i . The conclusion is achieved.

Remark 1. In the condition (iii) of Tx, there are many ways to define the values of g(axi ), i =

1, . . . ,mx + 1, such as

(1) g(axi ) =
x(axi−1)+2x(axi )+x(axi+1)

4 , where x(ax0) := 0 and x(axmx+2) := 0;

(2) g(axi ) =
∑

j
1

2|j−i+1|·|Bx
j |
∫
Bx

j
x(t)dt;

(3) g(axi ) = 1
|Bx

i−1|+|Bx
i |
∫
Bx

i−1∪Bx
i
x(t)dt.

We adopt the method (3) in this paper. This is because it has the following advantages over the

others listed above. First, in contrast to (1), it fully uses the information on monotonic intervals

of x rather than just the values on the three extreme points, this makes our method much better

in grasping the trend of x. Second, the points used in (3) are just referred to the local monotonic

intervals, which is different to the method in (2) from which the values are defined by the weighted

average of the global information of x, this makes our method better in avoiding the global influence

and robust to the noise perturbations.

In the following subsection, we propose the detail implementation for obtaining the numerical

solution of the minimization problem (2.4).
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2.2 Equivalent formula and numerical implementation

To compute the solution of the model (2.4), the major challenge is to make it satisfies the condition

(ii) in Tx. We introduce the following proposition, which can not only give an equivalent description

of this condition, and also provide an executable formula to be incorporated in computation.

Proposition 1. If f is the solution of the following optimization problem

minf∈S[a,b]
⋂
C1[a,b] TV0(f)

s.t. f(a) = β1, f(b) = β2,

(2.6)

where β1, β2 are two given constants, then f is monotonic on [a, b].

Proof. It is easy to see that any monotonic function in C1[a, b] is a solution of (??) and the minimal

value of the objective functional is |β2 − β1|. Since

TV 0(f) =

∫ b

a
|f ′(t)|dt ≥

∣∣∣∣∫ b

a
f ′(t)dt

∣∣∣∣ = |f(b)− f(a)| = |β2 − β1| = TV0(f),

we conclude that f ′(t) = λ|f ′(t)|, ∀t ∈ [a, b], where λ is the sign of β2 − β1. Thus f is monotonic

on [a, b].

Following Proposition 1, the condition (ii) in Tx can be expressed into a minimization problem.

Thus, Tx can be equivalently reformed as follows:

(i)
∫
Bx

i
(x− g)dt = 0 for i = 1, . . . ,mx;

(ii) and g is the solution of the minimization problem

ming TV0(x− g)

s.t. g(axi ) = 1
|Bx

i−1|+|Bx
i |
∫
Bx

i−1∪Bx
i
x(t)dt, i = 1, . . . ,mx + 1.
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And then, similar to the penalty method in classical optimization theory [?], we approximate (2.4)

as the following formula:

ming αTV0(x− g) + α1TV0(g) + α2TVτ (g),

s.t.
∫
Bx

i
(x− g)dt = 0 for i = 1, . . . ,mx;

g(axi ) = 1
|Bx

i−1|+|Bx
i |
∫
Bx

i−1∪Bx
i
x(t)dt, i = 1, . . . ,mx + 1,

(2.7)

where α1, α2 and Bx
i , i = 0, 1, . . . ,mx+1 are the same as those mentioned in (2.4), and α is a large

enough positive parameter to control the monotonicity of x − g on each Bx
i . This minimization

problem can be discretized as an L1 minimization problem, which has been well studied in the

compressed sensing field [34, 6, 2].

Suppose the signal is uniformly sampled at ti, i = 1, 2, . . . , n, andBx
i = [tji , tji+1 ], i = 1, 2, . . .mx.

Then, the minimization problem (2.7) can be discretized as the following form:

ming∈Rn α‖D1(x− g)‖1 + α1‖D1g‖1 + α2‖Dτ+1g‖1

s.t. A(x− g) = 0

Cg = b,

(2.8)

where A = (ail) ∈ Rmx×n denotes the piecewise integral operator, whose elements are defined by

ail = 1 when tl ∈ Bx
i , and ail = 0 otherwise, i = 1, . . . ,mx; b ∈ Rmx+1, whose elements are defined

as b(i) = 1
|Bx

i−1|+|Bx
i |
∫
Bx

i−1∪Bx
i
x(t)dt, i = 1, . . . ,mx + 1; C = (cil) ∈ R(mx+1)×n, where cil = 1 when

tl = tji , otherwise cil = 0, i = 1, . . . ,mx + 1; and D1 ∈ R(n−1)×n and Dτ+1 ∈ R(n−τ−1)×n are the

1-order and (τ + 1)-order differential matrixes respectively. Moreover, we utilize the split Bregman

iterative algorithm discussed recently by Goldstein and Osher [34, 6, 2], which performs well for

large-scale data, to solve the above L1 optimization problem. The procedure is summarized in

Algorithm 1.

The computational cost of Algorithm 1 contains the computation of gk, dk1 and dk2 in the split

Bregman iteration. Let n be the length of the signal. The gk can be computed by using the
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Algorithm 1 (Optimal Average)

1. initialization: d0
i = 0, (i = 1, 2), u0

i = 0, µi > 0, (i = 1, 2, 3, 4), g0 = 0.

2. while not converge, do

• uk+1
1 = uk1 +A(x− gk), uk+1

2 = uk2 + b− Cgk;

• uk+1
3 = uk3 +D1gk − dk1, u

k+1
4 = uk4 +Dτ+1gk − dk2;

• gk+1 ← min{µ12 ‖Ag−u
k+1
1 ‖2 + µ2

2 ‖Cg−u
k+1
2 ‖2 + µ3

2 ‖d
k
1−D1g−uk+1

3 ‖2 + µ4
2 ‖d

k
2−Dτ+1g−

uk+1
4 ‖2};

• dk+1
1 ← min{α‖D1x− d1‖1 + α1‖d1‖1 + µ3

2 ‖d1 −D1gk+1 − uk+1
3 ‖2};

• dk+1
2 ← min{α2‖d2‖1 + µ4

2 ‖d2 −Dτ+1gk+1 − uk+1
4 ‖2}.

3. end while.

existing optimization technique with computational complexity O(n log n) and dk1, d
k
2 can be solved

by the soft thresholding procedure respectively, which need only the operations of vector product

and scalar contraction with a complexity 2O(n). If L iterations are implemented, then the total

computational complexity is L(O(n log n) + 2O(n)) = L ·O(n log n).

In the experiments in this paper, we take α = 500, α1 = 0.01, α2 = 0.99 in problem (2.8) in

general. We use weights α = 500, α1 = 0.5, α2 = 0.5 only for discontinuous signals, such as the one

in Example 1. Although the weights are given in advance and independent of the original signals,

we found that the decomposition results are insensitive to the choices of the parameters in our

experiments. For instance, we tried many different combinations of the parameters taking values

in the ranges α ∈ [100, 1000], α1 ∈ [0.3, 0.7] and α2 = 1− α1 in Example 1, the results are similar

to the ones that we depict in Figure 4. The same case is true for Example 2 when we take different

parameter values α ∈ [100, 1000], α1 ∈ [0.01, 0.2] and α2 = 1− α1 respectively.

On the other hand, we put no restriction on the parameter τ except for τ ∈ N+ in (2.4).
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However, different choices of τ value give different results. For example, consider a signal defined

by,

x(t) =


cos(4πt) t ∈ [0, 2]

6(t− 2) + cos(8πt) t ∈ (2, 4],

Figure 2 shows the averages obtained from (2.8) by taking τ = 1, 2, 3, 4 respectively. As one can

see, the first two averages are quite close to the desirable one. But when use τ = 3 or 4, some small

waves appear in the averages, and this is not ideal for our purpose. Hence, choosing a reasonable

τ is important to the average. If the τ is too small, the average will lack of regularity. But if it is

too large, it will bring in undulation effects as well. In this paper, we use τ = 2, which seems to be

the robustest among all the cases.
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Figure 2: The averages generated from our approach with different τ . From left to right and top to bottom,

the parameter τ is taken as 1, 2, 3, 4 respectively.

Let us look back to the toy example x(t) = 6t+ cos(8πt), t ∈ [0, 1] mentioned in (2.2). The red

curve in Figure 3 shows the average obtained from our approach. Compare it with the two plots

depicted in Figure 1, the average here are remarkably improved, and very close to the one we want
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shown in the green line.
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Figure 3: Blue: x, red: the average of x obtained from our approach, green: the average we are looking for.

3 An alternative algorithm to generate IMFs

Since our average is based on optimization model, we denote it as OA for simplicity. In this part,

we primarily focus on using OA to perform an alternative algorithm for EMD. It is presented as

follows.

3.1 OA-based data decomposition algorithm

Given a signal x(t), t ∈ [a, b] , let s = x, then the first IMF c1 can be extracted by the following

iteration.

1) Identify all the extrema of s, and then obtain the partition {Bs
i := [asi , a

s
i+1]}ms

i=1 based on

these extreme points.

2) Compute the average Ms by solving the minimization problem (2.8). Then c1 = s −Ms is

the first IMF.

The residue r1 = x− c1 is treated as the original signal, i.e., let s = x− c1. And we apply it to the

same iteration as described above again, the other IMFs can be calculated unless the residue is a
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monotonic function. Finally, we obtain

x =
n∑
i=1

ci + rn. (3.1)

3.2 Numerical experiments

In this section, we demonstrate the performance of the new alternative approach of EMD through

a series of examples, which cover synthetic and real data. Prior to these, we first examine the

performance of our average (OA) approach by comparing it with other approaches introduced in

[11, 22, 25]. Since the averages presented in [11, 22, 25] are respectively based on cubic spline

envelopes (CSE), a segment power-function based envelopes (SPFE) and monotone piecewise cubic

interpolation based envelopes (IMCE). We denote them as CSA, SPFA and IMCA respectively in

our experiments for simplicity, .

Example 1: We first consider the signal

x(t) =


cos(12πt) t ∈ [0, 1] ∪ [2, 3]

0.5 + 0.3 cos(8πt) t ∈ (1, 2),

(3.2)

which is composited by three intermittent signals. Since cos(12πt) and 0.3 cos(8πt) are monocom-

ponent signals, the ideal average of x should be

m̃(t) =


0 t ∈ [0, 1] ∪ [2, 3]

0.5 t ∈ (1, 2).

Due to the discontinuity of x, to find an desirable average is challenging. This is reflected in Figure

4. The left side is the profile of the signal x, the middle figure depicts the averages obtained by the

OA (blue line), the CSA (red), the IMCA (green dash) and the SPFA (black dash) respectively.

Moreover, we plot the errors between the averages and the ideal one m̃(t) on the right side. It is

clear that the OA is the closest to m̃(t). Meanwhile, we can use the following root mean square
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(RMS) [26] to measure the error between an average m(t) and the ideal one m̃(t):

RMS(m, m̃) =

√√√√ 1

n

n∑
i=1

|m(ti)− m̃(ti)|2. (3.3)

Generally speaking, the smaller the RMS, the better the average is. Back to this example, Table 1

lists the RMSs of these averages with m̃(t). It is also seen that the proposed OA is the best among

all the cases.
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Figure 4: Left, the signal x. Middle, red solid: the CSA, green dash: the IMCA, black dash: the SPFA,

blue solid: the OA. Right, red solid: CSA− m̃, green dash: IMCA− m̃, black dash: SPFA− m̃, blue solid:

OA− m̃.

Table 1

Methods

OA IMCA CSA SPFA

RMSs 0.0504 0.0586 0.0595 0.0523

Example 2: In this example, we consider a monocomponent signal x(t) = (2t+cos t2) cos(2πt+

0.2 cos t), t ∈ [0, 10]. As we know, the ideal average m̃(t) of any monocomponent signal should be

zero. This actually can not be attained by the existing approaches. Figure 5 shows the profile of

the signal and its average including the OA, the CSA, the IMCA and the SPFA. Clearly, we can

also see that the OA is the closest to m̃(t) from the right of Figure 5. Meanwhile, Table 2 shows
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the RMSs of the averages. These all indicate the OA is best among them.

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

25

t

x

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

t

 

 
CSA

IMCA

SPFA

OA

ideal average

Figure 5: Left, the signal x. Right, red solid: the CSA, green dash: the IMCA, black dash: the SPFA, blue

solid: the OA, blue dash: the ideal average m̃.

Table 2

Methods

OA IMCA CSA SPFA

RMSs 0.1715 0.6168 0.6094 0.6210

In the following examples, we test our optimal average method on several signals that may

be non-stationary, or polluted by noise, or from the real world applications. We also compare

our method with some existing approaches, such as the M-LFBF algorithm introduced in [9],

and emsamble EMD (EEMD) proposed in[12, 13]. In addition, we calculate the normalized inner

product of two components c1 and c2 to measure the angle between them, i.e.

ρ(c1, c2) =
|〈c1, c2〉|
‖c1‖2‖c2‖2

.

It is clear that the smaller values of ρ(c1, c2) indicate the components are near orthogonal. We want

to remind that M-LFBF enforces the near orthogonality in the optimization problem specifically,

while we do not in our optimal average algorithms.

Example 3: We consider the signal composed by a couple of orthogonal components x(t) =
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cos(2πt) + sin(8πt). The left of Figure 6 plots the original and the results obtained from our

approach. We use the M-LFBF algorithm to decompose the same signal, and its results are shown

in the right of Figure 6. The normalized inner products between the IMFs obtained from our

approach and the M-LFBF respectively are computed and listed in Table 3. The numbers show

that the two IMFs obtained by our method are also near orthogonal.
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Figure 6: The original and IMFs in Example 3. Left: our approach; Right: the M-LFBF method.

Table 3: Performance of the orthogonality in Example 3.

ρ value
Our approach

ρ value
M-LFBF

imf1 imf2 imf1 imf2

imf1 1 0.0661 imf1 1 0.0354

imf2 0.0661 1 imf2 0.0354 1

Example 4: We test a non-stationary signal x(t) = cos(t)+cos(t2 +t+cos(t)), which is formed

by two non-orthogonal components. Using our approach yields essentially a perfect decomposition

with two IMFs and a residue that is close to zero, see the left of Figure 7. On the right of Figure

7, we depict the results from the M-LFBF algorithm. Table 4 lists the normalized inner products

between the components obtained by these two methods respectively. This example demonstrates
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that it is not ideal to enforce the orthogonality in the decompositions if the signal consists of

non-orthogonal intrinsic components.
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Figure 7: The original signal, IMFs and the residue of Example 4. Left: our approach; Right: the M-LFBF

method.

Table 4: Performance of the orthogonality in Example 4.

ρ value
Our approach

ρ value
M-LFBF

imf1 imf2 res imf1 imf2 imf3 res

imf1 1 0.0316 0.0195 imf1 1 0.0375 0.0058 0.0212

imf2 0.0316 1 0.0665 imf2 0.0375 1 0.0318 0.2565

res 0.0195 0.0665 1 imf3 0.0058 0.0318 1 0.0055

res 0.0212 0.2565 0.0055 1

Example 5: In this example, we test our approach on signal polluted by Gaussian noise. Here

the signal is given by

x(t) = 0.6t+ sin(t) + sin(3t) + ε(t), (3.4)

where ε(t) is a Gaussian noise. Our method generates four IMFs and a trend, which are depicted

in the top of Figure 8. The three plots on the left correspond to the polluted signal and noise
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components respectively, the other three components on the right are very close to the intrinsic

components of x. We also use the EEMD 1 technique [12, 13] to decompose the signal and show

its results in the bottom of Figure 8. Table 5 lists the normalized inner products between each two

components of our method, it also shows our method can generate near-orthogonal components in

this case.
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Figure 8: Top: the figures are corresponding to the original signal and its components obtained from our

approach in Example 5. Bottom: these are the original signal and its components obtained from EEMD.

Example 6: In the previous examples, we use several synthetic signals to test our approach.

Here, we consider the length of the day (LOD) data, which covers 700 consecutive days starting

from 1978. The original signal and the IMFs derived from our approach are plotted in Figure

9. Like the EMD approach, our method can recover almost all the physically meaningful IMFs.

Clearly, in Figure 9, the first IMF captures the semi monthly cycles while the second IMF indicates

the monthly oscillations. Similarly, the third IMF captures the semi annual cycle and the last IMF

captures the annual tendency. Table 6 indicates the angles between the components obtained by

1We use the code made by M. E. Torres et. al., it is available at http://perso.ens-lyon.fr/patrick.flandrin/emd.html.
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our method.
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Figure 9: The IMFs and trend of LOD data in Example 6.

4 Conclusion

The EMD has found many applications in a variety of problems covering signal processing, pattern

recognition, biomedicine engineering and ocean science since its advent. Although it often proves

remarkably effective, a mathematical foundation is virtually nonexistent. The difficulty is partly

due to the average based on cubic spline. In view of this, we present a novel adaptive and local

average based on local optimization to overcome this problem. The improvements in our approach

Table 5: Performance of the orthogonality in Example 5.

ρ value
IMFs and residue

imf1 imf2 imf3 imf4 res

imf1 1 0.1789 0.0070 0.0040 0.0073

imf2 0.1789 1 0.3219 0.0408 6.1486× 10−4

imf3 0.0070 0.3219 1 0.1078 0.0016

imf4 0.0040 0.0408 0.1078 1 0.0466

res 0.0073 6.1486× 10−4 0.0016 0.0466 1
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can be summarized as follows. First, our approach does not use any pre-defined functions, such

as AM-FM functions or wavelets as the basis for IMFs, this makes our approach share similar

flexibilities with the original EMD method. And second, the objective and the constraint conditions

are defined on the monotonic intervals of the signal, this can avoid the global influence and then

makes our approach robust to the noise perturbations. We also proved that the IMFs obtained by

our alternative approa ch satisfy the two requirements proposed by Huang et. el. in the original

EMD method. Moreover, the existing theory on total variation minimization provides convergence

guarantee for our iterations. In addition, the experiments show very encouraging results, and we

hope that this alternative approach can lead to more stable performance in applications, which will

be considered in our future research studies.
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[20] J. C. Nunes, S. Guyot, and E. Deléchelle. Texture analysis based on local analysis of the

bidimensional empirical mode decomposition. Machine Vision and Applications, 16(3):177–

188, 2005.

[21] U. Parlitz. Nonlinear time-series analysis. In Nonlinear Modeling, pages 209–239. Springer,

1998.

[22] S. C. Phillips, R. J. Gledhill, J. W. Essex, and C. M. Edge. Application of the hilbert-

huang transform to the analysis of molecular dynamics simulations. The Journal of Physical

Chemistry A, 107(24):4869–4876, 2003.

[23] S. R. Qin and Y. M. Zhong. A new envelope algorithm of hilbert–huang transform. Mechanical

Systems and Signal Processing, 20(8):1941–1952, 2006.

[24] G. Rilling and P. Flandrin. One or two frequencies? the empirical mode decomposition answers.

Signal Processing, IEEE Transactions on, 56(1):85–95, 2008.

[25] H. Tong. Nonlinear time series analysis. Wiley Online Library, 2007.

[26] L. Yang, Z. Yang, L. Yang, and P. Zhang. An improved envelope algorithm for eliminating

undershoots. Digital Signal Processing, 23(1):401–411, 2013.

[27] L. Yang, Z. Yang, F. Zhou, and L. Yang. A novel envelope model based on convex constrained

optimization. Digital Signal Processing, 2014.

[28] N. Pustelnik, P. Borgnat and F. Patrick. Empirical mode decomposition revisited by multi-

component non-smooth convex optimization. Signal Processing, 102(1):313–331, 2014.

[29] Z. Yang, D. Huang, and L. Yang. A novel pitch period detection algorithm based on hilbert-

huang transform. In Advances in Biometric Person Authentication, pages 586–593. Springer,

2005.

26



[30] S. L. Peng, and W.-L. Hwang. Null space pursuit: An operator-based approach to adaptive

signal separation In Signal Processing, IEEE Transactions on, 58(5): 2475–2483. 2010.

[31] Z. Yang, D. Qi, and L. Yang. Signal period analysis based on hilbert-huang transform and its

application to texture analysis. In Image and Graphics, 2004. Proceedings. Third International

Conference on, pages 430–433. IEEE, 2004.

[32] Z. Yang and L. Yang. A new definition of the intrinsic mode function. In Proceedings of World

Academy of Science, Engineering and Technology, volume 60, pages 822–825. Citeseer, 2009.

[33] Z. Yang, L. Yang, and D. Qi. Detection of spindles in sleep eegs using a novel algorithm

based on the hilbert-huang transform. In Wavelet Analysis and Applications, pages 543–559.

Springer, 2007.

[34] Z. Yang, L. Yang, D. Qi, and C. Y. Suen. An emd-based recognition method for chinese fonts

and styles. Pattern Recognition Letters, 27(14):1692–1701, 2006.

[35] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for l1-

minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences,

1(1):143–168, 2008.

27


