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Abstract. We focus on the multi-class segmentation problem using the
piecewise constant Mumford-Shah model in a graph setting. After for-
mulating a graph version of the Mumford-Shah energy, we propose an
efficient algorithm called the MBO scheme using threshold dynamics.
Theoretical analysis is developed and a Lyapunov functional is proven
to decrease as the algorithm proceeds. Furthermore, to reduce the com-
putational cost for large datasets, we incorporate the Nyström extension
method which efficiently approximates eigenvectors of the graph Lapla-
cian based on a small portion of the weight matrix. Finally, we imple-
ment the proposed method on the problem of chemical plume detection
in hyper-spectral video data.

Keywords: graph, segmentation, Mumford-Shah, total variation, MBO,
Nyström, hyper-spectral image

1 Introduction

Multi-class segmentation has been studied as an important problem for many
years in various areas, such as computer science and machine learning. For im-
agery data in particular, the Mumford-Shah model [18] is one of the most exten-
sively used model in the past decade. This model approximates the true image
by an optimal piecewise smooth function through solving a energy minimiza-
tion problem. More detailed review of the work on Mumford-Shah model can be
found in the references of [4]. A simplified version of Mumford-Shah is the piece-
wise constant model (also known as the “minimal partition problem”), which is
widely used due to its reduced complexity compared to the original one. For a
given contour Φ which segments an image region Ω into n̂ many disjoint sub-
regions Ω = ∪n̂r=1Ωr, the piecewise constant Mumford-Shah energy is defined
as:

EMS(Φ, {cr}n̂r=1) = |Φ|+ λ

n̂∑
r=1

∫
Ωr

(u0 − cr)2 , (1)
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where u0 is the observed image data, {cr}n̂r=1 is a set of constant values, and
|Φ| denotes the length of the contour Φ. By minimizing the energy EMS over
Φ and {cr}n̂r=1, one obtains an optimal function which is constant within each
sub-region to approximate u0, along with a segmentation given by the optimal
Φ. In [5], a method of active contours without edges is proposed to solve for
the two-class piecewise constant Mumford-Shah model (n̂ = 2), using a level set
method introduced in [19]. The work in [5] is further generalized to a multi-class
scenario in [24]. The method developed in [5, 24] is well known as the Chan-Vese
model, which is a popular and representative method for image segmentation.
The Chan-Vese method has been widely used due to the model’s flexibility and
the great success it achieves in performance.

In this work, we formulate the piecewise constant MS problem in a graph
setting instead of a continuous one, and propose an efficient algorithm to solve
it. Recently the authors of [2] introduced a binary semi-supervised segmentation
method based on minimizing the Ginzburg-Landau functional on a graph. In-
spired by [2], a collection of work has been done on graph-based high-dimensional
data clustering problems posed as energy minimization problems, such as semi-
supervised methods studied in [14, 11] and an unsupervised network clustering
method [13] known as modularity optimization. These methods make use of
graph tools [6] and efficient graph algorithms, and our work pursues similar
ideas. Note that unlike the Chan-Vese model which uses log2(n̂) many level
set functions and binary representations to denote multiple classes, our model
uses simplex constrained vectors for class assignments representation (details
explained below).

To solve the multi-class piecewise constant MS variational problem in the
graph setting, we propose an efficient algorithm using threshold dynamics. This
algorithm is a variant of the one presented in the work of Merriman, Bence and
Osher (MBO) [16, 17], which was introduced to approximate the motion of an
interface by its mean curvature in a continuous space. The idea of the MBO
scheme is used on the continuous MS model [8, 21] motivated by level set meth-
ods. The authors of [11, 13, 14] implement variants of the MBO scheme applied
to segmentation problems in a graph setting. Rigorous proofs of convergence of
the original MBO scheme in continuous setting can be found in [1, 9] for the
binary case, and [7] for the multi-class case. An analogous discussion in a graph
setting is given in [23]. Inspired by the work of [7, 23], we develop a Lyapunov
functional for our proposed variant of the MBO algorithm, which approximates
the graph MS energy. Theoretical analysis is given to prove that this Lyapunov
energy decreases at each iteration of our algorithm, until it converges within
finitely many steps.

In order to solve for each iteration of the MBO scheme, one needs to compute
the weight matrix of the graph as well as the eigenvectors of the corresponding
graph Laplacian. However, the computational cost can become prohibitive for
large datasets. To reduce the numerical expenses, we implement the Nyström
extension method [10] to approximately compute the eigenvectors, which only
requires computing a small portion of the weigh matrix. Thus the proposed
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algorithm is efficient even for large datasets, such as the hyper-spectral video
data considered in this paper.

The proposed method can be implemented on general high-dimensional data
clustering problems. However, in this work the numerical experiment is focused
on the detection of chemical plumes in hyper-spectral video data. Detecting
harmful gases and chemical plumes has wide applicability, such as in environ-
mental study, defense and national security. However, the diffusive nature of
plumes poses challenges and difficulties for the problem. One popular approach
is to take advantage of hyper-spectral data, which provides much richer sensing
information than ordinary visual images. The hyper-spectral images used in this
paper were taken from video sequences captured by long wave infrared (LWIR)
spectrometers at a scene where a collection of plume clouds is released. Over
100 spectral channels at each pixel of the scene are recorded, where each chan-
nel corresponds to a particular frequency in the spectrum ranging from 7,820
nm to 11,700 nm. The data is provided by the Applied Physics Laboratory at
Johns Hopkins University, (see more details in [3]). Prior analysis of this dataset
can be found in the works [12, 15, 20, 22]. The authors of [15] implement a semi-
supervised graph model using a similar MBO scheme. In the present paper, each
pixel is considered as a node in a graph, upon which the proposed unsuper-
vised segmentation algorithm is implemented. Competitive results are achieved
as demonstrated below.

The rest of this paper is organized as follows. Section 2 introduces the graph
formula for the multi-class piecewise constant Mumford-Shah model and relevant
notations. In Secion 3, the Mumford-Shah MBO scheme is presented as well as
the theoretical analysis for a Lyapunov functional which is proven to decrease as
the algorithm proceeds; techniques such as Nyström method are also introduced
for the purpose of numerical efficiency. In Section 4, our algorithm is tested on
the hyper-spectral video data for plume detection problem. The results are then
presented and discussed.

2 Graph Mumford-Shah Model

Consider an N -node weighted graph (G,E), where G = {n1, n2, . . . , nN} is a
node set and E = {wij}Ni=1 an edge set. Each node ni corresponds to an agent
in a given dataset, (such as a pixel in an image). The quantity wij represents
the similarity between a pair of nodes ni and nj . Let W = [wij ] denote the
graph’s N ×N weight matrix, and in this work we assume W is symmetric, i.e.
wij = wji. In the case of hyper-spectral data, each node (pixel) ni is associated
with a d-dimensional feature vector (spectral channels). Let u0 : G→ Rd denote
the raw hyper-spectral data, where u0(ni) represents the d-dimensional spectral
channels of ni. We use the following notation:

– The matrix L := D −W is called the (un-normalized) graph Laplacian

[6], where D is a diagonal matrix with the i-th entry being
∑N
j=1 wij . For
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v : G→ R, observe that

〈v,Lv〉 =
1

2

N∑
i,j=1

wij (v(ni)− v(nj))
2
. (2)

– Graph function spaces for f = (f1, f2, . . . , fn̂) : G→ Rn̂:

K :=

{
f | f : G→ [0, 1]n̂,

n̂∑
r=1

fr(ni) = 1

}
,

which is a compact and convex set.

B :=

{
f | f : G→ {0, 1}n̂,

n̂∑
r=1

fr(ni) = 1

}
∈ K .

This simplex constrained vector value taken by f ∈ B indicates class assign-
ment, i.e. if fr(ni) = 1 for some r, then ni belongs to the r-th class. Thus
for each f ∈ B, it corresponds to a partition of the graph G with at most n̂
classes. Let 〈f,Lf〉 =

∑n̂
r=1〈fr,Lfr〉.

– Total Variation (TV) for graph G is given as:

|f |TV :=
1

2

N∑
i,j=1

wij |f(ni)− f(nj)| . (3)

In this setting, we present a graph version of the multi-class piecewise con-
stant Mumford-Shah energy functional:

MS(f, {cr}n̂r=1) :=
1

2
|f |TV + λ

n̂∑
r=1

〈‖u0 − cr‖2, fr〉 , (4)

where {cr}n̂r=1 ⊂ Rd, ‖u0 − cr‖2 denotes an N × 1 vector(
‖u0(n1)− cr‖2, . . . , ‖u0(nN )− cr‖2

)T
,

and 〈‖u0 − cr‖2, fr〉 =
∑N
i=1 fr(ni)‖u0(ni) − cr‖2. Note that when ni and nj

belong to different classes, we have |f(ni)− f(nj)| = 2, which leads to the
coefficient in front of the term 1

2 |f |TV .
To see the connection between (4) and (1), one first observes that fr is the

characteristic function of the r-th class, and thus 〈‖u0− cr‖2, fr〉 is analogous to
the term

∫
Ωr

(u0 − cr)2 in (1). Furthermore, the total variation of the character-
istic function of a region gives the length of its boundary contour, and therefore
|f |TV is the graph analogy of |Φ|.

In order to find a segmentation for G, we propose to solve the following
minimization problem:

min
f∈B,{cr}n̂r=1⊂Rd

MS(f, {cr}n̂r=1) . (5)
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The resulting minimizer f yields a partition of G.
One can observe that the optimal solution of (5) must satisfy:

cr =
〈u0, fr〉∑N
i=1 fr(ni)

, (6)

if the r-th class is non-empty.
Note that for the minimization problem given in (5), it is essentially equiva-

lent to the K-means method when λ goes to +∞. When λ → 0, the minimizer
approaches a constant.

3 Mumford-Shah MBO and Lyapunov functional

The authors of [16, 17] introduced an efficient algorithm (known as the MBO
scheme) to approximate the motion by mean curvature of an interface in a con-
tinuous space. The general procedure of the MBO scheme alternates between
solving a linear heat equation and thresholding. One interpretation of the scheme
is that it replaces the non-linear term of the Allen-Cahn equation with thresh-
olding [8]. In this section we propose a variant of the original MBO scheme to
approximately find the minimizer of the energy MS(f, {cr}n̂r=1) presented in (4).
Inspired by the work of [7, 23], we write out a Lyapunov functional Yτ (f) for our
algorithm and prove that it decreases at each iteration of the MBO scheme.

3.1 Mumford-Shah MBO scheme

We first introduce a “diffuse operator” Γτ = e−τL, where L is the graph Lapla-
cian defined above and τ is a time step size. The operator Γτ is analogous to
the diffuse operator e−τ∆ of the heat equation in PDE (continuous space). It
satisfies the following properties.

Proposition 1. Firstly, Γτ is strictly positive definite, i.e. 〈f, Γτf〉 > 0 for any
f ∈ K, f 6= 0. Secondly, Γτ conserves the mass, i.e. 〈1, Γτf〉 = 〈1, f〉. At last,
the quantity 1

2τ 〈1− f, Γτf〉 approximates 1
2 |f |TV , for any f ∈ B.

Proof. Taylor expansion gives

e−τL = I − τL +
τ2

2!
L2 − τ3

3!
L3 + . . .

Suppose v is an eigenvector of L associated with the eigenvalue ξ. One then has
Γτv = e−τξv ⇒ 〈v, Γτv〉 = e−τξ〈v, v〉 > 0. Let the eigen-decomposition (with

respect to L) for a non-zero f : G → R to be f =
∑N
i=1 aiφi, where {φi}Ni=1 is

a set of orthogonal eigenvectors of L (note that L is positive definite). Because

Γτ is a linear operator, one therefore has 〈f, Γτf〉 =
∑N
i=1 a

2
i 〈φi, Γτφi〉 > 0.

For the second property, L1 = 0⇒ 〈1,Lkf〉 = 0, where 1 is an N-dimensional
vector with one at each entry. Therefore, the Taylor expansion of Γτ gives
〈1, Γτf〉 = 〈1, f〉.
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At last, Γτ ' I − τL⇒ 1
2τ 〈1− f, Γτf〉 '

1
2τ 〈1− f, f〉 −

1
2 〈1,Lf〉+

1
2 〈f,Lf〉.

Particularly when f ∈ B, we have 1
2τ 〈1 − f, f〉 = 1

2 〈1,Lf〉 = 0 and 1
2 〈f,Lf〉 =

1
2 |f |TV . Hence 1

2τ 〈1− f, Γτf〉 approximates 1
2 |f |TV in B.

ut

Note that the operator (I + τL)−1 also satisfies the above three properties, and
can serve the same purpose as e−τL, as far as this paper concerns.

The proposed Mumford-Shah MBO scheme for the minimization problem (5)
consists of alternating between the following three steps:

For a given fk ∈ B at the k-th iteration and ckr =
〈u0,f

k
r 〉

〈1,fk
r 〉

,

1. Compute

f̂ = Γτf
k − τλ

(
‖u0 − ck1‖2, ‖u0 − ck2‖2, . . . , ‖u0 − ckn̂‖2

)
, (7)

2. (Thresholding)

fk+1(ni) = er , r = argmaxcf̂c(ni)

for all i ∈ {1, 2, . . . , N}, where er is the r-th standard basis in Rn̂, i.e.
fk+1
r (ni) = 1 and fk+1 ∈ B.

3. (Update c)

ck+1
r =

〈u0, fk+1
r 〉

〈1, fk+1
r 〉

.

3.2 A Lyapunov functional

We introduce a Lyapunov functional Yτ for the Mumford-Shah MBO scheme:

Yτ (f) :=
1

2τ
〈1− f, Γτf〉+ λ

n̂∑
r=1

〈‖u0− cr‖2, fr〉 , subject to cr =
〈u0, fr〉
〈1, fr〉

. (8)

According to the third property of Γτ in Proposition 1, energy Yτ (f) approxi-

mates MS(f, {cr}n̂r=1) for f ∈ B and cr = 〈u0,fr〉
〈1,fr〉 . A similar functional for the

graph total variation is shown and discussed in [23].
Pursuing similar ideas as in [7, 23], we present the following analysis which

consequently shows that the Mumford-Shah MBO scheme (with time step τ)
decreases Γτ and converges to a stationary state within a finite number of iter-
ations.

First define

Gτ (f, c) :=
1

2τ
〈1− f, Γτf〉+ λ

n̂∑
r=1

〈‖u0 − cr‖2, fr〉 . (9)

Proposition 2. The functional Gτ (·, c) is strictly concave on K, for any fixed
{cr}n̂r=1 ∈ Rd.
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Proof. Take f, g ∈ K, α ∈ (0, 1). We have (1 − α)f + αg ∈ K, because K is a
convex set.

Gτ ((1− α)f + αg, c)− (1− α)Gτ (f, c)− αGτ (g, c)

=
1

2τ
α(1− α)〈f − g, Γτ (f − g)〉 ≥ 0 . (10)

Equality only holds when f = g. Therefore, Gτ (·, c) is strictly concave on K.
ut

Aside from the concavity of Gτ , we observe that the first order variation of
Gτ (·, c) is given as

δ

δf
Gτ (f, c) =

1

2τ
(1− 2Γτf) + λ

(
‖u0 − c1‖2, ‖u0 − c2‖2, . . .

)
.

Note that since 〈 δδfGτ (fk, ck), f〉 is linear, the Step 2 (thresholding) in the
Mumford-Shah MBO scheme is equivalent to

fk+1 := argminf∈K〈
δ

δf
Gτ (fk, ck), f〉 .

Theorem 1. In the Mumford-Shah MBO scheme, the Lyapunov functional Yτ (fk+1)
at the (k + 1)-th iteration is no greater than Yτ (fk). Equality only holds when
fk = fk+1. Therefore, the scheme achieves a stationary point in B within a finite
number of iterations.

Proof.

fk+1 := argminf∈K〈
δ

δf
Gτ (fk, ck), f〉 (11)

⇒ fk+1 ∈ B (due to linearity) and

0 ≥ 〈 δ
δf
Gτ (fk, ck), fk+1 − fk〉 (12)

≥ Gτ (fk+1, ck)−Gτ (fk, ck) (concavity)

⇒ Gτ (fk+1, ck) ≤ Gτ (fk, ck) = Yτ (fk). Observe that ck+1
r =

〈fk+1
r ,u0〉
〈fk+1

r ,1〉
is the

minimizer of
argmin{cr}n̂r=1∈RdGτ (fk+1, c)

⇒ Gτ (fk+1, ck+1) ≤ Gτ (fk+1, ck) ≤ Yτ (fk).
⇒ Yτ (fk+1) ≤ Yτ (fk). Therefore the Lyapunov functional Yτ is decreasing on
the iterations of the Mumford-Shah MBO scheme, unless fk+1 = fk. Since B is
a finite set, a stationary point can be achieved in a finite number of iterations.

ut

Minimizing the Lyapunov energy Γτ is an approximation of the minimiza-
tion problem in (5), and the proposed MBO scheme is proven to decrease Γτ .
Therefore, we expect the Mumford-Shah MBO scheme to approximately solve
(5). In Section 3.3 and Section 3.4, we introduce techniques for computing the
MBO iterations efficiently.
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3.3 Eigen-space approximation

To solve for (7) in Step 1 of the Mumford-Shah MBO scheme, one needs to
compute the operator Γτ , which can be difficult especially for large datasets. For
the purpose of efficiency, we numerically solve for (7) by using a small number of
the leading eigenvectors of L (which correspond to the smallest eigenvalues), and
project fk onto the eigen-space spanned from the eigenvectors. By approximating
the operator L with the leading eigenvectors, one can compute (7) efficiently. We
use this approximation because in graph clustering methods, researchers have
been using a small portion of the leading eigenvectors of a graph Laplacian to
extract structural information of the graph.

Let {φm}Mm=1 denote the first M (orthogonal) leading eigenvectors of L, and

{ξm}Mm=1 the corresponding eigenvalues. Assume fk =
∑M
m=1 φma

m, where am

is a 1×n̂ vector, with the r-th entry amr = 〈fkr , φm〉. Thus f̂ can be approximately
computed as:

f̂ =

M∑
m=1

e−τξmφma
m − τλ

(
‖u0 − ck1‖2, ‖u0 − ck2‖2, . . . , ‖u0 − ckn̂‖2

)
. (13)

The Mumford-Shah MBO algorithm with the above eigen-space approxima-
tion is summarized in Algorithm 1. After the eigenvectors are obtained, each
iteration of the MBO scheme is of time complexity O(N). Empirically, the al-
gorithm converges after a small number of iterations. Note that the iterations
stop when a purity score between the partitions from two consecutive iterations
is greater than 99.9%. The purity score, as used in [13], measures how “similar”
two partitions are. Intuitively, it can be viewed as the fraction of nodes of one
partition that have been assigned to the correct class with respect to the other
partition.

Algorithm 1 Mumford-Shah MBO algorithm

Input: f0, u0, {(φm, ξm}Mm=1, τ , λ, n̂, k = 0.
while (purity(fk, fk+1) < 99.9%) do

– cr =
〈u0,f

k
r 〉∑N

i=1 f
k
r (ni)

.

– amr = 〈fkr , φm〉.
– f̂ =

∑M
m=1 e

−τξmφma
m − τλ

(
‖u0 − c1‖2, ‖u0 − c2‖2, . . . , ‖u0 − cn̂‖2

)
.

– fk+1(ni) = er, where r = argmaxcf̂c(ni).
– k ← k + 1.

end while

3.4 Nyström method

The Nyström extension [10] is a matrix completion method which has been
used to efficiently compute a small portion of the eigenvectors of the graph
Laplacian for segmentation problems [2, 14, 11]. In our proposed scheme, leading
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eigenvectors of L are required, which can require massive computational time
and memory. For large graphs such as the ones induced from images, the explicit
form of the weight matrix W and therefore L is difficult to obtain (O(N2) time
complexity). Hence, we expect to use the Nyström method to approximately
compute the eigenvectors for our algorithm.

Basically, the Nyström method randomly samples a very small number (M)
of rows of W. Based on matrix completion and properties of eigenvectors, it ap-
proximately obtains M eigenvectors of the symmetric normalized graph Lapla-
cian Ls = I−D− 1

2WD−
1
2 without computing the whole weight matrix. Detailed

descriptions of the Nyström method can be found in [2, 14].
Note that our previous analysis only applies to L rather than Ls, and the

Nyström method can not be trivially formularized for L. Therefore this question
remains to be studied. However, the normalized Laplacian Ls has many similar
features compared to L, and it has been used in place of L in many segmentation
problems. In the numerical results shown below, the eigenvectors of Ls computed
via Nyström perform well empirically.

One can also implement other efficient methods to compute the eigenvectors
for the Mumford-Shah MBO algorithm.

4 Numerical Results

(a) 2nd Eigenvector

(b) 3rd Eigenvector

(c) 4th Eigenvector

(d) 5th Eigenvector

Fig. 1: The leading eigenvectors of the normalized graph Laplacian computed via
the Nyström method.

The hyper-spectral images tested in this work are taken from the video
recording of the release of chemical plumes at the Dugway Proving Ground,
captured by long wave infrared (LWIR) spectrometers. The data is provided by
the Applied Physics Laboratory at Johns Hopkins University. A detailed descrip-
tion of this dataset can be found in [3]. We take seven frames from a plume video
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sequence in which each frame is composed of 128 × 320 pixels. We use a back-
ground frame and the frames numbered 72 through 77 containing the plume.
Each pixel has 129 spectral channels corresponding to a particular frequency
in the EM spectrum ranging from 7,820 nm to 11,700 nm. Thus, the graph we
construct from these seven frames is of size 7× 128× 320 with each node ni cor-
responding to a pixel with a 129-dimensional spectral signature vi. The metric
for computing the weight matrix is given as:

wij = 1− 〈vi, vj〉
‖vi‖‖vj‖

,

which is an approximation of the spectral angle cos(vi, vj).
The goal is to segment the image and identify the “plume cloud” from the

background components (sky, mountain,grass), without any ground truth. As
described in the previous section, M = 100 eigenvectors of the normalized graph
Laplacian (Ls) are computed via the Nyström method. The computational time
using Nyström is less than a minute on a 2.8GHz machine with Intel Core 2Duo.
The visualization of the first five eigenvectors (associated with the smallest eigen-
values) are given in Figure 1 for the first four frames, (the first eigenvector is
not shown because it is close to a constant vector).

(a)

(b)

Fig. 2: The segmentation results obtained by the Mumford-Shah MBO scheme,
on a background frame plus the frames 72-77. Shown in (a) and (b) are segmen-
tation outcomes obtained with different initializations. The visualization of the
segmentations only includes the first four frames.

We implement the Mumford-Shah MBO scheme using the eigenvectors on
this seven frames of plume images, with τ = 0.15, λ = 150 and n̂ = 5. The
test is run for 20 times with different uniformly random initialization, and the
segmentation results are shown in Figure 2. Note that depending on the initial-
ization, the algorithm can converge to different local minimum, which is common
for most non-convex variational methods. The result in (a) occurred five times
among the 20 runs, and (b) for twice. The outcomes of other runs merge either
the upper or the lower part of the plume with the background. The segmenta-
tion outcome shown in (a) gives higher energy than that in (b). Among the 20



Graph Mumford-Shah Model for Plume Detection 11

runs, the lowest energy is achieved by a segmentation similar to (a), but with
the lower part of the plume merged with the background. It may suggest that
the global minimum of the proposed energy does not necessarily give a desired
segmentation.

Notice that in Figure 2 (b), even though there actually exist five classes, only
four major classes can be perceived, while the other one contains only a very
small amount of pixels. By allowing n̂ = 5 instead of 4, it helps to reduce the
influence of a few abnormal pixels. The computational time for each iteration
is about 2-3 seconds on a 1.7GHz machine with Intel Core i5. The number of
iterations is around 20-40.

Fig. 3: Energy MS(f) (blue, solid line) and Yτ (f) (red, dash line) at each itera-
tion from the same test as shown in Figure 2 (a).

Figure 3 demonstrates a plot of the MS(f) and Yτ (f) energies at each itera-
tion from the same test as the one shown in Figure 2 (a). The Lyapunov energy
Yτ (f) (red, dash line) is non-increasing, as proven in Theorem 1. Note that all
the energies are computed approximately using eigenvectors.

As a comparison, the segmentation results using K-means and spectral clus-
tering are shown in Figure 4. The K-means method is performed directly on
the raw image data (7 × 128 × 320 by 129). As shown in (a) and (b), the re-
sults obtained by K-means fail to capture the plume; the segmentations on the
background are also very fuzzy. For the spectral clustering method, a 4-way (or
5-way) K-means is implemented on the four (or five) leading eigenvectors of the
normalized graph Laplacian (computed via Nyström). As shown in (c) and (d),
the resulting segmentations divide the sky region into two undesirable compo-
nents. Unlike the segmentation in Figure 2 (a) where the mountain component
(red, the third in the background) has a well defined outline, the spectral clus-
tering results do not provide clear boundaries. Our approach performs better
than other unsupervised clustering results on this dataset [12, 20].

Another example of the plume data is show in Figure 5, where the 67th to
72nd frames (instead of the 72nd to 77th) are taken along with the background
frame as the test data. The test is run 20 times using different uniformly random
initialization, where τ = 0.15, λ = 150 and n̂ = 5. The result in Figure 5 (a)
occurred 11 times among the 20 runs, and (b) for 5 times. The outcomes from
the other 4 runs segment the background into three components as in (a), but
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(a) 4-way K-means

(b) 5-way K-means

(c) Spectral Clustering with 4-way K-means

(d) Spectral Clustering with 5-way K-means

Fig. 4: K-means and spectral clustering segmentation results. The visualization
of the segmentations only includes the first four frames.

(a)

(b)

Fig. 5: The segmentation results obtained by the Mumford-Shah MBO scheme,
on a background frame plus the frames 67-72. Shown in (a) and (b) are segmen-
tation outcomes obtained with different initializations.
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merge the plume with the center component. The segmentation result shown in
(a) gives the lowest energy among all the outcomes. The visualization includes
all seven frames since the plume is small in the first several frames.

5 Conclusion

In this paper we present a graph framework for the multi-class piecewise con-
stant Mumford-Shah model using a simplex constrained representation. Based
on the graph model, we propose an efficient threshold dynamics algorithm, the
Mumford-Shah MBO scheme for solving the minimization problem. Theoreti-
cal analysis is developed to show that the MBO iteration decreases a Lyapunov
energy that approximates the MS functional. Furthermore, in order to reduce
the computational cost for large datasets, we incorporate the Nyström exten-
sion method to approximately compute a small portion of the eigenvectors of
the normalized graph Laplacian, which does not require computing the whole
weight matrix of the graph. After obtaining the eigenvectors, each iteration of
the Mumford-Shah MBO scheme is of time complexity O(n). The number of
iterations for convergence is small empirically.

The proposed method can be applied to general high-dimensional data seg-
mentation problems. In this work we focus on the segmentation of hyper-spectral
video data. Numerical experiments are performed on a collection of hyper-
spectral images taken from a video for plume detection; using our proposed
method, competitive results are achieved. However, there are still open questions
to be answered. For example, the Nyström method can only compute eigenvec-
tors for the normalized Laplacian, while the theoretical analysis for the Lyapunov
functional only applies to the un-normalized graph Laplacian. This issue remains
to be studied. Note that the graph constructed in this paper does not include
the spacial information of the pixels, but only the spectral information. One
can certainly build a graph incorporating the location of each pixel as well, to
generate a non-local means graph as discussed in [2].
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