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1 Introduction

A sparse signal is a signal that has very few
nonzero elements or one that becomes so under a
basis change or through a certain transform. Ex-
ploiting sparsity has become a common task in
data sciences. Compressed sensing [1, 2], regu-
larized regression (e.g., LASSO [3]), and regular-
ized inverse problems (e.g., total variation image
reconstruction [4]) have made `1 optimization a
central tool in data processing problems. As the
name suggests, `1 optimization problems recover
sparse solutions by solving an optimization prob-
lem involving an `1–norm.

Today, the scope of `1 optimization is quickly
expanding. The size, complexity, and diversity
of instances have grown significantly. Beyond 1D
signals and 2D images, high-dimensional quanti-
ties such as video, 4D CT, and multi-way ten-
sors have become the data or unknown vari-
ables in models. New applications have moti-
vated structured solutions to optimization prob-
lems that significantly generalize our notion of
sparsity. Such applications look for low-rank ma-
trices or tensors, sparse graphs, tree structured
data representations, and sparse representations
involving only a few dictionary atoms.

This article gives self–contained introductions
to `1 optimization for sparse vectors (Section 2),
L1 optimization for finding functions with com-
pact support (Section 3), and computing sparse
solutions from measurements that are corrupted
by unknown noisy (Section 4).

2 Can we trust `1 optimization?

Let A be an m × n matrix and let b ∈ Rm be
a vector. Suppose we wish to find the sparsest

solution to the linear equations Ax = b. Mathe-
matically, this problem is equivalent to minimiz-
ing the `0–“norm” of x (denoted by ‖x‖0), which
counts the number of nonzero entries of x, sub-
ject to Ax = b. However, this is a combinatorial
problem and is generally NP–hard [5]. A com-
putationally tractable alternative is to perform
the `1–norm minimization in place of `0–“norm”
minimization. We call this problem the basis
pursuit problem:

minimize
x∈Rn

‖x‖1 subject to Ax = b. (1)

Note that the `1–norm is a convex function. Al-
together, problem (1) is a convex optimization
problem. Before discussing the numerical solu-
tion to (1), we should question the quality of the
`0–to–`1 relaxation: if x̄ ∈ Rn is the unknown
sparse vector and b = Ax̄, can we trust (1) to
recover x̄?

First, whenever the linear system Ax = b has a
unique solution x̄, x is the unique solution to (1).
In this case, minimizing the `1–norm is unneces-
sary. Therefore, it is more interesting to con-
sider the under–determined case, when Ax = b
has infinitely many solutions. How can we find
the needle x̄ in the haystack {x : Ax = b}?

Without loss of generality, let us assume that
matrix A has full row rank, or otherwise some
rows of Ax = b can be removed without affecting
the solution of (1). In this case, A is an m–by–n
matrix, where m < n. We now introduce some
notation that we will use to present conditions
that guarantee several properties of x̄.

Let S = {i : x̄i 6= 0} denote the set of nonzero
elements of x̄ (a.k.a., the support of x̄), let Ai
denote the ith column of A, and let AS denote
the submatrix of A formed by the columns Ai
for i ∈ S.

When S is fixed, the necessary and sufficient
condition for model (1) to return x̄ uniquely is

1a. AS has full column rank, and

1b. there exists a “dual certificate” denoted by
y ∈ Rm such that obeys

i) 〈y,Ai〉 = sign(x̄i), for i ∈ S, and

ii) −1 < 〈y,Aj〉 < 1, for j 6∈ S.
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Condition 1a basically says that if an oracle tells
us that all nonzero elements of x̄ fall within S,
then we can solely rely on the linear subsystem
ASxS = b to recover x̄S , which is the nonzero
part of x̄. Minimizing `1–norm cannot help here
because it is a locally linear function. If con-
dition 1a is not satisfied, then x̄ cannot be the
unique solution. Indeed, in this case there exists
a nonzero vector t ∈ Rn such that At = 0 and
supp(t) ⊆ S. Consider xα = x̄ + αt. Restrict-
ing α to the interval (−ε, ε) for some sufficiently
small ε, we have sign(x̄) = sign(x̄ + αt) and
thus ‖xα‖1 = 〈sign(x̄), xα〉 = 〈sign(x̄), x̄+ αt〉 =
‖x̄‖1+α〈sign(x̄), t〉. Therefore, there exists some
α 6= 0 such that ‖xα‖1 ≤ ‖x̄‖1. Together with
Axα = Ax̄ = b, x̄ cannot be the unique solution
to (1).

Condition 1a also implies that |S|, the number
of nonzero components in x̄ , must obey |S| ≤ m.
In general, we clearly need to take at least |S|
linear measurements in order to recover a signal
with |S| nonzero elements. Later we will discuss
how large m needs to be.

Condition 1b reveals the power of `1–norm
minimization: when a dual certificate y exists,
it determines S. To see this, suppose x ∈ Rn
satisfies Ax = b but xj 6= 0 for some j /∈ S.
Given a dual certificate y, we will show

‖x‖1 > 〈y,Ax〉 = 〈y,Ax̄〉 = ‖x̄‖1 (2)

and thus x cannot be a solution to (1). Proof
of (2): For i ∈ S, by condition 1b (i), we
have |x̄i| = 〈y,Ai〉x̄i and |xi| ≥ 〈y,Ai〉xi.
For any j /∈ S and xj 6= 0, by condition
1b (ii), we have |xj | ≥ 〈y,Aj〉xj . Therefore,
‖x̄‖1 =

∑
i∈S〈y,Ai〉x̄i = 〈y,Ax̄〉 and ‖x‖1 >∑

i∈S〈y,Ai〉xi +
∑

j /∈S〈y,Aj〉xj = 〈y,Ax〉. QED

The two conditions have a nice geometric in-
terpretation. Consider the hyperplane H = {x ∈
Rn : pTx = α}, where p = AT y and α = yT b,
and the `1–“ball” B = {x ∈ Rn : ‖x‖1 ≤ β},
where β = ‖x̄S‖1. Condition 1b ensures that
H ∩ B is the face of B where sign(x) = sign(x̄).
Condition 1a further ensures that this face in-
tersects {x ∈ Rn : Ax = b} at exactly one point,
which is x̄S . Altogether, they ensure that x̄S is
uniquely recovered by (1).

We already saw that Condition 1 is sufficient
for (1) to uniquely recover x̄. In fact, it is also
necessary. In addition, it is both necessary and
sufficient for the following relaxed problems to
have a unique solution:

minimize
x∈Rn

λ‖x‖1 +
1

2
‖Ax− b‖22, (3)

minimize
x∈Rn

‖x‖1 subject to ‖Ax− b‖2 ≤ δ; (4)

see [6] for proofs. The same condition also guar-
antees that, when b contains noise and/or when
x̄ are not exactly but approximately sparse, the
solutions to (3) and (4) remain close to x̄ in
certain norms (assuming appropriate parameters
λ and δ, respectively); a generalized condition
gives similar properties for the analysis–`1 model
[7], where the signal is (approximately) sparse
under a linear transform Ψ and thus ‖Ψx‖1, in-
stead of ‖x‖1, is minimized; see [8] and the ref-
erences therein. The total variation model [4] is
a well–known example.

The existence of a dual certificate is the key
to the success of `1 optimization. Given |S| (the
number of nonzero elements in the signal), the
set of vectors y obeying Condition 1b part (i) is
larger if m is larger. Now fixing m, the set of vec-
tors y obeying part (ii) is larger if n is smaller.
Therefore, recovery by `1 optimization is, in gen-
eral, more likely to succeed if there are a lot of
linear measurements and just a few nonzero com-
ponents, which is intuitive.

The main condition listed above is based on
a fixed support set S. It is numerically veri-
fiable only when S is either given (by an ora-
cle) or known to have moderately many possi-
bilities. However, there are, in general, expo-
nentially many possible support sets S, and the
correct set is hard to guess in advance. How can
we ensure the existence of a dual certificate for
every possible sparse signal x̄? Such a setting is
commonly referred to as “uniform sparse recov-
ery.” There has been very encouraging answers
based on conditions such as the mutual incoher-
ence condition [9, 10], the null-space property
(NSP) [2, 11], the restricted isometry principle
(RIP) [1], the spherical section property [12], and
so on.
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A surprising result in uniform sparse recov-
ery is that as long as the entries of A are sam-
pled from subgaussian distributions, then with
overwhelming probability, all sparse signals with
no more than k = O(m/ log(n/m)) nonzero el-
ements can be uniquely recovered by (1). Fur-
thermore, even if b contains noise and/or x̄ is ap-
proximately k sparse, the recovery remains sta-
ble. The constant in the big–O is very mild. The
result says that we shall trust `1 optimization
for recovering any sparse signal from a number
of qualified linear observations that are merely a
few times more in number than the nonzero ele-
ments in the signal. We pay a mild price for not
knowing the locations of the nonzero elements
because of the help of `1 minimization.

3 L1 optimization for com-
pactly support solutions

We have seen the power of `1 optimization for
inducing sparsity in finite dimensional problems.
In this section, we consider extensions of `1 opti-
mization to infinite dimensional calculus of vari-
ations type problems arising, for example, in
physics and elsewhere.

We can think continuously and start with a
very simple, but canonical example. Let u, f :
R1 → R, u ∈ H1, f ∈ L2, and consider the toy
problem:

minimize
u∈H1

1

2

∫
|ux|2 −

∫
fu+

1

µ

∫
|u|.

(We will abuse notation below and let ‖ ·‖2, ‖ ·‖1
now be the continuous L2 and L1 norms and 〈 , 〉
be the continuous L2 inner product.)

When minimizing this problem, we are led to
the Euler–Lagrange equation

uxx + f =
1

µ
p(u), (5)

where p(u) is a subgradient of ‖u‖1. We have
‖u‖1 = 〈u, p(u)〉 and, for any v,

‖v‖1 − ‖u‖1 ≥ 〈v − u, p(u)〉,
‖v‖1 ≥ 〈v, p(u)〉.

We might also consider gradient descent on
this toy problem, with t being the descent direc-
tion, obtaining

ut = uxx + f − 1

µ
p(u) (6)

as an evolution equation.

We can hope that these L1 regularized (or per-
turbed) problems will have solutions that vanish
a lot, e.g., have compact support. The theo-
retical framework for this was developed by H.
Brezis in some important papers from the early
1970’s [13, 14], without any connection to com-
pressive sensing and without any suggested nu-
merical implementation. He considered a wide
class of second–order elliptic equations and, with
Friedman [14], an extension to parabolic equa-
tions. In [15, 16] we showed that many inter-
esting problems of physics can be rewritten in
this L1 form and demonstrated advantages, both
numerically and in physical understanding that
arises from this approach.

It is instructive to give the following formal
argument, which helps explain why the measure
of the support shrinks as µ ↓ 0. Consider a so-
lution to (5) on an interval x1 ≤ x ≤ x2 with
u(x1) = u(x2) = 0 and u(x) > 0 for x1 < x < x2.
Hence, p(u(x)) = 1 for x1 < x < x2.

Integrating (5) from x1 to x2 gives us

µ

(
ux(x2)− ux(x1) +

∫ x2

x1

f

)
= x2 − x1,

but ux(x2) ≤ 0 ≤ ux(x1) so:

x2 − x1 ≤ µ
∫ x2

x1

f(x)dx.

This gives a bound on the interval in terms of
f , which diminishes with µ. Similarly, if instead
u(x1) = u(x2) = 0 and u(x) < 0 for x1 < x < x2,
then we have p(u(x)) = −1 for x1 < x < x2 and

−µ
(
ux(x2)− ux(x1) +

∫ x2

x1

f

)
= x2 − x1.

This time

−ux(x2) ≤ 0 < −ux(x1), so

3



x2 − x1 ≤ −µ
∫ x2

x1

f(x)dx

and we get the same kind of estimate. This for-
mal argument can be generalized to a wide class
of elliptic problems.

We can borrow computational techniques from
`1 optimization to devise efficient and novel nu-
merical methods for these and a wide variety of
classical problems. The key tool from a numeri-
cal point of view is the simple “soft thresholding”
or “shrink” operator. Recall:

shrink(x, u) = arg min
y

µ|y|+ 1

2
|x− y|2

=


x− µ, x ≥ µ,
0, |x| ≤ µ,
x+ µ, x ≤ −µ.

In [16] we applied this approach to PDEs that
come from a variational problem, either by min-
imization, obtaining an elliptic PDE, or by gradi-
ent descent to obtain a parabolic PDE. Addition-
ally, some PDEs can be rewritten using the L1

subgradient such as the divisible sandpile prob-
lem and the signum-Gordon equation [15]. Given
a linear second order elliptic operator L(u), we
would like to solve numerically

0 ∈ −L(u)− f + µp(u),

0 ∈ ut − L(u)− f + µp(u).

Let Au = −L(u) − f , Bu = µp(u), and τ be
the time step for the time dependent problem.
A very convenient implicit and unconditionally
stable method is known as the Douglas–Rachford
splitting algorithm [17]. Let

uk ≈ u(k∆t)

then update:

uk+1 = (1+τB)−1
(
(1 + τA)−1(1− τB) + τB

)
uk,

which can be written as

uk+1 = (I + τB)−1ũk,

ũk+1 = ũk + (1 + τA)−1(2uk+1 − ũk)− uk+1.

Note that computing (I + τB)−1g = v means
that we are solving for v in

g = v + τµp(v)

or solving

minimize
v

‖v‖1 +
1

2τµ
‖v − g‖2.

The solution is

v = shrink(g, τµ),

which is simple to implement. See [17] for a con-
vergence proof of this method. This is uncondi-
tionally stable and the possible multi–valuedness
of p(u) gives no difficulties.

In [16] we constructed an efficient numerical
scheme for solving obstacle problems in the di-
vergence form. We reformulated the problem in
terms of an L1 like penalty on the variational
problem. This is an exact regularizer. The tech-
nique also applies to classical obstacle problems
as well as some related free boundary problems,
e.g., Hele–Shaw and two phase membrane. The
resulting methods are quite simple, again involv-
ing the shrink operator, and seem to outperform
classical approaches.

Perhaps the most significant application in
this set of ideas involves obtaining compactly
supported approximations to eigenfunctions of
the Schrodinger equation [18, 19]. These have
long been sought [20] and are called Wannier
functions. These were developed in solid state
physics and quantum chemistry. In [18, 19, 21]
we developed and analyzed a natural and easy
to implement method to do this.

Consider the Hamiltonian

Ĥ = −1

2
∆ + V (x),

where ∆ is the Laplacian and V is a potential
with eigenvalues λ1 < λ2 · · · .

We obtain compactly supported approxima-
tions to eigenfunctions by solving the variational
problem

E0 = min
ϕ1,ϕ2,...,ϕN

N∑
j=1

〈ϕj , Ĥϕj〉
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subject to 〈ϕi, ϕj〉 = δjk, for i, j = 1, . . . , N .

We get densely supported ϕj , (think of sines
and cosines when V = 0). Physicists and
chemists want short–ranged interaction. The
original Wannier functions (1937) involve a sub-
space rotation of the ϕj following by a cut–off
to get compactly supported approximate eigen-
functions.

We just add an L1 regularization in the previ-
ous variational problem, obtaining

E = min
ψ1,ψ2,...,ψN

N∑
i=1

1

µ
‖ψj‖1 + 〈ψj , Ĥψj〉 (7)

subject to 〈ψi, ψj〉 = δjk, for i, j = 1, . . . , N .

It turns out that this can be solved rapidly
using the split Bregman algorithm with an extra
(nonconvex) projection step [22]. The L1 term
actually often speeds up the optimization!

We have a fairly complete approximation the-
ory [23]. We can also impose shift invariance,
i.e orthogonality to the translations of the eigen-
functions by lattice vectors [24]. The only non-
linear steps in the algorithm are very simple
scalar operations. The resulting approximate
eigenfunctions resemble Meyer wavelets [25], but
have compact support and are intimately con-
nected to the Schrodinger equation.

4 Computing Paths of Sparse
Solutions

When the vector b is corrupted due to noise at
an unknown level, it is not straightforward to
calculate the correct value of λ in (3). Certain
methods, such as cross validation, exist to solve
this problem, but they need the solutions to (3)
corresponding to all (or largely many) parameter
values λ ≥ 0. While solving a single `1 problem is
inexpensive, solving (3) for the entire path of so-
lutions xλ for all λ ≥ 0 can be time–consuming.

In addition, an unpleasant by–product of min-
imizing `1–norm in model (3) is the loss of signal
magnitude. Consider a toy problem b = ax + ε,
where ε is noise and a, b, x are strictly positive.

The solution to (3) is

xλ =

{
0, λ > ab,
b
a −

λ
a2
, λ ∈ (0, ab].

Unless λ = 0, we always get xλ < b/a. Roughly
speaking, model (3) returns a sparse xλ by re-
ducing the magnitudes of its components; oth-
erwise, the solution will have many nonzero ele-
ments since the noise ε cannot be sparsely rep-
resented. However, the magnitudes of the true
nonzero components are also reduced, causing
solution bias.

This section describes a simple solution to re-
solve these issues. We restrict our discussion to
the Euclidean space Rn. The optimality condi-
tion of (3) is:

0 = λp+AT (Axλ − b), p ∈ ∂‖xλ‖1. (8)

Introducing λ = 1/t and then replacing λp = p
t

in (8) by dp
dt so that we can evolve p over time t,

we arrive at the new system, known as inverse-
scale space (ISS) [26, 27]:

ṗ(t) = −AT (Ax(t)− b), p ∈ ∂‖x(t)‖1. (9)

This is an ordinary differential inclusion, for
which we set initial solution p(0) = x(0) = 0.
For well–definedness, we let x to be right contin-
uous, let p be right continuously differentiable,
and let ṗ denote the right time derivative of p.

It is easy to evolve the system (9) because at
each time t ≥ 0, either pi(t) is changing value or
xi(t) is so, but not both. This is because pi(t) is a
subgradient of |xi(t)|, so xi(t) must stay 0 when-
ever pi(t) is changing value between (−1, 1), and
once xi(t) becomes strictly positive or strictly
negative, pi(t) must stay 1 or −1, respectively.
We can construct a solution path to (9) by keep-
ing x fixed and evolving p, at all but a set of
time points where some pi(t) reaches either 1 or
−1. At those times, x is updated as follows. Let
S1 = {i : pi(t) = 1}, S2 = {i : pi(t) = −1}, and
T = (S1 ∪ S2)c. Following (9), x(t) is a solution
to the system:

xS1 ≥ 0, xS2 ≤ 0, xT = 0, (10a)

0 = ATS1∪A2
(Ax− b). (10b)
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Equation (10b) prevents (9) from evolving pi(t)
above 1 or below −1. The system (10) is equiv-
alent to the problem

minimize
x∈Rn

1

2
‖Ax− b‖2 subject to (10a). (11)

The entire path {p(t), x(t)}t≥0 can be obtained
by alternating between evolving p(t) by (9) and,
upon some pi(t) hitting either 1 or −1, updat-
ing x(t) by solving (10) or (11). Note that Ax(t)
is always unique even if x(t) is not, so the path
{p(t), Ax(t)}t≥0 is unique. When Ax = b is con-
sistent, there exists T > 0 such that x(t) ≡ x(T ),
for t ≥ T , and x(T ) is a solution to (1).

Applying model (9) to the toy example gives

x(t) =

{
0, 1

t > ab,
b
a ,

1
t ∈ (0, ab].

Notice that the bias − λ
a2

is gone!

Of course, one can manually add − λ
a2

back
to the solution of (3) and, in the general case,
manually update xλ by solving an additional de-
biasing problem, for example, minimize 1

2‖Ax−
b‖2 subject to x on the same support as xλ. How-
ever, this will not recover the solution path x(t)
of ISS. In general, x(t) and xλ, for λ = 1/t, do
not have the same support. This is because bias
not only reduces magnitude but also affects the
support of xλ. Debiasing only changes the val-
ues of xλ, not its support. Therefore, introduc-
ing bias and removing it are not as effective as
avoiding bias at the beginning.

Without minimizing the `1–norm in (9), is x(t)
still sparse? The answer is interesting: x(t)
and xλ are both sparse for the same reason:
p ∈ Range(AT ), which holds for both (8) and
(9). In our work, we deal with the underdeter-
mined case whereA has more columns than rows,
so p stays in a small m–dimensional subspace in
a large n–dimensional space. On the other hand,
from the subgradient relation between p and x,
x is sparse if few components of p equal 1 or −1.
The `1 subgradient p takes value in the hyperbox
[−1, 1]n. The faces of the hyperbox are precisely
the vectors which have 1 or −1 in some compo-
nent Having more components equal to 1 or −1
means that p is on a smaller dimensional face.

For example, if all components are equal to 1, the
hyperbox face is just a single point. Therefore,
Therefore, when the dimension of range(AT ) is
small, it is unlikely for p to have many 1 or −1
components, so x is likely sparse. More formal
analysis can be found in [28]. The point is that
x is sparse because p, the `1 subgradient at x,
is in the range of AT , not because of the usual
properties of the `1–norm.

One of the main advantages of (9) is how
quickly and easily it computes the solution path.
As argued above, it can be computed piece–
wise, and every piece is a sign–constrained least–
squares problem (11) that is similar to the pre-
vious one, so one can warm–start and solve it
very quickly using QR updates. There are also
other methods to obtain an approximate solu-
tion path even faster: for example, (discrete–
time) Bregman iteration [29, 30], (continuous–
time) linearized Bregman ISS [27], and (discrete–
time) linearized Bregman iteration [30, 31].

Bregman iteration is the forward Euler itera-
tion of (9):

pk+1 = pk − ∆t

m
AT (Axk − b), pk ∈ ∂‖xk‖1,

which is the optimality condition to

xk+1 = arg min
x∈Rn

D(x;xk) +
∆t

2m
‖Ax− b‖2, (12)

where D(x;xk) := ‖x‖1 − ‖xk‖1 − 〈pk, x− xk〉 is
the Bregman distance induced by `1–norm. In-
terestingly, after a change of variable, (12) re-
duces to the equivalent “add–back–the–residual”
iteration:

xk+1 = arg min
x∈Rn

‖x‖1 +
∆t

2m
‖Ax− bk‖2, (13a)

bk+1 = bk + (b−Axk). (13b)

Each iteration of (13a) requires minimizing a
problem similar to (3) except that residual (b−
Axk) is added back to the measurement. This is
better than solving (3) and tuning its λ because
this restores lost magnitude in the signal. See
Figure 1.

In addition, one can apply an existing code
for (3) to solver the subproblem (13a). Further-
more, (13) has another interesting property of
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Figure 1: Recover x (red) from Gaussian noisy measurements b = Ax + ε. Left: the solution
(blue) of model (3) (also known as BPDN or basis pursuit denoising) with hand picked λ = 49 for
best sparsity–noise tradeoff. Right: the 5th iterate (blue) of the Bregman iteration (12) or (13).
Conclusion: while true x (blue) cannot be recovered due to unknown noise, the Bregman solution
(right blue) recovers the lost magnitude in the `1 solution (left blue) and three additional large
elements, near the right end.

error forgetting [32]: the subproblem (13a) can
be solved inexactly with error, but the errors do
not accumulate; instead, they cancel each other
so that xk still converges quickly.

We can get even faster linearized Bregman al-
gorithms by smoothing. Simply add 1

κ ẋ to (9)
and obtain

ṗ(t) +
1

κ
ẋ = −AT (Ax(t)− b), p ∈ ∂‖x(t)‖1.

(14)
It has a piece–wise smooth solution, which con-
verges to the unsmoothed solution exponentially
fast as κ increases. By introducing z = p + 1

κx,
(14) reduces to an ordinary differential equation:

ż(t) = −AT (κA shrink(z(t), 1)− b). (15)

There is no inclusion anymore. This is because
the mapping between z and (p, x) is one–one.
Given z, we uniquely recover x = κ shrink(z, 1)
and p = z − 1

κx. The forward Euler iteration of
(15) is known as the linearized Bregman itera-
tion, which evolves quickly [33] and can be easily
parallelized for problems with massive amounts
of data [34].

All we have discussed in this section general-
izes naturally to other regularization function in

place of the `1 norm. If one is using the mini-
mization model:

minimize r(x) + tf(x)

where r enforces a solution structure and f is a
differentiable data fidelity function, we encour-
age trying the ISS system

ṗ(t) = −f ′(x), p(t) ∈ ∂r (x(t)) ,

which will likely reduce bias and compute a solu-
tion path quickly while still keeping the desired
structure for the solution.
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