
FAST BUNDLE-LEVEL TYPE METHODS FOR UNCONSTRAINED AND
BALL-CONSTRAINED CONVEX OPTIMIZATION∗

YUNMEI CHEN† , GUANGHUI LAN ‡ , YUYUAN OUYANG § , AND WEI ZHANG ¶

Abstract. It has been shown in [14] that the accelerated prox-level (APL) method and its variant, the uniform smoothing level
(USL) method, have optimal iteration complexity for solving black-box and structured convex programming problems without
requiring the input of any smoothness information. However, these algorithms require the assumption on the boundedness of
the feasible set and their efficiency relies on the solutions of two involved subproblems. These hindered the applicability of these
algorithms in solving large-scale and unconstrained optimization problems. In this paper, we first present a generic algorithmic
framework to extend these uniformly optimal level methods for solving unconstrained problems. Moreover, we introduce two new
variants of level methods, i.e., the fast APL (FAPL) method and the fast USL (FUSL) method, for solving large scale black-box
and structured convex programming problems respectively. Both FAPL and FUSL enjoy the same optimal iteration complexity
as APL and USL, while the number of subproblems in each iteration is reduced from two to one. Moreover, we present an exact
method to solve the only subproblem for these algorithms. As a result, the proposed FAPL and FUSL methods have improved
the performance of the APL and USL in practice significantly in terms of both computational time and solution quality. Our
numerical results on solving some large-scale least square problems and total variation based image reconstruction have shown
great advantages of these new bundle-level type methods over APL, USL, and some other state-of-the-art first-order methods.

Keywords: convex programming, first-order, optimal method, bundle-level type method, total variation,
image reconstruction

AMS 2000 subject classification: 90C25, 90C06, 90C22, 49M37

1. Introduction. Given a convex function f : Rn → R, the main problem of interest in this paper is:

f∗ := min
x∈Rn

f(x). (1.1)

Throughout this paper, we assume that the solution set X∗ of (1.1) is nonempty. Moreover, denoting

x∗ := argminx{‖x− x‖ : x ∈ X∗} and D∗ := ‖x− x∗‖ (1.2)

for a given initial point x ∈ Rn, we assume in the black-box setting that for all closed sets

Ω ⊆ B(x, 4D∗) := {x ∈ Rn : ‖x− x‖ ≤ 4D∗} , (1.3)

there exists M(Ω) > 0 and ρ(Ω) ∈ [0, 1], such that1

f(y)− f(x)− 〈f ′(x), y − x〉 ≤ M(Ω)

1 + ρ(Ω)
‖y − x‖1+ρ(Ω), ∀x, y ∈ Ω. (1.4)

Here ‖ · ‖ denotes the Euclidean norm, and f ′(x) ∈ ∂f(x), where ∂f(x) denotes the subdifferential of f at
x ∈ Ω. Clearly, the above assumption on f(·) covers non-smooth (ρ(Ω) = 0), smooth (ρ(Ω) = 1) and weakly
smooth (0 < ρ(Ω) < 1) functions.

Our main goal in this paper is to develop a bundle-level method that is able to compute an approximate
solution to problem (1.1), with uniformly optimal iteration complexity for non-smooth, smooth and weakly
smooth objective functions (see [14]). Here, the iteration complexity is described by the number of evaluations
of subgradients/gradients of f . In addition, we aim to design the bundle-level method so that its computational
cost in each iteration is small, in order to improve its practical performance. Let us start by reviewing a few
existing bundle-level methods.

∗December, 2014. This research was partially supported by NSF grants CMMI-1254446, DMS-1319050, and ONR grant
N00014-13-1-0036.
†Department of Mathematics, University of Florida (yun@math.ufl.edu).
‡Department of Industrial and System Engineering, University of Florida (glan@ise.ufl.edu).
§Department of Industrial and System Engineering, University of Florida (ouyang@ufl.edu) .
¶Department of Mathematics, University of Florida (weizhang657@ufl.edu).
1Observe that this assumption is weaker than requiring (1.4) holds for any x, y ∈ Rn.

1



1.1. Cutting plane, bundle and bundle-level methods. The bundle-level method originated from
the well-known Kelley’s cutting-plane method in 1960 [8]. Consider the convex programming (CP) problem
of

min
x∈X

f(x), (1.5)

where X is a compact convex set and f is a closed convex function. The fundamental idea of the cutting plane
method is to generate a sequence of piecewise linear functions to approximate f in X. In particular, given
x1, x2, . . . , xk ∈ X, we approximate f by

mk(x) := max{h(xi, x), 1 ≤ i ≤ k}, (1.6)

and compute the iterates xk+1 by:

xk+1 ∈ Argminx∈Xmk(x), (1.7)

where

h(z, x) := f(z) + 〈f ′(z), x− z〉 . (1.8)

Clearly, the functions mi, i = 1, 2, . . ., satisfy mi(x) ≤ mi+1(x) ≤ f(x) for any x ∈ X, and are identical
to f at those search points xi, i = 1, . . . , k. However, the inaccuracy and instability of the piecewise linear
approximation mk over the whole feasible set X may affect the selection of new iterates, and the above
scheme converges slowly both theoretically and practically [18, 20]. Some important improvements of Kelley’s
method have been made in 1990s under the name of bundle methods (see, e.g., [9, 10, 16]). In particular, by
incorporating the level sets into Kelley’s method, Lemaréchal, Nemirovskii and Nesterov [16] proposed in 1995
the classic bundle-level (BL) method by performing a series of projections over the approximate level sets.

Given x1, x2, . . . , xk, the basic BL iteration consists of the following three steps:
a) Set fk := min{f(xi), 1 ≤ i ≤ k} and compute a lower bound on f∗ by fk = minx∈X mk(x).
b) Set the level lk = βfk + (1− β)fk for some β ∈ (0, 1).
c) Set Xk := {x ∈ X : mk(x) ≤ lk} and determine the new iterate

xk+1 = argminx∈Xk‖x− xk‖
2. (1.9)

In the BL method, the localizer Xk is used to approximate the level set Lk := {x : f(x) ≤ lk}, because the
projection over Lk is often too difficult to compute. Intuitively, as k increases, the value of lk will converge
to f∗, and consequently both Lk and Xk will converge to the set of optimal solutions for problem (1.5). It
is shown in [16] the number of BL iterations required to find an ε-solution of (1.5), i.e., a point x̂ ∈ X s.t.
f(x̂)− f∗ ≤ ε, can be bounded by O(1/ε2), which is optimal for general nonsmooth convex optimization.

Observe that for the above BL methods, the localizer Xk accumulates constraints, and hence that the
subproblem in step c) becomes more and more expensive to solve. In order to overcome this difficulty, some
restricted memory BL algorithms have been developed in [10, 3]. In particular, Ben-Tal and Nemirovski [3]
introduced the non-Euclidean restricted memory level (NERML) method, in which the number of extra linear
constraints in Xk can be as small as 1 or 2, without affecting the optimal iteration complexity. Moreover, the
objective function ‖·‖2 in (1.9) is replaced by a general Bregman distance d(·) for exploiting the geometry of the
feasible set X. NERML is often regarded as state-of-the-art for large-scale nonsmooth convex optimization as
it substantially outperforms subgradient type methods in practice. Some more recent development of inexact
proximal bundle methods and BL methods could be found in [27, 23, 22, 26, 12, 11, 7, 13].

1.2. Accelerated bundle-level type methods. While the classic BL method was optimal for solving
nonsmooth CP problems only, Lan [14] recently significantly generalized this method so that they can opti-
mally solve any black-box CP problems, including non-smooth, smooth and weakly smooth CP problems. In
particular, for problem (1.5) with compact feasible set X, the two new BL methods proposed in [14], i.e., the

2



accelerated bundle-level(ABL) and accelerated prox-level(APL) methods, can solve these problems optimally
without requiring any information on problem parameters. The ABL method can be viewed as an accelerated
version of the classic BL method. Same as the classic BL method, the lower bound on f∗ is estimated from the
cutting plane model mk in (1.6), the upper bound on f∗ is given by the best objective value found so far, and
the prox-center is updated by (1.9). The novelty of the ABL method exists in that three different sequences,
i.e, {xlk}, {xk} and {xuk}, are used for updating lower bound, prox-center, and upper bound respectively, which
leads to its accelerated iteration complexity for smooth and weakly smooth problems. The APL method
is a more practical, restricted memory version of the ABL method, which can also employ non-Euclidean
prox-functions to explore the geometry of the feasible set X.

We now provide a brief description of the APL method. This method consists of multiple phases, and
each phase calls a gap reduction procedure to reduce the gap between the lower and upper bounds on f∗ by
a constant factor. More specifically, at phase s, given the initial lower bound lbs and upper bound ubs, the
APL gap reduction procedure sets f0 = lbs, f0 = ubs, l = β · lbs + (1 − β)ubs, and iteratively performs the
following steps.

a) Set xlk = (1− αk)xuk−1 + αkxk−1 and fk := max{fk−1,min{l, hk}}, where

hk := min
x∈Xk−1

h(xlk, x). (1.10)

b) Update the prox-center xk by

xk = argminx∈Xkd(x), (1.11)

where Xk := {x ∈ Xk−1 : h(xlk, x) ≤ l}.
c) Set fk = min{fk−1, f(x̃k)}, where x̃uk = αkxk + (1− αk)xuk−1, and xuk is chosen as either x̃uk or xuk−1

such that f(xuk) = fk.
d) Choose Xk such that Xk ⊆ Xk ⊆ Xk, where Xk := {x ∈ X : 〈∇d(xk), x− xk〉 ≥ 0}.

Here ∇d(·) denotes the gradient of d(·). Observe that the parameters αk and β are fixed a priori, and do not
depend on any problem parameters. Moreover, the localizer Xk is chosen between Xk and Xk, so that the
numbers of linear constraints in the two subproblems (1.10) and (1.11) can be fully controlled. It is shown
in [14] that for problem (1.5) with compact feasible set X, the APL method achieves the optimal iteration
complexity for any smooth, weakly smooth and non-smooth convex functions. Moreover, by incorporating
Nesterov’s smoothing technique [21] into the APL method, Lan also presented in [14] the uniform smoothing
level (USL) method which can achieve the optimal complexity for solving an important class of nonsmooth
structured saddle point (SP) problems without requiring the input of any problem parameters (see Subsection
3.2 for more details).

1.3. Contribution of this paper. One crucial problem associated with most existing BL type methods,
including APL and USL, is that each phase of these algorithms involves solving two optimization problems;
first a linear programing problem to compute the lower bound, and then a constrained quadratic programing
problem to update the prox-center or new iterate. In fact, the efficiency of these algorithms relies on the
solutions of the two involved subproblems (1.10) and (1.11), and the latter one is often more complicated than
the projection subproblem in the gradient projection type methods. Moreover, most existing BL type methods
require the assumption that the feasible set is bounded due to the following two reasons. Firstly, the feasible
set has to be bounded to compute a meaningful lower bound by solving the aforementioned linear programing
problem. Secondly, the convergence analysis of limited memory BL type methods (e.g., NERML, APL, and
USL) relies on the assumption that the feasible set is compact. These issues have significantly hindered the
applicability of existing BL type methods. Our contribution in this paper mainly consists of the following
three aspects.

Firstly, we propose a novel bundle-level framework for unconstrained CP problems. The proposed frame-
work solves unconstrained CP problems through solutions to a series of ball-constrained CPs. In particular,
if there exists a uniformly optimal method (e.g., the APL and USL methods) that solves ball-constrained
black-box or structured CPs, then the proposed algorithm solves unconstrained black-box or structured CPs

3



with optimal complexity without requiring the input of any problem parameters as well. To the best of our
knowledge, this is the first time in the literature that the complexity analysis has been performed for BL type
methods to solve unconstrained CP problems (see Sections 3.2 and 3.3 in [24] for more details).

Secondly, in order to solve ball-constrained CPs, we propose two greatly simplified BL type methods,
namely the FAPL and FUSL methods, which achieve the same optimal iteration complexity as the APL
and USL methods respectively, and maintain all the nice features of those methods, but has greatly reduced
computational cost per iteration. Such improvement has been obtained by the reduction and simplification of
the subproblems that have to be solved in the APL and USL methods. More specifically, we show that the
linear optimization subproblem for computing the lower bound can be eliminated and that the ball constraint
can be removed from the quadratic subproblem by properly choosing the prox-functions. We also generalize
both FAPL and FUSL methods for solving strongly convex optimization problems and show that they can
achieve the optimal iteration complexity bounds.

Thirdly, we introduce a simple exact approach to solve the only subproblem in our algorithms. As
mentioned earlier, the accuracy of the solutions to the subproblems is essential for the efficiency of all these
BL type methods mentioned in Sections 1.1 and 1.2. By incorporating the proposed exact approach to solve
the only subproblem in our algorithm, the accuracy of the FAPL and FUSL methods is significantly increased
and the total number of the iterations required to compute an ε-solution is greatly decreased comparing
with the original APL and USL methods and other first order methods. Also when the number of linear
constraints is fixed and small, the computational cost for solving the only subproblem only linearly depends
on the dimension of the problem, since the cost for computing the vector inner product will dominate that for
solving a few auxiliary linear systems. This feature is very important for solving large-scale CP problems.

Finally, we present very promising numerical results for these new FAPL and FUSL methods applied
to solve large-scale least square problems and total-variation based image reconstruction problems. These
algorithms significantly outperform other BL type methods, gradient type methods, and even the powerful
MATLAB solver for linear systems, especially when the dimension and/or the Lipschitz constant of the problem
is large.

It should be noted that there exist some variants of bundle-level methods [4, 7, 2] for solving nonsmooth
CP problems in which the computation of the subproblem to update the lower bound fk is skipped, so that
the feasible set X is allowed to be unbounded. In each iteration, these methods apply a level feasibility
check recursively in order to find a proper level lk and the associated level set Xk, and update fk to lk if
the level set associated with lk is empty. However, in these methods, repeatedly checking the emptiness of
level sets associated with varied levels in each iteration may be very costly in practice, especially when the
linear constraints in the level sets accumulate. Also, if the feasible set X = Rn, then for any chosen level,
the corresponding level set consisting of linear constraints is unlikely to be empty, which would result in the
inefficiency for updating the lower bound. In [2], an alternative for updating the lower bound (or increasing
the level) is introduced by comparing the distances from stability center to the newly generated iterate and
the solution set. This approach requires some prior knowledge about the distance to the solution set, and a
rough estimate for that may lead to incorrect lower bounds and improper choices of levels.

1.4. Organization of the paper. The paper is organized as follows. In Section 2, we present a general
scheme to extend the optimal BL type methods for unconstrained convex optimization. In Section 3, the
new FAPL and FUSL methods are proposed followed by their convergence analysis, then an exact approach
is introduced to solve the subproblem in these algorithms. We also extend the FAPL and FUSL methods to
strongly convex CP and structured CP problems in Section 4, following some unpublished developments by
Lan in [15]. The applications and promising numerical results are presented in Section 5.

2. Solving unconstrained CP problems through ball-constrained CP. Our goal in this section
is to present a generic algorithmic framework to extend the uniformly optimal constrained BL algorithms in
[14] for solving unconstrained problems.

Given x ∈ Rn, R > 0, ε > 0, let us assume that there exists a first-order algorithm, denoted by A(x,R, ε),

4



which can find an ε-solution of

f∗x,R := min
x∈B(x,R)

f(x), (2.1)

where B(x,R) is defined in (1.3). In other words, we assume that each call to A(x,R, ε) will compute a point
z ∈ B(x,R) such that f(z) − f∗x,R ≤ ε. Moreover, throughout this section, we assume that the iteration
complexity associated with A(x,R, ε) is given by

Nx,R,ε :=
C1(x,R, f)Rα1

εβ1
+
C2(x,R, f)Rα2

εβ2
, (2.2)

where α1 ≥ β1 > 0, α2 ≥ β2 > 0 and C1(x,R, f), C2(x,R, f) are some constants that depend on f in (2.1).
For example, if f is a smooth convex function, ∇f is Lipschitz continuous in Rn with constant L, i.e., (1.4)
holds with ρ(Rn) = 1 and M(Rn) = L, and we apply the APL method to (2.1), then we have only one term
with α1 = 1, β1 = 1/2, and C1(x,R, f) = cL in (2.2), where c is a universal constant. Observe that the
two complexity terms in (2.2) will be useful for analyzing some structured CP problems in Section 3.2. It
should also be noted that a more accurate estimate of C1(x,R, f) is cM(B(x,R)), since the Lipschitz constant
L = M(Rn) throughout Rn is larger than or equal to the local Lipschitz constant in B(x,R).

By utilizing the aforementioned ball-constrained CP algorithm and a novel guess and check procedure, we
present a bundle-level type algorithm for unconstrained convex optimiations as follows.

Algorithm 1 Bundle-level type methods for unconstrained CP problems

Choose initial estimation r0 ≤ ‖x− x∗‖ and compute the initial gap ∆0 := f(x)−minx∈B(x,r0) h(x, x).
For k = 0, 1, 2, . . .,

1. Set x′k = A(x, rk,∆k) and x′′k = A(x, 2rk,∆k).
2. If f(x′k)− f(x′′k) > ∆k, update rk ← 2rk and go to step 1.
3. Otherwise, let x∗k = x′′k , ∆k+1 = ∆k/2 and rk+1 = rk.

Step 1 and Step 2 in Algorithm 1 constitute a loop to find a pair of solution (x′k, x
′′
k) satisfying 0 ≤

f(x′k) − f(x′′k) ≤ ∆k. Since x′k and x′′k are ∆k-optimal solutions to minx∈B(x,rk) f(x) and minx∈B(x,2rk) f(x),
respectively, this loop must terminate in finite time, because it will terminate whenever rk ≥ D∗, where D∗ is
defined in (1.2). For simplicity, we call it an expansion if we double the radius in Step 2, and each iteration
may contain several expansions before updating the output solution x∗k in step 3.

Before analyzing the rate of convergence for Algorithm 1, we discuss some important observations related
to the aforementioned expansions.

Lemma 2.1. Suppose that x is a fixed point and R > 0 is a fixed constant. Let x1 and x2 be ε-solutions
to problems

f∗1 := min
x∈B(x,R)

f(x) and f∗2 := min
x∈B(x,2R)

f(x), (2.3)

respectively. If 0 ≤ f(x1)− f(x2) ≤ ε, then we have

f(x2)− f∗ ≤
(

3 +
2D∗

R

)
ε, (2.4)

where f∗ and D∗ are defined in (1.1) and (1.2) respectively.
Proof. Clearly, by definition, we have ‖x1 − x‖ ≤ R, ‖x2 − x‖ ≤ 2R, 0 ≤ f(x1) − f∗1 ≤ ε, and 0 ≤

f(x2) − f∗2 ≤ ε. It suffices to consider the case when f∗2 > f∗ and ‖x∗ − x‖ > 2R, since otherwise (2.4)
holds trivially. Suppose x∗1 and x∗2 are the solutions to the first and second problems in (2.3) respectively,
let x̂ be the intersection of the line segment (x∗, x∗1) with the ball B(x, 2R), and denote R1 := ‖x̂ − x∗1‖ and
R2 := ‖x∗ − x∗1‖. Clearly, x̂ = (1− R1

R2
)x∗1 + R1

R2
x∗. By the convexity of f(·), we have

f(x̂) ≤ (1− R1

R2
)f(x∗1) +

R1

R2
f(x∗), (2.5)

5



which implies that

R1

R2
[f(x∗1)− f(x∗)] ≤ f(x∗1)− f(x̂), (2.6)

and that f(x̂) ≤ f(x∗1) due to the fact that f(x∗) ≤ f(x∗1). Also, we have f(x̂) ≥ f(x∗2) since x̂ ∈ B(x, 2R). In
addition,

f(x∗1)− f(x∗2) = [f(x∗1)− f(x1)] + [f(x1)− f(x2)] + [f(x2)− f(x∗2)] (2.7)

≤ 0 + ε+ ε = 2ε. (2.8)

Combining the previous inequalities, we obtain

f(x∗1)− 2ε ≤ f(x∗2) ≤ f(x̂) ≤ f(x∗1), (2.9)

which implies that f(x∗1) − f(x̂) ≤ 2ε. Using the previous conclusion (2.6), and the fact that R1 ≥ R and
R2 ≤ D∗ +R, we have

f(x∗1)− f(x∗) ≤ 2εR2

R1
≤
(

2 +
2D∗

R

)
ε.

Therefore,

f(x2)− f(x∗) ≤ f(x1)− f(x∗) ≤ [f(x1)− f(x∗1)] + [f(x∗1)− f(x∗)] ≤
(

3 +
2D∗

R

)
ε.

We are now ready to prove the iteration complexity of Algorithm 1 for solving the unconstrained CP
problem in (1.1).

Theorem 2.2. Suppose that the number of evaluations of f ′ in one call to A(x,R, ε) is bounded by (2.2),
and denote εk := f(x∗k)− f∗ for the iterates {x∗k} of Algorithm 1. Then we have

a) rk < 2D∗ for all k;
b) limk→∞ εk = 0;
c) The total number of evaluations of f ′ performed by Algorithm 1 up to the k-th iteration is bounded by

O

(
C1(x, 4D∗, f)(D∗)α1

εβ1

k

+
C2(x, 4D∗, f)(D∗)α2

εβ2

k

)
, (2.10)

where D∗ is defined in (1.2).
Proof. We start by proving that rk < 2D∗ for all k. From the description of Algorithm 1, we see that

expansions occur if and only if f(x′k)−f(x′′k) > ∆k at Step 2. Moreover, we can observe that f(x′k)−f(x′′k) ≤ ∆k

if x∗ ∈ B(x, rk). This observation implies that rk < 2D∗. Indeed, it is easy to see that the total number of
expansions is bounded by

S1 :=

⌈
log2

D∗

r0

⌉
+ 1. (2.11)

To prove b), noting from the description of Step 3 and Lemma 2.1 that

εk = f(x′′k)− f∗ ≤
(

3 +
2D∗

rk

)
∆k. (2.12)

Since the total number of expansions is bounded by S1, and ∆k decreases to 0 as k increases, we have
limk→∞ εk = 0.

6



To prove c), assume that the number of executions of Step 1 performed by A to find x∗k is K. Now we
can estimate the total number of evaluations of f ′ performed by the K executions. For any 0 ≤ j < K, as
2α1 ≥ 2β1 > 1 and 2α2 ≥ 2β2 > 1, we have

N ′j+1 ≥ 2β1N ′j and N ′′j+1 ≥ 2β2N ′′j (2.13)

by the assumption of Nx,R,ε, where Nj = N ′j + N ′′j denotes the bound on iteration number for the jth

execution, and N ′j , N
′′
j correspond with the first and second terms in (2.10) respectively. Then the total

number of iterations is bounded by

N : =

K∑
j=1

(N ′j +N ′′j ) ≤ N ′K
K−1∑
j=0

(2β1)−j +N ′′K

K−1∑
j=0

(2β2)−j (2.14)

< N ′K

+∞∑
j=0

2−β1j +N ′′K

+∞∑
j=0

2−β2j ≤ 1

1− 2−β1
N ′K +

1

1− 2−β2
N ′′K (2.15)

≤ (1 + 2α1)C1(x, 2rk, f)

1− 2−β1
·
rα1

k

∆β1

k

+
(1 + 2α2)C2(x, 2rk, f)

1− 2−β2
·
rα2

k

∆β2

k

. (2.16)

Combining the above inequality with (2.12), we have

N <

2∑
i=1

(1 + 2αi)Ci(x, 2rk, f)

1− 2−βi
·
rαik (3 + 2D∗

rk
)βi

εβik
. (2.17)

Since αi ≥ βi > 0, then rαik (3 + 2D∗

rK
)βi = rαi−βik (3rk + 2D∗)βi for i = 1, 2 is monotonically increasing with

respect to rk, which, in view of the fact rk < 2D∗ for any k ≥ 0, then clearly implies

N <

2∑
i=1

(1 + 2αi)2αi+3βiCi(x, 4D
∗, f)

2βi − 1
· (D∗)αi

εβik
. (2.18)

Hence the proof is complete.
Note that to solve the unconstrained black-box CP problem (1.1), the termination criterions of most first-

order algorithms are based on the residual of the gradient or gradient mapping, which would lead to different
complexity analysis. To the best of our knowledge, without any prior information on D∗, there is no any
termination criterion based on functional optimality gap that could guarantee the termination of algorithms
for finding an ε-solution of (1.1). Comparing to Nesterov’s optimal gradient method for unconstrained problems
in [19], Algorithm 1 only provides efficiency estimates about εk := f(x∗k)− f∗ when the output x∗k is updated,
while the optimal gradient method could have estimates about εk := f(xk) − f∗ for each iterate xk. For
both methods the efficiency estimates involve D∗. Since Algorithm 1 extend methods for ball-constraint CP
problems to solve (1.1), and the iterations in the expansions of Algorithm 1 could be regarded as a guess
and check procedure to determine D∗, it is reasonable that the efficiency estimates are only provided for
unexpansive steps which update x∗k.

Since in [14] the APL method, and its variant the USL method, have optimal iteration complexity for
solving smooth, nonsmooth, weakly smooth CP problems and structured nonsmooth CP problems on compact
feasible sets, Algorithm 1 could be incorporated to solve (1.1) by specifying feasible sets to a sequences of
Euclidean balls. Therefore, the main problem remained is how to improve the efficiency of these BL type
methods for solving ball-constrained CP problems.

3. Fast prox-level type methods for ball-constrained and unconstrained problems. This section
contains four subsections. We first present a much simplified APL method, referred to the fast APL (FAPL)
method, for solving ball-constrained black-box CP problems in Subsection 3.1, and then present the fast USL

7



(FUSL) method for solving a special class of ball-constrained structured CP problems in Subsection 3.2. We
show how to solve the subproblems in these two algorithms in Subsection 3.3. We also briefly discuss in
Subsection 3.4 the applications of the FAPL and FUSL methods for unconstrained optimization, based on
our results in Section 2. For the sake of simplicity, throughout this section, we denote ρ = ρ(B(x,R)),M =
M(B(x,R)) for (2.1).

3.1. FAPL for ball-constrained black-box problems. Our goal in this subsection is to present the
FAPL method, which can significantly reduce the iteration cost for the APL method applied to problem (2.1).
In particular, we show that only one subproblem, rather than two subproblems (see (1.10) and (1.11)) as in
the APL method, is required in the FAPL method for defining a new iterate (or prox-center) and updating
lower bound. We also demonstrate that the ball constraint in (2.1) can be eliminated from the subproblem
by properly specifying the prox-function.

Similarly to the APL method, the FAPL method consists of multiple phases, and in each phase the FAPL
gap reduction procedure, denoted by GFAPL, is called to reduce the gap between the upper and lower bounds
on f∗x,R in (2.1) by a constant factor.

We start by describing the FAPL gap reduction procedure in Procedure 1. This procedure differs from
the gap reduction procedure used in the APL method in the following several aspects. Firstly, the feasible
sets Qk and Qk (see steps 1 and 4) in procedure GFAPL only contain linear constraints and hence are possibly
unbounded, while the localizers in the APL method must be compact. Secondly, we eliminate the subproblem
that updates the lower bound on f∗ in the APL method. Instead, in the FAPL method, the lower bound
is updated to l directly whenever Qk = ∅ or ‖xk − x‖ > R. Thirdly, we choose a specific prox-function
d(x) = 1

2‖x − x‖
2, and the prox-center is fixed to be x. As a result, all the three sequences {xk}, {xlk} and

{xuk} will reside in the ball B(x,R). At last, as we will show in next subsection, since the subproblem (3.4)
only contains a limited number of linear constraints (depth of memory), we can solve it very efficiently, or
even exactly if the depth of memory is small, say, ≤ 10.

We now add a few more remarks about the technical details of Procedure 1. Firstly, Procedure 1 is
terminated at step 2 if Qk = ∅ or ‖xk − x‖ > R, which can be checked automatically when solving the
subproblem (3.4) (see Subsection 3.3 for more details). Secondly, in step 4, while Qk can be any polyhedral
set between Qk and Qk, in practice we can simply choose Qk to be the intersection of the half-space {x ∈ Rn :
〈xk − x, x− xk〉 ≥ 0} and a few most recently generated half-spaces, each of which is defined by {x ∈ Rn :
h(xlτ , x) ≤ l} for some 1 ≤ τ ≤ k. Finally, in order to guarantee the termination of procedure GFAPL and the
optimal iteration complexity, the parameters {αk} used in this procedure need to be properly chosen. One
set of conditions that {αk} should satisfy to guarantee the convergence of procedure GFAPL is readily given
in [14]:

α1 = 1, 0 < αk ≤ 1, γk‖τk(ρ)‖ 2
1−ρ
≤ ck−

1+3ρ
2 , ∀k ≥ 1 (3.8)

for some constants c > 0, where ‖ · ‖p denotes the lp norm,

γk :=

{
1, k = 1,

γk−1(1− αk), k ≥ 2,
and τk(ρ) :=

{
α1+ρ

1

γ1
,
α1+ρ

2

γ2
, . . . ,

α1+ρ
k

γk

}
. (3.9)

The following lemma, whose proof is given in [14], provides two examples for the selection of {αk}.
Lemma 3.1.
a) If αk = 2/(k + 1), k = 1, 2, . . ., then the condition (3.8) is satisfied with c = 21+ρ3−

1−ρ
2 .

b) If {αk} is recursively defined by

α1 = γ1 = 1, α2
k = (1− αk)γk−1 = γk,∀k ≥ 2, (3.10)

then the condition (3.8) holds with c = 4/3
1−ρ
2 .

The following lemma describes some important observations regarding the execution of procedure GFAPL.

8



Procedure 1 The FAPL gap reduction procedure: (x+, lb+) = GFAPL(x̂, lb, R, x, β, θ)

0: Set k = 1, f0 = f(x̂), l = β · lb + (1− β)f0, Q0 = Rn, and xu0 = x̂. Let x0 ∈ B(x,R) be given arbitrarily.
1: Update the cutting plane model:

xlk = (1− αk)xuk−1 + αkxk−1, (3.1)

h(xlk, x) = f(xlk) +
〈
f ′(xlk), x− xlk

〉
, (3.2)

Qk = {x ∈ Qk−1 : h(xlk, x) ≤ l}. (3.3)

2: Update the prox-center and lower bound:

xk = argminx∈Qk

{
d(x) :=

1

2
‖x− x‖2

}
. (3.4)

If Qk = ∅ or ‖xk − x‖ > R, then terminate with outputs x+ = xuk−1, lb
+ = l.

3: Update the upper bound: set

x̃uk = (1− αk)xuk−1 + αkxk, (3.5)

xuk =

{
x̃uk , if f(x̃uk) < fk,

xuk−1, otherwise,
(3.6)

and fk = f(xuk). If fk ≤ l + θ(f0 − l), then terminate with x+ = xuk , lb
+ = lb.

4: Choose any polyhedral set Qk satisfying Qk ⊆ Qk ⊆ Qk, where

Qk := {x ∈ Rn : 〈xk − x, x− xk〉 ≥ 0}. (3.7)

Set k = k + 1 and go to step 1.

Lemma 3.2. Let Ef (l) := {x ∈ B(x,R) : f(x) ≤ l}. If Ef (l) 6= ∅, then the following statements hold for
procedure GFAPL.

a) Step 4 is always well-defined unless procedure GFAPL already terminated.
b) Ef (l) ⊆ Qk ⊆ Qk ⊆ Qk for any k ≥ 1.
c) If Qk 6= ∅, then problem (3.4) in step 2 has a unique solution. Moreover, if procedure GFAPL terminates

at step 2, then l ≤ f∗.
Proof. To prove part a), we will use induction to prove that Ef (l) ⊆ Qk for all k ≥ 0. Firstly, as Q0 is set

to Rn, we have Ef (l) ⊆ Q0. Moreover, if Ef (l) ⊆ Qk−1 for some k ≥ 1, then from the definition of Qk in (3.3)
and the observation that h(xlk, x) ≤ f(x) ≤ l for all x ∈ Ef (l), we have Ef (l) ⊆ Qk ⊆ Qk, hence part a) holds.

To prove b), it suffices to show that Qk ⊆ Qk, since Qk is chosen between Qk and Qk, and Ef (l) ⊆ Qk is
proved from the above induction. By the definition of Qk in (3.7), we have Qk = {x ∈ Rn : d(x) ≥ d(xk)},
hence Qk ⊆ Qk, and part b) holds.

We now provide the proof of part c). From the definition of Qk in step 4 and the definition of Qk in (3.3)
we can see that Qk is the intersection of half-spaces, hence it is convex and closed. Therefore, the subproblem
(3.4) always has a unique solution as long as Qk is non-empty.

To finish the proof it suffices to show that Ef (l) = ∅ when either Qk = ∅ or ‖xk − x‖ > R, which can be
proved by contradiction. Firstly, if Qk = ∅ but Ef (l) 6= ∅, then by part b) proved above, we have Ef (l) ⊆ Qk,
which contradicts the assumption that Qk is empty. On the other hand, supposing that ‖xk − x‖ > R and
Ef (l) 6= ∅, let x∗R := argminx∈B(x,r)f(x), it is clear that x∗R ∈ Ef (l) ⊆ Qk by b), however ‖x∗R − x‖ ≤ R <
‖xk − x‖ which contradicts the definition of xk in (3.4).

The following lemma shows that whenever procedure GFAPL terminates, the gap between the upper and

9



lower bounds on f∗x,R is reduced by a constant factor.

Lemma 3.3. Let ub := f(x̂),ub+ := f(x+) in procedure GFAPL. Whenever procedure GFAPL terminates,
we have ub+ − lb+ ≤ q(ub− lb), where

q := max{β, 1− (1− θ)β}. (3.11)

Proof. By the definition of xuk in (3.5) and the definition of fk in step 3 of procedure GFAPL, we have
fk ≤ fk−1, ∀k ≥ 1, which implies ub+ ≤ ub. Procedure GFAPL could terminate at either step 2 or 3.

We first suppose that it terminates at step 2 after k iterations. Using the termination condition lb+ = l =
β · lb + (1− β)ub, we have

ub+ − lb+ ≤ ub− β lb + (1− β)ub = β(ub− lb).

Now suppose that Procedure 1 terminates at step 3 after k iterations. We have ub+ = fk ≤ l+ θ(ub− l) and
lb+ ≥ lb. Using the fact that l = β · lb + (1− β)ub, we conclude that

ub+ − lb+ ≤ l + θ (ub− l)− lb = [1− (1− θ)β](ub− lb).

We conclude the lemma by combining the above two relations.
We now provide a bound on the number of iterations performed by procedure GFAPL. Note that the proof

of this result is similar to Theorem 3 in [14].
Proposition 3.4. If the stepsizes {αk}k≥1 are chosen such that (3.8) holds, then the number of iterations

performed by procedure GFAPL does not exceed

N(∆) :=

(
cMR1+ρ

(1 + ρ)θβ∆

) 2
1+3ρ

+ 1, (3.12)

where ∆ := ub− lb.
Proof. It can be easily seen from the definition of Qk that xk = argminx∈Qkd(x), which, in view of the fact

that Qk ⊆ Qk, then implies that xk = argminx∈Qkd(x). Using this observation, and the fact that xk+1 ∈ Qk
due to (3.3) and (3.4), we have 〈∇d(xk), xk+1 − xk〉 ≥ 0. Since d(x) is strongly convex with modulus 1, we
have

d(xk+1) ≥ d(xk) + 〈∇d(xk), xk+1 − xk〉+
1

2
‖xk+1 − xk‖2.

Combining the above two relations, we conclude 1
2‖xk+1 − xk‖2 ≤ d(xk+1) − d(xk). Summing up these

inequalities for any k ≥ 1, we conclude that

1

2

k∑
τ=1

‖xτ+1 − xτ‖ ≤ d(xk+1) =
1

2
‖xk+1 − x‖2 ≤

1

2
R2. (3.13)

Now suppose that procedure GFAPL does not terminate at the kth iteration. Applying the relation (3.14) in
[14], and notice that α1 = 1, we have

f(xuk)− l ≤ M

1 + ρ
[2d(xk)]

1+ρ
2 γk‖τk(ρ)‖ 2

1−ρ
. (3.14)

In view of steps 2 and 3 in procedure 1, and using the fact that l = β · lb + (1− β)ub in step 0, we have

f(xuk)− l > θ(ub− l) = θβ∆.

10



Combining the above two relations, and using (3.8) and (3.13), we obtain

θβ∆ <
MR1+ρ

(1 + ρ)
· c

k
1+3ρ

2

, (3.15)

which implies that

k <

(
cMR1+ρ

(1 + ρ)θβ∆

) 2
1+3ρ

. (3.16)

In view of Lemma 3.3 and Proposition 3.4, we are now ready to describe the FAPL method, which performs
a sequence of calls to procedure GFAPL until an approximate solution with sufficient accuracy is found.

Algorithm 2 The fast accelerated prox-level (FAPL) method

0: Given ball B(x,R), choose initial point p0 ∈ B(x,R), tolerance ε > 0 and parameters β, θ ∈ (0, 1).
1: Set p1 ∈ Argminx∈B(x,R)h(p0, x), lb1 = h(p0, p1),ub1 = min{f(p0), f(p1)}, let x̂1 be either p0 or p1 such

that f(x̂1) = ub1, and s = 1.
2: If ubs − lbs ≤ ε, terminate and output approximate solution x̂s.
3: Set (x̂s+1, lbs+1) = GFAPL(x̂s, lbs, R, x, β, θ) and ubs+1 = f(x̂s+1).
4: Set s = s+ 1 and go to step 2.

A phase of the FAPL method occurs whenever s increments by 1. For the sake of simplicity, each iteration
of procedure GFAPL is also referred to as an iteration of the FAPL method. The following theorem establishes
the complexity bounds on the total numbers of phases and iterations performed by the FAPL method and its
proof is similar to that of Theorem 4 in [14].

Theorem 3.5. If the stepsizes {αk} in procedure GFAPL are chosen such that (3.8) holds, then the
following statements hold for the FAPL method.

a) The number of phases performed by the FAPL method does not exceed

S :=

⌈
max

{
0, log 1

q

(
(2R)1+ρM

(1 + ρ)ε

)}⌉
. (3.17)

b) The total number of iterations performed by the FAPL method for computing an ε-solution of problem
(2.1) can be bounded by

N(ε) := S +
1

1− q
2

1+3ρ

(
cMR1+ρ

(1 + ρ)θβε

) 2
1+3ρ

, (3.18)

where q is defined in (3.11).
Proof. We first prove part a). Let ∆s := ubs − lbs, without loss of generality, we assume that ∆1 > ε. In

view of step 0 in the FAPL method and (1.4), we have

∆1 ≤ f(p1)− h(p0, p1) = f(p1)− f(p0)− 〈f ′(p0), p1 − p0〉 ≤
(2R)1+ρM

1 + ρ
. (3.19)

Also, by Lemma 3.3 we can see that ∆s+1 ≤ q∆s for any s ≥ 1, which implies that

∆s+1 ≤ qs∆1, ∀s ≥ 0.

Moreover, if an ε-solution is found after S̃ phases of the FAPL method, then we have

∆S > ε ≥ ∆S+1. (3.20)

11



Combining the above three inequalities, we conclude that

ε < qS−1∆1 ≤ qS−1 (2R)1+ρM

1 + ρ
, (3.21)

and part a) follows immediately from the above inequality. We are now ready to prove part b). In view of
Lemma 3.3 and (3.20), we have ∆s ≥ εqs−S . Using this estimate, part a), and Proposition 3.4, we conclude
that the total number of iterations performed by the FAPL method is bounded by

N(ε) =

S∑
s=1

Ns = S +

(
cMR1+ρ

(1 + ρ)θβ

) 2
1+3ρ S∑

s=1

q
2(S−s)
1+3ρ < S +

1

1− q
2

1+3ρ

(
cMR1+ρ

(1 + ρ)θβε

) 2
1+3ρ

, (3.22)

where Ns denotes the number of the iterations of phase s for 1 ≤ s ≤ S.
In view of Theorem 3.5, the FAPL method achieves the optimal iteration complexity bounds for solving

nonsmooth, weakly smooth, and smooth CP problems, which are the same as the convergence properties of
the ABL and APL method (see [18, 20] for the discussions on the complexity theories for solving CP problems,
and [14] for the convergence properties of the ABL and APL methods).

3.2. FUSL for ball-constrained structured problems. In this subsection, we still consider the ball-
constrained problem in (2.1), but assume that its objective function is given by

f(x) := f̂(x) + F (x), (3.23)

where f̂ is a smooth convex function, i.e., ∃Lf̂ > 0 s.t.

f̂(y)− f̂(x)− 〈∇f̂(x), y − x〉 ≤
Lf̂
2
‖y − x‖2, (3.24)

and

F (x) := max
y∈Y
{〈Ax, y〉 − ĝ(y)}. (3.25)

Here, Y ⊆ Rm is a compact convex set, ĝ := Y → R is a relatively simple convex function, and A : Rn → Rm
is a linear operator. Our goal is to present a new prox-level method for solving problem (2.1)-(3.23), which
can significantly reduce the iteration cost of the USL method in [14].

Generally, the function F given by (3.25) is non-smooth. However, in an important work [21], Nesterov
demonstrated that this function can be closely approximated by a class of smooth convex functions. In
particular, letting v : Y → R be a prox-function with modulus σv and denoting cv := argminv∈Y v(y), we can
approximate F in (3.25) by the smooth function

Fη(x) : = max
y∈Y
{〈Ax, y〉 − ĝ(y)− ηV (y)}, (3.26)

where η > 0 is called the smoothing parameter, and V (·) is the Bregman divergence defined by

V (y) := v(y)− v(cv)− 〈∇v(cv), y − cv〉 . (3.27)

It was shown in [21] that the gradient of Fη(·) given by ∇Fη(x) = A∗y∗(x) is Lipschitz continuous with
constant

Lη := ‖A‖2/(ησv), (3.28)

where ‖A‖ is the operator norm of A, A∗ is the adjoint operator, and y∗(x) ∈ Y is the solution to the
optimization problem in (3.26). Moreover, the “closeness” of Fη(·) to F (·) depends linearly on the smoothing
parameter η, i.e.,

Fη(x) ≤ F (x) ≤ Fη(x) + ηDv,Y , ∀x ∈ X, (3.29)

12



where

Dv,Y := max
y,z∈Y

{v(y)− v(z)− 〈∇v(z), y − z〉}. (3.30)

Therefore, if we denote

fη(x) := f̂(x) + Fη(x), (3.31)

then

fη(x) ≤ f(x) ≤ fη(x) + ηDv,Y . (3.32)

Applying an optimal gradient method to minimize the smooth function fη in (3.31), Nesterov proves in [21] that
the iteration complexity for computing an ε-solution to problem (2.1)-(3.23) is bounded by O(1/ε). However,
the values of quite a few problem parameters, such as ‖A‖, σv and Dv,Y , are required for the implementation
of Nesterov’s smoothing scheme.

By incorporating Nesterov’s smoothing technique [21] into the APL method, Lan developed in [14] a new
bundle-level type method, namely the uniform smoothing level (USL) method, to solve structured problems
given in the form of (3.23). While the USL method achieves the same optimal iteration complexity as
Nesterov’s smoothing scheme in [21], one advantage of the USL method over Nesterov’s smoothing scheme
is that the smoothing parameter η is adjusted dynamically during the execution, and an estimate of Dv,Y

is obtained automatically, which makes the USL method problem parameter free. However, similar to the
APL method, each iteration of the USL method involves the solutions of two subproblems. Based on the USL
method in [14] and our analysis of the FAPL method in Section 3.1, we propose a fast USL (FUSL) method
that solves problem (3.23) with the same optimal iteration complexity as the USL method, but requiring only
to solve one simpler subproblem in each iteration.

Similar to the FAPL method, the FUSL method consists of different phases, and each phase calls a gap
reduction procedure, denoted by GFUSL, to reduce the gap between the upper and lower bounds on f∗x,R in
(2.1) by a constant factor. We start by describing procedure GFUSL.

Procedure 2 The FUSL gap reduction procedure: (x+, D+, lb+) = GFUSL(x̂, D, lb, R, x, β, θ)

0: Let k = 1, f0 = f(x̂), l = β · lb + (1− β)f0, Q0 = Rn, xu0 = x̂, x0 ∈ B(x,R) be arbitrarily given, and

η := θ(f0 − l)/(2D). (3.33)

1: Update the cutting plane model: set xlk to (3.1), Qk to (3.3), and

h(xlk, x) = hη(xlk, x) = fη(xlk) +
〈
f ′η(xlk), x− xlk

〉
. (3.34)

2: Update the prox-center: set xk to (3.4). If Qk = ∅ or ‖xk − x‖ > R, then terminate with output
x+ = xuk−1, D

+ = D, lb+ = l.

3: Update the upper bound and the estimate of Dv,Y : set x̃uk to (3.5), xuk to (3.6), and fk = f(xuk). Check
the following conditions:
3a) if f(xuk) ≤ l + θ(f0 − l), then terminate with output x+ = xuk , D

+ = D, lb+ = lb.
3b) if f(xuk) > l + θ(f0 − l) and fη(xuk) ≤ l + θ

2 (f0 − l), then terminate with output x+ = xuk , D
+ =

2D, lb+ = lb.
4: Choose Qk as same as Step 4 in GFAPL, set k = k + 1, and go to step 1.

A few remarks about procedure GFUSL are in place. Firstly, since the nonsmooth objective function f
is replaced by its smoothed approximation fη, we replace the cutting plane model in (1.8) with the one for

fη (see (3.34)). Also note that for the USL method in [14], f̂ is assumed to be a simple Lipschitz continuous

13



convex function, and only Fη is approximated by the linear estimation. However in the FUSL method, we

assume f̂ is general smooth convex, and linearize both f̂ and Fη in (3.34). Secondly, the smoothing parameter
η is specified as a function of the parameter D, f̄0 and l, where D is an estimator of Dv,Y in (3.30) and given
as an input parameter to procedure GFUSL. Thirdly, same to the FAPL method, the parameters {αk} are
chosen according to (3.8). Such conditions are required to guarantee the optimal convergence of the FUSL
method for solving problem (2.1)-(3.23). Fourthly, similar to the FAPL method, the feasible sets Qk, Qk, Qk
only contains a limited number of linear constraints, and there is only one subproblem (i.e. (3.4)) involved in
procedure GFUSL, which can be solved exactly when the depth of memory is small.

The following lemma provides some important observations about procedure GFUSL, which are similar to
those for the USL gap reduction procedure in [14].

Lemma 3.6. The following statements hold for procedure GFUSL.
a) If this procedure terminates at steps 2 or 3a), then we have ub+− lb+ ≤ q(ub− lb), where q is defined

in (3.11) and ub := f0,ub+ := f(x+).
b) If this procedure terminates at step 3b), then D < Dv,Y and D+ < 2Dv,Y .

Proof. The proof of part a) is as the same as that of Lemma 3.3, and we only show part b) here. By the
termination condition at step 3b), we have f(xuk) > l + θ(ub− l) and fη(xuk) ≤ l + θ

2 (ub− l). So,

f(xuk)− fη(xuk) >
θ

2
(ub− l).

We conclude from the above relation, (3.32), and (3.33) that

Dv,Y ≥
f(xuk)− fη(xuk)

η
>
θ(ub− l)

2η
= D.

Finally, D+ < 2Dv,Y comes immediately from the above relation and the definition of D+ in step 3b).
The following results provides a bound on the number of iterations performed by procedure GFUSL.
Proposition 3.7. Suppose that {αk}k≥1 in procedure GFUSL are chosen such that (3.8) holds. Then, the

number of iterations performed by this procedure does not exceed

N(∆, D) := R

√
cLf̂
θβ∆

+

√
2R‖A‖
θβ∆

√
cD

σv
+ 1, (3.35)

where ∆ := f(x̂)− lb.
Proof. It is easy to see that the gradient of fη in (3.23) has Lipschitz continuous gradient with constant

L = Lf̂ + Lη, where Lη and Lf̂ are defined in (3.28) and (3.24), respectively. Suppose that procedure GFUSL
does not terminate at step k. Noting that the prox-function d(x) in procedure GFUSL has modulus 1, similarly
to the discussion on (3.14), we have

fη(xuk)− l ≤ cLd(xk)

k2
≤ cLR2

2k2
, (3.36)

where c is defined in (3.8), and the second inequality is from (3.13). Also, since procedure GFUSL does not
terminate, in view of the termination condition at step 3b) and the definition of l in step 0, we have

fη(xuk)− l > θβ∆

2
. (3.37)

Combining the above two relations, and noting (3.28) and (3.33), we conclude that

k ≤

√
cLR2

θβ∆
≤ R

√
cLf̂
θβ∆

+

√
2R‖A‖
θβ∆

√
cD

σv
. (3.38)

14



Algorithm 3 The fast uniform smoothing level (FUSL) method

0: Given ball B(x,R), choose initial point p0 ∈ B(x,R), prox-function v(·) for the smoothing function Fη in
(3.26) and (3.27), initial guess D1 on the size Dv,Y in (3.30), tolerance ε > 0, and parameters β, θ ∈ (0, 1).

1: Set p1 ∈ Argminx∈B(x,R) h(p0, x), lb1 = h(p0, p1),ub1 = min{f(p0), f(p1)}, let x̂1 be either p0 or p1 such
that f(x̂1) = ub1, and s = 1.

2: If ubs − lbs ≤ ε, terminate and output approximate solution x̂.
3: Set (x̂s+1, Ds+1, lbs+1) = GFUSL(x̂s, Ds, lbs, R, x, β, θ) and ubs+1 = f(x̂).
4: Set s = s+ 1 and go to step 2.

We are now ready to describe the FUSL method which iteratively calls procedure GFUSL to solve the
structured saddle point problem (2.1)-(3.23).

Similar to the FAPL method, we say that a phase of the FUSL method occurs when s increases by 1.
More specifically, similar to the USL method, we classify two types of phases in the FUSL method. A phase
is called significant if the corresponding GFUSL procedure terminates at steps 2 or 3a), otherwise it is called
non-significant. Clearly, if the value of Dv,y is provided, which is the assumption made in Nesterov’s smoothing
scheme [21], then we can set D1 = Dv,Y in the scheme of both the original and modified FUSL method, and
consequently, all the phases of both the original and modified FUSL methods become significant.

For the sake of simplicity, an iteration of procedure GFUSL is also referred to an iteration of the FUSL
method. The following result establishes a bound on the total number of iterations performed by the FUSL
method to find an ε-solution of problem (2.1)-(3.23). Note that the proof of these results is similar to that of
Theorem 7 in [14].

Theorem 3.8. Suppose that {αk} in procedure GFUSL are chosen such that (3.8) holds. Then, the total
number of iterations performed by the FUSL method for computing an ε-solution of problem (2.1)-(3.23) is
bounded by

N(ε) := S1 + S2 + (
2√

2− 1
+

√
2

1− q
)
R‖A‖
θβε

√
cD̃

σv
+ (S1 +

1

1−√q
)R

√
cLf̂
θβε

, (3.39)

where q and Dv,Y are defined in (3.11) and (3.30) respectively, and

D̃ := max{D1, 2Dv,Y }, S1 := max

{⌈
log2

Dv,Y

D1

⌉
, 0

}
and S2 :=

log 1
q

4
√

2R‖A‖
√

Dv,Y
σv

+ 2R2Lf̂

ε

 . (3.40)

Proof. We prove this result by estimating the numbers of iterations performed within both non-significant
and significant phases. Suppose that the set of indices of the non-significant and significant phases are
{m1,m2, . . . ,ms1} and {n1, n2, . . . , ns2} respectively. For any non-significant phase mk, 1 ≤ k ≤ s1, we
can easily see from step 3b) that Dmk+1

= 2Dmk , by part b) in Lemma 3.6, the number of non-significant
phases performed by the FUSL method is bounded by S1 defined above, i.e., s1 ≤ S1.

In addition, since Dms1
≤ D̃, we have Dmk ≤ (1/2)s1−kD̃, where D̃ is defined above. Combining the

above estimates on s1 and Dmk , and in view of the fact ∆mk > ε for all 1 ≤ k ≤ s1, we can bound the number

15



of iterations performed in non-significant phases by

N1 =

s1∑
k=1

N(∆mk , Dmk) ≤
s1∑
k=1

N
(
ε, D̃/2s1−k

)

≤ S1

R
√
cLf̂
θβε

+ 1

+

√
2R‖A‖
θβε

√
c

σv

S1∑
k=1

√
D̃

2S1−k

≤ S1

R
√
cLf̂
θβε

+ 1

+
2R‖A‖

(
√

2− 1)θβε

√
cD̃

σv
.

(3.41)

Applying Lemma 8 in [14] and relation (3.24), and in view of the fact that p0, p1 ∈ B(x,R) in Algorithm 3,
the initial gap is bounded as

∆1 := ub1 − lb1 ≤ [F (p0)− F (p1)− 〈F ′(p1), p0 − p1〉] +
[
f̂(p0)− f̂(p1)−

〈
f̂ ′(p1), p0 − p1

〉]
(3.42)

≤ 4
√

2R‖A‖
√
Dv,Y

σv
+ 2R2Lf̂ , (3.43)

where F ′(p1) ∈ ∂F (p1). Then for significant phases, similarly to the proof of Theorem 3.5, we have s2 ≤ S2.
Moreover, for any nk, 1 ≤ k ≤ s2, using Lemmas 3.3, 3.6, we have Dnk ≤ D̃, ∆nk+1

≤ q∆nk , and ∆ns2
> ε,

which implies ∆nk > ε/qs2−k. Combining such an estimate on Dnk ,∆nk and bound on s2, we can see that
the total number of iterations performed the significant phases is bounded by

N2 =

s2∑
k=1

N(∆nk , Dnk) ≤
s2∑
k=1

N(ε/qs2−k, D̃)

≤ S2 +R

√
cLf̂
θβε

S2∑
k=1

q
S2−k

2 +

√
2R‖A‖
θβε

√
cD̃

σv

S2∑
k=1

qS2−k

≤ S2 +
R

1−√q

√
cLf̂
θβε

+

√
2R‖A‖

θβε(1− q)

√
cD̃

σv
.

(3.44)

Finally, the total number of iterations performed by the FUSL method is bounded by N1 + N2, and thus
(3.39) holds.

From (3.39) in the above theorem, we can see that the iteration complexity of the FUSL method for
solving problem (2.1)-(3.23) is bounded by

O

√Lf̂
ε

+
‖A‖
ε

 . (3.45)

The above iteration complexity is the same as that of the Nesterov smoothing scheme in [21] and the USL
method in [14]. However, both the USL and FUSL methods improve Nesterov’s smoothing scheme in that
both of them are problem parameter free. In addition, as detailed in Subsection 3.3 below, the FUSL method
further improves the USL method by significantly reducing its iteration cost and improving the accuracy for
solving its subproblems.

3.3. Solving the subproblems of FAPL and FUSL. In this section, we introduce an efficient method
to solve the subproblems (3.4) in the FAPL and FUSL methods, which are given in the form of

x∗c := argminx∈Q
1

2
‖x− p‖2. (3.46)

16



Here, Q is a closed polyhedral set described by m linear inequalities, i.e.,

Q := {x ∈ Rn : 〈Ai, x〉 ≤ bi, i = 1, 2, . . . ,m}.

Now let us examine the Lagrange dual of (3.46) given by

max
λ≥0

min
x∈Rn

1

2
‖x− p‖2 +

m∑
i=1

λi[〈Ai, x〉 − bi]. (3.47)

It can be checked from the theorem of alternatives that problem (3.47) is solvable if and only if Q 6= ∅. Indeed,
if Q 6= ∅, it is obvious that the optimal value of (3.47) is finite. On the other hand, if Q = ∅, then there
exists λ̄ ≥ 0 such that λ̄TA = 0 and λ̄T b < 0, which implies that the optimal value of (3.47) goes to infinity.
Moreover, if (3.47) is solvable and λ∗ is one of its optimal dual solutions, then

x∗c = p−
m∑
i=1

λ∗iAi. (3.48)

It can also be easily seen that (3.47) is equivalent to

max
λ≥0
−1

2
λTMλ+ CTλ, (3.49)

where Mij := 〈Ai, Aj〉 , Ci := 〈Ai, p〉− bi, ∀i, j = 1, 2, . . . ,m. Hence, we can determine the feasibility of (3.46)
or compute its optimal solution by solving the relatively simple problem in (3.49).

Many algorithms are capable of solving the above nonnegative quadratic programming in (3.49) efficiently.
Due to its low dimension (usually less than 10 in our practice), we propose a brute-force method to compute
the exact solution of this problem. Consider the Lagrange dual associated with (3.49):

min
λ≥0

max
µ≥0
L(λ, µ) :=

1

2
λTMλ− (CT + µ)λ,

where the dual variable is µ := (µ1, µ2, . . . , µm). Applying the KKT condition, we can see that λ∗ ≥ 0 is a
solution of problem (3.49) if and only if there exists µ∗ ≥ 0 such that

∇λL(λ∗, µ∗) = 0 and 〈λ, µ〉 = 0. (3.50)

Note that the first identity in (3.50) is equivalent to a linear system:

(
M −I

)


λ1

...
λm
µ1

...
µm


=


b1
b2
...
bm

 , (3.51)

where I is the m ×m identity matrix. The above linear system has 2m variables and m equations. But for
any i = 1, . . . ,m, we have either λi = 0 or µi = 0, and hence we only need to consider 2m possible cases on
the non-negativity of these variables. Since m is rather small in practice, it is possible to exhaust all these
2m cases to find the exact solution to (3.50). For each case, we first remove the m columns in the matrix
(M −I) which correspond to the m variables assumed to be 0, and then solve the remaining determined linear
system. If all variables of the computed solution are non-negative, then solution (λ∗, µ∗) to (3.50) is found,
and the exact solution x∗c to (3.46) is computed by (3.48), otherwise, we continue to examine the next case.
It is interesting to observe that these different cases can also be considered in parallel to take the advantages
of high performance computing techniques.

17



3.4. Extending FAPL and FUSL for unconstrained problems. In this subsection, we study how
to utilize the FAPL and FUSL method to solve the unconstrained problems based on our results in Section 2.

Let us first consider the case when f in (1.1) satisfies (1.4). If the method A in step 1 of Algorithm 1
is given by the FAPL method, then by Theorem 3.5, the number of evaluations of f ′ within one call to
A(x, 2rk,∆k) is bounded by [

cMk(2rk)1+ρk

(1 + ρk)θβ∆k

] 2
1+3ρk

, (3.52)

where c is a universal constant, Mk := M(B(x, 2rk)) and ρk := ρ(B(x, 2rk)) are constants corresponding to
the assumption in (1.4). By Theorem 2.2, the number of evaluations of f ′ up to the k-th iteration of Algorithm
1 is bounded by

O

([
M(4D∗)1+ρ

εk

] 2
1+3ρ

)
, (3.53)

where M := M(B(x, 4D∗)), ρ := ρ(B(x, 4D∗)) and εk := f(xk)− f∗ is the accuracy of the solution. It should
be noted that the constants M and ρ are local constants that depend on the distance from x and x∗, which
are not required for the FAPL method and Algorithm 1, and also generally smaller than the constants M(Rn)
and ρ(Rn), respectively, for the global Hölder continuity condition.

Moreover, if f in (1.1) is given in the form of (3.23) as a structured nonsmooth CP problem, then the
FUSL method could be applied to solve the corresponding structured ball-constraint problem in Algorithm 1.
By Theorem 3.8, the number of evaluations of f ′ within one call to A(x, 2rk,∆k) is bounded by

S1 + S2 + 2rkC
′

√
Lf̂
∆k

+
2rkC

′′‖A‖
∆k

, (3.54)

where C ′, C ′′ are some constants depending on the parameters q, θ, β, σv, D0 and Dv,Y in the FUSL method.

Applying Theorem 2.2 with α1 = α2 = 1, β1 = 1
2 , β2 = 1, C1(x,R, f) = 2C ′

√
Lf̂ , and C2(x,R, f) =

2C ′′‖A‖, the number of evaluations of f ′ up to the k-th iteration of Algorithm 1 is bounded by

O

4D∗C ′

√
Lf̂
εk

+
4C ′′D∗‖A‖

εk

 . (3.55)

Similar to the FAPL method, here Lf := Lf (B(x, 4D∗)) is a lower bound of Lf (Rn).

4. Generalization to strongly convex optimization. In this section, we generalize the FAPL and
FUSL methods for solving convex optimization problems in the form of (1.1) whose objective function f
satisfies

f(y)− f(x)− 〈f ′(x), y − x〉 ≥ µ

2
‖y − x‖2, ∀x, y ∈ Rn, (4.1)

for some µ > 0. For the sake of simplicity, we assume throughout this section that an initial lower bound
lb0 ≤ f∗ is available2. Under this assumption, it follows from (4.1) that ‖p0 − x∗‖2 ≤ 2[f(p0) − lb0]/µ for
a given initial point p0, and hence that the FAPL and FUSL methods for ball-constrained problems can be
directly applied. However, since the lower and upper bounds on f∗ are constantly improved in each phase
of these algorithms, we can shrink the ball constraints by a constant factor once every phase accordingly.
We show that the rate of convergence of the FAPL and FUSL methods can be significantly improved in this
manner.

2Otherwise, we should incorporate a guess-and-check procedure similar to the one in Section 2.

18



We first present a modified FAPL method for solving black-box CP problems which satisfy both (1.4) and
(4.1). More specifically, we modify the ball constraints used in the FAPL method by shifting the prox-center
x̄ and shrinking the radius R in procedure GFAPL. Clearly, such a modification does not incur any extra
computational cost. This algorithm is formally described as follows.

Procedure 3 The modified FAPL gap reduction procedure: (x+, lb+) = G̃FAPL(x̂, lb, r, β, θ)

In Procedure 1, set x = x̂, and consequently the prox-function d in (3.4) is replaced by ‖x− x̂‖2/2.

Algorithm 4 The modified FAPL method for minimizing strongly convex functions

In Algorithm 2, change steps 0, 1 and 3 to

0: Choose initial lower bound lb1 ≤ f∗, initial point p0 ∈ Rn, initial upper bound ub1 = f(p0), tolerance
ε > 0 and parameters β, θ ∈ (0, 1).

1: Set x̂1 = p0, and s = 1.
3: Set (x̂s+1, lbs+1) = G̃FAPL(x̂s, lbs,

√
2(f(x̂s)− lbs)/µ, β, θ) and ubs+1 = f(x̂s+1).

A few remarks on the above modified FAPL method are in place. Firstly, let x∗ be the optimal solution
of problem (1.1) and define ∆s = ubs − lbs. By the definition of ubs and lbs, we have f(x̂s) − f(x∗) ≤ ∆s,
which, in view of (4.1), then implies that

‖x̂s − x∗‖2 ≤
2∆s

µ
=: r2, (4.2)

and x∗ ∈ B(x̂s, r). Secondly, similar to procedure GFAPL, if procedure G̃FAPL terminates at step 2, we have
Ef (l) ∩ B(x̂s, r) = ∅. Combining this with the fact x∗ ∈ B(x̂s, r), we conclude that l is a valid lower bound

on f∗. Therefore, no matter whether procedure G̃FAPL terminates at step 2 or step 4, the gap between upper
and lower bounds on f∗ has been reduced and ∆s+1 ≤ q∆s, where the q is defined in (3.11).

We establish in Theorem 4.1 the iteration complexity bounds of the modified FAPL method for minimizing
strongly convex functions.

Theorem 4.1. Suppose that {αk}k≥1 in procedure G̃FAPL are chosen such that (3.8) holds. Then the
total number of iterations performed by the modified FAPL method for computing an ε-solution of problem
(1.1) is bounded by

S̃

(√
2cM

θβµ
+ 1

)
and S̃ +

1

1− q
1−ρ
1+3ρ

(
41+ρcM

θβ(1 + ρ)µ
1+ρ
2 ε

1−ρ
2

) 2
1+3ρ

,

respectively, for smooth strongly convex functions (i.e., ρ = 1) and nonsmooth or weakly smooth strongly
convex functions (i.e., ρ ∈ [0, 1)), where q is defined in (3.11), lb1 and ub1 are given initial lower bound and
upper bound on f∗, and

S̃ :=

⌈
log 1

q

(
ub1 − lb1

ε

)⌉
. (4.3)

Proof. Suppose that procedure G̃FAPL does not terminate at the kth inner iteration. It then follows from
(3.14) and (4.2) that

f(xuk)− l ≤ Mr1+ρ

1 + ρ
· c

k
1+3ρ

2

. (4.4)

19



Moreover, in view of the termination condition at steps 3 and relation (4.2), we have f(xuk)− l ≥ θ(ubs− l) =

θβ∆s and r =
√

2∆s/µ. Combining all the above observations we conclude that

k ≤

(
2

1+ρ
2 cM

θβ(1 + ρ)µ
1+ρ
2 ∆

1−ρ
2

s

) 2
1+3ρ

. (4.5)

So the number of inner iterations performed in each call to procedure G̃FAPL is bounded by(
2

1+ρ
2 cM

θβ(1 + ρ)µ
1+ρ
2 ∆

1−ρ
2

s

) 2
1+3ρ

+ 1. (4.6)

Since the gap between the upper and lower bounds on f∗ is reduced by a constant factor in each phase, i.e.,
∆s+1 ≤ q∆s, it easy to see that the total number of phases is bounded by S̃ defined above. Using the previous

two conclusions and the fact that ∆s ≥ ε/qS̃−s, we can show that the total number of iterations performed by
the modified FAPL method is bounded by

S̃ +

(
2

1+ρ
2 cM

θβ(1 + ρ)µ
1+ρ
2 ε

1−ρ
2

) 2
1+3ρ S̃∑

s=1

q(S̃−s) 1−ρ
1+3ρ . (4.7)

Specifically, if f is smooth (ρ = 1), then the above bound is reduced to

S̃

(√
2cM

θβµ
+ 1

)
. (4.8)

If f is nonsmooth (ρ = 0) or weakly smooth (ρ ∈ (0, 1)), then the above bound is equivalent to

S̃ +

(
2

1+ρ
2 cM

θβ(1 + ρ)µ
1+ρ
2 ε

1−ρ
2

) 2
1+3ρ S̃∑

s=1

q(S̃−s) 1−ρ
1+3ρ ≤ S̃ +

1

1− q
1−ρ
1+3ρ

(
2

1+ρ
2 cM

θβ(1 + ρ)µ
1+ρ
2 ε

1−ρ
2

) 2
1+3ρ

. (4.9)

Now let us consider the structured CP problems with f given by (3.23), where the smooth component

f̂ is strongly convex with modulus µ. Similar to the modified FAPL method, we present a modified FUSL
method for solving this strongly convex structured CP problems as follows.

Procedure 4 The modified FUSL gap reduction procedure: (x+, D+, lb+) = G̃FAPL(x̂, D, lb, r, β, θ)

In Procedure 2, set x = x̂, and consequently the prox-function d is replaced by ‖x− x̂‖2/2.

Algorithm 5 The modified FUSL method for minimizing strongly convex functions

In Algorithm 3, change steps 0,1 and 3 to

0: Choose initial lower bound lb1 ≤ f∗, initial point p0 ∈ Rn, initial upper bound ub1 = f(p0), prox-function
v(·), initial guess D1 on the size Dv,Y , tolerance ε > 0 and parameters β, θ ∈ (0, 1).

1: Set x̂1 = p0, and s = 1.
3: Set (x̂s+1, Ds+1, lbs+1) = G̃FUSL(x̂s, Ds, lbs,

√
2(f(x̂s)− lbs)/µ, β, θ) and ubs+1 = f(x̂s+1).

In the following theorem, we describe the convergence properties of the modified FUSL method for solving
(1.1)-(3.23) with strongly convex smooth component f̂ .

Theorem 4.2. Suppose that {αk}k≥1 in procedure G̃FUSL are chosen such that (3.8) holds. Then we
have the following statements hold for the modified FUSL method.

20



a) The total number of iterations performed by the modified FUSL method for computing an ε-solution
of problem (1.1)-(3.23) is bounded by

(S1 + S̃)

√2cLf̂
θβµ

+ 1

+
4‖A‖

√
D̃

θβ(1−√q)

√
c

σvµε
, (4.10)

where q is defined in (3.8), S1 and D̃ are defined in (3.40), and S̃ is defined in (4.3).
b) In particular, if Dv,Y is known, and set D1 = Dv,Y at Step 0, then the number of iterations performed

by the modified FUSL method is reduced to

N(ε) := S̃

√2cLf̂
θβµ

+ 1

+
2‖A‖

θβ(1−√q)

√
cDv,Y

σvµε
. (4.11)

Proof. Similarly to the discussion in Theorem 3.8, we classify the non-significant and significant phases
and estimates the numbers of iterations performed by each type of phases. Suppose that the set of indices of
the non-significant and significant phases are {m1,m2, . . . ,ms1} and {n1, n2, . . . , ns2} respectively. Then the
number of nonsignificant phases is bounded by S1, i.e., s1 ≤ S1. And since ∆1 = ub1 − lb1, so the number of
significant phases is bounded by S̃ defined above, i.e., s2 ≤ S2.

In view of Proposition 3.7, and substitute r =
√

2∆
µ , we have for any phase

Ñ(∆, D) :=

√
2cLf̂
θβµ

+
2‖A‖
θβ

√
cD

σvµ∆
+ 1. (4.12)

Following similar discussion in Theorem 3.8, we have the number of iterations performed by non-significant
phases in the modified FUSL method is bounded by

Ñ1 =

s1∑
k=1

Ñ(∆mk , Dmk) ≤
s1∑
k=1

Ñ(ε, D̃/2s1−k) (4.13)

≤ S1

√2cLf̂
θβµ

+ 1

+
2‖A‖
θβ

√
cD̃

σvµε

S1∑
k=1

q
S1−k

2 (4.14)

≤ S1

√2cLf̂
θβµ

+ 1

+
2‖A‖

θβ(1−√q)

√
cD̃

σvµε
. (4.15)

And the bound on number of iterations performed by all significant phases is given by

Ñ2 =

s2∑
k=1

Ñ(∆nk , Dnk) ≤
s2∑
k=1

Ñ(ε/qs2−k, D̃) (4.16)

≤ S̃

√2cLf̂
θβµ

+ 1

+
2‖A‖
θβ

√
cD̃

σvµε

S̃∑
k=1

q
S̃−k

2 (4.17)

≤ S̃

√2cLf̂
θβµ

+ 1

+
2‖A‖

θβ(1−√q)

√
cD̃

σvµε
. (4.18)

Therefore, the total number of iterations is bounded by Ñ1 + Ñ2, and thus part a) holds.

21



For part b), in view of Lemma 3.6, we can see that if D1 = Dv,Y , then Ds ≡ Dv,Y for all s ≥ 1, and all

phases of the modified FUSL method are significant. Therefore, replace Dnk and D̃ in (4.16), we can conclude
part b) holds.

In view of the above Theorem 4.2, we can see that the iteration complexity of the modified FUSL method
for solving the structured CP problem (3.23) is bounded by O (‖A‖/

√
ε) .

5. Numerical experiments. In this section we present our experimental results of solving a few large-
scale CP problems, including the quadratic programming problems with large Lipschitz constants, and two
different types of variation based image reconstruction problems, using the FAPL and FUSL methods, and
compare them with some other first-order algorithms. All the algorithms were implemented in MATLAB,
Version R2011a and all experiments were performed on a desktop with an Inter Dual Core 2 Duo 3.3 GHz
CPU and 8G memory.

5.1. Quadratic programming. The main purpose of this section is to investigate the performance of
the FAPL method for solving smooth CP problems especially with large Lipschitz constants. For this purpose,
we consider the quadratic programming problem:

min
‖x‖≤1

‖Ax− b‖2, (5.1)

where A ∈ Rm×n and b ∈ Rm. We compare the FAPL method with Nesterov’s optimal method (NEST) for
smooth functions [21], NERML [3], and APL [14]. We also compare the FAPL method with the the built-in
Matlab linear system solver in view of its good practical performance. In the APL method, the subproblems
are solved by MOSEK [17], an efficient software package for linear and second-order cone programming. Two
cases with different choices of the initial lower bound LB in this experiments are conducted: (1). LB = 0 and
(2). LB = −∞.

In our experiments, given m and n, two types of matrix A are generated. The first type of matrix A
is randomly generated with entries uniformly distributed in [0,1], while the entries of the second type are
normally distributed according to N(0, 1). We then randomly choose an optimal solution x∗ within the unit
ball in Rn, and generate the data b by b = Ax∗. We apply all the four methods to solve (5.1) with this set of
data A and b, and the accuracy of the generated solutions are measured by ek = ‖Axk − b‖2. The results are
shown in Tables 5.1, 5.2 and 5.3.

The advantages of the FAPL method can be observed from these experiments. Firstly, it is evident that
BL type methods have much less iterations than NEST especially when the Lipschitz constant is large. Among
these three BL type methods, NERML requires much more iterations than APL and FAPL, which have optimal
iteration complexity for this problem.

Secondly, compared with previous BL type methods (APL and NERML), FAPL has much lower compu-
tational cost for each iteration. The computational cost of FAPL method for each iteration is just slightly
larger than that of NEST method. However, the cost of each iteration of APL and NERML is 10 times larger
than that of NEST.

Thirdly, consider the difference of performance for setting the lower bound to be 0 and −∞, it is also
evident that FAPL method is more robust to the choice of the initial lower bound and it updates the lower
bound more efficiently than the other two BL methods. Though setting the lower bound to −∞ increases
number of iterations for all the three BL method, a close examination reveals that the difference between
setting the lower bound to zero and −∞ for FAPL method is not so significant as that for APL and NERML
methods, especially for large matrix, for example, the second one in Table 5.1 .

Fourthly, FAPL needs less number of iterations than APL, especially when the required accuracy is high. A
plausible explanation is that exactly solving the subproblems provides better updating for the prox-centers, and
consequently, more accurate prox-centers improve the efficiency of algorithm significantly. The experiments
show that, for APL and NERML, it is hard to improve the accuracy beyond 10−10. However, FAPL can keep
almost the same speed for deceasing the objective value from 106 to 10−21.

Finally, we can clearly see from Table 5.3 that FAPL is comparable to or significantly outperform the built-
in Matlab solver for randomly generated linear systems, even though our code is implemented in MATLAB

22



rather than lower-level languages, such as C or FORTRAN. We can expect that the efficiency of FAPL will
be much improved by using C or FORTRAN implementation, which has been used in the MATLAB solver
for linear systems.

In summary, due to its low iteration cost and effective usage of the memory of first-order information, the
FAPL method is a powerful tool for solving smooth CP problems especially when the number of variables is
huge and/or the value of Lipschitz constant is large.

5.2. Total-variation based image reconstruction. In this subsection, we apply the FUSL method
to solve the non-smooth total-variation (TV) based image reconstruction problem:

min
u∈RN

1

2
‖Au− b‖22 + λ‖u‖TV , (5.2)

where A is a given matrix, u is the vector form of the image to be reconstructed, b represents the observed
data, and ‖ · ‖TV is the discrete TV semi-norm defined by

‖u‖TV :=

N∑
i=1

‖Diu‖2, (5.3)

where Diu ∈ R2 is a discrete gradient (finite differences along the coordinate directions) of the i-th component
of u, and N is the number of pixels in the image. The ‖u‖TV is convex and non-smooth.

Table 5.1
Uniformly distributed QP instances

A : n = 4000,m = 3000, L = 2.0e6, e0 = 2.89e4
Alg LB Iter. Time Acc. Iter. Time Acc.
FAPL 0 103 3.06 9.47e-7 142 3.76 8.65e-9

−∞ 277 6.55 5.78e-7 800 19.18 2.24e-11
APL 0 128 37.10 9.07e-7 210 60.85 9.82e-9

−∞ 300 85.65 6.63e-6 800 234.69 2.59e-9
NERML 0 218 58.32 9.06e-7 500 134.62 1.63e-8

−∞ 300 84.01 1.02e-2 800 232.14 1.71e-3
NEST - 10000 220.1 3.88e-5 20000 440.02 3.93e-6

A : n = 8000,m = 4000, L = 8.0e6, e0 = 6.93e4
Alg LB Iter. Time Acc. Iter. Time Acc.
FAPL 0 70 4.67 7.74e-7 95 6.46 6.85e-10

−∞ 149 8.99 6.27e-7 276 16.94 6.10e-10
APL 0 79 71.24 7.79e-7 144 129.52 3.62e-9

−∞ 248 205.48 8.16e-7 416 358.96 8.68e-9
NERML 0 153 128.71 7.30e-7 300 251.79 4.03e-9

−∞ 300 257.54 1.18e-3 800 717.13 9.24e-5
NEST - 10000 681.03 5.34e-5 20000 1360.52 4.61e-6

FAPL method for large dimension matrix
Matrix A:m× n LB Iter. Time Acc. Iter. Time Acc.
10000× 20000 0 97 36.65 6.41e-11 185 69.31 7.29e-21
L=5.0e7 −∞ 207 73.70 8.28e-8 800 292.06 2.32e-15
10000× 40000 0 67 49.95 9.21e-11 122 91.49 7.27e-21
L=1.0e8 −∞ 130 88.40 7.11e-8 421 295.15 1.95e-16
10000× 60000 0 52 58.06 7.68e-11 95 106.14 8.43e-21
L=1.5e8 −∞ 156 160.93 9.84e-8 394 422.4 7.48e-16

23



One of the approaches to solve this problem is to consider the associated dual or primal-dual formulations
of (5.3) based on the dual formulation of the TV norm:

‖u‖TV = max
p∈Y
〈p,Du〉 ,where Y = {p = (p1, . . . , pN ) ∈ R2N : pi ∈ R2, ‖pi‖2 ≤ 1, 1 ≤ i ≤ N}. (5.4)

Consequently, we can rewrite (5.2) as a saddle-point problem:

min
u∈RN

max
p∈Y

1

2
‖Au− b‖22 + λ 〈p,Du〉 . (5.5)

Note that (5.5) is exactly the form we considered in the USL and FUSL method if we let ĝ(y) = 0. Specifically,
the prox-function v(y) on Y is simply chosen as v(y) = 1

2‖y‖
2 in these smoothing techniques.

In our experiments, we consider two types of instances depending on how the matrix A is generated.
Specifically, for the first case, the entries of A are normally distributed, while for the second one, the entries
are uniformly distributed. For both types of instances, first, we generated the matrix A ∈ Rm×n, then choose
some true image xture and convert it to a vector, and finally compute b by b = Axtrue + ε, where ε is the
Gaussian noise with distribution ε = N(0, σ). We compare the following algorithms: the accelerated primal
dual (APD) method [5], Nesterov’s smoothing (NEST-S) method [21, 1], and FUSL method.

For our first experiment, the matrix A is randomly generated of size 4, 096× 16, 384 with entries normally
distributed according to N(0,

√
4, 096), the image xtrue is a 128 × 128 Shepp-Logan phantom generated by

MATLAB. Moreover, we set λ = 10−3 and the standard deviation σ = 10−3. The Lipschitz constants are

Table 5.2
Gaussian distributed QP instances

A : n = 4000,m = 3000, L = 2.32e4, e0 = 2.03e3
Alg LB Iter. Time Acc. Iter. Time Acc.
FAPL 0 105 2.78 8.43e-7 153 4.10 7.84e-10

−∞ 338 8.02 6.86e-7 696 16.58 9.74e-10
APL 0 128 35.12 9.01e-7 172 47.49 9.28e-9

−∞ 639 200.67 7.92e-7 800 258.25 1.03e-7
NERML 0 192 48.44 7.05e-7 276 70.31 1.09e-8

−∞ 300 93.32 3.68e-1 800 257.25 6.41e-2
NEST - 10000 211.30 7.78e-4 20000 422.78 1.95e-4

A : n = 8000,m = 4000, L = 2.32e4, e0 = 2.03e3
Alg LB Iter. Time Acc. Iter. Time Acc.
FAPL 0 49 3.25 8.34e-7 68 4.37 7.88e-10

−∞ 165 9.77 5.17e-7 280 16.18 5.06e-10
APL 0 59 48.91 8.59e-7 78 64.95 1.70e-8

−∞ 300 268.47 9.81e-7 670 637.70 9.42e-10
NERML 0 105 181.23 9.14e-7 133 102.68 1.39e-8

−∞ 300 282.56 9.92e-3 800 760.26 8.32e-4
NEST - 10000 567.59 3.88e-4 20000 1134.38 9.71e-5

FAPL method for large dimension matrix
Matrix A:m× n LB Iter. Time Acc. Iter. Time Acc.
10000× 20000 0 78 27.88 7.22e-11 145 51.81 6.81e-21
L=5.7e4 −∞ 228 78.57 9.92e-8 800 280.19 1.37e-15
10000× 40000 0 48 34.36 5.97e-11 87 62.24 8.26e-21
L=9e4 −∞ 156 106.12 7.18e-8 390 271.15 4.29e-16
10000× 60000 0 34 36.30 9.88e-11 65 69.56 7.24e-21
L=1.2e5 −∞ 98 98.11 9.50e-8 350 361.83 8.34e-16

24



Table 5.3
Comparison to Matlab solver

Matrix A:m× n Matlab A\b FAPL method
Time Acc. Iter. Time Acc.

Uniform 2000× 4000 4.41 5.48e-24 204 3.59 6.76e-23
Uniform 2000× 6000 7.12 9.04e-24 155 4.10 9.73e-23
Uniform 2000× 8000 9.80 9.46e-24 135 4.45 9.36e-23
Uniform 2000× 10000 12.43 1.04e-23 108 4.23 7.30e-23
Gaussian 3000× 5000 11.17 5.59e-25 207 6.25 7.18e-23
Gaussian 3000× 6000 13.96 1.43e-24 152 5.50 9.59e-23
Gaussian 3000× 8000 19.57 1.66e-24 105 4.83 8.17e-23
Gaussian 3000× 10000 25.18 1.35e-24 95 5.43 5.81e-23

provided for APD and NEST-S, and the initial lower bound for FUSL method is set to 0. We run 300
iterations for all these algorithms, and report the objective value of problem (5.2) and the relative error
defined by ‖xk−xtrue‖2/‖xtrue‖2 as shown in Figure 5.1. In our second experiment, the matrix A is randomly
generated with entries uniformly distributed in [0, 1]. We use a 200 × 200 brain image [6] as the true image
xtrue, and set m = 20, 000, λ = 10, σ = 10−2. Other setup is the same as the first experiment, and the results
are shown in Figure 5.2.

Fig. 5.1. TV-based reconstruction (Shepp-Logan phantom)

25



Fig. 5.2. TV-based reconstruction (brain image)

We make some observations about the results in Figures 5.1 and 5.2. For the first experiment, there is
almost no difference between APD and NEST-S method, but FUSL outperforms both of them after 5 seconds
in terms of both objective value and relative error. The second experiment clearly demonstrates the advantage
of FUSL for solving CP problems with large Lipschitz constants. The Lipschitz constant of matrix A in this
instance is about 2× 108, much larger than the Lipschitz constant (about 5.9) in the first experiment. FUSL
still converges quickly and decreases the relative error to 0.05 in less than 100 iterations, while APD and
NEST-S converge very slowly and more than 1, 000 steps are required due to the large Lipschitz constants.
It seems that FUSL is not so sensitive to the Lipschitz constants as the other two methods. This feature of
FUSL makes it more efficient for solving large-scale CP problems which often have big Lipschitz constants.

In summary, for the TV-based image reconstruction problem (5.2), FUSL not only enjoys the completely
parameter-free property (and hence no need to estimate the Lipschitz constant), but also demonstrates sig-
nificant advantages for its speed of convergence and its solution quality in terms of relative error, especially
for large-scale problems.

5.3. Partially parallel imaging. In this subsection, we compare the performance of the FUSL method
with several related algorithms in reconstruction of magnetic resonance (MR) images from partial parallel
imaging (PPI), to further confirm the observations on advantages of this method. The detailed background and
description of PPI reconstruction can be found in [6]. This image reconstruction problem in two dimensional

26



cases can be modeled as

min
u∈Cn

k∑
j=1

‖MFSju− fj‖2 + λ

N∑
i=1

‖Diu‖2,

where u is the vector form of a two-dimensional image to be reconstructed, k is the number of MR coils
(consider them as sensors) in the parallel imaging system. F ∈ Cn×n is a 2D discrete Fourier transform
matrix, Sj ∈ Cn×n is the sensitivity map of the j-th sensor, and M ∈ Rn×n is a binary mask describes the
scanning pattern. Note that the percentages of nonzero elements in M describes the compression ration of
PPI scan. In our experiments, the sensitivity map {Sj}kj=1 is shown in Figure 5.3, the image xtrue is of size
512× 512 shown in Figures 5.4 and 5.5, and the measurements {fj} are generated by

fj = M(FSjxtrue + εrej /
√

2 + εimj /
√
−2), j = 1, . . . , k, (5.6)

where εrej , ε
im
j are the noise with entries independently distributed according to N(0, σ). We conduct two

experiments on this data set with different acquisition rates, and compare the FUSL method to NEST-
S method, and the accelerated linearized alternating direction of multipliers (AL-ADMM) with line-search
method [25].

For both experiments, set σ = 3 × 10−2, λ = 10−5, and {fj}kj=1 are generated by (5.6). In the first
experiment, we use Cartesian mask with acquisition rate 14%: acquire image in one row for every successive
seven rows, while for the second one, we use Cartesian mask with acquisition rate 10%: acquire image in
one row for every successive ten rows. The two masks are shown in Figure 5.3. The results of the first and
second experiment are shown in Figures 5.4 and 5.5 respectively. These experiments again demonstrate the
advantages of the FUSL method over these state-of-the-art techniques for PPI image reconstruction,

Fig. 5.3. Sensitivity map and Cartesian mask

6. Concluding remarks. In this paper, we propose two new bundle-level type methods, the FAPL and
FUSL methods, to uniformly solve black-box smooth, nonsmooth, and weakly smooth CP problems and a class
of structured nonsmooth problems. Our methods achieve the same optimal iteration complexity and maintain
all the nice features of the original APL and USL methods. Meanwhile, by simplifying the subproblems
involved in the algorithms and solving them exactly, the FAPL and FUSL methods reduce the iteration cost
and increase the accuracy of solutions significantly, and thus overcome the drawback of these existing bundle-
level type methods applied to large-scale CP problems. Furthermore, by introducing a generic algorithmic
framework, we extend the uniformly optimal bundle-level type methods to unconstrained problems and broaden
the applicability of these algorithms. The complexity of bundle-level type methods for unconstrained convex
optimizations has been analyzed for the first time in the literature. The numerical results for least square
problems and total variation based image reconstruction clearly demonstrate the advantages of FAPL and
FUSL methods over the original APL, USL and some other state-of-the-art first-order methods.

REFERENCES

27



Fig. 5.4. PPI image reconstruction (acquisition rate: 14%)

[1] Stephen Becker, Jérôme Bobin, and Emmanuel J Candès. Nesta: a fast and accurate first-order method for sparse recovery.
SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

[2] JY Bello Cruz and W de Oliveira. Level bundle-like algorithms for convex optimization. Journal of Global Optimization,
pages 1–23, 2013.

[3] A. Ben-Tal and A. S. Nemirovski. Non-Euclidean restricted memory level method for large-scale convex optimization.
Mathematical Programming, 102:407–456, 2005.

[4] Ulf Brännlund, Krzysztof C Kiwiel, and Per Olof Lindberg. A descent proximal level bundle method for convex nondiffer-
entiable optimization. Operations Research Letters, 17(3):121–126, 1995.

[5] Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of saddle point problems. SIAM Journal on
Optimization, 2014. to appear.

[6] Yunmei Chen, William Hager, Feng Huang, Dzung Phan, Xiaojing Ye, and Wotao Yin. Fast algorithms for image recon-
struction with application to partially parallel mr imaging. SIAM Journal on Imaging Sciences, 5(1):90–118, 2012.

[7] W de Oliveira and CLAUDIA Sagastizábal. Level bundle methods for oracles with on-demand accuracy. Optimization
Methods and Software, (ahead-of-print):1–30, 2014.

[8] J.E. Kelley. The cutting plane method for solving convex programs. Journal of the SIAM, 8:703–712, 1960.
[9] K.C. Kiwiel. Proximity control in bundle methods for convex nondifferentiable minimization. Mathematical Programming,

46:105–122, 1990.
[10] K.C. Kiwiel. Proximal level bundle method for convex nondifferentable optimization, saddle point problems and variational

inequalities. Mathematical Programming, Series B, 69:89–109, 1995.
[11] KC Kiwiel. Bundle methods for convex minimization with partially inexact oracles. Comput. Optim. Appl., to appear, 2009.
[12] Krzysztof C Kiwiel. A proximal bundle method with approximate subgradient linearizations. SIAM Journal on optimization,

16(4):1007–1023, 2006.
[13] Krzysztof C Kiwiel and Claude Lemaréchal. An inexact bundle variant suited to column generation. Mathematical pro-

gramming, 118(1):177–206, 2009.
[14] G. Lan. Bundle-level type methods uniformly optimal for smooth and non-smooth convex optimization. Manuscript, De-

partment of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA, 2013. Mathematical
Programming (to appear).

28



Fig. 5.5. PPI image reconstruction (acquisition rate: 10%)

[15] G. Lan. Bundle-type methods uniformly optimal for smooth and non-smooth convex optimization. Manuscript, Department
of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA, November 2010.

[16] C. Lemaréchal, A. S. Nemirovski, and Y. E. Nesterov. New variants of bundle methods. Mathematical Programming,
69:111–148, 1995.

[17] Mosek. The mosek optimization toolbox for matlab manual. version 6.0 (revision 93). http://www.mosek.com.
[18] A. S. Nemirovski and D. Yudin. Problem complexity and method efficiency in optimization. Wiley-Interscience Series in

Discrete Mathematics. John Wiley, XV, 1983.
[19] Y. E. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence O(1/k2). Doklady

AN SSSR, 269:543–547, 1983.
[20] Y. E. Nesterov. Introductory Lectures on Convex Optimization: a basic course. Kluwer Academic Publishers, Massachusetts,

2004.
[21] Y. E. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming, 103:127–152, 2005.
[22] W Oliveira, C Sagastizábal, and C Lemaréchal. Bundle methods in depth: a unified analysis for inexact oracles. Optim

Online Rep (Submitted), 2013.
[23] Welington Oliveira, Claudia Sagastizábal, and Susana Scheimberg. Inexact bundle methods for two-stage stochastic pro-

gramming. SIAM Journal on Optimization, 21(2):517–544, 2011.
[24] Welington de Oliveira and Claudia Sagastizábal. Bundle methods in the xxist century: A bird’s-eye view. Pesquisa

Operacional, 34(3):647–670, 2014.
[25] Yuyuan Ouyang, Yunmei Chen, Guanghui Lan, and Eduardo Pasiliao Jr. An accelerated linearized alternating direction

method of multipliers. arXiv preprint arXiv:1401.6607, 2014.
[26] Peter Richtárik. Approximate level method for nonsmooth convex minimization. Journal of Optimization Theory and

Applications, 152(2):334–350, 2012.
[27] Wim van Ackooij and Claudia Sagastizábal. Constrained bundle methods for upper inexact oracles with application to joint

chance constrained energy problems. SIAM Journal on Optimization, 24(2):733–765, 2014.

29


