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Abstract

We propose a computational strategy to find the optimal path for a mobile sensor with
limited coverage to traverse a cluttered region. The goal is to find the shortest feasible
path to achieve the complete scan of the environment. We pose the problem in the level
set framework, and first consider a related question of placing multiple stationary sensors
to obtain the full surveillance of the environment. By connecting the stationary locations
using the nearest neighbor strategy, we form the initial guess for the path planning problem
of the mobile sensor. Then the path is optimized by reducing its length, via solving a
system of ordinary differential equations (ODEs), while maintaining the complete scan of
the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into
stochastic differential equations (SDEs), to find the global optimal solution. To improve the
computation efficiency, we introduce two techniques, one to remove redundant connecting
points to reduce the dimension of the system, and the other to break the entangled path
so the solution can escape the local traps. Numerical examples are shown to illustrate the
effectiveness of the proposed method.

1. Introduction

In this paper, we study the problem of planning a path for a mobile sensor with limited
coverage to traverse an environment filled with obstacles. The goal is to achieve complete
coverage of the region with the shortest possible travel distance. This problem is motivated
by a number of real world applications, such as using heartbeat sensor to detect hidden
lives in rescue mission, searching or patrolling a confined region with complicated terrain
by mobile radar or sonar devices [19, 41]. Sensors used in those applications have limited
coverage range, meaning an object cannot be detected if its distance to the sensor is larger
than r > 0, even if there may not be any obstacle blocking the object from the sensor. This
problem is very similar to the well-known watchman route problem [6], which shares the same
goal except observers in the watchman route problem have unlimited coverage range. The
observer can see an object as long as it is not blocked by obstacles, regardless the distance
between them.
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The watchman route problem, and the more general path planning problems have been
studied intensively in the past few decades, especially in the robotics literature. Many dif-
ferent methods have been developed depending on what types of obstacles are considered
in the problems. For polygonal obstacles, path planning problems can be re-casted as op-
timization problems on graphs, therefore combinatoric and graph-based approaches, such
as the Dijkstra’s algorithm [10], Floyd’s algorithm [12], and Johnson’s algorithm [16], are
well studied and broadly used. Additional algorithms and associated evaluations along this
line of research may be found in [5, 9, 15, 20, 23, 25, 26, 38], including a survey [24] that
provides many more references therein. It is worth noting that some path planning problems
have been found to be NP-hard [3, 6, 28], such as the famous traveling sale person problem
[33, 35], indicating that one often needs to face some extraordinary computation challenges
in solving those problems.

However, the combinatoric strategy may not be directly applicable to problems with
non-polygonal obstacles. To account for obstacles with piecewise smooth boundaries, many
different strategies have been proposed, including the commonly used level set based methods
[4, 21, 22, 39]. In this case, the environment is described by a level set function with positive
values outside of the obstacles and negative values inside. The zero level curves are the
boundaries of obstacles. Feasible traveling paths can only go through the regions with non-
negative level set values.

In literature, the watchman route problem is often associated with the art gallery prob-
lem, another classical problem that aims at placing some stationary observers to maxi-
mize the surveillance area [1] in a cluttered region. Like the watchman route problem, the
art gallery problem and its variations have drawn considerable attention in recent decades
[2, 8, 11, 13, 14, 17, 34, 36]. Readers are referred to a book [29] and survey papers [37, 40]
for more references.

Among various versions of watchman route and art gallery problems, the one studied in
[28], called watchman route under limited visibility or d-sweeper problem, aims at the same
goal of this paper, but with different set ups and strategies. In [28], the polygonal obstacles
are studied, and the method is essentially graph based. While we consider obstacles with
piecewise smooth boundaries and employ level set based computational method.

Despite of the existence of extensive literature on path planning, the problem that we
are interested in remains challenging. The difficulties often come from the following three
aspects: (1) The obstacles have arbitrary shapes, which prevent us from using more efficient
graph based strategies. (2) Finding a feasible path with (even locally) shortest length is
often costly because it is an infinite dimensional problem. Finding the global optimal path,
if possible, is usually computational intractable. (3) Achieving the complete coverage of
the environment is a constraint that is hard to be satisfied in general, and it counter-plays
with the shortest length requirement. This constraint becomes harder to enforce for sensors
having limited coverage range, which makes the problem more complex.

Unlike the existing methods, in this paper, we tackle the problem using the level set
formulation together with the intermittent diffusion, a stochastic differential equation (SDE)
based global optimization strategy [42]. The level set framework gives us the freedom to
consider various shapes of obstacles and a way to incorporate the finite coverage range into
the definition of the coverage level set function. The total coverage area of a certain path
can be easily calculated by integrating each sensor’s coverage level set function along the
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path. The intermittent diffusion is then used to find the optima, the shortest path, in the
set of all feasible paths which gives the complete coverage of the environment.

To find the the shortest path, our proposed method consists of three main steps: the
initialization, the gradient flow to find local optimal solutions, and the intermittent diffusion
to find the global solution. For the initialization, we first solve the art gallery problem with
limited sensor coverage, i.e., we apply a greedy strategy to find the locations of stationary
sensors for the full surveillance. Then we connect the locations, called connecting points,
to their nearest neighbors by the shortest path algorithm presented in [7]. In this way,
we obtain a feasible path that guarantees the complete coverage. The gradient flow is
deduced by shrinking the length of a path on the complete coverage manifold, which is
defined as the collection of all feasible paths attaining complete coverage of the environment.
Algorithmically, the gradient flow moves the connecting points by using a system of ordinary
differential equations (ODEs). A locally shortest path is obtained when the gradient flow
reaches its steady state. However, the complete coverage manifold is highly non-convex,
there are many local optimal solutions. To find the global optimal path, we employ the
intermittent diffusion method, by adding random perturbations to help the path moving
out of local traps and have a chance to find the global optimal solution. Furthermore, we
introduce two techniques in the algorithm: redundant point removal and a disentanglement
strategy. These simple ideas reduce the dimension of the ODEs or SDEs, and improve the
computation efficiency in our numerical experiments.

The layout of the paper is as follows. In Section 2, the new level set formulation of limited
coverage range is introduced. We use it to solve the associated art gallery problem and find
the optimal locations for the stationary sensors. The resulting locations are then used for
the initialization of the path optimization. In Section 3, we propose the main algorithm to
optimize the path length while achieving complete coverage of the environment. Section 4
provides several numerical results, and the new techniques of disentanglement and redundant
points removal. Finally, we give a conclusion in Section 5.

2. Optimal locations for sensors with limited coverage ranges

In this section, we start by introducing the level set formulation for the coverage func-
tion of sensors with limited coverage range. Then we propose a strategy to place multiple
stationary sensors to achieve the full surveillance of the environment. Finally, we connect
the found locations to their nearest neighbors, which forms the initial path attaining the
complete coverage of the environment.

2.1. New level set formulation with limited coverage

In the level set framework, the environment is described by a level set function with
positive values outside of the obstacles, negative values inside, and the zero level curves
representing boundaries of obstacles. This level set setting is exploited to solve visibility
related problems in [4, 39] where light rays from a vantage point (e.g., observer or sensor)
travel in straight lines and are obliterated upon contact with the surface of an obstacle.
A point is covered by the observer (or sensor) placed at a given vantage point, if the line
segment between the point and the vantage point does not intersect any of the obstructions.
Under this point of view, in prior studies including [21, 22], it is assumed that the observer
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has an infinite coverage range. Here, we extend this formulation to account for sensors with
limited coverage range.

To set up the problem, we denote computational domain as D, a compact subset of R2.
Let Ω be the collection of obstacles, i.e. a closed set containing finite number of connected
components comprising one or multiple given obstacles in D. The level set function ψ(x)
represents the environment: inside the obstacles Ω is negative, and outside is positive. In
our algorithms, we define ψ(x) as the typical signed distance function from the boundaries
of Ω. A sensor located at a point x in D\Ω, has the line-of-sights as straight line segments
originated from x and ended at y with either |x− y| = r and y ∈ D\Ω, or |x− y| ≤ r and y
is a point on the boundary of the obstacles. The coverage region of the sensor is the union
of all line-of-sights emanating from the sensor.

Now, we define the sensor coverage as a level set function φ given by

φ(y;x, r) = min
z∈L(x,y)

{ψ(z), r − |z − x|} (2.1)

where L(x, y) is the line segment connecting x and y. This way the function φ(·;x, r)
represents the coverage in a bounded domain D by{

φ(·;x, r) > 0, covered regions,

φ(·;x, r) < 0, non-covered regions.
(2.2)

The following lemma shows that φ(y;x, r) is Lipschitz continuous in x.

Lemma 1. φ(y;x, r) is Lipschitz continuous in x. i.e., there exists K such that

|φ(y;x, r)− φ(y; x̃, r)| ≤ K |x− x̃|

for x, x̃, y ∈ D.

Proof. We refer readers to [4] for the proof.

With the coverage level set function φ(y;x, r) we can calculate the coverage area of the
sensor at x by

V (x; r) =

ˆ
D

H(φ(y;x, r))dy, (2.3)

where H denotes the one-dimensional Heaviside function.
To compute the coverage function φ(y;x, r), we present an simple strategy in Algorithm 1,

which mostly follows the PDE based strategy presented in [39]. The main idea is to use the
method of characteristics for the nonlinear first order PDEs, and we add a modification to
handle the finite coverage range. We use a normalized viewing vector ~vx(y) = y−x

|y−x| which
connects an initial point x with a terminal point y.
We solve (2.4) using the upwind finite differencing scheme. See [30, 39] for details. Note
the computational workload in each iteration is dominated by the second and third steps.
However, these steps are only needed for computing φ inside the sensor’s coverage range.
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Algorithm 1 PDE based algorithm for computing the sensor coverage φ

Input: level set function ψ, a sensor x ∈ D\Ω, and a radius of coverage r.
1. Set φ(y) = ψ(y) for y ∈ D.
2. If y ∈ Br(x), solve for φ:

∇yφ(y;x, r) · ~vx(y) = 0, (2.4)

subject to the boundary condition φ = ψ. Otherwise, set φ(y;x, r) = 0.
3. Update φ = min(φ, ψ, r − |y − x|).

2.2. Maximum coverage for a single stationary sensor

Based on the above setting, we consider a problem of maximizing the coverage of a singe
sensor. More precisely, here the goal is to move the sensor to the optimal location that
maximizes the coverage area V in (2.3). We use the gradient ascent method to achieve this
goal, namely we follow the gradient flow to move the location x:

∂tx = ∇xV (x), (2.5)

where ∇x is the gradient operator with respect to x.
The gradient operator can be approximated by many finite difference schemes, for exam-

ple, we use the central difference scheme in this paper, which leads to

∂tx = Dh
0V (x), (2.6)

where h is the spatial step size. Algorithm 2 describes the steps to compute the gradient
ascent flow using this central difference scheme in space with forward Euler scheme in time.
In the algorithm, {e1, e2} is a standard basis of R2.

Algorithm 2 Maximum coverage of a single stationary sensor

Input: single sensor x, radius of coverage r, spatial step size h, and temporal step size k.
Compute: For a step size h, obtain the 4 neighborhood values of the coverage level set
functions φ(·;x ± hei, r) over a grid in D ∩ Bx±hei(r) for each i = 1, 2 using Algorithm 1
for φ.
Repeat until convergence

1. Evaluate V (x± hei; r) and use central differencing for Dh
0V (x).

2. Use Euler’s method to update x by x+ kDh
0V (x).

In Figure 1 we demonstrate the trajectories of the gradient ascent flow generated by
Algorithm 2. The computational domain is D = [−1, 1] × [−1, 1] and the obstacles are the
shaded four disks of various radii. A sensor x1 is initially located at (0.1, 0), and the blue
dotted circle represents the sensor coverage with a radius of coverage r = 0.4. Figure 1(b)
shows the result of Algorithm 2, where the sensor moves away from the obstacle to maximize
the coverage area. Figure 1(c) shows the corresponding coverage area with respect to the
gradient ascent flow. Notice that in the final location, the red dotted circle describing the
sensor coverage is tangent to two obstacles, and the sensor attains the maximum coverage.
This is the globally optimal result. It is worth mentioning that for sensors with unlimited
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Figure 1: A single sensor coverage optimization. The obstacles are the shaded four disks of various radii.
The initial location of a sensor in (a) is moved from ’o’ to ’x’ in image (b) by following the blue gradient flow
path in (b). The dotted circle represents the sensor coverage. (c) The value of coverage area with respect to
the gradient ascent flow. This value is increasing until the maximum coverage is achieved.

coverage range [4], the sensor prefers to run away towards infinity and the algorithm stops
the computation when it hits the boundary of D.

We also note that if there is no obstacle inside Br(x), then V already attains its maximum,
so the gradient ascent stops immediately. This is unlike the results where the infinite coverage
range is assumed as [4].

2.3. Maximum coverage for multiple stationary sensors

We generalize the previous problem to multiple sensors. Let {x1, · · · , xm} denote the
location of m sensors and let {r1, · · · , rm} be the individual coverage range respectively,
i.e., each sensor may have a different coverage range. The coverage of multiple sensors is
the union of the coverages of all sensors. Similar to (2.1), we define the coverage level set
function with respect to multiple sensors by

φ(y;x1, · · · , xm, r1, · · · , rm) = max
i=1,··· ,m

φ(y;xi, ri). (2.7)

In addition, the coverage area of multiple sensors is given by

V (x1, · · · , xm) =

ˆ
Ω

H(φ(y;x1, · · · , xm, r1, · · · , rm))dx. (2.8)

Then the solution {x1, · · · , xm} maximizing (2.8) will be the desired optimal locations for
the sensors. Algorithm 3 presents a greedy strategy for the optimal locations. The sensors
are ordered sequentially, and only one is moved, by a gradient flow given by (2.9), at a time.
The new location of each sensor depends only on the locations of sensors placed before it.

Figure 2 shows an example where two sensors are placed very close to each other initially.
The algorithm successfully found two new locations, where their coverages do not intersect
each other, and the combined coverage area is maximized.
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Algorithm 3 Maximum coverage for multiple stationary sensors

Input: multiple sensors {x1, · · · , xm}, radii of coverage {r1, · · · , rm}, spatial step size h,
and temporal step size k.
Iterate: For each i = 1, · · · ,m, solve

∂txi = ∇xi
V (x1, · · · , xm) (2.9)

using Algorithm 2 where ∇xi
denotes the gradient in the argument xi.
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Figure 2: Two sensors with different coverage ranges converge to the final locations. Two sensors originate
at ‘o’ in (a) and end at ‘x’ in (b). Two curves in (b) shows the gradient flow paths for the sensors. The
graph (c) shows the combined coverage area plotted with respect to time in the gradient flow.

In Figure 3, three sensor locations converge to the final positions. The graph in Figure
3 (c) shows that the coverage area increases and converges. However, we want to point out
that the middle sensor in (b) still intersects with the obstacles, because this is a local, not
global, optimal location. In contrast, the global optimal location is at either the left or the
right bottom area of the computation domain.
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Figure 3: Three sensors in (a) follow the gradient flow paths (blue curves in (b)) and converge to the final
locations indicated by ‘x’ in (b) respectively. One sensor has a greater coverage range than the others. The
coverage area in (c) is an increasing function and shows convergence. However, the final locations in (b) are
a local maximum not a global one.
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2.4. Full surveillance and path initialization

Up to now, we considered maximizing the coverage area when a certain number of station-
ary sensors with different coverage radii being given. Next, we extend this idea to establish
a full surveillance of the environment by adding more sensors one by one. For simplicity, we
consider all sensors having the same coverage radius r, and seek to place a small number
(minimal if possible) of sensors that achieve the full surveillance. Then, we connect the
optimal locations to construct a path for a mobile sensor. Since the mobile sensor visits
every found location, it also attains the complete coverage of the environment. We present
the method in Algorithm 4.

Algorithm 4 Full surveillance and path initialization

Input: initial sensor x1, radius of coverage r, spatial step size h, and temporal step size
k.
1. Evaluate V (x1; r) and VD\Ω which is the area of D\Ω. Set i = 1.
2. Repeat until V (x1, · · · , xi; r) = VD\Ω for the full surveillance:

When V (x1, · · · , xi; r) < VD\Ω, set i = i+ 1 and
add another sensor xi into the set of sensors.
Apply Algorithm 3 to {x1, · · · , xi} to find the optimal locations.

3. Path construction: Choose any starting sensor location x1 and connect the closest
location one by one, by using the shortest path algorithm [7].

In Algorithm 4, we add sensors one by one, until the combined coverage area of multiple
sensors equals to the area of the environment excluding the obstacles. Figure 4 shows an
example of Algorithm 4. Image (a) illustrates all sensor locations for the full surveillance,
and image (b) shows a constructed path connecting these locations. To be more precise,
given the sensor locations {x1, · · · , xm}, we denote Γ(x1, · · · , xm) the path which starts at
x1 and finishes at xm, such that xi and its nearest neighbor xi+1 are connected by the shortest
path li for 1 ≤ i ≤ m − 1. As we shift our focus from stationary sensor placement to path
planning for a mobile sensor, the locations xi, i = 1, · · · ,m, are used as connecting points to
construct the path. For this reason, we call them connecting points in the rest of the paper.

The length of the path Γ is defined by the sum

L(Γ(x1, · · · , xm)) =
m−1∑
i=1

L(li). (2.10)

Each li and its length in Euclidean metric are efficiently computed by the shortest path
algorithm called evolving junction on obstacle boundaries (E-JOB) in [7]. Although this
path provides the complete coverage of the environment, its length is far from being optimal.
We use this path as the initial guess for the algorithm presented in the following sections.

Remark 1. Note that we are not optimizing the number of sensor locations for the full
surveillance, i.e., a minimum number of sensor locations is not claimed. However, the smaller
number of sensor locations is, the less computational effort it will require to compute the
path length. Finding the minimal sensor locations itself is a challenging problem, and some
related work can be found in [6, 28, 29], and [27].
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Figure 4: (a) Full surveillance using multiple sensors with a fixed coverage range of r = 0.5. (b) An path
connecting the 26 sensor locations computed in (a). The Euclidean length of this path is 10.587. A mobile
sensor achieves the complete coverage of the environment following this path. However, this path clearly is
not optimal.

Remark 2. In step 3 of Algorithm 4, it is clear that the path can be constructed in many
different ways. Finding the globally minimized path is related to the symmetric Traveling
Salesman Problem [31, 32]. This problem is known to be NP-hard. Therefore, in this paper,
we choose an alternative approach which does not require much effort. We pick any simple
path as an initialization, and then find the global minimum via intermittent diffusion, which
will be discussed next.

3. Path optimization with limited sensing ability (POLSA)

In previous sections, we presented algorithms to construct an initial path using the level
set framework. In this section, we propose the path optimization algorithm to achieve the
complete coverage of the environment. We assume the environment is given via level set
settings. Starting from an initial path described in Section 2.3, we optimize the path by
applying the following steps:

1. Define the manifold of complete coverage, and introduce a projection to map the sensor
locations onto the manifold. (See Section 3.1.)

2. Use the gradient flow to minimize the path length, and then add random perturbations
to push the path out of the traps of local optima. This step is essential to find a global
minimizer. (See Section 3.2.)

3. Implement two techniques to speed up the computation. One is to remove redundant
connecting points in the path, which leads to the dimension reduction in the gradient
flow. The other is a disentanglement strategy to break some traps of local optimal
solutions. (See Section 4.1.)

In the following, we explain each step in detail.

3.1. Complete coverage manifold and a local projection method

We define the complete coverage manifold as

M = {x1, · · · , xm ∈ D\Ω | V (Γ(x1, · · · , xm))− VD\Ω = 0}, (3.1)
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where VD\Ω is the area of the environment excluding the obstacles. Γ(x1, · · · , xm) is a
feasible path determined by connecting {x1, · · · , xm} as described in the previous section.
The coverage area of the path is computed by the accumulated coverage as the sensor moves
along the path. It is computationally expensive to evaluate V (Γ) exactly. We handle this
by discretely sampling the path Γ(x1, · · · , xm) using the locations {z1, · · · , zM} on Γ with
M � m. For example, in our numerical experiments, we choose certain number of points
along each path li, i = 1, · · · ,m, and then take the union. The coverage area of the path
can then be approximated by

V (Γ(x1, · · · , xm)) ≈
ˆ

Ω

H(φ(y; z1, · · · , zM , r))dy. (3.2)

Let us assume that a given set of connecting points {x̃1, · · · , x̃m}, e.g., the one obtained
by the initialization in Section 2.4, is on the complete coverage manifold M. That is, the
path associated with these points achieves the complete coverage of the environment. We
consider a situation in which these points are moved to nearby, but different, locations. Then,
it is not generally guaranteed that the perturbed points still remain on M. To enforce that
the new path achieves the complete coverage, we need to project the perturbed points back
onto M before the path construction.

We define the projection to M as the solution {x1 · · · , xm} of the following constrained
minimization problem:

min
m∑
i=1

||xi − x̃i||2 subject to g(x1, · · · , xm) = 0, (3.3)

where || · || is the Euclidean norm, and the constraint is given by

g(x1, · · · , xm) = V (Γ(x1, · · · , xm))− VD\Ω. (3.4)

In words, we search for the closest connecting points xi to x̃i that provide complete coverage
of the environment. This optimization problem can be solved by converting it to the following
unconstrained optimization problem with a Lagrange multiplier λ,

L(x1, · · · , xm, λ) =
m∑
i=1

||xi − x̃i||2

2
− g(x1, · · · , xm)λ. (3.5)

The necessary condition for (3.3) becomes ∂L/∂xi = 0 for i = 1, · · · ,m, and ∂L/∂λ = 0.
This leads to a system of equations for xi, i = 1, · · · ,m,

xi = x̃i + ∂xi
g(x̃1, · · · , x̃m)λ, (3.6)

0 = g(x1, · · · , xm).

Note that we replaced (x1, · · · , xm) with (x̃1, · · · , x̃m) in the argument of ∂xi
g to speed up

the numerical evaluations. Then (3.6) can be efficiently solved by Newton’s iteration given
as,

∆λ(i) = −
(
∂xi
g(x̃1, · · · , x̃m)2

)−1
g(x̃1, · · · , x̃i + ∂xi

g(x̃1, · · · , x̃m)λ(i), x̃m),

λ(i+1) = λ(i) + ∆λ(i).
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(a) A path before the projection.
98.137% of the environment is
covered by a moving sensor.

(b) A path after the projection.
99.997% of the environment is
covered by a moving sensor.

Figure 5: Example of the projection method onto the complete coverage manifold M.

Figure 5 shows an example for this step. The obstacles are three concave polygons of various
sizes. Image (a) shows a path before the projection step. Notice that there are dark shaded
regions outside the polygons, and they are the non-covered regions by the mobile sensor.
Image (b) shows the path after the projection step, which achieved 99.997% of the total are,
which is viewed as achieving the complete coverage due to the numerical error.

3.2. POLSA

The optimal path problem we want to solve can be formulated as optimizing the path
length on the complete coverage manifold M:

min
Γ(x1,··· ,xm)∈M

L(Γ(x1, · · · , xm)). (3.7)

To solve it, a typical numerical method is the gradient descent flow,

d

dt
xi(t) = −∇xi

L (Γ(x1, · · · , xm)) , (3.8)

followed by a projection step onto M as explained in the previous section. When the
solution reaches a steady state, it is a local minimum. In general, there may be many such
local minima. To find a global optimal solution, we use the intermittent diffusion which
was proposed in [42]. It adds random perturbations intermittently to the gradient flow (3.8)
which leads to the following SDE,

dxi(t, w) = −∇xi
L (Γ(x1, · · · , xm)) dt+ σ(t)dW (t), (3.9)

where W (t) is the Brownian motion in R2m, and σ(t) is a piecewise constant function alter-
nating between zero and a random positive constant. The perturbation is added so that the
path can escape from the trap of a local minimizer and approach other ones.

Now, we are ready to present the algorithm, POLSA, to compute the global optimal path
achieving the complete coverage of the environment.
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Path optimization with limited sensing ability (POLSA)
Input: initial sensor x1, radius of coverage r, spatial step size h, and temporal step size k.

1. Initialization of the path: use Algorithm 4.

2. (Optional) Disentanglement of path for a fast convergence (details in Section 4.1).

3. Set j = 1 and iterate N times to obtain N different paths.

(a) Set α as the scale for diffusion strength, and γ the scale for diffusion time. Let
σ := αd, and T := γt where two positive random numbers d, t within [0, 1] by
uniform distribution.

(b) Set the optimal path Γopt = Γ(j)(x1, · · · , xm).
(c) Taking Γopt as the initial condition, compute the stochastic equation for t ∈ [0, T ],

i = 1, · · · ,m,

dxi(t, w) = −∇xi
L (Γ(x1, · · · , xm)) dt+ σdW (t),

and record the final state.
(d) (Optional) Disentanglement of path for a fast convergence (details in Section 4.1).
(e) Compute the solution for the following system until a convergence criterion is

satisfied,
d

dt
xi(t) = −∇xi

L (Γ(x1, · · · , xm)) .

(f) (Optional) removal of redundant locations (details in Section 4.1).
(g) Project the final state of step 3(e) onto the manifold M to obtain

Γ(j+1)(x1, · · · , xm) ∈M. If L(Γ(j+1)) < L(Γopt), set Γopt = Γ(j+1).
(h) Repeat with j = j + 1.

The equation (3.8) is solved by the forward difference scheme with respect to the time
and the central difference scheme with respect to the space. To solve the SDE (3.9), we
used the Euler-Maruyama method [18]. For the convergence criterion in step 3(e), we check
if the Euclidean distance between two successive iterates is less than a prescribed tolerance
ε > 0 in our experiments. This algorithm produces N (possibly different) local optimal paths
Γ(1), · · · ,Γ(N). By the theory of intermittent diffusion, for a large enough N , we obtain Γopt

as an approximation to the globally shortest path [42]. We note that in POLSA, there are
optional steps in 2, 3(d) and 3(f), which will be discussed later.

4. Numerical implementations and improvements

In this section, we present various numerical experiments showing the robustness with
respect to the initial guesses, different environment, and effects of different values for the
radius r. In addition, we introduce two strategies to improve the efficiency of the numerical
algorithm.

Initialization: The first example in Figure 6 shows the performance of our algorithm by
using different initializations. Three different initial paths, depicted in the left column,
have the same initial sensor locations, and attain the complete coverage of the environment.
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The results are collected from N = 200 iterations. Noticed that the resulting path length
converges to a similar value (with an error depending on the spatial step size h), and the
configurations of the resulting paths are similar.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

Figure 6: The first column of images shows three different initial paths, and the second column of images
shows the resulting paths. These all have the same initial length of 6 with the same 16 connecting points,
but with different path configurations. For the experiments, r = 0.6 and h = 0.01 are used. The lengths
of the shortest paths are (a) 3.833, (b) 3.856, and (c) 3.826. They converge around 3.8 with the similar
configuration.

Different values for the radius: Figure 7 shows the effect of different coverage radius.
From the same initial path given in (a), three different results are computed using different
values of r. Notice that as r increases the path gets closer to the obstacle, and gives a shorter
path length.

Closed path: The proposed algorithm can also construct a closed path, i.e., a path which
returns to its starting point while achieving the complete coverage of the environment. For
the closed path, its length is computed by including the final segment returning to the
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(a) Initial path.
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(b) r = 0.45.
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(c) r = 0.53.
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(d) r = 0.65.

Figure 7: Using different radii of coverage r. (a) The length of the initial path is 5.707. As r increases, the
coverage of a sensor becomes broader. This is reflected on the resulting path lengths (b) 4.875, (c) 4.338,
and (d) 3.547.

starting location. This is a relatively easy extension in our setting: In (2.10), let lm be the
shortest path connecting the ending location xm and the starting location x1. Then, the
length of the path Γ returning to the start location becomes

L(Γ(x1, · · · , xm)) =
m∑
i=1

L(li).

In Figure 8, we illustrate an example of the shortest path returning to the starting location.
The result is collected from N = 100, r = 0.5, and h = 0.01. Compared with the complicated
initial path showing in the left picture, the resulting path is much shorter, without self-
intersections.
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(a) Initial path.
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(b) The final path.

Figure 8: (a) The Initial path was constructed as a closed route. (b) The resulting path is obtained using
the parameters r = 0.5, h = 0.01 and N = 100. The length of the path changed from 9.787 to 5.500.

4.1. Two strategies to improve the efficiency

In our numerical experiments, we made two observations: (1) the path may self-intersect
in the initialization and during the gradient flows; and (2) all of the connecting points move
together, and some points can get cluttered. In this section, we discuss two strategies to
improve the efficiency of the POLSA algorithm.
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First, we introduce a simple method to disentangle a path. When a path forms a self-
intersection, it is always possible, by the triangle inequality, to reduce the length of the path
by disentangling it. The main idea is, after finding the location of self-crossing, to insert two
new points at the crossing and reverse the order of the sensor locations within the tangled
region. Figure 9 depicts this strategy with a simple example. In (a), the path on the left
tangles with itself. We insert two connecting points at the intersection and reverse the order
of the connecting points to form the new list shown on the right of Figure 9(a). After this
step, two added points 2 and 5 can split and move away from each other in the gradient flow
because it reduces the path length. In Figure 9 (b), we illustrate how the strategy works in
general situations, and the steps are described in Algorithm 5.

Algorithm 5 Disentanglement of the path

1. Given the path Γ(x1, · · · , xm), identify the location of the crossing,
and denote the vertices of the lines to be xixi+1 and xjxj+1.

2. Let xinter be the intersection of two lines xixi+1 and xjxj+1,
and insert xinter between xi and xi+1 as well as between xj and xj+1.

3. Reorder the points to xi, xinter, xj, xj−1, xj−2, · · · , xi+2, xi+1, xinter and xj.
4. Repeat 1-3 until no crossing exists.

1

32

4 1

2

34

5

6

(a) Simple version. (b) General version.

Figure 9: A strategy for disentangling the path.

We remark that even without this step of disentanglement, the intermittent diffusion will
disentangle the path as well, however at a very slow pace. By introducing this automated
step of disentanglement, the convergence of our algorithm can be dramatically improved.

Next, we remove redundant connecting points if some are clustered around each other.
The idea is to retain at least one connecting point from the cluster without any loss of
coverage area. This strategy thus reduces the dimensions in (3.8) and (3.9), and helps us to
improve the computation speed in the simulation while keeping the complete coverage. The
details of the implementation are given in Algorithm 6.

Algorithm 6 Removing redundant locations

1. For i = 1, 2, · · · ,m, get rid of the sensor xi+1 in the sensor locations {x1, · · · , xm} if
the following inequality holds:

||xi − xi+1|| ≤ ε

where ε = O(h), the size of spatial discretization.
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Figure 10 shows the results of the improved full algorithm with N = 100. We note that
the number of connecting points reduces from 20 to 5, and the complicated path is untangled.
Moreover, Figure 11 illustrates the final result of POLSA applied to the environment given
in Figure 4. Image (a) shows the initial path configuration after disentanglement. The
number of connecting points increases from 26 to 32 because intersections are counted twice.
Concurrently, the points are reordered for after the disentanglement. Image (b) shows the
resulting optimal path. The path length is reduced to 5.322, and the number of connecting
points is reduced to 13.
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(a) Initial path.
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(b) Optimal path.

Figure 10: With two added efficient strategies, the number of connecting points changes from 20 to 5,
and the path is simplified. The path length reduced from 17.0404 to 2.8895 using r = 0.75, h = 0.01 and
N = 200.
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(b)

Figure 11: The POLSA result of Figure 4. (a) Initial path configuration after disentanglement. The
number of connecting points increases from 26 to 32, and the sensors are reordered in the path for the
efficient disentanglement. (b) The resulting optimal path. The length reduced from 10.587 to 5.322, and the
number of connecting points is reduced to 13. We set the radius of coverage r = 0.5, and the spatial step
size h = 0.01.

Remark 3. In Figure 11 (b), several points adjacent to the obstacles are not located on the
boundary. This is a numerical aspect. If we choose either more points on the path or smaller
spatial discretization h, the points will be placed closer to the boundary.
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(a) Initial path. (b) Optimal path.

Figure 12: (a) Initial path is given with r = 0.5, and h = 0.01. 14 stationary sensor locations are initially
found for the full surveillance of the environment. (b) The resulting path length reduces from 6.899 to 5.511.
N = 30.

(a) Initial path. (b) Optimal path.

Figure 13: (a) Initial path is given with r = 0.4, h = 0.01. (b) The number of connecting points are changed
from 19 to 21 by disentanglement, and then to 18 by removing redundant sensors. The length of the path
reduces from 9.785 to 7.770. N = 30.

4.2. Applications

In this section, we apply our algorithm in more complicated realistic environments. Fig-
ure 12 (a) shows the convex polygonal obstacles with an initial path. Figure 12 (b) describes
the shortest path of a mobile sensor scanning the full environment. The result is obtained
from N = 30.

In Figure 13, the room-like environment with concave polygonal obstacles is considered.
We notice the path has a sharp turn around one corner of the lower left obstacle, but then
quickly backtracks. The length of the path is doubled in segment, but this is needed to
obtain the complete coverage of the environment. This feature is thanks to the projection
method which enforces to scan the complete environment.

A more realistic application of our path optimization using the Georgia Tech campus
map is presented in Figure 14. A campus map 3 is represented by a level set function with

3http://map.gtalumni.org/campusmap.pdf
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(a) (b) (c)

Figure 14: (a) Campus map of Georgia Tech. (b) An initial path with the complete coverage. We used
parameters r = 0.5, h = 0.01, and N = 10. (b) The resulting optimal path. The path length is reduced from
10.666 to 8.100. And the final path achieves 99.641% coverage of the environment.

buildings as obstacles. Some buildings have complicated shapes. The initial and optimal
paths are depicted in Figure 14 (b) and (c) respectively. The final path achieves 99.412%
coverage of the environment, with the error within the numerical discretization error in the
level set computation. The number of connecting points changes from 29 to 33 after the
disentanglement, and then to 31 by removing redundant points.

5. Conclusion

We proposed a novel method for the path optimization for sensors with limited coverage
range in a known environment. We first presented the level set formulation that enables us to
solve the art gallery problem with limited coverage range and find the optimal placements for
stationary sensors. While the resulting locations are used for the initialization of the path,
we employed the intermittent diffusion and gradient descent to optimize the length of the
path iteratively. During this procedure, the complete coverage of the environment is ensured
by projections onto the complete coverage manifold. From the results of several examples,
we verified the effectiveness of our algorithm. In principle, our approach can be generalized
to the path planning problem in multi(> 2) dimensions, though the implementation will be
substantially more involved. This will be one of the future developments to pursue. The
disentanglement may be a useful strategy in many other path optimization problems.
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