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Abstract In this paper we propose a re�ectance and

illumination decomposition model for Retinex via the

high order total variation and L1 decomposition. Based

on the observation that illumination varies smoother

than re�ectance, we propose a convex variational model

which can e�ectively decompose the gradient �eld of

the observed image into salient edges and relatively

smoother illumination �eld through the �rst and sec-

ond order total variation regularization. The proposed

model can be e�ciently solved by a primal�dual split-

ting method. Numerical experiments on both grayscale

and color images show the strength of the proposed

model for applications to Retinex illusions, medical im-

age bias �eld removal and color image shadow correc-

tion.

Keywords Retinex · Image decomposition · High-
order total variation · Shadow correction

1 Introduction

In the past decades, the study of Retinex problem has

inspired a wide range of applications and discussions

[14,3,21]. The Retinex theory is originally proposed by

Land and McCann [14] as a model of color perception of

human visual system (HVS). The idea of Retinex the-

ory is that HVS can ascertain re�ectance of a �eld in
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which both illumination and re�ectance are unknown.

Our vision tends to see the same color of a given scene

regardless of di�erent illumination conditions. In other

words, it ensures that the color of objects remains rela-

tively constant under varying illumination. Figure 11 is

the well-known Adelson's checkerboard shadow illusion.

Visually, region A of Figure 1 (a) seems darker than re-

gion B , while digitally these two regions are of exactly

the same intensity I. This phenomena is caused by dif-

ferent illumination conditions. The perceived intensity

of the objects is the combination of re�ectance and illu-

mination. Taking into account the surroundings of the

object (shadow of the cylinder, periodic pattern of the

checkerboard), HVS can discount the illumination and

perceive the re�ectance automatically.

(a) original image (b) illusion free

Fig. 1: Checkerboard shadow illusion. (a) original

checkerboard image, (b) illustration of illusion free im-

age.

The primary goal of Retinex is to decompose a given

image I into two components, the re�ectance R and the

1 http://web.mit.edu/persci/people/adelson/checker
shadow_illusion.html

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
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illumination L such that

I(x) = R(x)× L(x), (1)

for x ∈ Ω where Ω ⊂ R2 is the domain of the image.

To simplify the model, we can take a logarithm on (1)

assuming that both R and L are positive and get

i(x) = r(x) + l(x). (2)

Most of decomposition methods are based on the above

additive model. The �rst Retinex algorithm proposed in

[14] is based on path following, and further studied in

[20,3]. Later on, the idea of path following is formulated

into variational and PDE based models. In [21], Morel

et al. show that if the light paths are assumed to be sym-

metric random walks, then Retinex solution satis�es a

discrete Poisson equation and can be e�ciently solved

by using only two FFTs. Under variational framework,

the followed total variation (TV) model proposed in [19]

aims to extract piecewise constant re�ectance r with

data term in gradient �eld

r̂ = argmin
r

∫
Ω

(
t|∇r|+ 1

2
|∇r −∇i|2

)
dx, (3)

where t is a given positive weight parameter. This model

is further modi�ed in [18] to a simple L1-based model

r̂ = argmin
r

∫
Ω

|∇r − δt(∇i)|dx, (4)

where δt(∇i) is a thresholded gradient �eld with respect
to the parameter t. This model appears to be e�cient

on suppressing the lighting e�ect on the test images,

however the loss of re�ectance details and contrast can

also be observed due to penalization on the magnitude

of image gradient. Moreover a rigorous analysis of the

proposed model is missing. Recently Zosso et al. [30]

extended the TV based models to a uni�ed non-local

formulation.

Decomposition models by penalizing both r and l

simultaneously are also very popular. For instance Kim-

mel et al. in [13] proposed the followed TV+H1 decom-

position model

r̂ = argmin
r

∫
Ω

(
|∇r|+ α(r − i)2

+ β|∇(r − i)|2
)
dx,

(5)

where the illumination l = i − r is implicitly assumed

to be smooth and penalized with H1 norm. A simi-

lar model is further investigated by Ng and Wang in

[22] with more constraints enforced. Speci�cally, the

followed minimization problem over both r and l was

proposed

min
r≤0,l≥i

∫
Ω

(
|∇r|+ α

2
|∇l|2

+
β

2
(i− r − l)2 + µ

2
l2
)
dx.

(6)

Here l ≥ i is based on the assumption that 0 < R ≤ 1

and r ≤ 0.

In this paper, we also consider a decomposition ap-

proach to recover both r and l simultaneously. In par-

ticular, we focus on extracting the illumination �eld l

using high order regularization. Our proposed model is

closely related to recently developed high order total

variation regularization. Therefore, in the following, we

present some related models and notations.

1.1 High order total variation methods

It is well-known that the total variation regularization

restoration [24] su�ers the so-called staircase artifact. In

order to suppress this e�ect, many higher order func-

tionals have been studied since the pioneering in�mal

convolution model proposed in [5] on combining the

�rst and second order total variation. The in�mal con-

volution concerning two functionals φ and ψ is de�ned

as(
φ4ψ

)
(u) = inf

u=v+w
φ(v) + ψ(w).

The in�mal convolution of the �rst and second order

variations proposed in [5] takes the form

Jβ(u) = inf
v+w=u

∫
Ω

|∇v|dx+ β

∫
Ω

|∇2w|dx, (7)

where
∫
Ω
|∇2w| denotes the total variation of the Hes-

sian of w for w ∈W 2,1(Ω). Thus the image u can con-

tain both piecewise constant and piecewise linear com-

ponents. This formulation is restudied in [25,26] in the

discrete setting for image restoration.

In a more general dual form, the in�mal convolu-

tion of the �rst and the second order total variation is

de�ned as

ICTVβ(u) = sup
p∈I1
q∈I2

inf
w

∫
Ω

(
(u− w)div(p)

+ βwdiv2(q)
)
dx,

(8)

where I1 = {p ∈ C1
c (Ω;R2), ||p||∞ ≤ 1} and I2 = {p ∈

C2
c (Ω;R2×2), ||p||∞ ≤ 1}. Note that if the symmetric

Hessian is considered, we can also de�ne I2 = {p ∈
C2
c

(
Ω; Sym2(R2)

)
, ||p||∞ ≤ 1} where Sym2(R2) denotes

the space of symmetric matrices. Here, we abuse the
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notation of the in�nity norm || · ||∞ in C1
c (Ω;R2) and

C2
c

(
Ω; Sym2(R2)

)
. A similar, yet di�erent formulation,

known as the total generalized variation (TGV), is pro-

posed and rigorously studied in [4]. In particular, the

second order TGV is de�ned as,

TGV2
β(u)

= sup
v

{∫
Ω

udiv2vdx | v ∈ C2c (Ω, Sym
2(R2)),

||v||∞ ≤ β, ||divv||∞ ≤ 1

}
.

(9)

In a simpli�ed form, the alternative primal form of (9)

is written as

TGV2
β(u) = inf

w

{∫
Ω

|∇u−w|dx

+ β

∫
Ω

|∇w|dx
}
,

(10)

where ∇w ∈ R2×2 is the (symmetrized) gradient of the

deformation �eld w ∈ R2. This formulation can be also

viewed as replacing the decomposition u = v + w in

(7) with the decomposition of the gradient �eld ∇u =

∇v+w. More discussions on the theoretical properties

of the connections between the two functionals can be

found in [4,1].

Another way of using high order TV is a direct com-

bination, not the in�mal convolution, of the �rst order

and higher order regularization, such as [16,17,2,23].

For example [23] proposed a regularization model with

direct combination of the �rst and second order regu-

larization for image restoration

min
u

{
1

2

∫
Ω

(Tu− u0)2dx

+ α

∫
Ω

|∇u|dx+ β

∫
Ω

|D2u|dx
}
,

where T is a bounded linear operator and D is the gra-

dient in distribute sense. This model has been studied in

a more general and theoretical setting under the space

of bounded Hessian. Finally, nonlinear high order regu-

larization [8,27], combining with curvature line, such as

Euler's elastic is also very popular, especially for image

inpainting. In this paper, we focus more on the �rst and

second order total variation.

1.2 Our contributions

The in�mal convolution of the �rst and second total

variation (in both ICTV and TGV) is designed to bal-

ance the �rst and high order singularities presented

in images. By involving higher order derivatives, these

functionals can capture higher order edges instead of

only piecewise constant components. It has been shown

that these methods can suppress staircase e�ects signif-

icantly.

From another point of view, the formulation (10)

(and (7)) decomposes ∇u �eld into two parts, `1-norm

of the residual ∇u−w and TV semi-norm of w. It has

been known that TV+L1 decomposition has interesting

geometrical properties. As studied in [7,28], TV+L1 de-

composition model allows a scale dependent decompo-

sition of geometry features, which is invariant to image

contrast. In Retinex theory, as considered in previous

path following based work, the illumination varies rel-

atively slower, which can be considered as a relatively

bigger scale in the gradient �eld. Furthermore, the na-

ture of illumination often follows certain paths, thus

piecewise linear approximation can model this behav-

ior adequately.

This motivates us to consider a decomposition

model to separate higher order piecewise smooth com-

ponents from the edges of relatively smaller scale in the

gradient �eld. In particular, we propose to decompose

the image i into the illumination l and re�ectance r,

and set the regularization as

J(r) =

∫
Ω

|∇r|dx,

Jβ(l) = β

∫
Ω

|∇2l|dx.
(11)

We call this proposed model as higher order to-

tal variation L1 (HoTVL1) illumination and re�ectance

decomposition model. Close connections to the previ-

ous in�mal convolution model (7) and (10) are shown,

where we aim to extract the higher order singularities

as the smoother illumination component. To the best of

our knowledge, it is also the �rst time that the higher

order in�mal convolution model is used for the pur-

pose of image decomposition. Furthermore, this model

is di�erent from the TV+H1 decomposition model con-

sidered in [13,22], where the H1 norm is penalized for

the illumination. In the section of numerical results,

we show that the proposed model can better separate

the di�erent scale of smoothness and singularities by

the TV+L1 decomposition in the gradient �eld. More-

over compared to the L1-based model [18], the proposed

method can preserve better the edges with small mag-

nitude without smearing out the features in image with

low intensities.

The paper is organized as following. In Section 2,

we present the proposed model with constraints and

discuss the connections to the previous higher order

regularization models. Furthermore, the existence and

uniqueness of the solution for the proposed method are
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rigorously discussed in an extended function space, i.e,

the product space of the bounded variation and the

bounded Hessian. In Section 3, a split inexact Uzawa

based primal�dual splitting algorithm [29] is applied to

solve the proposed model. Finally, we present numerical

experiments on both synthetic gray scale images, visual

illusion images, medical images with bias �led and real

color image examples and compare the performance to

some of the aforementioned existing variational based

methods.

2 High Order TV+L1 re�ectance�illumination

decomposition model

2.1 Proposed l model

Here, we present the �rst higher order TV+L1 varia-

tional model for re�ectance and illumination decompo-

sition

min
r,l

{
Eα,β(r, l) =

1

2

∫
Ω

(i− r − l)2dx

+ α
(∫

Ω

|∇r|dx+ β

∫
Ω

|∇2l|dx
)}

,

(12)

where l is the illumination and r is the re�ectance, α >

0, β > 0 are the regularization parameters.

Roughly speaking, we extract relatively smoother

piecewise linear component as illumination l, and the

texture part as r in gradient �eld for Retinex decom-

position. Note that this model can be interpreted as

the in�mal convolution. The connections are shown as

followed,

� If we let u = r + l, the model (12) is equivalent to

minimize

min
u,l

{
1

2

∫
Ω

(u− i)2dx

+ α

∫
Ω

(
|∇(u− l)|+ β|∇2l|

)
dx

}
,

⇐⇒ min
u

{
1

2

∫
Ω

(u− i)2dx+ αICTVβ(u)

}
.

(13)

� If we further replace ∇l by v =

[
v1
v2

]
in (12), we

obtain the following model

min
u,v

{
1

2

∫
Ω

(u− i)2dx

+ α

∫
Ω

(
|∇u− v|+ β|∇v|

)
dx

}
,

⇐⇒ min
u

{
1

2

∫
Ω

(u− i)2dx+ αTGV2
β(u)

}
.

(14)

Note that for both in�mal convolution models, the il-

lumination l is not explicitly given, while it can be ex-

tracted from the numerical scheme or solved through a

Poisson equation ∇l = v with boundary conditions.

Model (12) and the in�mal convolution forms (13),

(14) have some drawbacks if we are interested in the

solutions of r and l. It is easy to see that any solution

pair (r̂+c, l̂−c) with c being a constant is still a solution,
and this non-uniqueness may greatly a�ect the quality

of the solution. Furthermore, to show the existence of

the solution, the coercivity of the energy is also needed

in the theoretical proof.

Therefore we consider an extended version of model

(12), which imposes box constraints on both r and l

components as

min
r∈Br,l∈Bl

{
Eα,β,τ (r, l) =

1

2

∫
Ω

(i− r − l)2dx

+ α
(∫

Ω

|∇r|dx+ β

∫
Ω

|∇2l|dx
)

+
τ

2

∫
Ω

l2dx

}
,

(15)

where τ is a small positive number to ensure the bound-

edness of l, Br and Bl are the box constraints for r

and l respectively. For instance, similar to the con-

straints considered by Ng and Wang [22], we consider

Br =]−∞, 0] and Bl = [i,+∞[ under the assumptions

that the illumination R and I are normalized between

(0, 1].

2.2 Existence and uniqueness of solution

The functional Eα,β,τ (r, l) in (15) is de�ned on W 1,1 ×
W 2,1. To establish the existence for such regularization,

we usually need to discuss a larger Banach space for r

and l. In particular, we consider r in the bounded vari-

ation space BV(Ω) and l in BH(Ω). Formally, we show

the existence of the solution pair (r, l) of the following

functional in the product space,

min
r∈BV(Ω)
l∈BH(Ω)

{
Eα,β,τ (r, l) =

1

2
||i− r − l||2

+ α
(
||Dr||1 + β||D2l||1

)
+
τ

2
||l||2 + ιB(r, l)

}
,

(16)

where || · || denotes the norm in L2(Ω), B denotes the

box constraint set

B = Br × Bl,
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ιB(·) = ιBr (r) + ιBl(l) is the corresponding indicator

function, and ||Dr||1 and ||D2l||1 denotes the total vari-
ation of the �rst and second order derivatives in distri-

bution sense, which will be de�ned in the following.

We �rst present some preliminaries for the bounded

Hessian space proposed in [9] and in [2,23] in the con-

text of image restoration. LetΩ be an open subset of Rn
with Lipschitz boundary, recall that the Sobolev space

W 1,1(Ω) is de�ned as

W 1,1(Ω) =
{
u ∈ L1(Ω) | ∇u ∈ L1(Ω)

}
.

The standard total variation semi-norm in distribu-

tion sense is de�ned as

||Du||1 =

∫
Ω

|Du|dx = sup
p∈C1

c (Ω)n

||p||∞≤1

∫
Ω

udivpdx, (17)

where divp =
∑n
i=1

∂pi
∂xi

(x). Let BV(Ω) denote the

space of bounded variation, i.e. BV(Ω) =
{
u ∈

L1(Ω) | ||Du||1 <∞
}
.

Following Demengel [9] and [23], we consider the

space of bounded Hessian functions, that we also call

BH(Ω) on extending the notion of total variation (17).

De�ne

||D2u||1 =

∫
Ω

|D2u|dx

= sup
ξ∈C2

c (Ω;Rn×n)

||ξ||∞≤1

∫
Ω

〈∇u,div(ξ)〉dx,
(18)

where div(ξ) = (divξ1, · · · ,divξn) with

∀i, ξi =
{
ξ
(1)
i , · · · , ξ(n)i

}
∈ Rn, divξi =

n∑
k=1

∂ξ
(k)
i

∂xk
,

and ||ξ||∞ = supx∈Ω

√∑n
i,j=1 |ξ

(j)
i (x)|2. The space

BH(Ω) (also called as BV2(Ω) in [2]) consists of all

functions u ∈ W 1,1(Ω) whose distributional Hessian is

a �nite Radon measure, i.e.

BH(Ω) =
{
u ∈W 1,1(Ω) | ||D2u||1 <∞

}
.

It is immediate to see that W 2,1(Ω) ⊂ BH(Ω) and

BH(Ω) is a Banach space equipped with the norm

||u||
BH(Ω) = ||u||1+ ||∇u||1+ ||D2u||1, where || · ||1 denotes

the L1 norm in the corresponding space. In the follow-

ing, we summarize some de�nitions and main properties

in BH(Ω), which can be found in [9,2,23]:

� (A weak∗ topology) Let {uk}k∈N, u belong to

BH(Ω). The sequence {uk} converges to u weakly∗

in BH(Ω) if

||uk − u||1 → 0, ||∇uk −∇u||1 → 0,∫
Ω

〈∇uk, div(ξ)〉dx (19)

−→
∫
Ω

〈∇u, div(ξ)〉dx, ∀ξ ∈ C2
c (Ω;Rn×n).

� (Lower semi-continuity) The semi-norm ||D2u||1 is

lower semi-continuous endowed with strong topol-

ogy of W 1,1(Ω). More precisely, if ||uk − u||1 → 0

and ||∇uk −∇u||1 → 0, then

||D2u||1 ≤ lim inf
k→∞

||D2uk||1.

In particular, for {uk}k∈N ∈W 1,1(Ω), if

lim inf
k→∞

||D2uk||1 <∞,

then u ∈ BH(Ω).

� (Compactness in BH(Ω)) Suppose that {uk}k∈N
is bounded in BH(Ω), then there exists a subse-

quence {ukj}j∈N and u ∈ BH(Ω) such that {ukj}j∈N
weakly∗ converges to u.

� (Embedding) If Ω has a Lipschitz boundary and it

is connected, then it can be shown that there exists

positive constants C1, C2 such that

||∇u||1 ≤ C1||D2u||1 + C2||u||1, (20)

and BH(Ω) is continuously embedded in L2(Ω)

when n = 2.

In the following, we use the above mentioned prop-

erties of BH(Ω) together with similar ones of BV(Ω) to

establish the existence and the uniqueness of solution

for the variational problem (16).

Theorem 1 Suppose i ∈ L2(Ω) and the parameters

α, β, τ > 0, then the minimization problem (16)

min
r,l
Eα,β,τ (r, l)

has a unique solution (r∗, l∗) ∈ BV(Ω)× BH(Ω).

Proof Let {(rk, lk)}k∈N be a minimizing sequence for

(16). And let M > 0 be the upper bound for the mini-

mizing sequence and

||rk + lk − i||2 < M, ||lk||2 < M, (21)

||Drk||1 < M, ||D2lk||1 < M, (22)

rk ∈ Br, lk ∈ Bl, (23)
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for every k ∈ N. Since {lk}k∈N is uniformly bounded

in L2(Ω), it is easy to see that {rk}k∈N is also uni-

formly bounded in L2(Ω) combining the equations (21)

and i ∈ L2(Ω). Furthermore, by the boundedness of Ω,

the sequence {rk} is bounded in L1(Ω) and moreover

bounded in BV(Ω) since ||Drk||1 < M .

For {lk}, we can similarly derive that {lk} is

bounded in L1(Ω). By virtue of the embedding inequal-

ity (20), we also have

||∇lk||1 < C1||D2lk||1 + C2||lk||1 < M ′,

where M ′ is a constant number for every k ∈ N. Thus
{lk} is uniformly bounded in BH(Ω).

From the compact theorem in both BV and BH

space, we obtain the existence of a subsequence

(rkj , lkj ) converges weakly∗ to (r∗, l∗) in BV(Ω) ×
BH(Ω). It is easy to see that the functional is proper

since any constant function l and r has �nite energy.

Furthermore, the overall functional Eα,β,τ is convex and
l.s.c under weak topology, the constraint sets Br and Bl
are closed, therefore we can derive that the minima can

be attained at (r∗, l∗) by the theory of calculus of vari-

ation. It is also straightforward to see that the solution

is unique since the functional is strongly convex with

respect to (r, l).

3 Primal�dual splitting algorithm

In this section, we present the algorithm to solve the

discretized model of (15). The problem has two un-

knowns r and l, and an alternating scheme will lead

to separable and easy sub-problems on r and l. This

method was also adopted in [22]. However, the alter-

nating scheme does not guarantee the whole sequence

convergence to the minimizer of the optimization prob-

lem. In this paper we are interested in solving r and

l simultaneously, on preserving separable structures.

Nowadays many techniques based on operator splitting

can be applied to convex separable minimization, such

as the split Bregman method [12], primal�dual split-

ting methods [10,6]. Here we adopt the split inexact

Uzawa (SIU) method developed in [29], which yields a

simple iteration scheme. More connections between dif-

ferent splitting algorithms can be found in [10], and the

references therein.

In the following, we de�ne some variables and nota-

tions to simplify the problem (15). Denote

x =

[
r

l

]
, A =

[
Id, Id

]
, B =

[
0, Id

]
,

and the auxiliary ones

u = ∇r, v = ∇2l,

y =

[
u

v

]
, and L =

[
∇, 0

0, ∇2

]
.

Here we use the forward di�erence and Neumann

boundary conditions for the discrete gradient and the

symmetrized Hessian. In R2, for u ∈ W 1,1(Ω), de�ne

D(∇u) = 1
2

(
D +DT

)
(∇u) =

[
ξ11, ξ12
ξ21, ξ22

]
as the sym-

metrized Hessian

ξ11 =
∂v1
∂x1

, ξ22 =
∂v2
∂x2

,

ξ12 = ξ21 =
1

2

( ∂v1
∂x2

+
∂v2
∂x1

)
,

(24)

for v =

[
v1
v2

]
= ∇u and the divergence can be de�ned

accordingly.

We further de�ne the following functionals:

H(x) =
1

2
||i−Ax||2,

J(x, y) = α||y||1,β + ιB(x) +
τ

2
||Bx||2.

where ||y||1,β = ||u||1 + β||v||1. As a result, problem (15)

can be formulated into the following form

min
x,y

H(x) + J(x, y) s.t. Lx = y, (25)

whose corresponding augmented Lagrangian formula is

max
p

min
x,y

{
L(p;x, y) = H(x) + J(x, y)

+ 〈p, Lx− y〉+ ν

2
||Lx− y||2

}
,

(26)

where p =

[
pr
pl

]
is the Lagrangian multiplier.

The SIU method is an inexact alternating direction

of multiplier method (ADMM) [11] applied to the above

problem with an extra proximal term for the update of

xk+1, and the iterative scheme reads as
xk+1 = argmin

x
L(pk;x, yk) + 1

2
||x− xk||Mν

,

yk+1 = argmin
y
L(pk;xk+1, y),

pk+1 = pk + ν(Lxk+1 − yk+1),

(27)

where Mν is a positive de�nite matrix. To obtain an

easy iterative scheme, we choose Mν = Id − νLTL,

where 0 < ν < 1/||LTL|| such that Mν is positive de�-

nite.

In the following, we present a brief derivation for

the update of xk+1 and yk+1.
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Update of xk+1 :

The update of xk+1 from (27), substitutingMν with

Id− νLTL, reads

xk+1 = argmin
x
L(pk;x, yk) + 1

2
||x− xk||2Mν

= argmin
x
ιB(x) +

1

2
||i−Ax||2

+
τ

2
||Bx||2 + 1

2
||x− wk||2,

(28)

where wk = xk − LT (νLxk + pk − νyk) =

[
wkr
wkl

]
. The

corresponding �rst order optimality condition of (28) is

0 ∈ NB(x) +AT (Ax− i) + τBTBx+ (x− wk)

∈
[
NBr (r)

NBl(l)

]
+

[
r + l − i
r + l − i

]
+ τ

[
0

l

]
+

[
r − wkr
l − wkl

]
.

Let w̃r = wkr + i, w̃l = wkl + i, and PC be the projec-
tion operator onto a convex set C. In the following, we

discuss the updating formula according to the di�erent

scenarios of the box constraints B.

� If Bl = R, which implies that there is no constraint

on l, we have the equations

{
NBr (r) + 2r + l = w̃r,

r + (τ + 2)l = w̃l.

By substituting the second equation in the �rst one,

we obtain

NBr (r) +
2τ + 3

τ + 2
r = w̃r −

w̃l
τ + 2

Thus the update formula for rk+1 and lk+1 read
rk+1 = PBr

(
(τ + 2)w̃r − w̃l

2τ + 3

)
,

lk+1 =
w̃l − rk+1

τ + 2
.

� If Br = R, similarly we get the equations{
2r + l = w̃r,

2NBl(l) + (2τ + 3)l = 2w̃l − w̃r.

And the update formula for rk+1 and lk+1 are
lk+1 = PBl

(
2w̃l − w̃r
2τ + 3

)
,

rk+1 =
w̃r − lk+1

2
.

� If both Br and Bl are not the whole space and this

sub-problem is coupled on r and l, we apply an al-

ternating projection method. The alternating pro-

jection scheme for this sub-problem reads
r ← PBr

(
w̃r − l

2

)
,

l← PBl
(
w̃l − r
2 + τ

)
.

(29)

Note that in theory many iterations are needed for

this step to get accurate rk+1, lk+1.

Update of yk+1 :

The update of yk+1 is straightforward. As ||y||1,β =

||u||1 + β||v||1 is separable, we have

yk+1 = argmin
y
L(pk;xk+1, y)

= argmin
y
α||y||1,β +

ν

2
||y − Lxk+1 − pk/ν||2

= argmin
u,v

α||u||1 +
ν

2
||u−∇rk+1 − pkr/ν||

2

+ αβ||v||1 +
ν

2
||v −∇2lk+1 − pkl /ν||

2
,

which leads to the following two simple threshold steps

{
uk+1 = Tα/ν

(
∇rk+1 + pk+1

r /τ
)
,

vk+1 = Tαβ/ν
(
∇2lk+1 + pk+1

l /τ
)
,

(30)

where Tγ(a) = max(||a|| − γ, 0) a
||a|| is the isotropic soft-

thresholding operator. Finally, the update for the dual

variable pk+1 is straightforward.

To this end, combining (29), (30) and the update

of pk+1 (27) we obtain the iteration scheme for solving

the model (15).

4 Numerical Tests

To demonstrate the performance of our proposed

method, in this section, we consider several image de-

composition problems, including synthetic examples,

Retinex illusion examples, medical image biased �eld

removal and color image shadow correction. We com-

pare our proposed method (15) ( HoTVL1) to two re-

cent variational methods (4) (MMO) and (6) (NW) pro-

posed in [18] and [22] respectively.

Through the test, the recovered r of the MMO

method and our proposed method are direct outputs

from the model, so is for the NW model for the syn-

thetic example and the Retinex problem. While for the

bias �eld removal and color image shadow correction,

the output r of the NW method is obtained via i − l,
where l is the reconstructed illumination.
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4.1 Synthetic images

We start with synthetic image examples with two dif-

ferent cases. As shown in Figure 2, the two piecewise

constant images r present di�erent geometry proper-

ties, so are the corresponding shadows l with piecewise

smooth structures, and the simulated image is the sum

of them i = r + l.

Decomposition results are shown in Figure 3 and

4. As we can observe, MMO and the proposed model

produce better visual results than the NW method on

these examples. Intuitively, NW method penalizes the

`2-norm of the gradient of the shadow and it is not con-

trast invariant and the recovered illumination l contains

more information of the edges of the re�ectance. On the

contrast, only very weak signal of r are contained in

the recovered illumination l by MMO method and our

proposed method. This will be further demonstrated in

Retinex illusions and color image examples.

(a) r1 (b) l1 (c) i1

(d) r2 (e) l2 (f) i2

Fig. 2: Two synthetic images examples. (a) synthetic

image r1, (b) synthetic shadow l1, (c) composed image

i1 = r1+l1; (d) synthetic image r2, (e) synthetic shadow

l2, (f) composed image i2 = r2 + l2.

4.2 Retinex illusion

The aforementioned checkerboard shadow image and

the Logvinenko's cube shadow illusion image [15], as

shown in Figure 5, are tested for Retinex illusion. For

both images, though visually the region B is brighter

than the region A, they are of the same intensity value,

as marked in Figure 5.

Table 1 shows the comparison of the recovered gray

values of the two regions A, B of the 3 methods. Our

(a) r by MMO (b) r by NW (c) r by HoTVL1

(d) l by MMO (e) l by NW (f) l by HoTVL1

Fig. 3: Decomposition comparison of synthetic example

1. From top to bottom and from left to right: recovered

re�ectance r and illumination l by MMO, NW, and the

proposed model.

(a) r by MMO (b) r by NW (c) r by HoTVL1

(d) l by MMO (e) l by NW (f) l by HoTVL1

Fig. 4: Decomposition comparison of synthetic example

2. From top to bottom and from left to right: recovered

re�ectance r and illumination l by MMO, NW, and the

proposed model.

proposed method recovers the best contrast compared

to the other two methods for both images.

Image original MMO NW HoTVL1
checker- A 120 80 90 85
board B 120 145 125 174
cube A 140 26 85 10

B 140 191 110 250

Table 1: Recovered gray value of the two regions A and

B of the two images.



Retinex by Higher Order Total Variation L1 Decomposition 9

(a) checkerboard (b) cube

Fig. 5: Two test images for Retinex illusion. (a) Adel-

son's checkerboard shadow image, the gray value of the

marked area is 120. (b) Logvinenko's cube shadow im-

age, the gray value of the marked area is 140.

Figure 6 shows the visual comparison of the checker-

board image. Similar to the synthetic example, MMO

and the proposed model obtain visually preferable out-

puts, however the recovered illumination in our pro-

posed method contains less re�ectance information

compared to MMO. Also, the MMO method favors

piecewise constant re�ectance. Similar conclusions can

be drawn from the comparison of the cube image, see

Figure 7.

It can be noticed that the brightness of MMO

method's result and ours is very di�erent, especially

in Figure 7. This is mainly due to the fact that for the

MMO method, the gray value of the top left pixel is

used to solved the Poisson equation, also the right col-

umn and bottom row of the output is brighter than the

image domain because of the boundary condition.

In this test, β = 10 for both examples, and we set

α = 4 for the checkerboard image, and α = 10 the

cube image. The box constraints are Br = [0, 255] and

Bl = [−255, 0] for both images.

4.3 Medical image bias �eld correction

In medical imaging, obtained images may be corrupted

by bias �elds due to non-uniform illumination, for in-

stance in parallel MRI imaging. The correction of the

bias �eld is similar to Retinex problem that we need to

remove the light e�ect caused by illumination. In the

following, we adopt the setting discussed in [18]. Fig-

ure 8 shows the comparison of the methods, and all the

methods can provide visual preferable results compared

to the original ones, especially for the bottom part of

the images.

For this example, we set α = 0.1 and β = 20. The

box constraints are Br = [−20, 0] and Bl = [−20, 0]
after taking the logarithm, and I is pre-scaled to (0, 1].

(a) r by MMO (b) r by NW (c) r by HoTVL1

(d) l by MMO (e) l by NW (f) l by HoTVL1

Fig. 6: Decomposition comparison of the checkerboard

example. From top to bottom and from left to right: re-

covered re�ectance r and illumination l by MMO, NW,

and the proposed model.

(a) r by MMO (b) r by NW (c) r by HoTVL1

(d) l by MMO (e) l by NW (f) l by HoTVL1

Fig. 7: Decomposition comparison of the cube example.

From top to bottom and from left to right: recovered

re�ectance r and illumination l by MMO, NW, and the

proposed model.

4.4 Color image shadow correction

The �nal illustrative example is on the correction of

shadowed color image. For the two color images given

in Figure 9(a) and 11(a), we choose the HSV color space

and only process the V channel, on assuming that the

shadow only a�ect on the brightness of the image, not

the hue and saturation components. Figure 9 shows the

comparison of the methods on the text image. Note

that NW method also uses the γ-correction as post-

processing, which may improve the white balance for

under exposed image. We can see that the estimated

shadow by our method is visually more accurate and the

shadow e�ect can be partially removed in the recovered
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(a) view 1 (b) view 2 (c) view 3

(d) MMO (e) MMO (f) MMO

(g) NW (h) NW (i) NW

(j) HoTVL1 (k) HoTVL1 (l) HoTVL1

Fig. 8: MRI image bias �eld removal. (a), (d), (g), (j):

image view 1 and the result of the 3 methods; (b), (e),

(h), (k): image view 2 and the result of the 3 methods;

(c), (f), (i), (l): image view 3 and the result of the 3

methods.

re�ectance image. Similar observation can be obtained

from Figure 11.

For this test, we set α = 1/12 for text image and

1/10 for the wall image, β = 100 is �xed. The box

constraints are as same as the bias �eld correction's.

4.5 Computational time

To conclude this part, we present the time comparison

of the 3 methods. Since we have box constraints for

both r and l, inner iteration is needed for the update

of xk+1, and the number of iteration is set as 1 in all

the tests. Among the methods, MMO method is the

fastest due to its simplicity, NW method is the second,

and our proposed method is more time consuming due

to the two orders of regularization. For example in the

(a) Original (b) MMO

(c) NW (d) HoTVL1

Fig. 9: Comparison of recovered re�ectance r on Text

image.

(a) MMO (b) NW (c) HoTVL1

Fig. 10: Comparison of recovered illumination l on Text

image.

synthetic example with image size 128×128, less than 1

second for the MMO method, around 1 second for the

NW, while it take about 15 seconds for our method.

However, we note that the computation time of our

method can be improved by choosing a more e�cient

algorithm for solving the optimization algorithm.

5 Conclusions

In this paper, we have present a novel re�ectance and

illumination decomposition model based on high or-

der total variation regularization. The so-called high

order TV+L1 decomposition is closely related to in�-

mal convolution of �rst and second order regulariza-

tion. The proposed model can nicely separate the rel-

atively smoother piecewise linear component, which is

modeled as the global illumination, from the relatively

detailed re�ectance edges. The numerical tests on in-
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(a) Original (b) MMO

(c) NW (d) HoTVL1

Fig. 11: Comparison of recovered re�ectance r on Wall

image.

(a) MMO (b) NW (c) HoTVL1

Fig. 12: Comparison of recovered illumination l on Wall

image.

homogeneous background removal and color correction

have show that our proposed model extract a light �eld

which is closer to human visual system and the im-

age contrast in the restored re�ectance with better pre-

served details, comparing to other decomposition model

[22] and regularization in gradient methods [19].
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