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Robust Asymmetric Nonnegative

Matrix Factorization
Hyenkyun Woo and Haesun Park

Abstract

The problems that involve separation of grouped outliers and low rank part in a given data matrix

have attracted a great attention in recent years in image analysis such as background modeling and face

recognition. In this paper, we introduce a new formulation called `∞-norm based robust asymmetric

nonnegative matrix factorization (RANMF) for the grouped outliers and low nonnegative rank separation

problems. The main advantage of `∞-norm in RANMF is that we can control denseness of the low

nonnegative rank factor matrices. However, we also need to control distinguishability of the column

vectors in the low nonnegative rank factor matrices for stable basis. For this, we impose asymmetric

constrains, i.e., denseness condition on the coefficient factor matrix only. As a byproduct, we can obtain

a well-conditioned basis factor matrix. One of the advantages of the RANMF model, compared to the

nuclear norm based low rank enforcing models, is that it is not sensitive to the nonnegative rank constraint

parameter due to the proposed soft regularization method. This has a significant practical implication

since the rank or nonnegative rank is difficult to compute and many existing methods are sensitive to the

estimated rank. Numerical results show that the proposed RANMF outperforms the state-of-the-art robust

principal component analysis (PCA) and other robust NMF models in many image analysis applications.
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I. INTRODUCTION

A high dimensional nonnegative data matrix, such as video image sequence or images of faces, generally

resides in a low dimensional subspace but are often corrupted by grouped outliers, i.e., unavoidable arti-

facts such as moving objects in static background and shadows in face images under varying illumination

condition. Therefore, it is important in various image analysis applications, such as background modeling

and face recognition, to separate grouped outliers and the inherent nonnegative low rank structure of the

given high dimensional image data.

Let A = [a1, ..., an] be a m× n nonnegative high dimensional image data matrix, where each column

vector ai corresponds to a column-wise stacked image frame. In this paper, we are interested in the

problem of separating A into a low nonnegative rank matrix L and grouped outliers X:

A = L+X, (1)

where L = WΛHT ∈ L+(r) = {WΛHT : W ∈ Bm×r2 , H ∈ Bn×r2 , and Λ ∈ Sr×r>0 } is a low nonnegative

rank matrix, W = [w1, . . . , wr] is the nonnegative basis matrix of L, H = [h1, . . . , hr] is the associated

nonnegative coefficients matrix of L, and Λ is a diagonal matrix with Λii = λi which we call as an

asymmetric singular value of L. Here, Sr×r>0 = {diag(λ1, . . . , λr) : λi > 0 } and Bd×r2 = {B =

[b1, . . . , br] : bi ∈ Rd+, ‖bi‖2 = 1, and det(BTB) 6= 0}. Note that R+ is the set of nonnegative real

numbers, ‖x‖p = (
∑

j x
p
i )

1/p for p > 0, and ‖x‖0 = #{x 6= 0} for p = 0. When Λ is subsumed into W

or H , we get a typical nonnegative matrix factorization (NMF) formulation [1], [28]. We define (reduced)

nonnegative rank as follows:

rank+(L) = arg min
τ
{τ : L ∈ L+(τ)}. (2)

Although (2) is a reduced version of the nonnegative rank, in this paper we call it as the nonnegative rank

for simplicity. See [19], [42], [12], for more details on the nonnegative rank and its various theoretical

properties. In general, the determination of the nonnegative rank of a matrix is a NP-hard problem [42].

Therefore, in many applications of NMF, the nonnegative rank parameter r is overestimated and is

empirically selected based on the given data A. The main goal of this paper is to find a solution of (1)

with overestimated r.

The following is a typical NMF model with `1-norm cost function (`1-NMF) [23], [25], [26], [43]:

min
L
{ ‖A− L‖`1 : L ∈ L+(r) }. (3)
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Note that we will use, for Y ∈ Rm×n, ||Y ||lp = (Σij |Yij |p)1/p with p > 0 and ||Y ||l0 = #{Y 6= 0}

with p = 0 throughout the paper to distinguish it from the conventional induced matrix norm1. The

main advantage of `1-NMF (3) is that it is robust to outliers when compared to Frobenious norm based

NMF [28]. However, `1-NMF (3) has an overfitting problem (e.g. see Figure 3) and an identifiability

problem [2], [8], epecially when r is severely overestimated.

Note that matrix factorization based model [23] (without nonnegative constraints) is also suffer from an

unavoidable overfitting problem and an identifiability problem [2], [8]. In various minimization problems

with rank constraints, including matrix completion problem [3], [4], nuclear norm [14] is a typical

regularization method to overcome overfitting and identifiability problems. The following is the nuclear

norm based robust PCA (RPCA) model [2], [8] for sparse outliers and low rank separation problems.

(L̂, X̂) = arg min
L,X

{ ν‖X‖`1 + ‖L‖∗ : A = L+X }, (4)

where ‖L‖∗ :=
∑

i σi(L) denotes the nuclear norm of the matrix L and σi(L) is the i-th largest singular

value of the matrix L. Let us assume that A = L0 + X0 (L0 is the true low rank solution and X0 =

A − L0). The convexity of nuclear norm is fully utilized to guarantee exact separability, i.e. L̂ = L0

and X̂ = X0, under the incoherence condition (see Appendix A), although we fix the regularization

parameter ν = 1/
√

max{m,n} [2] or choose it in some specific region [8]. Here, sparse outliers X

in (4) is assumed to have sufficient random structures or bounded sparsity. See Appendix A for more

details.

A. Nonnegative Matrix Factorization for Column Outliers Detection

Let us start with the definition of structured grouped outliers, which we want to separate from the

inherent low nonnegative rank matrix.

Definition I.1. Let X ∈ Rm×n be grouped outliers with limited row sparsity, i.e., maxi ‖rowi(X)‖0 < ζn,

then we call X as column outliers. Here, 0 < ζ < 1
2 decides sparsity level of X in row direction.

In video applications such as background modeling in Figure 7, moving objects correspond to column

outliers with small ζ. Note that column outliers do not have sparsity limit in column direction and thus

it covers dynamically changing outliers, such as in office scenario in Figure 7. Although RPCA (4) does

not always guarantee separability between column outliers and low rank matrix (see Appendix A), when

1‖Y ‖p,q = max‖x‖p=1 ‖Y x‖q , where p, q ≥ 1.
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Fig. 1: Top row from left to right: the data matrix A ∈ R1000×1000
+ , low nonnegative rank matrix L,

column outliers X , the first rank one matrix (w1h
T
1 ), and the second rank one matrix (w2h

T
2 ) of the

proposed robust asymmetric NMF model (5) (see also (22)) with `p-norm (p = 0.65) cost function.

Bottom row from left to right: low rank matrix, column outliers, the first rank one matrix (u1v
T
1 ), and

the second rank one matrix (u2v
T
2 ) of RPCA [2]. The vectors (w2 and h2) in the second rank matrix of

robust asymmetric NMF is approximately 1√
k

-dense [22] with k = 500. Note that we tuned regularization

parameter ν = 0.15√
1000

of RPCA (4) for best performance. However, we fixed rank parameter r = 20 of

robust asymmetric NMF, although true (nonnegative) rank is two. Black is the minimum value and white

is the maximum value.

we tune the parameter ν in (4), we still can separate column outliers as observed in Figure 1. See also

[34] and Section IV for more details. However, when we have a priori information about the structure of

outliers, such as some column vectors are totally corrupted then we can use `2,1-norm [41], instead of

simple `1-norm. In general, we do not have such a strong a priori outliers information, thus it is required

to use other methods to separate column outliers.

Now, let us consider the following generic robust NMF formulation for separation problem between

low nonnegative rank matrix L and column outliers X:

min
L,X
{ Φ(X) +

α

2
‖A− L−X‖2F : R(L) ≤ τ and 0 < L ≤ BL }, (5)

where L = WΣHT ∈ L+(r), Φ is a sparsity enforcing function, such as `p-norm (0 < p ≤ 1) or

log-function [5], [30], BL = 255 for image data, R(L) is a low rank+ (i.e. nonnegative rank) enforcing
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function such as nonnegative nuclear norm [12], and τ ∈ R+ is a rank+ constraint parameter.

In this paper, we mainly study the various properties of `∞-norm based rank+ constraint R(L) for

column outliers and low rank+ separation problem. In Figure 1, we show a typical difference between

rank+ and rank for column outliers and low rank+ (or rank) separation problems. All rank one matrices

uiv
T
i of rank (Bottom row of Figure 1) can be dense. However, each factor wi or hi of rank+ matrix can be

1√
k

-dense or k-subspace dense with minimum sparsity k. As commented in [22], a vector v ∈ Rd+ is 1√
k

-

dense or k-subspace dense if ‖v‖0 = k and v = 1√
k
ιv with ιv is an indicator vector of nonzero elements

of v. Therefore, to separate column outliers and low rank+, at least ‖hi‖0 > ζn should be satisfied. For

instance, row factor vector h2 of the second rank matrix w2h
T
2 in Figure 1 has ‖h2‖0 = 500 and sparsity

level of column outliers X is maxi ‖rowi(X)‖0 = 0.2n.

Now, we have two important concerns for the robust NMF model (5). First, an appropriate regularization

method is required to reduce the effect of overfitting problems. Second, we also need to generate well-

conditioned k-subspace dense low rank+ matrix with large k to separate column outliers efficiently. For

these two problems, we will introduce `∞-norm based asymmetric nonnegative nuclear norm, which fully

utilizes matrix factorization (or dictionary learning) structure for nonnegative data; the coefficient matrix

H for denseness to separate column outliers and the basis matrix W for stability of the low rank+ matrix

L. We also introduce a soft regularization method to find a solution of the proposed asymmetric robust

NMF model. The main advantage of the proposed low rank+ enforcing soft regularization framework is

that it is less sensitive to the rank selecting regularization parameter when compared to the conventional

hard constraints; regularization parameter ν in nuclear norm based model (4) or rank selection parameter

r in matrix factorization based model (3). We evaluate performance of the proposed method for the

background modeling of video image sequence and removal of shadows and grossly corrupted artifacts

in face images. Although we fix all parameters of the proposed model, the numerical results show that

our proposed method outperforms the state-of-the-art nuclear norm based RPCA [2], [8], DECOLOR

[44] and other matrix factorization based approaches such as `1-NMF (3). Moreover, the basis matrix W

generated by the proposed method is more interpretable than that of the nuclear norm based model (4).

The paper is organized as follows. In Section II, we study the various properties of the proposed

asymmetric nonnegative nuclear norm, such as stability, denseness, and distinguishability. In Section

III, we introduce the proposed robust asymmetric nonnegative matrix factorization (RANMF) with soft

regularization framework. In Section IV, we report our numerical results on background modeling of

video image sequence and removal of grossly corrupted artifacts in face images under varying illumination

condition. We give our conclusions in Section V. In Appendix, we review incoherence condition of RPCA
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(4) and describe lower bound of the nonnegative rank.

II. ASYMMETRIC NONNEGATIVE MATRIX FACTORIZATION

In this section, we introduce stability, denseness, and distinguishability of `∞-norm based asymmetric

nonnegative nuclear norm.

First, let us consider the following sliced unit `2-norm sphere:

Zdη = {v ∈ Rd+ : ‖v‖2 = 1, ‖v‖∞ ≤ η}, (6)

where η ∈ [ 1√
d
, 1]. Note that if η ≈ 1√

d
then a vector v ∈ Zdη is sufficiently away from the standard

coordinate vector ei ∈ Rd for all i = 1, ..., d. This sliced unit sphere (6) is a fundamental unit block of

the proposed robust asymmetric NMF model. Now, we introduce asymmetric nonnegative nuclear norm2

(ANN-norm) as a relaxation of rank+:

Definition II.1. For a given matrix L ∈ Rm×n+ with r = rank+(L), we define asymmetric nonnegative

nuclear norm of L as follows:

‖L‖� = arg min{
∑
i

λi : L = WΛHT ∈ LZ(r) }, (7)

where

LZ(r) = {WΛHT : W = [w1, ..., wr] ∈ Zm×rηW , H = [h1, ..., hr] ∈ Zn×rηH , Λ ∈ Sr×r→ }

with

• Zd×rη = { V = (v1, ..., vr) : vi ∈ Zdηi , η = max{η1, ..., ηr}, det(V TV ) 6= 0, and ηi ∈ R>0 }

• Sr×r→ = { Λ = diag(λ1, ..., λr) : λi ≥ λj > 0, for i < j }.

We simply call the following matrix factorization with respect to ANN-norm of L (7) as asymmetric NMF

(ANMF):

L = WΛHT =

r∑
i=1

λiwih
T
i , (8)

where λi ≥ λj > 0 (i < j), wi ∈ Zmηwi
, and hi ∈ Znηhi

.

Note that λi is an asymmetric singular value with respect to ANN-norm, and ηwi
∈ [ 1√

m
, 1] and

ηhi
∈ [ 1√

n
, 1] are constants and control k-subspace denseness of basis and coefficient matrix. For robust

2Note that asymmetric nonnegative nuclear norm is not a matrix norm [1]. However, we called it as a norm since it is an

extension of nuclear norm for the nonnegative rank.
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NMF problem (5), small ηW and ηH are preferable for dense low rank+ matrix. However it is not such a

simple problem, because in this case, W and H will be ill-conditioned. The balance between denseness

and stability should be decided for robust NMF (5). In addition, ‖L‖� is the Minkowski gauge function

[1] of the set {whT : w ∈ Zmηw , h ∈ Znηh} and it thus is nonnegative, homogeneous, and convex

with respect to rank one matrix. If we set ηwi
= ηhi

= 1 for all i, then ‖L‖� becomes the following

nonnegative nuclear norm (9):

‖L‖+∗ = arg min{
r∑
i=1

λi : L ∈ L+(r) }. (9)

Note that the nonnegative nuclear norm is a natural extension of the nuclear norm [14] for the nonnegative

rank. However, it is not easy to find a global minimum of nonnegative nuclear norm [12], since we need

to find a solution of completely positive matrix factorization of L which is another NP-hard problem [12].

Also, if we replace sliced unit sphere Zdη in (7) with unit `∞-norm ball B∞(d) = {v ∈ Rd : ‖v‖∞ ≤ 1},

then ‖L‖� is approximately equal to the γ2-norm relaxation of rank:

‖L‖γ2 ≈ arg min{
∑
i

λi : L =
∑
i

λiwih
T
i , wi ∈ B∞(m), hi ∈ B∞(n) }, (10)

where the approximation is bounded by Grothendieck constant [27]. It is well known that γ2-norm based

low rank approximation shows better performance in matrix completion problem though random sampling

is inhomogeneous [38], [27].

Before we go further, we introduce a useful inverse square-root relation between `0-norm and `∞-norm

in the sliced unit `2-norm sphere Zdη (6):

Lemma II.1. Let v ∈ Zdη , then
1√
‖v‖0

≤ ‖v‖∞ ≤ η. (11)

Also, we have E0(v) ≤ η, where E0(v) is a mean value of nonzero elements of v, i.e., ‖v‖1‖v‖0 . Note that if

‖v‖0 ∈ [ 1
η2 , 1 + 1

η2 ), then v is the sparsest vector in Zdη . If ‖v‖0 = 1
η2 then v is η-dense or 1

η2 -subspace

dense.

Proof: For any v ∈ Zdη , we have the following inequalities

〈v, 1√
‖v‖0

1〉 ≤ 1 ≤ 〈v, ‖v‖∞1〉 ≤ 〈v, η1〉,

where 1 is the all one vector in the dimension implied in the context. Note that we can replace 1 with ιv.

The first inequality follows from Cauchy-Schwartz inequality. The second is trivial, since ∀v ∈ Zdη , v ≤
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‖v‖∞ιv ≤ ‖v‖∞1 and the third follows by the definition of Zdη (6). Therefore, we have

1√
‖v‖0

≤ ‖v‖∞ ≤ η,

since ‖v‖1 > 0 for any v ∈ Zdη . Also, from the Hölder inequality ‖v‖1 ≤ ‖v‖∞‖v‖0, we get

E0(v) ≤ η.

Since ‖v‖0 ≥ 1
η2 , there is a vector v ∈ Zdη with the smallest sparsity ‖v‖0 ∈ [ 1

η2 , 1 + 1
η2 ). Note that such

a vector v with the smallest sparsity is not always unique (see Theorem II.9). When 1
η2 is integer, v ∈ Zdη

is η-dense with η = 1√
‖v‖0

.

In the following theorem, we show that an asymmetric singular value λi of ANMF (8) is roughly in

the same order of square root of area of the corresponding rank one matrix.

Theorem II.2. Let L =
∑r

i=1 Li be an ANMF (8) with Li = λiwih
T
i . Then

E0(Li)
√
‖Li‖`0 ≤ λi ≤ BLi

√
‖Li‖`0 , (12)

where BLi
= ‖Li‖`∞ .

Proof: For the lower bound, since ‖Li‖`1 ≤ λi
√
‖Li‖`0 , we get

E0(Li) =
‖Li‖`1
‖Li‖`0

≤ λi√
‖Li‖`0

.

For the upper bound, since ‖Li‖`∞ ≤ BLi
, we get

λi = ‖Li‖F ≤ BLi

√
‖Li‖`0 .

Note that λi is roughly in proportion to the square root of area of Li. Therefore, it is natural to reorder

each rank-one matrix Li of ANMF (8) in descending order of λi-value to enforce dense low nonnegative

rank structure. Based on this observation, we give two different lower bounds of rank+(L) in Appendix

B.

A. Stability and denseness of the basis (coefficient) matrix of ANMF

In this section, we study stability, denseness, and δ-distinguishability of the basis/coefficient matrix of

ANMF (8). Based on δ-distinguishability, we can clearly understand the relation between stability and

denseness of the basis/coefficient matrix. Although we only consider the basis matrix W ∈ Zm×rηW of

ANMF (8), the analysis of the coefficient matrix H ∈ Zn×rηH is same except dimension n× r.

November 5, 2014 DRAFT



9

Definition II.2. Let us assume that

W ∈ Zm×rηW = {W = (w1, ..., wr) : wi ∈ Zmηwi
, ηW = max{η1, ..., ηr}, det(W TW ) 6= 0}.

To measure stability and denseness of a matrix W , we define the following three parameters:

• Stability (small is stable and large is unstable)

– ‖W‖ =
√
ρmax(W TW ) ∈ [1,

√
r)

– S(W ) = ‖W TW − I‖`∞ ∈ [0, 1)

• Denseness (small is dense and large is sparse)

– ηW = ‖W‖`∞ ∈ ( 1√
m
, 1]

Here, ρ(B) ∈ [ρmin(B), ρmax(B)] is the eigenvalue of B. The range of S(W ) and ηW is obvious. We

describe the range of ‖W‖ in the following Lemma II.3.

Lemma II.3. Let W ∈ Zm×r1 , then ρmax(W TW ) ∈ [1, 1 + (r − 1)S(W )] and ρmin(W TW ) ∈ (0, 1]. In

addition, if ρmax(W TW ) = 1 (or ρmin(W TW ) = 1) then S(W ) = 0.

Proof: Since W ∈ Zm×r1 , the gram matrix W TW is positive definite and Tr(W TW ) = r. For

the lower bound, let ρmax(W TW ) < 1 then Tr(W TW ) < r. It contradicts Tr(W TW ) = r. Hence

ρmax(W TW ) ≥ 1. For the upper bound, we use the Gershgorin circle theorem [20]:

ρmax(W TW ) ∈ ∪ri=1Di

where Di = {b ∈ R+ : |b− 1| ≤
∑

j 6=iw
T
i wj}. Since wTi wj ≤ S(W ) < 1 for all i 6= j, we get

ρmax(W TW ) ≤ 1 + (r − 1)S(W ).

In addition, since Tr(W TW ) = r, when ρmax(W TW ) = 1, we get ρmin(W TW ) = 1, i.e., all eigenvalues

are one. Therefore, since ‖W TW‖2F = r and wTi wj ≥ 0, we get S(W ) = 0.

Note that we could show ρmin(W TW ) ≤ 1 in the same way. The lower bound ρmin(W TW ) > 0

follows by definition of Zm×n1 . Also, ρmin(W TW ) = 1→ S(W ) = 0 is trivial, since ρmin(W TW ) = 1

means ρmax(W TW ) = 1.

As observed in the Lemma II.3, we could use ρmin(W TW ) as a measure of stability of W . However,

ρmax(W TW ) is more appropriate, since it reveals the relation between stability of W and rank parameter

r explicitly as expressed in the following Lemma II.4 and Remark II.5. Note that, regarding ‖W‖, stability

of W corresponds to one side of condition number cond(W ) =
√

ρmax(WTW )
ρmin(WTW ) .
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Lemma II.4. Let W = [w1, ..., wr] ∈ Zm×rηW and wTi wj = S(W ) for all i 6= j, then there are only two

eigenvalues of W TW :

ρ(W TW ) = {1− S(W ), 1 + (r − 1)S(W )}.

Proof: As observed in [16, Lemma 5.11], due to the symmetry, it is easy to check that all one vector

1 is the eigenvector of the gram matrix W TW and the corresponding eigenvalue is 1+(r−1)S(W ). Also,

r− 1 linearly independent vectors [1,−1, ..., 0]T , ..., [1, 0, ..., 0,−1]T are eigenvectors for the eigenvalue

1− S(W ).

For general case, the estimation of the largest eigenvalue of W TW are done by many researchers [31].

The following is a typical example of the estimation of ‖W‖, which is useful for the analysis of our

model.

Remark II.5. As observed in [31, Theorem 1.4, Page 30], by using Perron-Frobenious Theorem with the

assumption that εW = mini,j w
T
i wj > 0 for all i, j, we have tight bound of ‖W‖ as follows:√

min
i
ci + εW

(
1

a
− 1

)
≤ ‖W‖ ≤

√
max
i
ci − εW (1− a), (13)

where ci is the sum of i-th column elements of W TW and a =
√

mini ci−εW
maxi ci−εW . When εW = S(W ), we

get ‖W‖ =
√

1 + (r − 1)S(W ), which is a boundary of ‖W‖ in Lemma II.3. Note that stability of W

is defined by ‖W‖ or S(W ); see Definition II.2. However, ‖W‖ is more robust measure of stability of

W , since it is related to all elements of W by (13). On the contrary, S(W ) = ‖W TW − I‖`∞ depends

on one maximum value and thus it is sensitive to noise.

Note that if S(W ) = 0, i.e., ‖W‖ = 1, then we get a sufficiently stable orthonormal basis nonnegative

matrix. However, denseness of W is limited.

Lemma II.6. Let W ∈ Zm×r1 be an orthonormal matrix. Then ‖W‖`0 ≤ m and mini ‖wi‖0 ≤ m/r. In

addition,
√

r
m ≤ ‖W‖`∞ ≤ 1.

Proof: Since wi ∈ Rm+ and wTi wj = 0 for all i 6= j, ιwi
∩ιwj

= ∅. Therefore, we have
∑r

i=1 ‖wi‖0 ≤

m and thus mini ‖wi‖0 ≤ m/r. With Lemma II.1, we have√
r

m
≤ 1√

mini ‖wi‖0
≤ ‖W‖`∞ ≤ 1.

Note that upper bound is obtained when there is wi such that ‖wi‖0 = 1.
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Example II.7. Let W = [w1, . . . , wr] ∈ Rm×r+ with wi ∈ Zm1√
m

then we get wi = 1√
m
1 for all i = 1, ..., r

and ‖W‖ = r (see Lemma II.4).

As observed in Example II.7, in a nonnegative set, we cannot obtain stable and fully dense basis

matrix simultaneously. If we put stronger dense condition on W , then the basis matrix W becomes more

unstable, i.e., all column vectors are not distinguishable. Now, we introduce δ-distinguishability [17] of

Zmη (6). Based on δ-distinguishability, we can clearly understand the relation between stability, (i.e.,

S(W ) and ‖W‖) and denseness, (i.e., ‖W‖`∞).

Definition II.3. Let Zmη be a set in (6). If there exist wi, wj ∈ Zmη such that

‖wi − wj‖2 ≥ δ,

then we say that Zmη is δ-distinguishable [17]. Also, it relates to the δ
2 -net (here, we mean a δ

2 -radius

ball whose center is in Zmη and it does not intersect with other δ
2 -radius balls) and the cardinality of

δ
2 -net of Zmη is defined as N( δ2 , Z

m
η ). Therefore, Zmη is δ-distinguishable if and only if N( δ2 , Z

m
η ) ≥ 2.

In addition, we say that a basis matrix W ∈ Zm×rηW in ANMF (8) is a δ-distinguishable matrix when

‖wi − wj‖2 ≥ δ for all wi, wj ∈W = [w1, ..., wr] with i 6= j.

Lemma II.8. Let W ∈ Zm×rηW be a δ-distinguishable matrix. Then we get

0 < δ ≤
√

2(1− S(W )).

Therefore, when δ >
√

2, Zm×rηW does not have any δ-distinguishable matrix.

Proof: Since W = [w1, w2, ..., wr] ∈ Zm×rηW is δ-distinguishable matrix, we get

S(W ) = max
i 6=j

wTi wj = 1− 1

2
‖wi − wj‖22 ≤ 1− δ2

2
.

When δ >
√

2, there is not any δ-distinguishable matrix in Zm×rηW for all ηW . Note that Zm1√
m

is not

δ-distinguishable for any δ > 0, since Zm1√
m

has only one element { 1√
m
1 }; see also Example II.7.

In the following theorem, we show the relation between δ-distinguishability and k-subspace denseness

of ZmηW . That is, we give a lower bound of N( δ2 , Z
m
1√
k

) [17].

Theorem II.9. For 1 ≤ k ≤ m and 0 < δ ≤
√

2
k , we get

N(
δ

2
, Zm1√

k

) ≥

 m

k

 , (14)

where N(ε, ZmηW ) is the cardinality of a minimal ε-net of ZmηW .

November 5, 2014 DRAFT



12

Proof: By Lemma II.1, for any x ∈ ZmηW , we have 1√
‖x‖0

≤ ηW . Therefore, it is reasonable to

consider 1√
k

-dense subspace

Vk = {x = (x1, ..., xm)T ∈ Rm+ : ‖x‖2 = 1, ‖x‖0 = k, and xi ∈ {0,
1√
k
}} ⊆ Zm1√

k

. (15)

Here, the minimum distance between v, w ∈ Vk is

min
v,w∈Vk

‖v − w‖2 =

√
2

k
≥ δ.

Then, we get

N(
δ

2
, Zm1√

k

) ≥ Card Vk =

 m

k

 ,

where CardVk is the number of elements in Vk.

Therefore, if we want more stable basis (i.e., large δ-distinguishable), then we need to sacrifice

denseness of the basis matrix, i.e., 1√
k

-denseness with small k. However, we have enough potential

candidate for basis matrix W ∈ Zm×rηW , since r � m. In the following Example, we analyze the nontrivial

worst case stability of basis matrix W .

Example II.10. Let W = [w1, ..., wr] ∈ Zm×r1√
k

with wi ∈ Vk (15) for all i = 1, ..., r. Furthermore, we

assume that k < m and ιTwi
ιwj

= k − 1 for all i 6= j. Then, by Lemma II.4, we have

ρ(W TW ) = {1

k
, r − r − 1

k
}

and √
1− S(W ) =

√
ρmin(W TW ) = ‖W‖`∞ =

1√
k
.

In addition, the condition number of W becomes

cond(W ) =

√
ρmax(W TW )

ρmin(W TW )
=
√
rk − r + 1.

That is, stability of W depends on rank parameter r and sparsity of each column vector wi.

B. Asymmetric Incoherence Criterion

In this section, we introduce asymmetric incoherence criterion to measure how well NMF is constructed

for outlier detection problems.

As observed in Section II-A, the basis matrix W or coefficient matrix H of ANMF (8) cannot be

both dense and stable. Indeed, a balance between denseness and stability is strongly required. What’s

worse, we need to separate structured grouped outliers, i.e., column outliers, which frequently appear
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in image analysis problems, such as background modeling and face recognition problems. That is, if

objects stay in long time in small area in background modeling problems then it should be included into

background objects (i.e., low rank+ matrix). For instance, see Figure 9. Due to the inherent nonnegative

constraints of NMF, these complicated conditions appear. However, surprisingly, by simply keeping `∞-

norm constraints on the coefficient matrix H only, we could relax denseness and stability dilemma of

NMF and solve column outliers and low rank+ separation problems.

Now, let us assume that ηH � 1 of the coefficient matrix H = [h1, ..., hr] ∈ Zn×rηH for denseness of

H and ηW = 1 of the basis matrix W ∈ Zm×r1 . With this asymmetric constraints, we have the following

properties of asymmetric NMF (8) for the low rank+ and outliers separation problem (5):

• Stability of ANMF (8) depends on stability of W (i.e., ‖W‖ or S(W )):

Eij ≤ wTi wj , ∀i 6= j,

where Eij = 〈wihTi , wjhTj 〉. Note that ANMF, L = WΛHT , is stable means that ‖E‖ (or S(E))

is small.

• Denseness of each rank one matrix wihTi of ANMF (8) depends on denseness of H (i.e., ηH ):

‖wihTi ‖`0 = ‖wi‖0‖hi‖0 ≥
1

η2
H

,

which follow from (11). Since wi ∈ Zm1 , a rank one matrix wih
T
i can be thin structure in row

direction (i.e., in hi direction).

• Column outliers X need to satisfy the following condition

max
i
‖rowi(X)‖0 ≤ ζn <

1

η2
H

≤ min
i
‖hi‖0.

That is, at least ηH < 1√
ζn

should be satisfied to separate column outliers and low rank+ matrix.

Therefore, small ηH is preferable.

Now, we introduce asymmetric incoherence criterion for ANMF (8) to see how well ANMF is

constructed with stable basis W and dense coefficient H . Let us start with the well-known incoherence

condition [3] (see also Appendix A):

max
i
‖PHei‖2 ≤ εinc+ , (16)

where H = [h1, ..., hr] is a coefficient matrix of ANMF (8) and PH = H(HTH)−1HT is a projection

operator on subspace generated by H . Also, we get

εinc+ ∈ [

√
r

n
, 1]. (17)
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This is equal to the incoherence condition in (29) of Appendix A. Note that r of (17) is rank+(L),

however r of (29) is rank(L). Therefore, since rank+(L) ≥ rank(L), ANMF (8) is always worse in terms

of incoherence condition (29). Note that if H is orthonormal matrix then it is stable S(H) = 0 with

sparsity ‖H‖`0 ≤ n.

Lemma II.11. Let H ∈ Zn×r1 and S(H) = 0. Then

max
i
‖PHei‖2 = ‖H‖`∞ , (18)

where ‖H‖`∞ ∈
[√

r
n , 1
]
. In this case, the size of column outliers is limited by rank parameter as ζ < 1

r .

Proof: Under the orthonormal conditions, we get PH = HHT and ιhi
∩ ιhj

= ∅ for all hi, hj ∈ H

with i 6= j. Therefore,

max
i
‖PHei‖2 = max

i
‖HT ei‖2 = ‖H‖`∞ .

Also, ‖H‖`∞ ∈ [
√

r
n , 1] from Lemma II.6 and we get

ζ <
1

n‖H‖2`∞
≤ 1

r
.

Under the orthonormal condition S(H) = 0, we recover incoherence condition (16) with ‖H‖`∞ as

observed in Lemma II.11. However, it has a strong disadvantage for column outliers separation problems.

For instance, if we set r = 20 then we can not separate column outliers in Figure 1, since ζ = 0.2. That

is, we cannot keep orthonormal constraint in nonnegative set and need to consider stability parameter for

incoherence condition. Now, we introduce a new incoherence condition for the coefficient matrix H in

the following.

Definition II.4. For H ∈ Zn×rηH , let

Ξ(H) =
‖H‖`∞
‖H‖

, (19)

then we get Ξ(H) ∈ ( 1√
rn
, 1]. It decides stability and denseness of a matrix H . If Ξ(H) is large (close

to one), then H is stable but sparse. However, if Ξ(H) is small (close to 1/
√
rn), then H is dense but

unstable.

The condition (19) can be applied to the basis matrix W with different dimension parameter m. See

Appendix A for the incoherence condition of RPCA (4). Note that, instead of ‖H‖, we can use S(H)

to measure stability. However, ‖H‖ is more appropriate parameter for incoherence condition Ξ(H) (19),

since ‖H‖ is less sensitive to noise; see Remark II.5 and Table I for more details.

November 5, 2014 DRAFT



15

In the following, we introduce a measure of goodness of ANMF (8) for column outliers separation

problem.

Definition II.5. Let L =
∑r

i=1 λiwih
T
i be an ANMF (8) with basis matrix W = [w1, ..., wr] and

coefficient matrix H = [h1, ..., hr]. We define asymmetric incoherence criterion of L as follows:

1√
rn

< aINC(L) =
Ξ(H)

Ξ(W )
<
√
rm (20)

If H is dense and W is stable then aINC(L) is relatively small and column outliers are not included

into low rank+ matrix L. However, if column outliers are in low rank+ matrix L then W becomes

dense and H becomes sparse. Empirically, we observe that this asymmetric incoherence criterion is well

matched with numerical experiments. See Table II and Figure 6 for more details.

Example II.12. Let L = WΛHT =
∑r

i=1 λiwih
T
i be an ANMF (8) with ideal 1√

k
-dense vectors. That

is, W ∈ Zm×r1√
kW

, H ∈ Zn×r1√
kH

, ‖wi‖0 = kW , ‖hi‖0 = kH for all i = 1, ..., r, kW < m, and kH < n. Let

us assume that ιTwi
ιwj

= kW − 1 and ιThi
ιhj

= hH − 1 for worst case separability. Then, by the results

in Example II.10, we get

Ξ(W ) =
1√

rkW − r + 1
=

1

cond(W )
and Ξ(H) =

1√
rkH − r + 1

=
1

cond(H)
.

Therefore, the asymmetric incoherence criterion (20) of L becomes

aINC(L) =
cond(W )

cond(H)
=

√
rkW − r + 1

rkH − r + 1
≈
√
kW
kH

=
ηH
ηW

. (21)

This result is interesting since the asymmetric incoherence criterion of L = WΛHT is just the ratio of

condition number of W and H . Also, it is approximately the ratio of `∞-norm bound of basis matrix W

and coefficient matrix H , i.e., ηH/ηW . In other words, small aINC(L) means that W stable and sparse,

H unstable and dense, and thus we can separate column outliers well. That is, ζ . 1
nη2

W aINC(L)2 .

III. ROBUST ASYMMETRIC NMF WITH SOFT REGULARIZATION

In this section, we describe robust asymmetric NMF with soft regularization method and the connection

to the foreground detection problem.

Now, we propose robust asymmetric NMF (RANMF) for column outliers and low rank+ separation

problems:

min
L,X
{ Φ(X) +

α

2
‖A−X − L‖2F : L = WΛHT ,W ∈ Zm×r1 , H ∈ Zn×rηH ,Λ ∈ Sr×r→ }, (22)
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where Φ(X) =
∑

i,j |Xi,j |p, (0 < p ≤ 1) or
∑

i,j log(ε + |Xi,j |) with ε > 0. We call this robust

ANMF model (22) as RANMF; `p-RANMF if Φ(X) is `p-norm and log-RANMF if Φ(X) is log function.

As observed in various areas, such as compressed sensing [5], [30], due to (·)p and log(·) function, grossly

corrupted error are less penalized and thus the recovered low rank+ matrix of the given image data is

expected to be robust to column outliers. Also, ηH should be sufficiently small to guarantee the separability

of column outliers, i.e., ηH < 1√
ζn

. However, it is not easy to choose appropriate ηH = maxi ηhi
, since

each ηhi
depends on sparsity level of each row factor vector, hi, i.e., ‖hi‖0 ≥ 1

η2
hi

. For instance, see

Figure 8. Therefore, we indirectly find a solution of (22) with the following soft regularization method.

A. Soft Regularization

In this section, we introduce an algorithmic description of a soft regularization method.

As observed in [1], we have various equivalent models of (22) due to the freedom in formulation of

asymmetric singular value Λ. For the proposed soft regularization method, let W̄ H̄ = WΛHT and we

minimize (22) with respect to W̄ and H̄ . Here, Λ is subsumed into W̄ and H̄ alternatively. We fully

utilize this alternative selection of Λ into the soft regularization alternating minimization (SRAM) (23).

SRAM (Soft regularized asymmetric alternating minimization):

Given W̄ 0, H̄0, X̄0. Choose α > 0. For t = 0, 1, 2, ...,

STEP 1: Xt+1 = argmin
X

Φ(X) + α
2 ‖A−X − W̄

t(H̄t)T ‖2F
STEP 2: (W̄ t+ 1

2 , H̄t+ 1

2 ) = argmin
W̄≥0,H̄≥0

{‖A−Xt+1 − W̄ (H̄)T ‖2F : ‖H̄‖`∞ ≤ BH}

STEP 3: (W̄ t+1, H̄t+1) = BASIS(W̄ t+ 1

2 , H̄t+ 1

2 )

with

(W,HΛ) = BASIS(W̄ , H̄)

satisfies the following conditions: WΛHT = W̄ H̄T

W ∈ Zm×r1 , H ∈ Zn×rηH ,Λ ∈ Sr×r→

(23)

In the above SRAM (23), we use a reweighted iterative thresholding [5], [30] to find a solution Xt+1

in STEP 1. For STEP 2, we modified 2r-BCD (block coordinate descent) framework [24]. It is also

known as HALS (hierarchical alternating least square) [9]. Note that, in STEP 2, we put ‖H̄‖`∞ ≤ BH
with BH < 1√

n
then Λ moves into W̄ t+ 1

2 . In STEP 3, we move Λ back into H̄t+1 and reorder each

rank one matrix by λi ≥ λj for i < j. It helps to generate dense nonnegative rank one matrix with
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large asymmetric singular value. Note that the `∞-norm bound, ηH , is indirectly controlled with upper

bound BH in STEP 2. The main advantage of this approach is that ηH is automatically decided based

on the recovered sparsity pattern of H , i.e., ηH ≥ maxi 1/(‖hi‖0)2. Note that the result generated by

BASIS function is similar to that of SVD. The only difference is that each column vector of W and

H is nonnegative unit `2-norm but not necessarily orthogonal.

Fig. 2: From left to right: err(L) (24) vs. BH , diag(Λ) vs. BH for `1-norm, `p-norm (p = 0.65), and

log function. As BH decreases, diag(Λ) is getting more sharp and error decreases. That is, we minimize

(22) indirect way with SRAM (23). The proposed `p-RANMF model shows best performance. Note that

we use synthetic image in Figure 1. The rank parameter is fixed as r = 20. Although the given rank

is relatively larger than the ground truth rank r = 2, the dominant rank is usually less then 5 when

BH < 1√
n

. The first graph shows that the performance is not sensitive to BH , especially for `p-RANMF

or log-RANMF.

In Figure 2, we analyze the effect of BH on the performance of recovery of the low rank+ matrix. As

we decrease BH , the recovered low rank+ matrix is getting close to the ground truth and the graph of

diag(Λ) is getting sharp. In other words, we minimize asymmetric nonnegative nuclear norm (7) indirect

way to find a solution of (22). Note that, we can easily remove meaningless rank+ matrix by simple

thresholding. Figure 2 also shows that the selection of BH is not sensitive. To escape from being stuck

into the unwanted zero set, BH < 1√
n

is necessary, since maxi ‖hi‖∞ ∈ [ 1√
n
, 1] for the coefficient matrix

H = [h1, ..., hr]. Note that the recovery error is

err(L) = ‖L− L+
0 ‖F /‖L

+
0 ‖F (24)
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Fig. 3: A performance comparison for different choice of rank parameter. The proposed `p-RANMF model

with p = 0.65 shows best performance irrespective of the choice of rank parameter r up to r = 100.

But computational cost is relatively lager than other models except the RPCA model. Synthetic image

in Figure 1 is used and BH = 0.1√
n

for RANMF. Note that we use the error function in (24).

for all models versus rank parameter r.

In Figure 3, we show the effect of rank parameter r for various model. The parameter ν in RPCA (4)

is tuned to generate the corresponding rank. Since `1-NMF (3) does not have a regularization method for

the nonnegative rank, it shows poor performance, except when r = rank+(L+
0 ). Note that the performance

of RPCA (4) is also sensitive to the choice of the parameter ν. The proposed `p-RANMF (22) is robust

irrespective of choice of rank parameter r (up to r = 100). As we can see in Figure 2 and Figure 3,

among various penalty functions `1-norm, `p-norm (p < 1) and log functions, `p-norm penalty function

is stable and well recover low rank+ matrix than any other models.

B. Connection to the Background modeling

In this subsection, we extend the proposed RANMF model (22) for foreground detection problems.

Since the separated grouped outliers is not foreground mask and can be very noisy, e.g. tree scenario

in Figure 7, we may need additional denoising/segmentation process to detect foreground mask. Among

the various denoising process, we propose to use total variation (TV) [37]. The following is the general

framework for foreground detection problem [44]:

min
X,L,φ

Φ(X) +
α

2
‖A−X − L‖2F + β(Ψ(X,φ) + γTV (Q(φ))), (25)
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where Q is the reshaping operator from 2D to 3D and TV (φ) = 〈
√

(∇xφ)2 + (∇yφ)2 + (∇tφ)2, 1〉 is

the 3D TV. For simple denoising based approach, we can consider Ψ(X,φ) = ‖|X| − φ‖22 with simple

thresholding. For more sophisticated segmentation, we can consider the following Chan-Vese model [7]

Ψ(X,φ) = 〈(|X| − c+)2 − (|X| − c−)2, φ〉,

where 0 ≤ φ ≤ 1, c+ = 〈φ, |X|〉/〈φ, 1〉, and c− = 〈φ, |X|〉/〈1 − φ, 1〉. When β is sufficiently small,

we do not need to consider the additional terms βΨ(X,φ), when we minimize with respect to X and L

in (25). Therefore, we only need additional one iteration to generate foreground mask φ: (X̂, L̂) = SRAM(A)

φ̂ = arg minφ Ψ(X̂, φ) + γTV (Q(φ)),
(26)

where L̂ = W ∗Λ∗(H∗)T and X̂ is a solution of RANMF (22).

Note that, for foreground detection problem, Zhou et. al. [44] proposed DECOLOR (detecting con-

tiguous outliers in the low-rank representation) model:

min
L,Z

1

2
‖PZ⊥(A− L)‖2F + α‖L‖∗ + β‖Z‖1 + γ‖T (Q(Z))‖1 (27)

to detect foreground object (i.e., outliers) in noisy video image sequence. Here Z ∈ {0, 1}, T is the

node-edge incidence operator in markov random fields. For more details, see [44]. This model is useful

when we want to know only the location of outliers from noisy data.

IV. NUMERICAL EXPERIMENTS

In this section, we compare the performance of the proposed RANMF model (22) using `p-norm and

log function with other outlier detection models; RPCA (4), DECOLOR (27), and `1-NMF (3). Note that

all models are implemented in Matlab (version 7.10). RPCA (4) uses a special SVD library, PROPACK3.

All runs are performed on a laptop with an Intel i7-2720QM CPU (2.20GHz) and 16GB Memory. The

Operating System is 64bit Windows.

For RANMF, we use the proposed SRAM algorithm (23). For column outlier separation, we use two

different sparsity detection functions; `p-norm (p = 0.65) and log function. We set BH = 0.1√
n

, where n

is the size of row dimension of each data matrix. As observed in Figure 3, we can choose sufficiently

large rank parameter r, but computational cost is also increased and can be unstable (see Example II.10).

Therefore, based on our empirical observation, we fix r = 20 for all experiments. α is tuned for best

3http://sun.stanford.edu/ rmunk/PROPACK/
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Fig. 4: A comparison of the performance of the proposed RANMF (22) using `p-norm and log function

with RPCA (4), `1-NMF (3) for removal of shadows, specularities, and gross error in images of faces.

From left to right, the data matrix A, the low rank/rank+ matrix L of RPCA, `1-NMF, `1-RANMF,

`p-RANMF (p = 0.65), and log-RANMF. The proposed RANMF model (22) well recover low rank+

face images than any other models. Note that YaleB face database [18] is used.

performance; α = 0.02 for `p-RANMF, 0.0022 for log-RANMF, 0.1 for `1-NMF. We initialize W 0 with

1/
√
mn and H0 with BH for SRAM algorithm (i.e., for `p-RANMF, log-RANMF). Other models are

initialized with random positive matrices. For `p-RANMF, we fix p = 0.65. The stopping criterion for

the outer iteration is

‖A−Xt − W̄ tH̄t‖F /‖A‖F ≤ 10−2 (28)

and the maximum number of iterations is set to 20. For SRAM based model, we modified 2r-BCD [24]

to find a solution of the `2-NMF subproblems in (23). Note that the number of iterations of 2r-BCD

is fixed as five. For `1-NMF (3), we use the same framework of RANMF with BH = ∞, since the

algorithm in [43] is the case of one iteration of 2r-BCD (without BASIS and BH ) and the algorithm

of [43] is a little bit algorithmically unstable to be used for equal comparison.

For RPCA (4), we use IALM [29]4. The stopping condition is

‖A−Xt − Lt‖F /‖A‖F ≤ 10−7.

4http://perception.csl.uiuc.edu/matrix-rank/ Files/inexact alm rpca.zip
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Fig. 5: Twenty column vector wi (reshaped as a matrix) of basis matrix W of the `p-RANMF (the first

row) and `1-NMF (the second row) in Figure 4. The W matrix of the proposed RANMF model shows

more interpretable basis matrix than that of `1-NMF. Each basis matrix wi generated by the proposed

RANMF (the first row) shows that it is related to specific light direction. However, the basis generated

by `1-NMF do not have such an interpretation. Note that the basis matrix W of `p-RANMF is much

sparser than that of `1-NMF, i.e. more stable.

The maximum number of iterations for IALM is set to 100. For more details, see [29]. We use ν = 1√
m

(recommended in [2]) for Figure 4 only. In general, we need to tune this parameter for best performance,

especially when column outliers do not have random sparse structures. For instance, see Figure 3 for

performance variation of the RPCA model (4) when we choose different regularization parameter (i.e.

different choice of rank). For the background modeling problems in Figure 7, we tuned ν for best

performance. For escalator scenario (the first row image sequence), we set ν = 0.8√
m

, for tree scenario

(the second row image sequence) and the office scenario (the third row image sequence), we set ν = 0.47√
m

.

For Figure 1, we set ν = 0.15√
m

. For DECOLOR (27), we use the recommend parameters in [44].

In Figure 4, we evaluate the performance of the proposed RANMF model with the RPCA model (4) and

the `1-NMF model (3). Here, shadow and gross error are considered as grouped outliers. We use Yale B5

5http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
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Fig. 6: A comparison of stability of (a) `p-RANMF model and (b) `1-NMF model for face image in

Figure 4 and Figure 5. It shows the gram matrix W TW and HTH and the corresponding eigenvalues

ρ(W TW ) and ρ(HTH). In (a) `p-RANMF, we have stable (sparse) basis matrix W and dense (unstable)

coefficient matrix H; see also Table I. In (b) `1-NMF, as observed in Figure 5, we have dense (unstable)

basis matrix W . The reason is that since r = 20 is relatively large compared to n = 58 and `1-NMF does

not have any regularization for rank+, each image (corresponding to column outliers) of A is included

into a rank and therefore the basis matrix W of `1-NMF is more denser and H is more sparser than that

of RANMF; see also Figure 5.

face database [18]. Each person has 64 different images captured under different illumination condition,

however in our experiments we use 58 image by removing extremely low illumination condition. The size

of face images is 192× 168. Therefore, the data matrix is A ∈ [0, 255]32760×58. The proposed RANMF

model does better separate shadow and gross error from low rank+ face matrix than other models. Figure

5 shows twenty different basis matrix for W matrix of the `p-RANMF model in Figure 4. The W matrix

of the proposed RANMF model shows more interpretable basis matrix than that of `1-NMF. That is,

each basis vector (matrix after reshaping) wi generated by the proposed RANMF (the first row) shows

that it is related to specific light direction. However, the basis generated by `1-NMF do not have such an

interpretation. Also, since r = 20 is relatively large compared to n = 58, the basis matrix W of `1-NMF
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Fig. 7: A comparison of performance of the proposed RANMF (22) with RPCA (4) and DECOLOR

(27) for column outliers separation/foreground detection problem. From left to right, the input image

data, the results of RPCA (background and outliers), RANMF (background, outliers, and foreground),

and DECOLOR (background and foreground). The proposed RANMF models separate column outliers

(foreground objects) from the low rank background objects better than any other models. For the first

row image sequences (escalator scenario), we used log-RANMF model and for the second and the third

row image sequences (waving tree and office scenario), we used `p-RANMF model with p = 0.65. Note

that the regularization parameter ν in RPCA (4) is tuned for best performance. The rank parameter of the

proposed RANMF (22) is fixed r = 20 for all experiments. The second and third row image sequences

are from Wallflower [40]. The first row image sequences are from [21].

include each image frame as a rank and thus it cause dense basis matrix W and sparse coefficient matrix

H . In more details, Figure 6 shows gram matrix of W and H and their eigenvalues of `p-RANMF and

`1-NMF. As expected, W of `p-RANMF is stable (but sparse) and H of `p-RANMF is unstable (but
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Fig. 8: The (asymmetric) singular values of the proposed log-RANMF (22) and RPCA (4) and DECOLOR

(27) for escalator scenario in Figure. 7. Although asymmetric singular values of log-RANMF is larger

than that of nuclear norm based models, the asymmetric singular values of log-RANMF are comparable

to singular values of RPCA.

dense). For denseness condition, see Table I (face scenario); 1√
m

= 0.0055 and 1√
n

= 0.1313.

In Figure 7, we evaluate the performance of the proposed RANMF model (22) with SRAM algorithm

(23) for background modeling and foreground detection. Due to the high correlation in consecutive video

frames, which is captured by a fixed camera, it is natural to consider background objects as a low rank+

matrix for the given nonnegative video data. Background objects can be static objects, such as walls

and doors, or non-static objects, such as waving trees and moving escalators. Moving objects, such as

pedestrians, are considered as column outliers. Here, we use the Wallflower [40] test images6 for the

second and third row test image sequences (waving tree and office scenarios). The size of each image

of Wallflower is 160 × 120. We select 400 frames for the office scenario and use 287 frames for the

waving tree scenario. Since we column-wise stacked each image frame, the data is A ∈ [0, 255]19200×400

for the office scenario and A ∈ [0, 255]19200×287 for the waving tree scenario. For the first row escalators

scenario [21], the size of each image is 160× 130 and we select 200 frames.

The first row of Figure 7 is the moving escalator background scenario. The second row of Figure 7

is the waving tree scenario; the background objects include the waving tree. These two scenarios show

that the background objects are not static, but include periodic moving objects, such as waving tree and

6http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm.

November 5, 2014 DRAFT



25

Fig. 9: The basis matrix W and the coefficient matrix H of the proposed log-RANMF model (22) for

escalator scenario in Figure 7. As expected, the basis matrix W is sparse and try to characterize inherent

nonnegative rank structure. For instance, the first basis w1 and the corresponding coefficient h1 show the

global basis structure. The basis w2, w8 − w11 correspond to the global illumination change for specific

period as shown in h2, h8 − h11. Also, w3 − w7, w12 is related to the movement of the escalator. See

also the corresponding coefficient vectors h3 − h7, h12.

moving escalator. The third row of Figure 7 is office scenario; a person switches off the light. There is an

abrupt change of the background objects from bright to dark. Also the size of that person (i.e., column

outliers) changes dynamically. In all cases, the proposed RANMF model well separates the moving objects

(column outliers) from the various background objects (low-rank+ approximation). On the contrary, the

state-of-the-art RPCA (4) sometimes does not perform well although we tuned parameter. Especially, for
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the office scenario, RPCA (4) does not clearly separate outliers from the background. The DECOLOR

model sometimes fails to detect foreground or detect too large area than the moving objects itself. On

the contrary, the proposed RANMF model with TV regularization in (25) well detect foreground objects

with sharp boundary. For the first row image sequence, we use log-RANMF model and for the second

and the third row image sequence, we used the `p-RANMF model.

In Figure 8, we show asymmetric singular values of the proposed log-RANMF (22) and singular values

of RPCA (4) and DECOLOR (27) of escalator scenario in Figure 7. Although we indirectly minimize

ANN-norm (7) via SRAM (23), the low rank+ structure (i.e., via asymmetric singular value) of RANMF

is comparable to that of nuclear norm based model. This is the main advantage of the proposed approach

for column outliers separation problems. Also, see Figure 2 for asymmetric singular values of RANMF

for synthetic data case. In Figure 9, we show basis matrix W and coefficient matrix H of the log-RANMF

model (22) for escalator scenario. As expected, basis matrix W is sparse and try to characterize inherent

nonnegative rank structure. For instance, the first basis vector w1 (i.e., matrix after reshaping) and the

corresponding coefficient h1 show the global basis structure. The basis w2, w8 − w11 correspond to the

global illumination change for specific period as shown in h2, h8 − h11. Also, w3 − w7, w12 catch the

periodic movement of the escalator. See also the corresponding coefficient vectors h3 − h7, h12.

In Table I, we compare the stability and denseness parameters of RANMF (22) and `1-NMF (3). Note

that, for office scenario, S(W ) of RANMF is larger than that of `1-NMF, although ‖W‖ shows that

RANMF is more stable than that of `1-NMF. The reason of this is the following. Since the background

of office scenario is in principle is two (light on and light off) and the coefficient matrix H bounded by

ηH , the other many basis vectors of W are contributed randomly with constrained coefficient matrix H .

Therefore, it has a chance to be very close each other. In this case, we get large S(W ). However, ‖W‖

depends on the sum of all column of W TW as noticed in (13). Therefore, the change of ‖W‖ is more

robust to the noise than S(W ) which depends on maximum value of W TW matrix. In Table I, we can

see clearly the relation between stability ‖Y ‖ vs. denseness ‖Y ‖`∞ with Y = W,H . The basis matrix

W of RANMF is clearly more stable (but sparse) than that of `1-NMF. On the contrary, the coefficient

matrix H of RANMF is more dense (but unstable) than that of `1-NMF. It is well matched with the

theoretical analysis in Section II-A.

In Table II, we compare the asymmetric incoherence criterion (20) of RANMF (22) and `1-NMF (3).

It shows that aINC of the proposed RANMF model is always sufficiently lower than that of `1-NMF.

That is, aINC well characterize a model with stable basis matrix W and dense coefficient matrix H for

column outliers separation problem.
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S(Y ) ‖Y ‖ ‖Y ‖`∞
W/H Model Face Escalator Tree Office Face Escalator Tree Office Face Escalator Tree Office

`p-RANMF 0.7606 0.6530 0.3916 0.8489 2.0230 1.7637 1.8071 2.1130 0.1114 0.4579 0.2198 0.1786

W log-RANMF 0.8246 0.6554 0.3892 0.8792 2.0582 1.8176 1.8179 1.9610 0.1126 0.3714 0.2450 0.6103

`1-RANMF 0.7503 0.6635 0.4769 0.9817 2.0922 1.8176 1.7308 2.3443 0.1378 0.7277 0.4537 0.1552

`1-NMF 0.8533 0.8649 0.8639 0.7320 2.9485 2.9701 3.5258 3.0229 0.0448 0.1035 0.0775 0.0616

`p-RANMF 0.9653 0.9452 0.8090 0.9960 3.5406 3.1849 3.1639 3.7671 0.2221 0.1608 0.1307 0.2105

H log-RANMF 0.9672 0.9490 0.7833 1.0000 3.6174 3.0326 3.1967 3.1428 0.2320 0.1704 0.1333 0.2045

`1-RANMF 0.9312 0.9498 0.9720 0.9985 3.4077 3.1478 3.3717 3.6533 0.2314 0.1828 0.1325 0.2272

`1-NMF 0.7453 0.8095 0.7093 0.8656 2.3602 2.2079 2.3800 2.0932 0.8935 0.5058 0.5630 0.9998

TABLE I: A comparison of stability S(Y ), ‖Y ‖ and denseness ‖Y ‖`∞ (Y = W,H) of four different

models; RANMF with `p-norm (p=0.65,1) and log-function and `1-NMF. Here, we use four different test

image sequences; face, escalator, waving tree, and office in Figure 4 and Figure 7. For office scenario,

due to noise, S(W ) of RANMF is larger than that of `1-NMF. However, since ‖W‖ is related to whole

column values of W TW (e.g. (13)), it is more robust to noise. Note that ‖Y ‖∞ depends on its size of

data; ‖W‖∞ ∈ [ 1√
m
, 1] and ‖H‖∞ ∈ [ 1√

n
, 1].

Ξ(W ) Ξ(H) aINC(L)

Model Face Escalator Tree Office Face Escalator Tree Office Face Escalator Tree Office

`p-RANMF 0.0551 0.2596 0.1216 0.0845 0.0627 0.0505 0.0413 0.0559 1.1394 0.1944 0.3397 0.6611

log-RANMF 0.0547 0.2043 0.1348 0.3112 0.0641 0.0562 0.0417 0.0651 1.1726 0.2750 0.3095 0.2091

`1-RANMF 0.0658 0.4004 0.2621 0.0662 0.0679 0.0581 0.0393 0.0622 1.0313 0.1450 0.1499 0.9393

`1-NMF 0.0152 0.0348 0.0220 0.0204 0.3786 0.2291 0.2365 0.4777 24.9004 6.5751 10.7567 23.4457

TABLE II: A comparison of aINC(L) of four different models; RANMF with `p-norm (p=0.65,1) and

log-function and `1-NMF. Here, we use four different test image sequences; face, escalator, waving tree,

and office. We can see the significant different incoherent parameter aINC(L) between the proposed

RANMF model and the conventional `1-NMF model for all test image sequences. That is, aINC(L)

well characterize stable (and sparse) basis matrix with dense (and unstable) coefficient matrix for column

outliers separation problem.

V. CONCLUSION

In this paper, we propose the robust asymmetric NMF model with soft regularized asymmetric alter-

nating minimization algorithm to remove column outliers, while obtaining the inherent low nonnegative

rank structure of the given high dimensional image data. The numerical results, for background modeling
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in video image sequence and removal of gross error in images of faces, show that our proposed robust

asymmetric NMF models with `p-norm or log cost function do better recover the inherent low nonnegative

rank structure than the state-of-the-art nuclear norm based robust PCA and DECOLOR and other robust

NMF models. The main advantage of the proposed robust asymmetric NMF model is that it does not

sensitive to the choice of the rank parameter.
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APPENDIX A

INCOHERENCE CONDITION OF RPCA (4)

The incoherence condition [3] of a matrix Y ∈ Rm×r is defined as

ic(Y ) = max
i
‖PY ei‖2, (29)

where PY is a projection operator onto the subspace generated by Y , ei ∈ Rm is a standard coordinate

unit vector. Let us assume that rank(Y ) = r, then ic(Y ) ∈ [
√

r
m , 1]. Furthermore, let

inc(L0) = max{ic(U), ic(V )}, (30)

where SV D(L0) = UΣV T and U, V are the left and right singular vectors of L0. Note that (30) is

incoherence condition of row and column subspace of L0 [8]. As discussed in [2], the incoherence

condition asserts that for small value of inc(L0), the singular vectors of L0 are sufficiently dense and

away from standard coordinate axes.

In addition, Chandrasekaran et.al. [8] introduce slightly different incoherence condition for RPCA (4).

To measure denseness of a matrix L0, they introduce

ξ(L0) := max
N∈T (L0),‖N‖≤1

‖N‖`∞ , (31)
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where ‖N‖ = max‖y‖2≤1 ‖Ny‖2 and T (L0) = {UCT + DV T : C ∈ Rn×r, D ∈ Rm×r}. The small

value of ξ(L0) means that the elements of the tangent space T (L0) are not too sparse. Actually, they

showed that the following relation between (30) and (31):

inc(L0) ≤ ξ(L0) ≤ 2inc(L0). (32)

To measure sparsity pattern of the given matrix X0, Chandrasekaran et.al. [8] introduced an additional

criterion:

µ(X0) := max
N∈Ω(X0),‖N‖`∞≤1

‖N‖, (33)

where Ω(X0) = {N ∈ Rm×n : ιN ⊆ ιX0
} and ιY is an indicator matrix of nonzero elements of Y .

Note that a matrix X0 with bounded degree (i.e., limited sparsity pattern) has small µ(X0).

degmin(X0) ≤ µ(X0) ≤ degmax(X0), (34)

where X0 ∈ Rm×n, degmin(Y ) = arg min{mini ‖rowi(Y )‖0, mini ‖columni(Y )‖0}, and degmax(Y ) =

arg max{maxi ‖rowi(Y )‖0, maxi ‖columni(Y )‖0}. Here, rowi(Y )/columni(Y ) are the i-th row/column

vector of Y . The sparsity pattern of a matrix X0 determines the value of µ(X0). Note that, to get a true

solution {L̂ = L0, X̂ = X0}, at least µ(X0)ξ(L0) < 1 should be satisfied. From (32) and (34) with

inc(L0) ≥
√

r
min{m,n} , we get degmax(X0) <

√
min{m,n}

4r . It means that, when r = 1, we cannot recover

outliers, which is larger than
√

min{m,n}/2 only in one direction. For instance, for A = 1000× 1000

matrix, 16× 1 size outliers X0 cannot be guaranteed to be separated from low rank matrix L0. However,

we empirically tune regularization parameter ν of RPCA (4) for the separation between column outliers

and low rank matrix; see Figure 1.

APPENDIX B

LOWER BOUND OF THE NONNEGATIVE RANK

In this section, we introduce two different forms of lower bound of the nonnegative rank. One is related

to nuclear norm and the other is related to combinatorial `0-norm.

Since we set `2-norm and `∞-norm (i.e. `0-norm by Lemma II.1) constraints on the set Zdη (6), the

lower bound of rank+ also has a connection to the norm based lower bound [12], [13] and area based

lower bound [15], [36]. In the following theorem, we give an explanation of the proposed lower bounds

of rank+.
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Theorem B.1. Let L =
∑r

i=1 Li ∈ Rm×n+ be an ANMF (8) with Li = λiwih
T
i , then we have two different

types of lower bounds of rank+(L):

rank+(L) ≥ ‖L‖�
maxi λi

and rank+(L) ≥ ‖L‖A
maxi

√
‖Li‖`0

, (35)

where ‖L‖� =
∑r

i=1 λi and ‖L‖A =
∑r

i=1

√
‖Li‖`0 .

Proof: Since L =
∑r

i=1 λiwih
T
i , we have

• norm-based:

‖L‖`1 ≤
r∑
i=1

λi
√
‖Li‖`0 ≤ max

j

√
‖Lj‖`0

r∑
i=1

λi ≤ rmax
i
λi max

j

√
‖Lj‖`0 ,

• area-based:

‖L‖`1 ≤
r∑
i=1

λi
√
‖Li‖`0 ≤ max

j
λj

r∑
i=1

√
‖Li‖`0 ≤ rmax

j
λj max

i

√
‖Li‖`0 .

The first inequality follows from Cauchy-Schwarz inequality and ‖wihTi ‖`2 = 1, since ‖wi‖2 = ‖hi‖2 =

1.

Recently, Fawzi and Parrilo [13] introduced general lower bound of rank+(L) of L ∈ Rm×n+ :

rank+(L) ≥ N
∗(L)

N (L)
, (36)

where N (L) is positively homogeneous and monotone, that is,

N (aL) = aN (L) and L ≤M → N (L) ≤ N (M),

where a ≥ 0 and L,M,M − L ∈ Rm×n+ . Also, they define N ∗(L) = min{ t > 0 : L ∈ t conv(AN ) }

where AN = {B ∈ Rm×n+ : rank(B) ≤ 1 and N (B) ≤ 1} and conv(C) is a convex hull of C. Note

that, if we set N (L) = ‖L‖ then we get

rank+(L) ≥
‖L‖∗+
‖L‖

, (37)

where ‖L‖ = max‖v‖2=1 ‖Lv‖2. Notice that since we do not use `∞-norm bound, the lower bound

in Theorem B.1 also apply to the general NMF with nonnegative nuclear norm ‖L‖+∗ (9). Hence, if

maxi λi = ‖L‖ for the first equation in (35), then we get the same lower bound (37). Moreover, it is

not unnatural to assume L ∈ Rm×n>0 for image data. Then, by Perron-Frobenius Theorem [31], we get

maxi
√
‖Li‖`0 =

√
mn for L ∈ Rm×n>0 when maxi λi = ‖L‖. Therefore, the second inequality in (35)

becomes

rank+(L) ≥ ‖L‖A,

where ‖L‖A is simply normalized version with
√
mn.
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