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ABSTRACT

Multi-arrival Green’s functions are essential in seismic modeling, migration and inversion. Huygens-

Kirchhoff integrals provide a bridge to integrate locally valid first-arrival Green’s functions into

a globally valid multi-arrival Green’s function. We design robust and accurate finite-difference

methods to compute first-arrival traveltimes and amplitudes so that first-arrival Green’s functions

can be constructed rapidly. We adapt a fast butterfly algorithm to evaluate discretized Huygens-

Kirchhoff integrals. The resulting fast Huygens sweeping method enjoys the following unique

features: (1) it precomputes a set of local traveltime and amplitude tables; (2) it automatically

takes care of caustics; (3) it constructs Green’s functions of the Helmholtz equation for arbitrary

frequencies and for many point sources; (4) for a fixed number of points per wavelength it constructs

each Green’s function in nearly optimal complexity O(N logN) in terms of the total number of

mesh points N , where the prefactor of the complexity only depends on the specified accuracy and is

independent of the frequency. 2-D and 3-D examples demonstrate the performance of the method.
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INTRODUCTION

Green’s functions for the Helmholtz equation in inhomogeneous media are essential for seismic

modeling, migration, and inversion. However, due to the highly oscillatory nature of wave fields

which induces the so-called dispersion (pollution) error (Babus̆ka and Sauter, 2000), it is very costly

and difficult for finite-difference or finite-element methods to directly solve the equation to high

accuracy in the high frequency regime; consequently, some approximate methods such as one-way

wave equation and geometrical-optics based asymptotics are frequently appealed.

To construct Green’s functions for the Helmholtz equation using geometrical optics, one popular

approach was finite-differencing eikonal equations to compute first-arrival traveltimes (Vidale, 1990;

van Trier and Symes, 1991; Qin et al., 1992; Schneider et al., 1992; Hole and Zelt, 1995; Schneider,

1995; Pica, 1997; Sethian and Popovici, 1999; Kim and Cook, 1999; Franklin and Harris, 2001; Qian

and Symes, 2002a,b; Tsai et al., 2003; Zhao, 2005; Zhang et al., 2005; Qian et al., 2007b,a; Kao et al.,

2004; Zhang et al., 2006; Leung and Qian, 2006; Benamou et al., 2010; Alkhalifah and Fomel, 2010;

Serna and Qian, 2010; Fomel et al., 2009; Luo and Qian, 2011, 2012; Luo et al., 2012). However, in

Geoltrain and Brac (1993) and Gray and May (1994), prestack Kirchhoff depth migration using first-

arrival Green’s functions has been questioned in imaging complex structures which host multiple

transmitted arrivals as the first-arrival traveltimes in complex media usually do not correspond to

the most energetic traveltimes crucial for imaging complex structures (Nichols, 1994); furthermore,

Geoltrain and Brac (1993) suggested to use dynamically correct multi-arrival Green’s functions in

which both multi-valued eikonals and amplitudes are correctly accounted for. Consequently, Operto

et al. (2000) extended the asymptotic ray-Born migration/inversion originally designed to process

one single arrival to the case of multiple arrivals by using ray-theory based dynamically correct

multi-arrival Green’s functions so as to account for the cross-contributions of all the source-receiver

ray paths; naturally, it is nontrivial to construct such ray-theory Green’s functions because it has

to explicitly keep track of caustics, ray branches, and the KMAH index so that multi-valued phases

and amplitudes are correctly taken into consideration (Cerveny et al., 1977; Chapman, 1985). As
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an alternative, Gaussian beams are able to take care of multiple arrivals and caustics automatically

in ray-theory asymptotics for Green’s functions at the cost of expensive beam summations (Cerveny

et al., 1982; Popov, 1982; Ralston, 1983; Hill, 1990; Gray, 2005; Albertin et al., 2004; Leung et al.,

2007; Tanushev et al., 2007; Hu and Stoffa, 2009; Qian and Ying, 2010a,b; Leung and Qian, 2010;

Bao et al., 2014).

On the other hand, Bevc (1997) proposed a semi-recursive Kirchhoff depth migration method to

image complex structures by combining wave-equation datuming (Berryhill, 1979) and first-arrival

based Kirchhoff migration (Geoltrain and Brac, 1993). Bevc succeeded in obtaining accurate images

of complex structures by breaking up the structure into small depth regions so that traveltime fields

emanated from point-sources located in the small depth regions do not develop the adverse effects

of caustics, head waves, and multiple arrivals; correspondingly, first-arrival Green’s functions are

physically correct in each small depth region so that first-arrival Kirchhoff migrations are accurate in

imaging the corresponding small depth region, where Berryhill’s wave-equation datuming technique

(Berryhill, 1979) is used to prepare the data for the Kirchhoff migration in each small depth

region; see Li and Fomel (2013) for a recent implementation of this migration method. In fact,

Bevc’s approach amounts to constructing a kinematically correct multi-arrival Green’s functions

implicitly and indirectly by using first-arrivals of Huygens secondary sources. Given that first-

arrivals are easy to compute by finite-differencing eikonal equations, a natural question is: can

we construct dynamically correct multi-arrival Green’s functions explicitly by using first-arrivals

and related amplitudes of Huygens secondary sources? Such multi-arrival Green’s functions will

find wide applications not only in prestack Kirchhoff depth migrations but also in wave-equation-

based migrations. Recently, Luo et al. (2014a) proposed a Eulerian geometrical-optics method, the

fast Huygens sweeping method, for constructing exactly such multi-arrival Green’s functions by

finite-differencing eikonal and transport equations corresponding to Huygens secondary sources and

integrating physically valid, first-arrival Green’s functions of secondary sources with the Huygens-

Kirchhoff integral formula (Burridge, 1962; Baker and Copson, 1987).

The idea of the fast Huygens sweeping method (Luo et al., 2014a) can be summarized as follows.
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In some applications, it is reasonable to assume that geodesics (rays) have a consistent orientation

so that the Helmholtz equation may be viewed as an evolution equation in one of the spatial

directions. With such applications in mind, the fast Huygens sweeping method can be used for

computing Green’s functions of Helmholtz equations in inhomogeneous media in the high-frequency

regime and in the presence of caustics. The first novelty of the method is that the Huygens-Kirchhoff

secondary source principle is used to integrate many locally valid asymptotic solutions to yield a

globally valid asymptotic solution so that caustics associated with the usual geometrical-optics

ansatz can be treated automatically. The second novelty is that a butterfly algorithm is adapted to

carry out the matrix-vector products induced by the Huygens-Kirchhoff integration in O(N logN)

operations, where N is the total number of mesh points, and the proportionality constant depends

on the desired accuracy and is independent of the frequency parameter. To reduce the storage of

the resulting traveltime and amplitude tables, each table is compressed into a linear combination

of tensor-product based multivariate Chebyshev polynomials so that the information of each table

is encoded into a small number of Chebyshev coefficients. As a result, the method enjoys the

following desired features: (1) it precomputes a set of local traveltime and amplitude tables; (2) it

automatically takes care of caustics; (3) it constructs Green’s functions of the Helmholtz equation

for arbitrary frequencies and for many point sources; (4) for a fixed number of points per wavelength

it constructs each Green’s function in nearly optimal complexity in terms of the total number of

mesh points, where the prefactor of the complexity only depends on the specified accuracy and is

independent of the frequency parameter.

In this work, we further develop the fast Huygens sweeping method by designing more efficient

and robust finite-difference methods for computing first-arrival traveltimes and corresponding am-

plitudes, and we carry out systematic comparisons between our globally valid asymptotic Green’s

functions and those obtained by directly finite-differencing Helmholtz equations for various models,

including the Marmousi model.

Our fast Huygens sweeping method allows both vertical and lateral variations in velocity fields

as long as the velocity fields host rays with a consistent orientation such as downgoing or upgoing,
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and the resulting wave field has no aperture limitation, which is different from that obtained by

solving a aperture-limited one-way wave equation. In the context of fully recursive F-X migration

as illustrated in Gray and May (1994), our method can be viewed as a semi-recursive F-X modeling

method so that it is natural to further develop the methodology into a semi-recursive F-X migration

method, and this is an ongoing project.

The paper is organized as follows. We start to present the factorization approaches and

the Babich’s formulation for computing phases and amplitudes so as to construct locally valid

geometric-optics Green’s functions. High order factorizations and approximations of phases and

amplitudes near source points will be presented. Then we recall the fast Huygens-sweeping method

for constructing globally valid asymptotic Green’s functions. Both 2-D and 3-D numerical exper-

iments are presented to demonstrate the performance of our methods. Concluding remarks are

given at the end.

HIGH ORDER APPROXIMATION OF EIKONAL AND AMPLITUDE

We consider the Helmholtz equation with a point-source condition in the high frequency regime,

∇2
rU +

ω2

v2(r)
U = −δ(r− r0) (1)

with the Sommerfeld radiation condition imposed at infinity, where U(r, ω; r0) is the wave field, ω

is the frequency, v(r) is the wave speed, r0 ≡ (x0, y0, z0) is the source point, and ∇2
r denotes the

Laplacian at r ≡ (x, y, z). The geometrical-optics (GO) large-ω ansatz for the Green’s function

with respect to a generic source r′,

G(r, ω; r′) ≈ A(r; r′)eiωτ(r;r
′) in 3-D,

(

≈ 1√
ω
A(r; r′)ei(ωτ(r;r

′)+π/4) in 2-D

)

(2)
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yields the eikonal equation for phase τ and the transport equation for amplitude A, respectively,

|∇rτ | =
1

v(r)
, τ(r′; r′) = 0, (3)

∇r ·
(

A2∇rτ
)

= 0, A(r′; r′) = A′(r′). (4)

Since τ and A are locally smooth in a neighborhood of the source r′ excluding the source itself

(Milnor, 1963; Symes and Qian, 2003), they yield a valid GO Green’s function in that local neigh-

borhood. τ and A are weakly coupled in the sense that τ must be computed first by solving the

eikonal equation (3) and then substituted in the transport equation (4) for computing A. Since

the Laplacian of τ is involved in (4), in order to get l-th order accurate A, at least (l+ 2)-th order

accurate τ is required. Due to the source singularity as τ behaves like a distance function which

is non-differentiable at the source point (Qian and Symes, 2002a), computing high-order accurate

τ and A by finite-differencing equations (3) and (4) is not a trivial matter. Without special treat-

ments of source singularities, any high-order finite-difference methods for solving (3) and (4) can

formally have at most first-order accuracy and large errors.

High-order factorization for eikonals

We first recall a factorization approach to resolving the source singularity for computing τ (Pica,

1997; Zhang et al., 2005; Fomel et al., 2009; Luo and Qian, 2011, 2012; Luo et al., 2012). In the

factorization approach, τ is factored as

τ = τ̃ τ̄ , (5)

where τ̃ is pre-determined analytically to capture the source singularity such that τ̄ is the new

unknown that is smooth at the source and satisfies the factored eikonal equation,

|τ̃∇rτ̄ + τ̄∇rτ̃ | = 1/v(r). (6)

For instance, τ̃ may be taken as τ̃(r; r′) = |r−r
′|

v(r′) .

6



Since τ̄ is smooth at the source, we can solve equation (6) efficiently with high-order Lax-

Friedrichs weighted essentially non-oscillatory (LxF-WENO) schemes as designed in Kao et al.

(2004); Zhang et al. (2006); Luo and Qian (2011); Luo et al. (2012). In a P -th order LxF-WENO

finite difference method on a mesh of size h, τ̄ must be initialized in a neighborhood of size 2(P−1)h

centered at the source, and these initial values are fixed during iterations. In Luo et al. (2014b), an

accurate, efficient, and systematic approach was introduced to initialize τ̄ near the source. Based

on the power series expansion of τ2 which is smooth near the source, one can derive approximations

of τ near the source up to arbitrary order of accuracy.

We recall the derivation of high order approximation of τ near the source. Assume that T (r) ≡

τ2(r) and S(r) ≡ 1/v2(r) are analytic at the source which is set to be the origin without loss of

generality. We can expand T and S as power series,

T (r) =
∞
∑

ν=0

Tν(r), S(r) =
∞
∑

ν=0

Sν(r), (7)

where Tν and Sν are homogeneous polynomials of degree ν in r. From the eikonal equation (3), we

have

ST =
1

4
|∇rT |2. (8)

By substituting (7) into (8), we have

(

∞
∑

ν=0

Sν(r)

)(

∞
∑

ν=0

Tν(r)

)

=
1

4

(

∞
∑

ν=0

∇rTν(r)

)2

, (9)

from which one can derive {Tν} term by term by collecting terms of the same degree. Following

Luo et al. (2014b), we can derive

T0(r) = 0, T1(r) = 0, T2(r) = S0r
2,
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and a recursive formula for computing TP (r) for P ≥ 3,

(P − 1)S0 TP (r) =
P−2
∑

ν=1

Sν(r)TP−ν(r)−
1

4

P−2
∑

ν=2

∇rTν+1(r) · ∇rTP−ν+1(r). (10)

Then we use the truncated sum T̃P ≡∑P
ν=2 Tν to approximate T near the source, and we further

choose τ̃P ≡
√

T̃P to approximate τ near the source with accuracy

|τ(r)− τ̃P (r)| = O(|r|P ), |r| → 0.

Taking τ̃P as high-order approximations of τ near the source, we apply high-order LxF-WENO

methods to solve the factored equation (6). In the P -th order LxF-WENO method for solving (6)

to obtain τ̄ , we first choose τ̃(r) ≡
√
S0|r|. To initialize τ̄ near the source, τ̄ is assigned as 1 at the

source and as τ̃P /τ̃ at other points in the 2(P −1)h neighborhood of the source so that these values

are fixed during the LxF-WENO sweeping iterations. At other points, the LxF-WENO iterations

are used to update τ̄ with τ̃(r) ≡
√
S0|r|.

High-order factorization for amplitudes

We extend the above factorization approach to deal with the amplitude A near the source. Since

A is singular at the source, we introduce Babich’s formulation (Babich, 1965),

B = Aτ (d−1)/2 (11)

into the transport equation (4) for A so that we have the Babich’s transport equation for the

amplitude factor B (Babich, 1965),

∇rT (r) · ∇rB(r) +B(r)

[

1

2
∇2

rT (r)− d/v2(r)

]

= 0, (12)
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where d is the spatial dimension and T (r) = τ2(r). Since the amplitude factor B is smooth near

and at the source (Babich, 1965) while the original amplitude A is singular at the source, we will

use this transport equation to derive high order approximations of B near the source. In addition

to power series expansions in (7), we assume that B’s power series expansion is given as

B(r) =
∞
∑

ν=0

Bν(r), (13)

where Bν are homogeneous polynomials of degree ν in r. It follows that Bν can be determined

term by term by substituting (13) into (12):

(

∞
∑

ν=2

∇rTν(r)

)

·
(

∞
∑

ν=1

∇rBν(r)

)

+

(

∞
∑

ν=0

Bν(r)

)[

1

2

(

∞
∑

ν=2

∇2
rTν(r)

)

− d

(

∞
∑

ν=0

Sν(r)

)]

= 0. (14)

We know from Babich (1965) that

B0 =
1

2
√
2π

for d = 2, and B0 =

√
S0

4π
for d = 3.

Comparing the linear terms in (14) and using the homogeneity of B1, we have

∇rT2 · ∇rB1 +
1

2
(B0∇2

rT3 +B1∇2
rT2)− d(B0S1 +B1S0) = 0,

⇒ 2S0r · ∇rB1 +
1

2
(B0∇2

rT3 + 2B1dS0)− d(B0S1 +B1S0) = 0,

⇒ 2S0B1 +
1

2
B0∇2

rT3 − dB0S1 = 0,

⇒ B1 =
1

2S0

(

−1

2
B0∇2

rT3 + dB0S1

)

.

(15)

Equating P -th degree terms on both sides of (14), we have

BP =
1

2PS0

(

−
P−1
∑

ν=1

∇rBν(r) · ∇rTP+2−ν(r)−
1

2

P−1
∑

ν=0

Bν(r)∇2
rTP+2−ν(r) + d

P−1
∑

ν=0

Bν(r)SP−ν(r)

)

.

(16)
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Consequently, we can now use the truncated sum to approximate B, i.e.,

B̃P ≡
P
∑

ν=0

Bν , (17)

and

|B̃P −B| = O(|r|P ), |r| → 0.

Taking B̃P as high-order approximation of B near the source, we will apply high-order LxF-

WENO methods to solve the Babich’s transport equation (12) for B. In the P -th order LxF-WENO

method for solving (12), B is assigned as B̃P in the 2(P − 1)h-neighborhood of the source so that

these values are fixed during the LxF-WENO iterations; at other points, the LxF-WENO iterations

are used to update B.

Comparing to the adaptive mesh refinement method for treating the source singularity used in

Kim and Cook (1999); Qian and Symes (2002a), high-order factorization based high-order LxF-

WENO sweeping methods make computing high-order accurate τ̄ and B easy and efficient, resulting

in high-order accurate τ and A and locally valid first-arrival Green’s functions. If one is satisfied

with accurate first-arrival Green’s functions, then the schemes developed above suffice. However,

since in genereal one needs multi-arrival Green’s functions, we incorporate these first-arrival Green’s

functions into the fast Huygens sweeping method introduced in Luo et al. (2014a) to build globally

valid multi-arrival Green’s functions.

HUYGENS-PRINCIPLE BASED GLOBALLY VALID GREEN’S

FUNCTIONS

Assume that a domain Ω is illuminated by an exterior source r0 /∈ Ω, and S = ∂Ω is the closed

surface enclosing the domain Ω; see Figure 1(a). At any observation point r ∈ Ω, the wave field

U(r; r0) excited by the source r0 can be written as the Huygens-Kirchhoff (HK) integral over S
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(Burridge, 1962; Baker and Copson, 1987):

U(r; r0) =

∫

S

{

G(r′; r)∇r′U(r′; r0) · n(r′)− U(r′; r0)∇r′G(r′; r) · n(r′)
}

dS(r′)

=

∫

S

{

G(r; r′)∇r′U(r′; r0) · n(r′)− U(r′; r0)∇r′G(r; r′) · n(r′)
}

dS(r′),

(18)

where G(r; r′) = G(r′; r) by reciprocity, n(r′) is the outward normal to S at r′ = (x′, y′, z′),

and G(r; r′) is the Green’s function associated with the source r′. In the integral, G(r; r′) and

∇r′G(r; r′) · n(r′) associated with r′ on S can be approximated with the GO ansatz (2).

By retaining the leading order term after substituting (2) into (18), we have

U(r; r0) ≈
∫

S

{

G(r; r′)
[

∇r′U(r′; r0) · n(r′)
]

−G(r; r′)∇r′τ(r; r
′) · n(r′)

[

iωU(r′; r0)
]}

dS(r′)

≈
∫

S

{

G(r; r′)
[

∇r′U(r′; r0) · n(r′)
]

−G(r; r′) cos(θ(r; r′))
[

iωU(r′; r0)/v(r
′)
]}

dS(r′),

(19)

where θ is the takeoff angle of the ray from source r′ to receiver r and is constant along the ray,

i.e.,

∇rθ(r; r
′) · ∇rτ(r; r

′) = 0; (20)

consequently,

∇r cos(θ(r; r
′)) · ∇rτ(r; r

′) = 0. (21)

Since the first-arrival GO approximations of Green’s functions associated with the secondary sources

are valid only locally, (19) can only be used in a narrow band near S so that rays emanating from

the source have not developed caustics yet. Hence the fast Huygens sweeping method carries out

the integration (19) in a layer by layer manner; see Figure 1(b) and Figure 2. The secondary sources

are placed on the top boundary of each layer, and the HK integral (19) is performed inside each

layer.
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Layer-based Huygens sweeping

We recall the planar-layer based Huygens sweeping method (Luo et al., 2014a) as illustrated in

Figure 1(b) and Figure 2 and summarized as follows.

Algorithm: Algorithmic sketch for Huygens sweeping method

• Stage 1 (offline). Precompute asymptotic ingredients such as phases, amplitudes, and

takeoff angles. Since these ingredients only depend on the velocity and do not depend on

wavelength or frequency, these can be computed on very coarse meshes by using high-order

schemes. We carry out the following steps: (1) the whole computational domain is parti-

tioned into layers as in Figure 1(b) so that rays emanating from the primary source and each

secondary source have not developed caustics yet; (2) the tables of phases, amplitudes and

takeoff angles with respect to the primary source in the first layer (see Figure 2(a)) and those

tables for each secondary source located on the layer boundary of the other layers (see Fig-

ure 2(b)) are computed by solving the relevant equations as described above with high-order

LxF-WENO methods in the corresponding layer; and (3) these tables are compressed with

the Chebyshev expansion based data compression technique (Alkhalifah, 2011; Boyd, 2001;

Luo et al., 2014a); see Appendix A.

• Stage 2 (online). Given a frequency ω, we specify four to six (4 to 6) points per wavelength

so that the wavefield is sampled with n mesh points along each dimension: (1) in the first

layer containing the primary source, construct the first-arrival Green’s function with tables

of the primary source; see Figure 2(a); (2) from the second layer to all the other layers, for

each line of secondary sources on the layer boundary, tables of phases, amplitudes and takeoff

angles are read from the hard drive and used to reconstruct the tables on the underlying

mesh by Chebyshev sums (see Appendix A); if necessary the tables are interpolated with

respect to the secondary sources onto the underlying mesh; and (3) the HK integral (19) is

then discretized with a numerical quadrature rule, such as the trapezoidal rule as used in
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the current work, and the resulting matrix-vector products are evaluated by a fast butterfly

algorithm as shown in Luo et al. (2014a); see Figure 2(b).

Complexity analysis

In the above algorithm, two sets of different meshes are involved in the computation. One set of

meshes is used for computing GO ingredients; since these ingredients are independent of wavelength

or frequency, these meshes are independent of wavelength as well and can be very coarse so that

high-order schemes still can yield sufficiently accurate GO ingredients. The other set of meshes

is used to sample the wavefield. Since we need to specify four to six points per wavelength to

resolve wave oscillations, these meshes depend on wavelength or frequency. Therefore, the following

complexity analysis treats the two sets of meshes differently.

Assume that there are L layers in the partition. In Stage 1, the complexity of computing each

table in each layer with LxF-WENO methods is O(md−1(m/L) logm), where m mesh points are

used for each spatial direction and the logm factor comes from the number of sweeping iterations.

Since there are O(md−1) secondary sources for each layer, the total complexity of computing all the

tables for secondary sources is LO(md−1(md−1(m/L) logm)) = O(m2d−1 logm), which is analogous

to the computational complexity for asymptotic ingredients in phase space (Symes and Qian, 2003;

Leung et al., 2007; Luo et al., 2014a). Since these tables are precomputed and are independent of

wavelength or frequency, those tables can be computed on very coarse meshes by using high-order

schemes and can be reused for different frequencies.

In Stage 2, direct evaluation of the HK-integral induced matrix-vector products is computa-

tionally expensive. To accelerate the evaluation, we adapt a multilevel matrix decomposition based

butterfly algorithm originated in Michielssen and Boag (1996) and further developed in O’Neil

(2007); Candés et al. (2009); Hu et al. (2013); Luo et al. (2014a). Following Luo et al. (2014a),

given frequency ω, four to six points are specified per wavelength so that the wavefield is sampled

with n mesh points along each spatial direction. For each layer, the complexity of the butterfly
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algorithm is O(nd−1(n/L) log(nd−1(n/L))) = O((N/L) logN), where N = O(nd) and the prefactor

is independent of frequency ω; the complexity of Chebyshev sums and interpolation with respect to

secondary sources is O(N/L), where the prefactor depends on the number of spectral coefficients in

the truncated Chebyshev expansion. The number of spectral coefficients is considered to be much

smaller than O(n). Therefore, the total complexity of constructing the wavefield in the whole do-

main is O(N logN). Please refer to Luo et al. (2014a) for more implementation details of the fast

butterfly algorithm used here.

Once the data tables are pre-computed, the fast Huygens sweeping method can be used to

construct the global wave field with O(N logN) complexity for a given primary source and for an

arbitrary given frequency. Moreover, the data tables can be reused for many different primary

sources. For different primary sources, only the tables with respect to the primary sources inside

the first layer are recomputed. The tables of the other layers are reused. Therefore, we refer

Stage 1 as “offline” and Stage 2 as “online”. These unique merits are much desired in many

applications, such as seismic imaging and inversion.

NUMERICAL EXAMPLES

We present several numerical experiments to demonstrate our new method. We denote the coarse

mesh in Stage 1 as GO mesh. We choose P = 3 in the high-order factorization for computing τ and

B. The mesh for sampling wavefields is chosen such that a fixed number of points (4 to 6 points)

per wavelength are used to resolve wave oscillations. We compare our numerical solutions with

those obtained by a direct solver on a much finer mesh. For the direct finite-difference Helmholtz

solver, we use a nine-point stencil (Jo et al., 1996) instead of the usual five-point stencil to reduce

dispersion errors and obtain more reliable wave fields; the perfectly-matched-layer (PML) absorbing

boundary conditions are also imposed (Berenger, 1994). The resulting sparse linear system is solved

by the sparse LU solver in the Matlab platform.
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Example 1: Two-dimensional Sinusoidal velocity model

In this example the velocity is chosen as

v = 1 + 0.2 sin(3π(x+ 0.05)) sin(0.5πz) (km/s),

on the domain [0, 1]× [0, 2] (km). In Stage 1, the GO coarse mesh is 101×201, and the asymptotic

ingredients are compressed with ratio 50 : 1. In Stage 2, the separation distance df between the

sources and receivers is fixed as 0.1 (km).

Figure 3 shows the contour plots of the numerical solutions obtained by our approach and the

direct Helmholtz solver mentioned above with ω = 32π. Our approach uses approximately 5 points

per wavelength while the direct solver uses approximately 40 points per wavelength. Figure 4 shows

comparisons between the solutions. Table 1 shows the efficiency and stability of our method and

comparisons between the butterfly algorithm and direct summation.

Figure 5 shows numerical solutions by our method and the direct solver with a different setup,

where the domain is [0, 1]× [0, 3] (km) and the source is at (0.5, 1.5)(km).

Example 2: Synthetic Marmousi velocity model

In this example we construct wavefields for the Marmousi model. The original model is sampled

on a 0.024km by 0.024 (km) grid, consisting of 384 samples in the x-direction and 122 samples

in the z-direction; therefore the domain is [0, 9.192] × [0, 2.904] (km). Since we need high-order

derivatives of the velocity in high-order approximations, the velocity is smoothed by solving the

following least-squares regularization problem,

min
v(r)

{|v(r)− vm(r)|2 + α|∇rv(r)|2 + β|∇2
rv(r)|2},
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where vm is the original Marmousi model, α and β are smoothness parameters. We choose α = β =

10−4. Figure 6 shows the Marmousi models. We first test a case with the smoothed velocity. The

velocity field is a sampled window from receivers 218 to 313 (96 receivers in total) in the smoothed

Marmousi model. The windowed domain is [5.208, 7.488] × [0, 2.904] (km). In Stage 1, the GO

coarse mesh is 96× 122 and the asymptotic ingredients are compressed with ratio 25 : 1. In Stage

2, the separation distance df between the sources and receivers is fixed as 0.192 (km).

We apply our new algorithm to the smoothed Marmousi velocity model as in Figure 6(b). This

synthetic geological structure creates many strong and localized velocity heterogeneities. Figure 7

shows the wave fields with the primary source point given as (5.380, 0.24) (km) and ω = 32π by

two different methods, where the fast Huygens sweeping method uses a mesh of 286 × 364 points

and the direct Helmholtz solver uses a mesh of 1711× 2179 points. To apply the direct Helmholtz

solver on the fine mesh, the velocity field on the original coarse mesh is interpolated onto the finer

mesh first with spline interpolations.

Next we choose a sampled window from receivers 41 to 158 of the Marmousi model where the

velocity is only slightly smoothed; see Figure 8. The windowed domain is [0, 2.904]× [0.96, 3.768]

(km). In Stage 1, the GO coarse mesh is 118× 122 and the data compression ratio for asymptotic

ingredients is 25 : 1. In Stage 2, the separation distance df between the sources and receivers is

fixed as 0.192 (km).

Figure 9 shows the wave fields with the primary source point given as (1.488, 0.48) (km) and

ω = 32π by the two methods, where the fast Huygens sweeping method uses a mesh of 352× 364

points and the direct Helmholtz solver uses a mesh of 2107 × 2179 points. To apply the direct

Helmholtz solver on the fine mesh, the velocity field on the original coarse mesh is interpolated

onto the finer mesh first with spline interpolations.
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Example 3: Three-dimensional Vinje velocity model (Vinje et al., 1996)

In the example the velocity is chosen as

v = 3.0− 1.75e(−((x−1)2+(y−1)2+(z−1)2)/0.64) (km/s),

on the domain [0, 2] × [0, 2] × [0, 2] (km). In Stage 1, the GO coarse mesh is 51 × 51 × 51, and

the data compression ratio for asymptotic ingredients is 32 : 1. In Stage 2, the separation distance

df between the sources and receivers is fixed as 0.3 (km).

We partition the 3-D domain into two layers at the plane z = 1.2 (km). When ω = 32π, there

are roughly 26 waves propagating in each direction. If a direct solver is used to compute the wave

field, then the number of unknowns is roughly 17 millions if 10 points per wavelength is used to

capture each wave, resulting in a huge linear system to deal with, not to mention the fact that

whether 10 points per wavelength suffice or not. To use our fast Huygens sweeping method, we

choose approximately 4 points per wavelength.

Figure 10 shows the results for different primary sources. The tables corresponding to the

primary source in the first layer need to be recomputed for different primary sources. Tables with

respect to those secondary sources do not need to be recomputed. Table 2 shows the running times

of our method for different ω’s.

CONCLUSION

We have developed the fast Huygens sweeping method for evaluating the Huygens-Kirchhoff in-

tegral so that locally valid first-arrival Green’s functions can be integrated into a globally valid

multi-arrival Green’s function. The needed ingredients for constructing first-arrival Green’s func-

tions, such as first-arrival traveltimes and amplitudes, were computed by utilizing a set of newly

developed tools, such as the factorization approach, the Babich’s formulation, power-series based

high-order approximations, and high-order LxF-WENO methods. The Huygens-Kirchhoff integral
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were evaluated by adapting a fast butterfly algorithm so that the fast Huygens sweeping method has

computational complexity O(N logN), where N is the total number of mesh points, and the pro-

portionality constant depends on the desired accuracy and is independent of frequency. Numerical

examples demonstrated performance, efficiency, and accuracy of the proposed method.
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APPENDIX A

COMPRESSION WITH CHEBYSHEV EXPANSION

We illustrate the compression process for a 3-D traveltime table. The same can be done for

amplitude and takeoff angle tables, and for 2-D tables (Boyd, 2001; Alkhalifah, 2011). Without

loss of generality, we assume that the traveltime τ(r; r0) is defined on [−1, 1]3 for a given source

point r0. τ can be expanded in terms of Chebyshev polynomials of the first kind (Boyd, 2001),

τ(r; r0) = τ(x, y, z; r0) =
∞
∑

m=0

∞
∑

n=0

∞
∑

k=0

Cmnk(r0)Tm(x)Tn(y)Tk(z), (A-1)

where Tl(·) is the Chebyshev polynomial of the first kind and of order l: Tl(·) = cos(l cos−1(·)); and

{Cmnk(r0)} are spectral coefficients. To determine {Cmnk(r0)}, we use the computed traveltime on

the coarse mesh in Stage 1. {Cmnk(r0)} are then computed with the fast Fourier cosine transform

(Boyd, 2001; Alkhalifah, 2011). In numerical applications, for given accuracy it is enough to keep

only the first few coefficients among {Cmnk(r0)},

τ(r; r0) = τ(x, y, z; r0) ≈
CX−1
∑

m=0

CY −1
∑

n=0

CZ−1
∑

k=0

Cmnk(r0)Tm(x)Tn(y)Tk(z), (A-2)

with CX , CY and CZ being given numbers. Instead of saving τ on the coarse mesh, the set of

significant coefficients,

C̃ = {Cmnk(r0) : 0 ≤ m ≤ CX − 1, 0 ≤ n ≤ CY − 1, 0 ≤ k ≤ CZ − 1},

will be saved for later use. In practice, it is possible to reconstruct τ with high accuracy even with

a relatively high compression ratio defined as (the size of the coarse mesh)/(CXCY CZ).

With C̃, the traveltime on any specified computational mesh can be computed by evaluating

the formula (A-2) on that mesh as product of low-rank matrices, which is detailed below by using

Matlab notation:

19



• In 3-D, τ on a mesh of size M × N ×K spanned by X = [−1 : hx : 1], Y = [−1 : hy : −1],

and Z = [−1 : hz : 1] is reconstructed by

τ = permute(permute(T′
XC̃TZ, [1 3 2])TY, [1 3 2]),

where TX, TY, and TZ are of size CX ×M , CY ×N , and CZ ×K respectively, and

TX(l, :) = Tl−1(X), TY(l, :) = Tl−1(Y), and TZ(l, :) = Tl−1(Z).

• In 2-D, τ on a 2-D mesh of size M ×K spanned by X = [−1 : hx : 1] and Z = [−1 : hz : 1] is

reconstructed as

τ = T′
XC̃TZ,

where C̃ is of size CX × CZ .
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LIST OF FIGURES

1 2-D demonstration of the H-K integral and partition of the domain into layers: (a) H-K

integral with S an infinite plane; and (b) partition of the domain into planar layers. Star represents

the primary source.

2 Receivers and sources in the H-K integral and illustration of the fast Huygens sweeping

algorithm. Larger star represents the primary source; little stars represent the secondary sources

on the boundary of each layer; the grid represents the mesh. In offline Stage 1, the coarse mesh

is used. In online Stage 2, the refined mesh is used and depends on ω. The region of size df is

independent of ω. (a) shows the first layer with respect to the primary source; and (b) shows a

layer l with l > 1 and with respect to secondary sources on the boundary of this layer.

3 Real part of the wave field for the sinusoidal model. (a) obtained by our method (mesh

101 × 201, solid black lines indicating the locations of secondary sources for each layer) and (b)

obtained by the direct Helmholtz solver (mesh 801× 1601). ω = 32π. The primary source point is

(0.5, 0.2)(km).

4 Real part of the wave field for the sinusoidal model. Comparisons between the solutions

obtained by our method and the direct Helmholtz solver at (a) z = 0.55 and (b) z = 1.75 (km),

respectively. Solid lines represent solutions by the direct Helmholtz solver; circles represent solu-

tions by our method (p = 9). ω = 32π. The primary source point is (0.5, 0.2)(km).

5 Real part of the wave field for the sinusoidal model. (a) obtained by our method (mesh

101× 301 and solid black lines indicating the locations of secondary sources for each layer) and (b)

obtained by the direct Helmholtz solver (mesh 801× 2401). ω = 32π. The primary source point is

(0.5, 1.5)(km).

6 Marmousi model. (a) the original Marmousi velocity field and (b) the smoothed velocity

field. The region between two black lines is the sampled window from receivers 218 to 313.

7 Smoothed Marmousi model with velocity in Figure 6. Real part of the wave field with (a)

obtained by our method and (b) obtained by the direct Helmholtz solver. Solid lines show the po-

sitions of the secondary sources. (c)-(d) are comparisons of the solutions at z = 1.472, 2.592(km),
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respectively, where circles represent the solution by our method and solid lines represent the solu-

tion by the direct Helmholtz solver.

8 Marmousi model with (a) the original Marmousi velocity field and (b) a slightly smoothed

velocity field. The region between two black lines is the sampled window from receivers 41 to 158.

9 Smoothed Marmousi model with velocity in Figure 8. Real part of the wave field with (a)

obtained by our method and (b) obtained by the direct Helmholtz solver. Solid lines show the po-

sitions of the secondary sources. (c)-(d) are comparisons of the solutions at x = 2.640, 3.360(km),

respectively, where circles represent the solution by our method and solid lines represent the solu-

tion by the direct Helmholtz solver.

10 The Vinje model. Wavefields are constructed by our method on a mesh 101 × 101 × 101

with ω = 32π. In (a), (b) and (c), the primary point source is (0.6, 0.6, 0.24) (km); and in (d)(e)(f),

the primary source is (1.4, 1.4, 0.36) (km). (a), (b) and (c) show the real part of the wavefields at

x = 0.6(km), y = 0.6(km), and z = 1.8(km), respectively; and (d), (e), and (f) show the real part

of the wavefields at x = 1.4(km), y = 1.4(km), and z = 1.8(km), respectively.
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Figure 1: 2-D demonstration of the H-K integral and partition of the domain into layers: (a) H-K
integral with S an infinite plane; and (b) partition of the domain into planar layers. Star represents
the primary source.

28



a)

!"#$%&'!

z

fd

b)

!"#$%&&'&!

z

fd

fd

!"#$%&&'()&

!"#$%&&'*)&

Figure 2: Receivers and sources in the H-K integral and illustration of the fast Huygens sweeping
algorithm. Larger star represents the primary source; little stars represent the secondary sources
on the boundary of each layer; the grid represents the mesh. In offline Stage 1, the coarse mesh
is used. In online Stage 2, the refined mesh is used and depends on ω. The region of size df is
independent of ω. (a) shows the first layer with respect to the primary source; and (b) shows a
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Figure 3: Real part of the wave field for the sinusoidal model. (a) obtained by our method (mesh
101 × 201, solid black lines indicating the locations of secondary sources for each layer) and (b)
obtained by the direct Helmholtz solver (mesh 801× 1601). ω = 32π. The primary source point is
(0.5, 0.2)(km).

30



a)
0 0.5 1

−0.02

0

0.02

x(km)

W
av

ef
ie

ld
b)

0 0.5 1

−0.02

−0.01

0

0.01

0.02

0.03

x(km)

W
av

ef
ie

ld

Figure 4: Real part of the wave field for the sinusoidal model. Comparisons between the solutions
obtained by our method and the direct Helmholtz solver at (a) z = 0.55 and (b) z = 1.75 (km),
respectively. Solid lines represent solutions by the direct Helmholtz solver; circles represent solutions
by our method (p = 9). ω = 32π. The primary source point is (0.5, 0.2)(km).

31



a) x(km)

z(
km

)

 

 

0 0.5 1

0

1

2

3 −0.1

−0.05

0

0.05

0.1

b) x(km)

z(
km

)

 

 

0 0.5 1

0

1

2

3 −0.1

−0.05

0

0.05

0.1

Figure 5: Real part of the wave field for the sinusoidal model. (a) obtained by our method (mesh
101× 301 and solid black lines indicating the locations of secondary sources for each layer) and (b)
obtained by the direct Helmholtz solver (mesh 801× 2401). ω = 32π. The primary source point is
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Figure 6: Marmousi model. (a) the original Marmousi velocity field and (b) the smoothed velocity
field. The region between two black lines is the sampled window from receivers 218 to 313.
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Figure 7: Smoothed Marmousi model with velocity in Figure 6. Real part of the wave field with
(a) obtained by our method and (b) obtained by the direct Helmholtz solver. Solid lines show the
positions of the secondary sources. (c)-(d) are comparisons of the solutions at z = 1.472, 2.592(km),
respectively, where circles represent the solution by our method and solid lines represent the solution
by the direct Helmholtz solver.
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Figure 8: Marmousi model with (a) the original Marmousi velocity field and (b) a slightly smoothed
velocity field. The region between two black lines is the sampled window from receivers 41 to 158.
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Figure 9: Smoothed Marmousi model with velocity in Figure 8. Real part of the wave field with
(a) obtained by our method and (b) obtained by the direct Helmholtz solver. Solid lines show the
positions of the secondary sources. (c)-(d) are comparisons of the solutions at x = 2.640, 3.360(km),
respectively, where circles represent the solution by our method and solid lines represent the solution
by the direct Helmholtz solver.
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Figure 10: The Vinje model. Wavefields are constructed by our method on a mesh 101× 101× 101
with ω = 32π. In (a), (b) and (c), the primary point source is (0.6, 0.6, 0.24) (km); and in (d)(e)(f),
the primary source is (1.4, 1.4, 0.36) (km). (a), (b) and (c) show the real part of the wavefields at
x = 0.6(km), y = 0.6(km), and z = 1.8(km), respectively; and (d), (e), and (f) show the real part
of the wavefields at x = 1.4(km), y = 1.4(km), and z = 1.8(km), respectively.
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1 Sinusoidal model. Numerical accuracy and comparisons on CPUtime (seconds) between

the butterfly-algorithm based Huygens-Kirchhoff summation (denoted as TM ) and the direct Huygens-

Kirchhoff summation (denoted as TD) in the second layer. p = 9 Chebyshev nodes are used in each

dimension. The source point is (0.5, 0.2)(km). NPW denotes the number of points per wave-

length.

2 Vinje model. CPUtime in seconds for the butterfly-algorithm based Huygens-Kirchhoff

summation. p = 7, 9, 11 Chebyshev nodes are used in each dimension. Source point is (1.0, 1.0, 0.2)

(km). NPW denotes the number of points per wavelength.
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Mesh 201× 61 401× 121 801× 241 1601× 481 3201× 961 6401× 1921

ω/2π 32 64 128 256 512 1024

NPW 5 5 5 5 5 5

TD (sec) 0.28 1.48 13.12 100.84 810.60 6503.15

p = 9

L2(abs) 1.43E-5 6.03E-6 4.06E-6 4.03E-6 2.65E-6 2.37E-6

L2(rel) 1.34E-3 7.98E-4 7.62E-4 1.07E-3 9.99E-4 1.26E-3

TM (sec) 0.61 1.55 4.69 18.30 66.43 299.67

TD/TM 0.46 0.95 2.80 5.51 12.20 21.70

Table 1: Sinusoidal model. Numerical accuracy and comparisons on CPUtime (seconds) be-
tween the butterfly-algorithm based Huygens-Kirchhoff summation (denoted as TM ) and the direct
Huygens-Kirchhoff summation (denoted as TD) in the second layer. p = 9 Chebyshev nodes are
used in each dimension. The source point is (0.5, 0.2)(km). NPW denotes the number of points
per wavelength.
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Mesh 101× 101× 101 201× 201× 201

ω/2π 16 32

NPW 4 4

TM (sec) (p=7) 194.36 1404.61

TM (sec) (p=9) 328.72 2555.59

TM (sec) (p=11) 625.60 4843.46

Table 2: Vinje model. CPUtime in seconds for the butterfly-algorithm based Huygens-Kirchhoff
summation. p = 7, 9, 11 Chebyshev nodes are used in each dimension. Source point is (1.0, 1.0, 0.2)
(km). NPW denotes the number of points per wavelength.
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