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ABSTRACT

We present an extension of data driven tight frame (DDTF) method for three-

dimensional and five-dimensional seismic data simultaneous denoising and interpola-

tion. With tight frame assumption, DDTF significantly reduces the computation time

for training dictionary, which makes it available for high dimension data processing.

Raw data is first divided into small blocks to form training sets. Then we use DDTF to

obtain an optimized sparse tight frame representation for raw data. We use a threshold-

ing strategy for data denoising and iteration shrinkage/thresholding strategy for data

simultaneous denoising and interpolation. The computational time and redundancy is

controlled by patch overlap. Numerical results show that the proposed methodology

is capable of recovering prestack seismic data under different SNR scenarios. Subtle

features tend to be better preserved in the DDTF method in comparison to approaches

based on Fourier, Wavelet and Curvelet representations or Block Matching method.

INTRODUCTION

Seismic data denoising and interpolation are critical preconditioning processes that are

often needed prior to seismic migration and inversion. Reconstruction of seismic data has

attracted much attention in recent years and it has become a standard tool for industrial
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seismic data processing flows. For example, it is often important to reconstruct seismic data

(Sacchi and Liu, 2005; Hunt et al., 2010) prior to critical processes such Amplitude versus

Offset and Amplitude versus Azimuth analysis for estimation of petrophysical parameters,

fracture characterization. Noise and missing traces will introduce artifacts in subsequent

process and hamper our ability to obtain reliable high resolution images of the subsurface.

A large number of algorithms have been proposed for seismic data denoising, interpolation,

and simultaneous denoising and interpolation. Most denoising methods fall into transform

domain methods, including single-scale methods (Hunt and Kubler, 1984; Canales, 1984),

multi-scale methods (Chanerley and Alexander, 2002; Duval and Tran, 2001), and multi-

scale and multi-direction methods (Candes et al., 2006; Herrmann and Hennenfent, 2008).

The basic idea is that if one finds a sparse representation for seismic data in a transform

domain, it should be easy to distinguish data and noise by a simple thresholding strategy.

Seismic data interpolation methods can mainly be classified into three classes: wave

equation methods based on the modeling of seismic wave propagating, prediction filter-

ing methods based on the linearity assumption of seismic events, and transform domain

methods based on sparsity of seismic data. Among the thirdclass, Fourier transform is the

only method currently used in industrial applications (Zwartjes and Sacchi, 2007; Liu and

Sacchi, 2004; Duijndam et al., 1999; Trad, 2009). Other Fourier methods, like the general-

ized methods such as FGFT (fast generalized Fourier transform) (Naghizadeh and Innanen,

2011) and ALFT (anti-leakage Fourier transform)(Xu et al., 2005) were also used for in-

terpolation problem. Multi-scale and multi-direction transform such as curvelet transform

(Naghizadeh and Sacchi, 2010) and shearlet transform (Hauser and Ma, 2012) are applied to

seismic data interpolation because they are suitable sparse representation for seismic data.

However, computation efficiency and fixed bases model restrict these methods from becom-

ing common workhorses for industrial applications. Taking the slopes of seismic events

into consideration, seislet transform (Fomel and Liu, 2010) is proposed for seismic data

interpolation. Physical wavelet (Zhang and Ulrych, 2003) is a specially designed wavelet

for seismic data by considering hyperbolic features of seismic events. Some seismic data
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denoising and interpolation methods borrow ideas from image processing community. For

instance, assuming data redundancy, non-local means algorithm (David and Sacchi, 2012)

denoises each sample within an image by utilizing other similar samples. Rank-reduced

methods (Trickett et al., 2010; Kreimer and Sacchi, 2012; Gao et al., 2013; Ma, 2013; Yang

et al., 2013) assume that the seismic data itself or constant-frequency slices of the fully

sampled data can be reformulated to a low-rank matrix for reconstruction purpose.

Usually seismic data processing methods deal with the data as a whole volume. This is

not an optimal strategy when seismic data profile exhibits repeating local texture feature. A

patching strategy , i.e. splitting the volume into blocks, is proposed for seismic data denois-

ing or interpolation. Block matching with 4D transform (BM4D) (Maggioni et al., 2013)

is a typical volume patching method for 3D data denoising and reconstruction. It finds

similar cubes among nonlocal area and a 4D transform is applied on this group simultane-

ously to suppress the noise. Patching strategy with adaptive dictionary learning methods,

such as K-SVD (Aharon et al., 2006) are proposed for signal processing applications (Hu

et al, 2012; Xing et al., 2012) and seismic data denoising (Bechouche and Ma, 2014). Such

methods train bases from a large training set consist of data patches from a database or

from the raw data itself, then use the trained bases to represent the original data. The

basic idea why these methods may achieve better results than fixed basis transform is that

a priori information is exploited. When training the dictionary, self-similarities information

of the data are excavated. However, the K-SVD is time-consuming in dictionary training,

as there exists large mount of patches for training and the components of the dictionary are

updating individually. A more efficient method is needed for large scale data processing.

Recently, a new and more efficient dictionary learning method, named data driven tight

frame (DDTF method), has been proposed for image denoising (Cai et al., 2014). ”Data

driven” means that the raw data are used for training the filter bank (i.e. basis or dictio-

nary). Tight frame is a frame with a perfect reconstruction property, which is different from

the K-SVD method. Also different from K-SVD method, DDTF method updates the whole

filter bank by one SVD decomposition, leading to its efficiency. The 2D DDTF method
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application in seismic data interpolation is given in Liang et al., 2014, and state-of-the-

art results for real seismic data are obtained, where DDTF shows its potential in seismic

data processing. In image processing community, the DDTF method was recently extended

to non-local version by training nonlocal samplers (Quan et al., 2013), which exploits the

global self-recursive prior of image structures over the image. In (Hu et al, 2012), DDTF

method was used for reconstruction of 3-D brain tissue from 50nm spacing section images,

which are obtained by electron microscopy. They use 10nm spacing section images to train

the 3-D filter bank, rather than the 50nm ones.

High-dimensional seismic exploration is necessary for complex underground structure. In

this paper, an extension to 3D and 5D seismic data simultaneous denoising and interpolation

by DDTF method is studied. The 5D data accounts for two spatial dimensions for receivers,

two spatial dimensions for shots and another one dimension for time sampling. We will

present comparison in 3D cases with methods such as Fourier transform, wavelet transform,

curvelet transform and BM4D methods. In terms of the 5D case, we provide the DDTF

method reconstructions and their differences to original data. The rest of this paper is

arranged as follows: The second part introduces the theory of data driven tight frame

for denoising and interpolation. The third part gives comparison of five methods for 3D

seismic data denoising and interpolation. Discussion about the DDTF method algorithm

and extension of the DDTF method for 5D seismic data comes in part four. A conclusion

is made in the final part.

THEORY

Definition of Tight Frame

We first introduce basic definitions that will be utilized throughout this paper. A sequence

{ϕn}n∈Z+ in Hilbert space H is called a frame if

a∥f∥22 ≤
∑
n∈Z+

|⟨ϕn, f⟩|2 ≤ b∥f∥22, ∀f ∈ H (1)
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where ⟨·, ·⟩ and ∥ · ∥2 denote the usual inner product and 2-norm in the Hilbert space H.

The parameters a and b are two positive constants. The linear operator {ϕn}n∈Z+ is called

a tight frame in H when a = b = 1. We define W as the operator that transforms f to

{⟨f, ϕn⟩}, and its adjoint operator W T that transforms {⟨f, ϕn⟩} to f . The definition of a

tight frame is equivalent to W TW = I (Quan et al., 2013), where I denotes the identity

operator. For a tight frame, it is possible to obtain a perfect reconstruction property:

f =
∑
n∈Z+

⟨ϕn, f⟩ϕn, ∀f ∈ H (2)

If the operator W simultaneously satisfies W TW = I and WW T = I, then the tight frame

becomes an orthogonal basis. If the system is generated by shifts and dilations of a wavelet

basis, then the tight frame is called wavelet tight frame. Considering the multi-resolution

analysis ability of wavelet and the unitary extension principle, it is practical and convenient

to construct a tight frame of wavelets. Construction method for 1D wavelet tight frame is

illustrated in Cai et al., 2014 and Liang et al., 2014.

Higher-dimensional tight frame can be constructed by the tensor product of 1D tight

frame. In Figure 1, we give an illustration for constructed 1D, 2D and 3D tight frames by

Haar filters. Figure 1 (a) arranges the four 1D Haar filters as columns of a matrix. Figure 1

(b) is produced by 2D tensor product of 1D filter. One small block stands for one 2D filter.

By 3D tensor product of 1D filter we get 3D filter shown in Figure 1 (c). We put the small

filter cubes on a plane for clear viewing.

Data-Driven Tight Frame

We refer to fixed basis transform as an implicit dictionary as they are described by a linear

transform rather than by an explicit matrix. The DDTF method is typically represented

as an explicit matrix. A sparsity-promoting constrained optimization algorithm is applied

to adapt the elements of the matrix to observations.

We introduce the main principle of DDTF method in the following lines. Details per-
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taining the method are provided in the Appendix. We first define the objective function

argmin
v,W

∥v −Wg∥22 + λ2∥v∥0 s.t. W TW = I (3)

we designate with the variable v the transform coefficients. In addition, we denote g the

training data that we will use to estimate the frame. The first term in the cost function is

the misfit that expresses our desire to find a basis that when operating on the data produces

coefficient, that in lieu of the second term, are sparse. The constant λ adjusts the weight

of the sparse constraint.

Last expression (3) can be solved via an iterative method that includes two stages. In

the first stage we use sparsity promoting optimization to optimize for the coefficients v and,

in the second stage, an update is performed to estimate the operator W .

The first stage, often referred as the sparse coding stage ,fixes the operator W and solves

for sparse coefficients v via the classical expression

v(k) := argmin
v

∥v −W (k)g∥22 + λ2∥v∥0

This optimization problem can be solved by a hard thresholding method (Cai et al., 2014).

The operator W updating stage assumes fixed coefficients v and solves the following

problem

W (k+1) := argmin
W

∥v(k) −Wg∥22 s.t. W TW = I

It is shown in (Cai et al., 2014) that the SVD decomposition method can be used to

solve for W . We stress, however, that unlike K-SVD method, DDTF method updates all

columns of W (k+1) at once by one SVD decomposition.

It is easy to generalize the DDTF method cost function for considering a large mount

of training data

argmin
V,W

∥V −WG∥2F + λ2∥V ∥0 s.t. W TW = I

where G and V are the matrix combinations of individual data and coefficient (details are

presented in appendix). ∥ · ∥2F means Frobenius norm, ∥ · ∥0 here means the number of non-
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zeros in the matrix. The solution for W (k+1) with fixed V follows the following closed-form

expression

W (k+1) = XUT

where r is the number of columns of matrix W . I, where U and X are the SVD decompo-

sition of V GT , i.e. V GT = UDXT .

We remark that a patching strategy is used to obtain the training set G (Ma, 2013) . As

shown in Figure 2, we extract small 3D patches from the training data volume, the patches

can be overlapped to generate sufficient training data. The small 3D patch is reshaped into

a vector that becomes a column of G.

Different from Cai in (Cai et al., 2014), we set the tight frame exactly the same as the

filter bank. Or we say the filters act as the columns of our tight frame transform matrix.

Leaving out the shift versions of original filters, we get a purely orthogonal transform. This

strategy gives us an accelerated algorithm and nearly no affect on the reconstruction result,

because we use the overlapped patches of the original data.

The training data G and the initial filterbank are used as the input of our algorithm. In

the iteration progress, the sparse coding step and the dictionary updating step are carried

out seperately. As the iteration goes on, the trained dictionary will become the most

optimized sparse tight frame for representing the original data.

A training example of a 3D seismic data volume is given in Figure 3. The data size is

256 × 256 × 16 and the patch size is 7 × 7 × 7. We use the tensor linear spline framelet

(Daubechies et al., 2003) as initial wavelet, as shown in Figure 3 (b) (20 out of 343 filters are

shown). Corresponding trained filter bank is shown in 3 (c), small structure characteristic is

presented on the surface of the small blocks. The structures are similar with the structures

of the original data patches. And the training results contain structures from low frequency

to high frequency corresponding to the initial filter bank. We select one patch from original

data and expand it on the initial filter bank and the trained filter bank separately, the

coefficients distribution are displayed in Figure 3 (d). As we can see, the coefficients are
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much sparser distributed on trained filter bank than on initial filter bank, which means that

the trained filter bank is a better choice for denoising or interpolation work.

Denoising and Interpolation

Having derived operator W from our two-stage iteration, the denoising and interpolation

procedures are carried out by a sparsity-promoting method (Cai et al., 2014). We now

minimizes the following cost function

ĝ = argmin
g

∥g0 −Ag∥22 + ∥Wg∥1 (4)

where g stands for the data, g0 stands for the raw/sampled data. If A = I, it stands for a

denoising problem. If A is a sampling matrix, the above model stands for an interpolation

problem. The model can be solved by iterative shrinkage/thresholding (IST):

g′ = Dλ(g
(k))

g(k+1) = αk(g
0 −Mg′) + g′

where the Dλ(g) is defined by

Dλ(g) = W TTλW (g) (5)

Tλ is a soft shrinkage operator, and λ is a thresholding parameter. The parameter αk

controls the feedback. If the sampled data is out of noise, we can set αk as constant 1; If

not, αk should decrease from 1 to 0 along iteration. In this paper, since we mainly focus

on how the sparse transform can gain the performance of seismic data processing, we just

apply one of the simplest algorithms, the IST, to solve the model (4). Many advanced

optimization methods such as accelerated first-order algorithms (Beck and Teboulle, 2009;

Zhang et at., 2011) can be easily applied in the proposed framework.

NUMERICAL RESULTS

In this part, we use the trained filter bank for 3D seismic data denoising and interpolation.

As comparison, we present denoising or interpolation results with Fourier transform, wavelet



9

transform, curvelet transform and BM4D methods. Deonising is based on thresholding

strategy. IST method is used for data reconstruction. We use patch size r = 8 for BM4D

and DDTF method, all other parameters are individually optimized.

We use SNR value to judge the restoration result, whose definition is:

SNR = 10 log10

(
∥X∗∥2F

∥X∗ −X∥2F

)
Figure 4(a)(b)(c) show original data, noised data and sub-sampled data respectively

with noise of a synthetic 3D seismic data volume. The data size is 128× 128× 128. Figure

5 shows the denoising results of Figure 4(b). Figure 5(a) shows denoising results with

Fourier transform. Non-zeros appear at original zero value position as Fourier transform

causes Gibbs phenonmenon when using thresholding method. Figure 5(b) presents results

with Daubechies’ Db5 wavelet transform(Daubenchies, 1992). Apparent block characteristic

can be seen because wavelet transform basis stands for dot-like shape. Figure 5(c) stands

for results with curvelet transform which achieves higher SNR value than the former two

methods. Curvelet is a global multi-scale and multi-direction transform, so continuous curve

characteristic can be preserved but pseudo-Gibbs phenomenon causes oscillation where it

should be zeros originally. Figure 5(d) is from BM4D method and Figure 5(e) is obtained

by DDTF method, they are patching based methods and provide us good visual results.

DDTF method gets a higher SNR value than BM4D and other methods.

In order to make the denoising result more easily comparable, we extract one trace from

reconstruction profile (red solid lines) and compare it with the corresponding trace from

clean data (blue dot-dashed lines) in Figure 6. Figure 6(a-e) show the trace comparison

of Fourier method, wavelet method, curvelet method, BM4D method, and DDTF method

separately. It is clear that our method achieves higher denoising quality both on zeros and

non-zeros parts of original data than the others.

We use a 8×8×8 Haar wavelet tight frame as initial filter bank, and 16 out of total 512

filters are shown in Figure 7(a). The corresponding trained filter bank is shown in 7(b). We

mention here that unlike the result of Figure 3, the training data we use here is the original
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noised data, not the clean data. Figure 7(c) shows the coefficient distribution comparison

of the same original data cube expanding on initial filter bank and trained filter bank. The

latter is sparser but the difference is not as obvious as in Figure 3(d), as the expansion is

on the noised data rather than the clean data.

In Figure 8 we present an interpolation experiment on the model in Figure 4(c). Total

50% traces are missing on the offset plane and additional noise is added. Trained filter

bank interpolation gets much higher SNR value than Fourier or wavelet method. Curvelet

interpolation method gives a better looking result for the continuous characteristics but

the SNR value is low than DDTF method as non-zeros emerge where it is zero originally.

BM4D method fails in SNR compared to DDTF method because less repeat patterns exist

when there is missing data. And also a single trace comparison result is presented in Figure

9.

Denoising results for model in Figure 3(a) is presented in Figure 10. With trained filter

bank, we can get much better denoising result than with Fourier or wavelet method in visual.

Also, we get a higher SNR than curvelet shrinkage or BM4D with proposed method, which

shows that our method is also available for denoising seismic data with complex structure.

Also a reconstruction experiment for model in Figure 3(a) is carried out in Figure11.

Same sampling and reconstruction methods are used as in Figure 8. With DDTF method

we get the highest SNR, which means our method is suitable for complex seismic data

interpolation. Part (time sample: 1-50, trace sample: 51-82) waveform display of one slice

(center slice along y axis) is shown in Figure 12. The left of figure 12(a) comes from original

data, and the right comes from the corrupted data. We want to see the reconstruction

quality for weak energy part. As we can see, the available trace is almost submerged in

noise. Fortunately, the data is a volume, so information from adjacent slices may be utilized.

Figure 12(b)-(f) shows reconstruction results (left) and errors (right) by Fourier, wavelet,

curvelet, BM4D and DDTF methods, respectively. Among the reconstruction algorithms,

wavelet method can hardly reconstruct the data, Fourier method leaves too much error.



11

BM4D method obtains an over smoothed result, curvelet method joins the events which are

separated originally. DDTF method obtains the best visual quality and SNR value.

We mention that for reconstruction algorithms with adaptive filter bank method, we

use a zero-order interpolation data as the initial training data for DDTF method. It is

reasonable to think that if the interpolation result is used as a new training set to train

the filter bank again, a higher SNR value may be obtained. We try this procedure as an

iteration, and it turns out that the SNR value gets no benefit after four iterations, so we

can use the result after four iterations as the final result.

DISCUSSION AND EXTENSION

We should discuss the efficiency of 3D DDTF method. Computation and storage costs

mainly come from the huge amount of training volumes. The first way to accelerate DDTF

method is to parallelize the algorithm, which is natural for dictionary learning like method.

Another way, one can decrease the overlap between the neighbor patches. We study how

the amount of overlap between patches affects the final result and the processing time. The

test is done on model in figure 4(c). In Figure 13, we can see that the elapsed time increases

’exponentially’ over the amount of overlap or SNR, but the SNR value changes slowly as

the number of overlapped pixels increases from 4 to 7. So we could select 5 or 6 as the

overlapping degree for considerations of reconstruction quality and computational efficiency.

The interest of current industry lies in reconstructing the data in five dimensions. More

dimensions make the modeling of the data more accurate and the interpolation more effec-

tive especially in the areas of complex structure. Because DDTF deals with data blocks

as vectors, extension of the DDTF method to 5D is straightforward. Figure 14 shows an

example on DDTF method interpolation of a synthetic 5D data. The data is modeled with

the Matlab toolbox ’SeismicLab’ by SAIG. The data is in ’middle point-offset’ observation

system with dmx = 5m, dmy = 5m, dhx = 10m, dhy = 10m. The Ricker wavelet central

frequency is 40Hz. Time sampling interval is 2ms. The data size is 16× 16× 16× 16× 64.
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Patching size is 4, overlap = 3. We perform 5 training-interpolation cycles. Figure 14(a)

shows the original data. (b) shows a corrupted data with 1/3 downsampling ratio (i.e., 2/3

trace missing), (c) shows the DDTF method interpolation and (d) shows difference between

the interpolated results and the original data. Further, in Figure 15, we provide an example

for simultaneous interpolation and denoising of the 5D data. These preliminary results

demonstrate the promising performance of DDTF method up to five dimensions.

CONCLUSION

We extended the DDTFmethod for simultaneous denoising and interpolating high-dimensional

seismic data. By taking advantage of the learning capabilities of the adaptive filter bank

and the perfect reconstruction property of tight frame, we achieve higher SNR value with

DDTF method compared with 3D Fourier, wavelet, curvelet and BM4D methods. We also

extended the application of DDTF method for 5D seismic data. The preliminary results

show promising performance of the 5D DDTF method. Future work would focus on how to

incorporate more seismic structure features into the DDTF framework, i.e., how to utilize

information in full-sampled dimension to reconstruct sub-sampled dimension.
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APPENDIX

The symbol notations are:
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l,m, n, p, q, r, s, T0 ∈ Z+: length of one dimension. Z+ means positive integer.

G0 ∈ Rl×m×n: the raw data of three dimension.

g ∈ Rp×1(p ∈ Z+): vector form of the raw training data. No matter how many dimen-

sions the data has, we treat it as a vector which is formed by the column vectors or original

data. For example, f ∈ Rr×r×r is a small patch from G0 (we suppose that the length of the

three dimensions are the same), then we join the columns of f to form the vector g ∈ Rr3×1.

G ∈ Rp×q: combine the training data as a matrix, i.e. G = [g1, g2, · · · , gq].

W ∈ Rp×p, rank(W ) = p: the filter bank (dictionary), its vectors is also named as atoms

for a transform.

v ∈ Rp×1: the transform coefficient for g under W , i.e. v = W T g.

V ∈ Rp×q: combine the coefficients as a matrix, i.e. V = [v1, v2, · · · , vq].

Now we give the detail how to update the filter bank. The optimization problem is as

following:

W (k+1) := argmin
W

∥V −WG∥22 s.t. W TW = I (6)

The objective function can be reformulated as:

∥V −WG∥22 =
q∑

n=1

∥vn −AT gn∥22

=

q∑
n=1

vTn vn + gTnAAT gn − 2vTnA
T gn

=

q∑
n=1

vTn vn +
1

r2
gTn gn − 2(Avn)

T gn

= Tr(V TV ) +
1

r2
Tr(GTG)− 2Tr(AV GT )

where Tr(·) stands for the trace of a matrix, and A = W T . We remove the constant item

and get an equivalent maximization problem as (6):
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argmax
A

Tr(AV GT ), s.t. ATA = I (7)

The theorem in Zou et al. (2006) helps solve (7):

Theorem 0.1. Let α and β be m× k matrices and β has rank k. Consider the constrained

maximization problem:

α̂ = argmax
α

Tr(αTβ), s.t. αTα = Ik

Suppose the SVD of β is β = UDV T , then α̂ = UV T .

By the introduced theorem, we can get the solution of (7):

A∗ = XUT

where we take the SVD decomposition of V GT to get U and X, such that:

V GT = UDXT



15

REFERENCES

Aharon, M., M. Elad, and A. Bruckstein, 2006, K-SVD: An Algorithm for Designing Over-

complete Dictionaries for Sparse Representation: IEEE Transcations on Signal Process-

ing, 54, 4311–4322.

Bechouche, S., and J. Ma, 2014, Simultaneously dictionary learning and denoising for seismic

data: Geophysics, 79, A27–A31.

Beck, A. and M. Teboulle, 2009, A fast iterative shrinkage-thresholding algorithm for linear

inverse problems: SIAM Journal of Imaging Sciences, 2, 183–202.

Cai, J., H. Ji, Z. Shen, and G. Ye, 2014, Data-driven tight frame construction and image

denoising: Applied and Computational Harmonic Analysis, 37, 89–105.

Canales, L., 1984, Random noise reduction: Presented at the 54th SEG Mtg, 525–572.

Candés, E., L. Demanet, D. Donoho, L. Ying, 2006, Fast discrete curvelet transforms:

Multiscale Modeling and Simulation, 5, 861–899.

Chanerley, A., and N. Alexander, 2002, An approach to seismic correction which includes

wavelet de-noising: Proceedings of the Sixth Conference on Computational Structures

Technology, 107–108.

Daubechies, I., 1992, Ten lectures on wavelets, 1st Edition, CBMS-NSF Lecture Notes,

SIAM.

Daubechies, I., B. Han, A. Ron, Z. Shen, 2003, Framelets: MRA-based constructions of

wavelet frames, Appl. Comput. Harmon. Anal. 14, 1–46.

David, B., and M. Sacchi, 2012, Denoising seismic data using the nonlocal means algorithm:

Geophysics, 77, 5–8.

Duijndam, A., M. Schonewille, and C. Hindriks, 1999, Reconstruction of band-limited sig-

nals, irregularly sampled along one spatial direction: Geophysics, 64, 524–538.

Duval, L., and V. Tran, 2001, Compression denoising: using seismic compression for unco-

herent noise removal: EAGE 63rd Conference and Technical ExhibitionAmsterdam, The

Netherlands, 11–15.

Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Gephysical, 75, V25-V38.



16

Gao J., M. Sacchi, and X. Chen, 2013, Fast reduced-rank interpolation method for prestack

seismic volumes that depend on four spatial dimensions: Geophysics, 78, 21–30.

Hauser, S., and J. Ma, 2012, Seismic data reconstruction via shearlet-regularized di-

rectional inpainting: Preprint, T. U. Kaiserslautern, http://www.mathematik.unikl.

de/uploads/tx sibibtex/seismic.pdf, accessed 15 May 2012.

Hennenfent, G., and F. Herrmann, 2006, Seismic denoising with nonuniformly sampled

curvelets: Computing in Science and Engineering 8, 16–25.

Herrmann, F., and G. Hennenfent, 2008, Non-parametric seismic data recovery with curvelet

frames: Geophysical Journal International, 173, 233–248.

Hu, T., J. Nunez-Iglesias, S. Vitaladevuni, L. Scheffer, S. Xu, M. Bolorizadeh, H. Hess,

R. Fetter, and D. Chklovskii, 2012, Super-resolution using sparse representations over

learned dictionaries: Reconstruction of brain structure using electron microscopy.

Hunt, B., and O. Kubler, 1984, KarhunenLoéve multispectral image restorationPart 1:
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FIGURE/TABLE CAPTIONS

1. Figure 1: A demonstration for haar wavelet tight frame for 1D(a),2D(b) and 3D(c).

2. Figure 2: A demonstration for patching method of 3D data volume.

3. Figure 3: A demonstration for filter training initialized with 7× 7× 7 sin wavelet.

4. Figure 4: 3D seismic data model.

5. Figure 5: Denoising results for 3D seismic data.

6. Figure 6: Single trace comparison and filter bank for denoising.

7. Figure 7: Filter bank for denoising.

8. Figure 8: Simultaneous interpolation and denoising for synthetic data.

9. Figure 9: Single trace comparison for interpolation.

10. Figure 10: Denoising results for real 3D seismic data.

11. Figure 11: Simultaneous interpolation and denoising for real data.

12. Figure 12: Partial waveform display of slices from figure 11.

13. Figure 13: SNR and elapsed time v.s. overlapped pixels.

14. Figure 14: 5D seismic data interpolation by the DDTF method.

15. Figure 15: Simultaneous interpolation and denoising for the 5D data by DDTF

method.
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Figure 1: A demonstration for Haar wavelet tight frame for 1D(a),2D(b) and 3D(c).
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Figure 2: A demonstration for patching method of 3D data volume.
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Figure 3: A demonstration for filter training initialized with 7 × 7 × 7 tensor linear spline

framelet. (a) 3D synthetic cube of seismic data. (b) Initial filter bank. (c) Trained filter

bank. (d) Coefficient distribution of one block of (a) on trained filter bank (blue solid line)

and initial filter bank (red dash-dot line).
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(a) (b)

(c)

Figure 4: 3D seismic data model. (a) Original data; (b) Data with noise; (c) Data with

missing traces and noise.
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(a) (b)

(c) (d)

(e)

Figure 5: Denoising results for 3D seismic data. (a) Denoising result by Fourier transform,

SNR=12.94. (b) By db5 wavelet, SNR=10.53. (c) By curvelet, SNR=16.91. (d) By BM4D,

SNR=18.69 (e) By DDTF method, SNR=19.23.
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Figure 6: Single trace comparison for denoising. (a) Fourier transform; (b) wavelet trans-

form; (c) curvelet transform; (d) BM4D; (e) DDTF method;
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Figure 7: Filter bank for denoising. (a) Initial filter bank for DDTF method; (b) Trained

filter bank for DDTF method; (c) Coefficients distribution comparison.
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(a) (b)

(c) (d)

(e)

Figure 8: Simultaneous interpolation and denoising for the synthetic data. (a) Fourier

transform. SNR = 9.42; (b) Db5 wavelet transform. SNR = 3.73; (c) curvelet transform.

SNR = 13.88; (d) BM4D. SNR = 15.37. (e) DDTF method. SNR = 16.70.
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Figure 9: Single trace comparison for interpolation. (a) Fourier transform; (b) wavelet

transform; (c) curvelet transform; (d) BM4D; (e) DDTF method;
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(e) (f)

(g)

Figure 10: Denosing results for 3D seismic data. (a) Original data. (b) Noise data. (c) De-

noising result by Fourier transform, SNR=4.99. (d) Db5 wavelet, SNR=4.20. (e) curvelet,

SNR=7.17. (f) BM4D, SNR=8.79. (g) DDTF method, SNR=8.83.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 11: Simultaneous interpolation and denoising for the real data. (a) Original data.

(b) Data with missing traces and noise. (c) Result by Fourier transform. SNR=3.35. (d)

Db5 wavelet. SNR=2.04. (e) curvelet. SNR=6.11. (f) BM4D. SNR=6.81. (g) DDTF

method. SNR=7.54.
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Figure 12: Partial waveform display of slices from figure 11. (a) Left part: original

data, right part: corrupted data. (b)-(f) Reconstruction (left) and errors (right) by

Fourier,wavelet,curvelet,BM4D and DDTF method, respectively.



31

0 1 2 3 4 5 6 7
4

6

8

10

12

14

16

18

overlapped pixels

S
N

R

(a)

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

overlapped pixels

tim
e 

el
ap

se
d 

fo
r 

di
ci

to
na

ry
 u

pd
at

in
g(

s)

(b)

0 1 2 3 4 5 6 7
0

500

1000

1500

2000

overlapped pixels

tim
e 

el
ap

se
d 

fo
r 

sp
ar

se
 c

od
in

g(
s)

(c)

4 6 8 10 12 14 16 18
0

500

1000

1500

2000

2500

SNR

to
ta

l t
im

e 
el

ap
se

d(
s)

(d)

Figure 13: SNR and elapsed time v.s. overlapped pixels. (a) SNR v.s. overlapped pixels.

(b) Elapsed time for sparse coding v.s. overlapped pixels. (c) Elapsed time for dictionary

updating v.s. overlapped pixels. (d) SNR v.s. total elapsed time.
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Figure 14: 5D seismic data interpolation by the DDTF method. (a) Original clean data. (b)

Subsampled data with 1/2 sampled ratio. (c) Interpolation by DDTF method, SNR=22.96.

(d) Difference between the interpolated result and original clean data.
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Figure 15: Simultaneous interpolation and denoising for the 5D data by DDTF method.

(a) Noisy data. (b) Subsampled data with 1/3 sampling ratio for (a). (c) Interpolation by

DDTF method, SNR=11.20. (d) Difference between the interpolated result and original

clean data.


