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Abstract

Ideas from the image processing literature have recently motivated a new set of
clustering algorithms that rely on the concept of total variation. While these al-
gorithms perform well for bi-partitioning tasks, their recursive extensions yield
unimpressive results for multiclass clustering tasks. This paper presents a general
framework for multiclass total variation clustering that does not rely on recursion.
The results greatly outperform previous total variation algorithms and compare
well with state-of-the-art NMF approaches.

1 Introduction

Many clustering models rely on the minimization of an energy over possible partitions of the data
set. These discrete optimizations usually pose NP-hard problems, however. A natural resolution
of this issue involves relaxing the discrete minimization space into a continuous one to obtain an
easier minimization procedure. Many current algorithms, such as spectral clustering methods or
non-negative matrix factorization (NMF) methods, follow this relaxation approach.

A fundamental problem arises when using this approach, however; in general the solution of the
relaxed continuous problem and that of the discrete NP-hard problem can differ substantially. In
other words, the relaxation is too loose. A tight relaxation, on the other hand, has a solution that
closely matches the solution of the original discrete NP-hard problem. Ideas from the image pro-
cessing literature have recently motivated a new set of algorithms [17, 18, 11, 12, 4, 15, 3, 2, 13, 10]
that can obtain tighter relaxations than those used by NMF and spectral clustering. These new algo-
rithms all rely on the concept of total variation. Total variation techniques promote the formation of
sharp indicator functions in the continuous relaxation. These functions equal one on a subset of the
graph, zero elsewhere and exhibit a non-smooth jump between these two regions. In contrast to the
relaxations employed by spectral clustering and NMF, total variation techniques therefore lead to
quasi-discrete solutions that closely resemble the discrete solution of the original NP-hard problem.
They provide a promising set of clustering tools for precisely this reason.

Previous total variation algorithms obtain excellent results for two class partitioning problems
[18, 11, 12, 3] . Until now, total variation techniques have relied upon a recursive bi-partitioning
procedure to handle more than two classes. Unfortunately, these recursive extensions have yet to
produce state-of-the-art results. This paper presents a general framework for multiclass total varia-
tion clustering that does not rely on a recursive procedure. Specifically, we introduce a new discrete
multiclass clustering model, its corresponding continuous relaxation and a new algorithm for opti-
mizing the relaxation. Our approach also easily adapts to handle either unsupervised or transductive
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clustering tasks. The results significantly outperform previous total variation algorithms and com-
pare well against state-of-the-art approaches [19, 20, 1]. We name our approach Multiclass Total
Variation clustering (MTV clustering).

2 The Multiclass Balanced-Cut Model

Given a weighted graph G = (V,W ) we let V = {x
1

, . . . ,xN} denote the vertex set and W :=

{wij}1i,jN denote the non-negative, symmetric similarity matrix. Each entry wij of W encodes
the similarity, or lack thereof, between a pair of vertices. The classical balanced-cut (or, Cheeger
cut) [7, 8] asks for a partition of V = A [Ac into two disjoint sets that minimizes the set energy

Bal(A) :=

Cut(A,Ac
)

min{|A|, |Ac|} =

P
xi2A,xj2Ac wij

min{|A|, |Ac|} . (1)

A simple rationale motivates this model: clusters should exhibit similarity between data points,
which is reflected by small values of Cut(A,Ac

), and also form an approximately equal sized parti-
tion of the vertex set. Note that min{|A|, |Ac|} attains its maximum when |A| = |Ac| = N/2, so that
for a given value of Cut(A,Ac

) the minimum occurs when A and Ac have approximately equal size.

We generalize this model to the multiclass setting by pursuing the same rationale. For a given
number of classes R (that we assume to be known) we formulate our generalized balanced-cut
problem as

Minimize
RX

r=1

Cut(Ar, A
c
r)

min{�|Ar|, |Ac
r|}

over all disjoint partitions Ar \As = ;, A
1

[ · · · [AR = V of the vertex set.

9
>=

>;
(P)

In this model the parameter � controls the sizes of the sets Ar in the partition. Previous work [4]
has used � = 1 to obtain a multiclass energy by a straightforward sum of the two-class balanced-cut
terms (1). While this follows the usual practice, it erroneously attempts to enforce that each set in
the partition occupy half of the total number of vertices in the graph. We instead select the parameter
� to ensure that each of the classes approximately occupy the appropriate fraction 1/R of the total
number of vertices. As the maximum of min{�|Ar|, |Ac

r|} occurs when �|Ar| = |Ac
r| = N � |Ar|,

we see that � = R� 1 is the proper choice.

This general framework also easily incorporates a priori known information, such as a set of labels
for transductive learning. If Lr ⇢ V denotes a set of data points that are a priori known to belong
to class r then we simply enforce Lr ⇢ Ar in the definition of an allowable partition of the vertex
set. In other words, any allowable disjoint partition Ar \ As = ;, A

1

[ · · · [ AR = V must also
respect the given set of labels.

3 Total Variation and a Tight Continuous Relaxation

We derive our continuous optimization by relaxing the set energy (P) to the continuous energy

E(F ) =

RX

r=1

kfrkTV

kfr �med�(fr)k
1,�

. (2)

Here F := [f
1

, . . . , fR] 2 MN⇥R([0, 1]) denotes the N ⇥R matrix that contains in its columns the
relaxed optimization variables associated to the R clusters. A few definitions will help clarify the
meaning of this formula. The total variation kfkTV of a vertex function f : V ! R is defined by

kfkTV =

nX

i=1

wij |f(xi)� f(xj)|. (3)

Alternatively, if we view a vertex function f as a vector (f(x
1

), . . . , f(xN ))

t 2 RN then we can
write

kfkTV := kKfk
1

. (4)
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Here K 2 MM⇥N (R) denotes the gradient matrix of a graph with M edges and N vertices. Each
row of K corresponds to an edge and each column corresponds to a vertex. For any edge (i, j) in
the graph the corresponding row in the matrix K has an entry wij in the column corresponding to
the ith vertex, an entry �wij in the column corresponding to the jth vertex and zeros otherwise.

To make sense of the remainder of (2) we must introduce the asymmetric `1-norm. This variant of
the classical `1-norm gives different weights to positive and negative values:

kfk
1,� =

nX

i=1

|f(xi)|� where |t|� =

⇢
�t if t � 0

�t if t < 0.
(5)

Finally we define the �-median (or quantile), denoted med�(f), as:
med�(f) = the (k + 1)

st largest value in the range of f , where k = bN/(�+ 1)c. (6)
These definitions, as well as the relaxation (2) itself, were motivated by the following theorem. Its
proof, in the supplementary material, relies only the three preceding definitions and some simple
algebra.
Theorem 1. If f = 1A is the indicator function of a subset A ⇢ V then

kfkTV

kf �med�(f)k
1,�

=

2 Cut(A,Ac
)

min {�|A|, |Ac|} .

The preceding theorem allows us to restate the original set optimization problem (P) in the equivalent
discrete form

Minimize
RX

r=1

kfrkTV

kfr �med�(fr)k
1,�

over non-zero functions f
1

, . . . , fR : V ! {0, 1} such that f
1

+ . . .+ fR = 1V .

9
>=

>;
(P’)

Indeed, since the non-zero functions fr can take only two values, zero or one, they must define indi-
cator functions of some nonempty set. The simplex constraint f

1

+ . . .+ fR = 1V then guarantees
that the sets Ar := {xi 2 V : fr(xi) = 1} form a partition of the vertex set. We obtain the relaxed
version (P-rlx) of (P’) in the usual manner by allowing fr 2 [0, 1] to have a continuous range. This
yields

Minimize
RX

r=1

kfrkTV

kfr �med�(fr)k
1,�

over functions f
1

, . . . , fR : V ! [0, 1] such that f
1

+ . . .+ fR = 1V .

9
>=

>;
(P-rlx)

The following two points form the foundation on which total variation clustering relies:

1 — As the next subsection details, the total variation terms give rise to quasi-indicator functions.
That is, the relaxed solutions [f

1

, . . . , fR] of (P-rlx) mostly take values near zero or one and exhibit
a sharp, non-smooth transition between these two regions. Since these quasi-indicator functions es-
sentially take values in the discrete set {0, 1} rather than the continuous interval [0, 1], solving (P-rlx)
is almost equivalent to solving either (P) or (P’). In other words, (P-rlx) is a tight relaxation of (P).

2 — Both functions f 7! kfkTV and f 7! kf �med�(f)k1,� are convex. The simplex constraint
in (P-rlx) is also convex. Therefore solving (P-rlx) amounts to minimizing a sum of ratios of convex
functions with convex constraints. As the next section details, this fact allows us to use machinery
from convex analysis to develop an efficient, novel algorithm for such problems.

3.1 The Role of Total Variation in the Formation of Quasi-Indicator Functions

To elucidate the precise role that the total variation plays in the formation of quasi-indicator func-
tions, it proves useful to consider a version of (P-rlx) that uses a spectral relaxation in place of the
total variation:

Minimize
RX

r=1

kfrkLap
kfr �med�(fr)k

1,�

over functions f
1

, . . . , fR : V ! [0, 1] such that f
1

+ . . .+ fR = 1V

9
>=

>;
(P-rlx2)
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Here kfk2
Lap

=

Pn
i=1

wij |f(xi)� f(xj)|2 denotes the spectral relaxation of Cut(A,Ac
); it equals

hf, Lfi if L denotes the unnormalized graph Laplacian matrix. Thus problem (P-rlx2) relates
to spectral clustering (and therefore NMF [9]) with a positivity constraint. Note that the only
difference between (P-rlx2) and (P-rlx) is that the exponent 2 appears in k · k

Lap

while the ex-
ponent 1 appears in the total variation. This simple difference of exponent has an important conse-
quence for the tightness of the relaxations. Figure 1 presents a simple example that illuminates this
difference. If we bi-partition the depicted graph, i.e. a line with 20 vertices and edge weights
wi,i+1

= 1, then the optimal cut lies between vertex 10 and vertex 11 since this gives a per-
fectly balanced cut. Figure 1(a) shows the vertex function f

1

generated by (P-rlx) while figure
1(b) shows the one generated by (P-rlx2). Observe that the solution of the total variation model
coincides with the indicator function of the desired cut whereas the the spectral model prefers its
smoothed version. Note that both functions in figure 1a) and 1b) have exactly the same total vari-
ation kfkTV = |f(x

1

) � f(x
2

)| + · · · + |f(x
19

) � f(x
20

)| = f(x
1

) � f(x
20

) = 1 since both
functions are monotonic. The total variation model will therefore prefer the sharp indicator function
since it differs more from its �-median than the smooth indicator function. Indeed, the denominator
kfr � med�(fr)k1,� is larger for the sharp indicator function than for the smooth one. A differ-
ent scenario occurs when we replace the exponent one in k · kTV by an exponent two, however. As
kfk2

Lap

= |f(x
1

)�f(x
2

)|2+ · · ·+ |f(x
19

)�f(x
20

)|2 and t2 < t when t < 1 it follows thatkfk
Lap

is much smaller for the smooth function than for the sharp one. Thus the spectral model will prefer
the smooth indicator function despite the fact that it differs less from its �-median. We therefore
recognize the total variation as the driving force behind the formation of sharp indicator functions.

(a) (b)

Figure 1: Top: The graph used for both relaxations. Bottom left: the solution given by the total
variation relaxation. Bottom right: the solution given by the spectral relaxation. Position along the
x-axis = vertex number, height along the y-axis = value of the vertex function.

This heuristic explanation on a simple, two-class example generalizes to the multiclass case and
to real data sets (see figure 2). In simple terms, quasi-indicator functions arise due to the fact that
the total variation of a sharp indicator function equals the total variation of a smoothed version of
the same indicator function. The denominator kfr �med�(fr)k1,� then measures the deviation of
these functions from their �-median. A sharp indicator function deviates more from its median than
does its smoothed version since most of its values concentrate around zero and one. The energy
is therefore much smaller for a sharp indicator function than for a smooth indicator function, and
consequently the total variation clustering energy always prefers sharp indicator functions to smooth
ones. For bi-partitioning problems this fact is well-known. Several previous works have proven that
the relaxation is exact in the two-class case; that is, the total variation solution coincides with the
solution of the original NP-hard problem [8, 18, 3, 5].

Figure 2 illustrates the result of the difference between total variation and NMF relaxations on the
data set OPTDIGITS, which contains 5620 images of handwritten numerical digits. Figure 2(a)
shows the quasi-indicator function f

4

obtained, before thresholding, by our MTV algorithm while
2(b) shows the function f

4

obtained from the NMF algorithm of [1]. We extract the portion of each
function corresponding to the digits four and nine, then sort and plot the result. The MTV relaxation
leads a sharp transition between the fours and the nines while the NMF relaxation leads to a smooth
transition.
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Figure 2: Left: Solution f
4

from our MTV algorithm (before thresholding) plotted over the fours
and nines. Right: Solution f

4

from LSD [1] plotted over the fours and nines.

3.2 Transductive Framework

From a modeling point-of-view, the presence of transductive labels poses no additional difficulty. In
addition to the simplex constraint

F 2 ⌃ :=

(
F 2 MN⇥R([0, 1]) : fr(xi) � 0,

RX

r=1

fr(xi) = 1

)
(7)

required for unsupervised clustering we also impose the set of labels as a hard constraint. If
L
1

, . . . , LR denote the R vertex subsets representing the labeled points, so that xi 2 Lr means
xi belongs to class r, then we may enforce these labels by restricting F to lie in the subset

F 2 ⇤ := {F 2 MN⇥R([0, 1]) : 8r, (f1(xi), . . . , fR(xi)) = er 8 xi 2 Lr } . (8)
Here er denotes the row vector containing a one in the rth location and zeros elsewhere. Our model
for transductive classification then aims to solve the problem

Minimize
RX

r=1

kfrkTV

kfr �med�(fr)k
1,�

over matrices F 2 ⌃ \ ⇤.

)
(P-trans)

Note that ⌃ \ ⇤ also defines a convex set, so this minimization remains a sum of ratios of convex
functions subject to a convex constraint. Transductive classification therefore poses no additional
algorithmic difficulty, either. In particular, we may use the proximal splitting algorithm detailed in
the next section for both unsupervised and transductive classification tasks.

4 Proximal Splitting Algorithm

This section details our proximal splitting algorithm for finding local minimizers of a sum of ratios
of convex functions subject to a convex constraint. We start by showing in the first subsection that
the functions

T (f) := kfkTV and B(f) := kf �med�(f)1k1,� (9)
involved in (P-rlx) or (P-trans) are indeed convex. We also give an explicit formula for a subdiffer-
ential of B since our proximal splitting algorithm requires this in explicit form. We then summarize
a few properties of proximal operators before presenting the algorithm.

4.1 Convexity, Subgradients and Proximal Operators

Recall that we may view each function f : V ! R as a vector in RN with f(xi) as the ith component
of the vector. We may then view T and B as functions from RN to R. The next theorem states that
both B and T define convex functions on RN and furnishes an element v 2 @B(f) by means of an
easily computable formula. The formula for the subdifferential generalizes a related result for the
symmetric case [11] to the asymmetric setting. We provide its proof in the supplementary material.
Theorem 2. The functions B and T are convex. Moreover, given f 2 RN the vector v 2 RN

defined below belongs to @B(f):

v(xi) =

8
><

>:

� if f(xi) > med�(f)
n���n+

n0 if f(xi) = med�(f)

�1 if f(xi) < med�(f)

where

8
<

:

n0

= |{xi 2 V : f(xi) = med�(f)}|
n�

= |{xi 2 V : f(xi) < med�(f)}|
n+

= |{xi 2 V : f(xi) > med�(f)}|
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In the above theorem @B(f) denotes the subdifferential of B at f and v 2 @B(f) denotes a subgra-
dient. Given a convex function A : RN ! R, the proximal operator of A is defined by

proxA(g) := argmin
f2RN

A(f) +
1

2

||f � g||2
2

. (10)

If we let �C denote the barrier function of the convex set C, that is

�C(f) = 0 if f 2 C and �C(f) = +1 if f /2 C, (11)

then we easily see that prox�C is simply the least-squares projection on C, in other words,
prox�C (f) = projC(f) := argmin

g2C

1

2

||f � g||2
2

. In this manner the proximal operator defines a

mapping from RN to RN that generalizes the least-squares projection onto a convex set.

4.2 The Algorithm

We can rewrite the problem (P-rlx) or (P-trans) as

Minimize �C(F ) +

RX

r=1

E(fr) over all matrices F = [f
1

, . . . , fr] 2 MN⇥R (12)

where E(fr) = T (fr)/B(fr) denotes the energy of the quasi-indicator function of the rth cluster.
The set C = ⌃ or C = ⌃ \ ⇤ is the convex subset of MN⇥R that encodes the simplex constraint
(7) or the simplex constraint with labels. The corresponding function �C(F ), defined in (11), is
the barrier function of the desired set. Beginning from an initial iterate F 0 2 C we propose the
following proximal splitting algorithm:

F k+1

:= proxT k
+�C (F

k
+ @Bk

(F k
)). (13)

Here T k
(F ) and Bk

(F ) denote the convex functions

T k
(F ) :=

RX

r=1

ckr T (fr) Bk
(F ) :=

RX

r=1

dkr B(fr),

the constants (ckr , dkr ) are computed using the previous iterate

ckr = �

k/B(fk
r ) and dkr = �

kE(fk
r )/B(fk

r )

and �

k denotes the timestep for the current iteration. This choice of the constants (ckr , d
k
r ) yields

Bk
(F k

) = T k
(F k

), and this fundamental property allows us to derive (see supplementary material)
the energy descent estimate:
Theorem 3 (Estimate of the energy descent). Each of the F k belongs to C, and if Bk

r 6= 0 then

RX

r=1

Bk+1

r

Bk
r

�
Ek

r � Ek+1

r

�
� kF k � F k+1k2

�

k
(14)

where Bk
r , E

k
r stand for B(fk

r ), E(fk
r ).

Inequality (14) states that the energies of the quasi-indicator functions (as a weighted sum) decrease
at every step of the algorithm. It also gives a lower bound for how much these energies decrease. As
the algorithm progress and the iterates stabilize the ratio Bk+1

r /Bk
r converges to 1, in which case

the sum, rather than a weighted sum, of the individual cluster energies decreases.

Our proximal splitting algorithm (13) requires two steps. The first step requires computing Gk
=

F k
+ @Bk

(F k
), and this is straightforward since theorem 2 provides the subdifferential of B, and

therefore of Bk, through an explicit formula. The second step requires computing proxT k
+�C (G

k
),

which seems daunting at a first glance. Fortunately, minimization problems of this form play an
important role in the image processing literature. Recent years have therefore produced several fast
and accurate algorithms for computing the proximal operator of the total variation. As T k

+�C con-
sists of a weighted sum of total variation terms subject to a convex constraint, we can readily adapt
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these algorithms to compute the second step of our algorithm efficiently. In this work we use the
primal-dual algorithm of [6] with acceleration. This relies on a proper uniformly convex formulation
of the proximal minimization, which we detail completely in the supplementary material.

The primal-dual algorithm we use to compute proxT k
+�C (G

k
) produces a sequence of approximate

solutions by means of an iterative procedure. A stopping criterion is therefore needed to indicate
when the current iterate approximates the actual solution proxT k

+�C (G
k
) sufficiently. Ideally, we

would like to terminate F k+1 ⇡ proxT k
+�C (G

k
) in such a manner so that the energy descent

property (14) still holds and F k+1 always satisfies the required constraints. In theory we cannot
guarantee that the energy estimate holds for an inexact solution. We may note, however, that a
slightly weaker version of the energy estimate (14)

RX

r=1

Bk+1

r

Bk
r

�
Ek

r � Ek+1

r

�
� (1� ✏)

kF k � F k+1k2

�

k
(15)

holds after a finite number of iterations of the inner minimization. Moreover, this weaker version
still guarantees that the energies of the quasi-indicator functions decrease as a weighted sum in
exactly the same manner as before. In this way we can terminate the inner loop adaptively: we solve
F k+1 ⇡ proxT k

+�C (G
k
) less precisely when F k+1 lies far from a minimum and more precisely as

the sequence {F k} progresses. This leads to a substantial increase in efficiency of the full algorithm.

Our implementation of the proximal splitting algorithm also guarantees that F k+1 always satisfies
the required constraints. We accomplish this task by implementing the primal-dual algorithm in
such a way that each inner iteration always satisfies the constraints. This requires computing the
projection projC(F ) exactly at each inner iteration. The overall algorithm remains efficient provided
we can compute this projection quickly. When C = ⌃ the algorithm [14] performs the required
projection in at most R steps. When C = ⌃\⇤ the computational effort actually decreases, since in
this case the projection consists of a simplex projection on the unlabeled points and straightforward
assignment on the labeled points. Overall, each iteration of the algorithm scales like O(NR2

) +

O(MR) + O(RN log(N)) for the simplex projection, application of the gradient matrix and the
computation of the balance terms, respectively.

We may now summarize the full algorithm, including the proximal operator computation. In prac-
tice we find the choices �

k
= max{Bk

1

, . . . , Bk
R} and any small ✏ work well, so we present the

algorithm with these choices. Recall the matrix K in (4) denotes the gradient matrix of the graph.

Algorithm 1 Proximal Splitting Algorithm
Input: F 2 C,P = 0, L = ||K||

2

, ⌧ = L�1, ✏ = 10

�3

while loop not converged do
//Perform outer step Gk

= F k
+ @Bk

(F k
)

� = maxr B(fr) �

0

= minr B(fr) � = �

2

0

(⌧�2L2

)

�1

¯F = F

DE = diag

h
E(f1)
B(f1)

, . . . , E(fR)

B(fR)

i
DB = diag

h
�

B(f1)
, . . . , �

B(fR)

i

V = �[@B(f
1

), . . . , @B(fR)]DE (using theorem 2)
G = F + V
//Perform F k+1 ⇡ proxT k

+�C (G
k
) until energy estimate holds

while (15) fails do
˜P = P + �K ¯FDB P =

˜P/max{| ˜P |, 1} (both operations entriwise) F
old

= F
˜F = F � ⌧KtPDB F = (

˜F + ⌧G)/(1 + ⌧) F = projC(F )

✓ = 1/
p
1 + 2⌧ ⌧ = ✓⌧ � = �/✓ ¯F = (1 + ✓)F � ✓F

old

end while
end while

5 Numerical Experiments

We now demonstrate the MTV algorithm for unsupervised and transductive clustering tasks. We
selected six standard, large-scale data sets as a basis of comparison. We obtained the first data set
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(4MOONS) and its similarity matrix from [4] and the remaining five data sets and matrices (WE-
BKB4, OPTDIGITS, PENDIGITS, 20NEWS, MNIST) from [19]. The 4MOONS data set contains
4K points while the remaining five contain 4.2K, 5.6K, 11K, 20K and 70K points, respectively.

Our first set of experiments compares our MTV algorithm against other unsupervised approaches.
We compare against two previous total variation algorithms [11, 3], which rely on recursive bi-
partitioning, and two top NMF algorithms [1, 19]. We use the normalized Cheeger cut versions
of [11] and [3] with default parameters. We used the code available from [19] to test each NMF
algorithm. All non-recursive algorithms (LSD [1], NMFR [19], MTV) received two types of initial
data: (a) the deterministic data used in [19]; (b) a random procedure leveraging normalized-cut
[16]. Procedure (b) first selects one data point uniformly at random from each computed NCut
cluster, then sets fr equal to one at the data point drawn from the rth cluster and zero otherwise.
We then propagate this initial stage by replacing each fr with (I + L)�1fr where L denotes the
unnormalized graph Laplacian. Finally, to aid the NMF algorithms, we add a small constant 0.2 to
the result (each performed better than without adding this constant). For MTV we use (a) and 30
random trials of (b) then report the cluster purity (c.f. [19] for a definition of purity) of the solution
with the lowest discrete energy (P). We then use each NMF with exactly the same initial conditions
and report simply the highest purity achieved over all 31 runs. This biases the results in favor of the
NMF algorithms. Due to the non-convex nature of these algorithms, the random initialization gave
the best results and significantly improved upon previously reported results of LSD in particular. We
allowed each non-recursive algorithm 10000 iterations using initial condition (a) while each trial of
(b) performed 2000 iterations. The following table reports the results. Our next set of experiments

Alg/Data 4MOONS WEBKB4 OPTDIGITS PENDIGITS 20NEWS MNIST
NCC-TV [3] 88.75 51.76 95.91 73.25 23.20 88.80
1SPEC [11] 73.92 39.68 88.65 82.42 11.49 88.17

LSD [1] 99.40 54.50 97.94 88.44 41.25 95.67
NMFR [19] 77.80 64.32 97.92 91.21 63.93 96.99

MTV 99.53 59.15 98.29 89.06 39.40 97.60

demonstrate our algorithm in a transductive setting. For each data set we randomly sample either
one label per class or a percentage of labels per class from the ground truth. We then run ten trials of
initial condition (b) (propagating all labels instead of one) and report the purity of the lowest energy
solution as before along with the average computational time (for simple MATLAB code running on
a standard desktop) of the ten runs. We terminate the algorithm once the relative change in energy
falls below 10

�4 between outer steps of algorithm 1. The table below reports the results. Note that
for well-constructed graphs (such as MNIST), our algorithm performs remarkably well with only
one label per class.

Labels 4MOONS WEBKB4 OPTDIGITS PENDIGITS 20NEWS MNIST
1 99.55/ 3.0s 56.58/ 1.8s 98.29/ 7s 89.17/ 14s 50.07/ 52s 97.53/ 98s

1% 99.55/ 3.1s 58.75/ 2.0s 98.29/ 4s 93.73/ 9s 61.70/ 54s 97.59/ 54s
2.5% 99.55/ 1.9s 57.01/ 1.7s 98.35/ 3s 95.83/ 7s 67.61/ 42s 97.72/ 39s
5% 99.53/ 1.2s 58.34/ 1.3s 98.38/ 2s 97.98/ 5s 70.51/ 32s 97.79/ 31s

10% 99.55/ 0.8s 62.01/ 1.2s 98.45/ 2s 98.22/ 4s 73.97/ 25s 98.05/ 25s

Our non-recursive MTV algorithm vastly outperforms the two previous recursive total variation
approaches and also compares well with state-of-the-art NMF approaches. Each of MTV, LSD and
NMFR perform well on manifold data sets such as MNIST, but NMFR tends to perform best on
noisy, non-manifold data sets. This results from the fact that NMFR uses a costly graph smoothing
technique while our algorithm and LSD do not. We plan to incorporate such improvements into the
total variation framework in future work. Lastly, we found procedure (b) can help overcome the
lack of convexity inherent in many clustering approaches. We plan to pursue a more principled and
efficient initialization along these lines in the future as well. Overall, our total variation framework
presents a promising alternative to NMF methods due to its strong mathematical foundation and
tight relaxation.
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0569, ONR grant N000141210040, and Swiss National Science Foundation grant SNSF-141283.
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1 Proofs of Theorems

Theorem 1. If f = 1A is the indicator function of a subset A ⇢ V then

kfkTV

kf �med�(f)k 1,�

=

2 Cut(A,Ac
)

min {�|A|, |Ac|} .

Proof. The fact that kfkTV = 2 Cut(A,Ac
) follows directly from the definition of the total varia-

tion. Indeed, a straightforward computation shows

kfkTV =

X

xi2A

NX

j=1

wij |1� f(xj)|+
X

xi2Ac

NX

j=1

wij |f(xj)| =
X

xi2A

X

xj2Ac

wij +

X

xi2Ac

X

xj2A

wij .

Thus kfkTV = 2 Cut(A,Ac
) as W is symmetric. Let B(f) := kf �med�(f)k1,�. To show that

B(f) = min {�|A|, |Ac|}, suppose first that �|A|  |Ac|. This inequality implies �|A|  N � |A|,
or equivalently that |A|  N/(1 + �). Thus |A|  k := bN/(1 + �)c, and since f = 1A for
|A|  k it follows immediately that the (k + 1)

st largest entry in the range of f equals zero. Thus
med�(f) = 0 by definition. A direct computation then yields that B(f) =

P
i2V |f(xi)|� = �|A|.

In the converse case, the fact that |Ac| < �|A| implies |A| > N/(1 + �) � k. Thus |A| � k + 1

and med�(f) = 1. Direct computation then shows that B(f) =

P
i2V |f(xi) � 1|� = |Ac| as

claimed.

Lemma 1. Let h 2 RN
and suppose v 2 RN

satisfies

v(xi) 2

8
<

:

� if h(xi) > 0

[�1,�] if h(xi) = 0

�1 if h(xi) < 0.

(1)

Then v 2 @khk1,�.

Proof. Note that |h(xi)|� = v(xi)h(xi) for each xi, so that for arbitrary g 2 RN and each xi the
inequality

|g(xi)|� � |h(xi)|� � v(xi) (g(xi)� h(xi))

holds. Summing both sides over all xi 2 V then gives the claim.
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Theorem 2. The functions B and T are convex. Moreover, given f 2 RN
the vector v 2 RN

defined by

v(xi) =

8
><

>:

� if f(xi) > med�(f)
n���n+

n0 if f(xi) = med�(f)
�1 if f(xi) < med�(f)

where

8
<

:

n0
= |{xi 2 V : f(xi) = med�(f)}|

n�
= |{xi 2 V : f(xi) < med�(f)}|

n+
= |{xi 2 V : f(xi) > med�(f)}|

belongs to @B(f).

Proof. The convexity of T (f) follows directly from its definition and a straightforward computation
using the definition of convexity. Due to the continuity B(f), to show convexity it suffices to
establish the existence of a subdifferential at every point.

To this end note that med�(f) 2 range(f), so that in particular n0 � 1 by definition. Let 1 
k := bN/(1 + �)c < N denote that entry of f so that f(xk) = med�(f). By definition of
med�(f) there exist at most k elements of f larger than med�(f), so that n+  k  N/(1 + �).
As N = n�

+ n0
+ n+ this implies �n+�n�

n0  1. Similarly there exist at most N � (k + 1)

elements of f smaller than med�(f), so that n�  N � (k + 1)  N �N/(1 + �). The fact that
N = n�

+ n0
+ n+ then implies n���n+

n0  �. Combining this with the previous inequality yields
�1  n���n+

n0  �.

Put h := f � med�(f)1, and note that the vector v defined above satisfies v 2 @khk1,� by the
preceeding lemma. Thus for any g 2 RN it holds that

||g �med�(g)1||1,� � ||f �med�(f)1||1,� � hv, g � f + (med�(f)�med�(g))1i
by definition of the subdifferential. Note also that hv,1i = 0, so that in fact

B(g)�B(f) = ||g �med�(g)1||1,� � ||f �med�(f)1||1,� � hv, g � fi
for g 2 RN arbitrary. Thus v 2 @B(f) by definition of the subdifferential. In particular @B(f) is
always non-empty, so B(f) is convex.

Theorem 3 (Estimate of the energy descent). Each of the F k
belongs to C, and if Bk

r 6= 0 then

RX

r=1

Bk+1
r

Bk
r

�
Ek

r � Ek+1
r

�
� kF k � F k+1k2

�

k
(2)

where Bk
r , E

k
r stand for B(fk

r ), E(fk
r ).

Proof. Let V k 2 @Bk
(F k

). Then by definition of the subdifferential it follows that

Bk
(F k+1

) � Bk
(F k

) + hF k+1 � F k, V ki. (3)
As F k+1

= proxT k+�C (F
k
+ V k

) the definition of the proximal operator implies that F k+1 2 C
and that also

F k
+ V k � F k+1 2 @(T k

+ �C)(F
k+1

).

The definition of the subdifferential and the fact that �C(F k
) = �C(F k+1

) = 0 then combine to
imply

T k
(F k

) � T k
(F k+1

) + hF k � F k+1, F k
+ V k � F k+1i

= T k
(F k+1

) + kF k � F k+1k2 + hF k � F k+1, V ki (4)
Adding (3) and (4) yields

T k
(F k

) + Bk
(F k+1

) � T k
(F k+1

) + Bk
(F k

) + kF k � F k+1k2,
or equivalently that Bk

(F k+1
) � T k

(F k+1
) + kF k � F k+1k2 since Bk

(F k
) = T k

(F k
) by con-

struction. Expanding this last inequality shows
RX

r=1

�

k

Bk
r

�
Ek

rB
k+1
r � T k+1

r

�
� kF k � F k+1k2,

which yields the claim after by Bk+1
r in each term of the summation.
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2 Primal-Dual Formulation

Consider the minimization
F k+1

:= proxT k+�C (G
k
).

We may write this as the saddle-point problem

min

u2RNR
max

p2RMR
hp,Kui+G(u)� F ⇤

(p).

Here the vector u = (f1, . . . , fR)t is a “vectorized” version of F and the matrix K denotes the block
diagonal matrix

K := blkdiag

✓
�

k

Bk
1

K, . . . ,
�

k

Bk
R

K

◆

where K is the gradient matrix of the graph. We define the convex function G(u) as

G(u) :=
1

2

RX

r=1

||fr � gkr ||2 + �C(u),

where �C denotes the barrier function of the convex set C (either the simplex or simplex with labels)
as before. The convex function F ⇤

(p) denotes the barrier function of the l1 unit ball, so that

F ⇤
(p) =

⇢
0 if |pi|  1 8 1  i  MR
+1 otherwise.

Note also that G(u) is uniformly convex, in that if v 2 @G(u) denotes any subdifferential then for
any u0 2 RNR the inequality

G(u0
)�G(u) � hv, u0 � ui+ 1

2

||u� u0||2

holds. We may therefore apply algorithm 2 of [1] with � = 1 with to solve the saddle-point problem.
This algorithm consists in the iterations

pn+1
= prox�nF⇤(pn + �nKūn

)

un+1
= prox⌧nG(u

n � ⌧nKtpn+1
)

✓n =

1p
1 + 2⌧n

⌧n+1
= ✓n⌧n �n+1

= �n/✓n

ūn+1
= un+1

+ ✓n(un+1 � un
)

and converges provided the inequality �0  (⌧0||K||22)�1 holds for the initial timesteps. We may
compute the inner proximal operators analytically to find

(prox�nF⇤(z))i = zi/max{1, |zi|} 8 1  i  MR,

and by completing the square that

prox⌧nG(z) = projC

✓
z + ⌧ng

1 + ⌧n

◆
,

where g = (gk1 , . . . , g
k
R)

t denotes Gk in vectorized form. The inner loop of algorithm 1 then follows
by re-writing these computations in matrix form.

References

[1] A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm for Convex Problems with
Applications to Imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

3


	Introduction
	The Multiclass Balanced-Cut Model
	Total Variation and a Tight Continuous Relaxation
	The Role of Total Variation in the Formation of Quasi-Indicator Functions
	Transductive Framework

	Proximal Splitting Algorithm
	Convexity, Subgradients and Proximal Operators
	The Algorithm

	Numerical Experiments

