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Abstract

We present a non-local regularization framework that we apply to inverse imaging problems. As

opposed to existing non-local regularization methods that rely on the graph gradient as the regularization

operator, we introduce a family of non-local energy functionals that involves the standard image gradient.

Our motivation for designing these functionals is to exploit at the same time two important properties

inherent in natural images, namely the local structural image regularity and the non-local image self-

similarity. To this end, our regularizers employ as their regularization operator a novel non-local version of

the structure tensor. This operator performs a non-local weighted average of the image gradients computed

at every image location and, thus, is able to provide a robust measure of image variation. Further, we

show a connection of the proposed regularizers to the Total Variation semi-norm and prove convexity.

The convexity property allows us to employ powerful tools from convex optimization in order to design

an efficient minimization algorithm. Our algorithm is based on a splitting variable strategy which leads

to an augmented Lagrangian formulation. To solve the corresponding optimization problem we employ

the alternating-direction methods of multipliers. Finally, we present extensive experiments on several

inverse imaging problems, where we compare our regularizers with other competing local and non-local

regularization approaches. Our results are shown to be systematically superior, both quantitatively and

visually.

The authors are with the Department of Mathematics, University of California, Los Angeles , United States (email: stamatis@

math.ucla.edu;sjo@math.ucla.edu).

SL was supported by the Swiss National Science Foundation (SNF) under grant P300P2 151325 and SO was partially

supported by the Keck Foundation.



1

Non-local Structure Tensor Functionals

for Image Regularization

I. INTRODUCTION

Inverse problems typically arise in several image processing and computer vision applications,

including image restoration, image inpainting, image segmentation, optical flow estimation, stereo and

3D reconstruction, etc. In these cases, the task is to estimate underlying features of interest from partial or

indirect measurements. In practice, the majority of inverse imaging problems are ill-posed [1]. This implies

that in order to obtain a physically or statistically meaningful solution, some type of prior information

about the underlying image must be taken into account.

Among the available strategies that one can follow to deal with inverse problems, the variational

approach is one of the most widely used. Under this framework, image recovery is cast as the minimization

of an energy functional whose minimizer corresponds to the desired solution. Here, of significant

importance is the proper selection of the regularizer, which is responsible to favor certain reconstructions.

This has triggered an increasing research interest in the design of regularization functionals that can

accurately model important properties of natural images.

One of the most successful regularization criteria that have been proposed in the literature is the

Total variation (TV) semi-norm [2]. TV exploits the local structural regularity property, that is natural

images are typically smooth everywhere except to edges, and employs the image gradient to penalize

the image variation with an L1-type of penalty. This leads to reconstructions that feature sharp and well-

preserved image edges. Inevitably, TV has also some limitations. The main one is that in certain cases

it can over-smooth homogeneous regions and create staircase artifacts [3]. To address this issue several

modifications/extensions of TV have been proposed. These involve either first-order functionals whose

goal is to provide an improved measure of image variation [4]–[7], or higher-order functionals that favor

piecewise-smooth instead of piecewise-constant solutions (see [3], [8], [9] and references therein).

The above functionals are considered as local or semi-local, since they involve a regularization operator

that acts on a restricted region of the image domain. Recently, a new regularization paradigm has been

introduced in [10]–[12], where non-local operators are used instead for defining energy functionals. These

operators are non-local in the sense that they allow interactions between image points that can possibly

be located far apart. The motivation behind this approach is that natural images exhibit a non-local self-
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similarity property. This means that images often consist of localized patterns that repeat themselves at

distant locations in the image domain. Therefore, non-local regularizers can effectively model long-range

dependencies and lead to improved reconstruction results.

A. Contributions

In this work we combine ideas both from the local and non-local regularization settings and introduce

a novel non-local family of regularizers. Our regularizers differ from the existing non-local ones in

the sense that they involve a non-local operator which depends on the image gradient rather than the

graph gradient. The motivation is that this way we can exploit at the same time both the local structural

image regularity and the non-local image self-similarity properties. In detail, our key contributions are

the following:

1. We extend our previous work [7] and design penalties that employ a non-local version of the

structure tensor as the regularization operator. This operator performs a non-local weighted average

of the image gradients computed at every image point and, thus, provides a more robust measure

of image variation.

2. We prove that our regularization criteria are convex and show a connection with the total variation

semi-norm.

3. We introduce the concept of the non-local gradient as the non-local extension of the discrete image

gradient. We use this operator to re-express our discrete energy functionals in a form that facilitates

its efficient minimization.

4. We develop an efficient optimization algorithm that is based on an augmented Lagrangian

formulation of the problem.

5. We provide extensive comparisons of our method with alternative regularizers on several inverse

imaging problems.

II. REGULARIZATION OF INVERSE PROBLEMS

A. Image-Formation Model and Variational Recovery

We will be concerned with the recovery of signals whose measurements are described by a linear

observation model of the form:

v (x) = Au (x) + n (x) . (1)
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Here, u (x) =
[
u1 (x) u2 (x) . . . uC (x)

]
: Rd 7→ RC represents the generic underlying vector-valued

image consisting of C channels, v are the measurements, A is a linear operator that corresponds to the

impulse response of the imaging device, and n is a term that accounts for all possible errors during the

acquisition. Hereafter, we will assume n to be an independent and identically distributed (i.i.d) Gaussian

term.

Despite the linear nature of the forward model in (1), the recovery of u from v is non-trivial. This is

due to the measurement noise and the operator A, which typically is either ill-conditioned or singular.

Therefore, a unique and stable solution does not exist. One way to tackle this problem is to cast the

estimation of u as the minimization of an objective function of the form:

E (u) = 1
2 ‖v −Au‖

2
2 + τψ (u) . (2)

This cost function consists of the quadratic data fidelity term, which measures the proximity of the

estimate to the measurements, and the regularizer ψ (u), which encodes the regularity assumptions about

the underlying image. The role of the latter is to narrow down the set of plausible solutions by favoring

those that exhibit the expected properties. The regularization parameter τ ≥ 0 balances the influence of

both terms to the solution.

B. Regularization Functionals Revisited

From the discussion above, it is apparent that the regularizer plays a crucial role in image reconstruction.

Most of the regularization approaches that have been introduced so far in the literature can be assigned to

two main categories, namely the synthesis-based and the analysis-based regularization. In the synthesis-

based framework the reconstruction takes place in a sparsifying-base, such as the wavelet domain, where

a penalty is imposed on the coefficients of the image in this base [13]. Then the final image is obtained

by mapping the reconstructed coefficients back to the image domain through an inverse transform. On

the other hand, the analysis-based framework involves regularizers that are directly applied on the image

one wishes to reconstruct. Such regularizers have been shown to lead to better recovery results (see for

example [14]) and, thus, are mostly preferred.

The analysis-based regularizers can be expressed in the following generic form:

R (u) =

∫

Ω
Φ (Lu (x)) dx, (3)

where Ω ⊆ Rd, L is the regularization operator (scalar or multi-component) acting on the image, and Φ (·)
is the potential function. Typical choices for L are differential operators such as the Laplacian (scalar
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operator), the gradient (vectorial operator), the Hessian (matrix-valued operator) or wavelet-like operators

(wavelets, curvelets, ridgelets, etc.), while the potential function usually involves a norm distance.

C. Total Variation

A very popular regularizer of the form (3) is the Total Variation (TV) semi-norm [2], which for a

smooth grayscale image u (C = 1) corresponds to the L1 norm of the gradient magnitude and it is

formally defined as

TV =

∫

Ω
‖∇u (x)‖2 dx. (4)

For the past two decades, TV has been extensively applied to several imaging and computer vision

problems. One of the main reasons for its success is its ability to allow sharp features (discontinuities)

in the solutions. This stems from the L1-type behavior of TV that does not over-penalize high intensity

variations. For image reconstruction this means that the result will have well-preserved and sharp edges

and, thus, it will be visually appealing. Since TV only applies to scalar images, it has been further

extended in several ways to cover the case of vector-valued images [15]–[17]. The main requirement for

its vectorial variants is that their definition should coincide with the scalar one in (4) when C = 1.

D. Semi-Local Regularization Functionals

While TV has been proven a very powerful regularizer, in several cases its applicability can be

limited due to the fact that by design it promotes piecewise-constant solutions. Furthermore, the gradient

magnitude, which is employed to penalize the image variation at every point in the image domain, is

completely localized and thus it is not very informative of the geometric image structures.

To deal with these limitations of TV, in our prior work we have introduced a family of regularization

functionals that involve more general descriptors of image variation which take into account information

that is available in a local neighborhood of every point in the image domain [7]. Therefore, the resulting

functionals exhibit a semi-local behavior and, thus, can provide a more robust measure of image variation.

This is accomplished by employing in their formulation the structure tensor operator [18].

The structure tensor of an image u evaluated at a spatial location x, denoted as Sku (x) ∈ Sd+, is

a d × d symmetric positive semi-definite (PSD) matrix. It summarizes the dominant directions of the

gradient in a neighborhood centered at the point x and it is defined as

Sku (x) = kσ ∗
(

∇u (x)∇u (x)T
)

, (5)
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where kσ is a Gaussian convolution kernel of standard deviation σ. When dealing with vector-valued

images the definition of the structure tensor can be extended by replacing the gradient in (5) with the

Jacobian operator

Ju (x) =
[
∇u1 (x)∇u2 (x) . . .∇uC (x)

]
, (6)

which is the gradient’s extension for vector-valued functions.

The importance of the structure tensor lies in its eigenvalues which provide a rich and discriminative

description of the local geometry of the image by summarizing the distribution of the image gradients

in the neighborhood specified by the support of the kernel kσ. Let us consider a 2D image and let

λ1 (x) and λ2 (x) represent the largest and smallest eigenvalues of the structure tensor at a spatial point

x, respectively. When both eigenvalues are relatively small there are small intensity variations in the

neighborhood around x, indicating that the region is homogeneous. When λ1 (x) is large and λ2 (x) is

small there are strong variations but only on a dominant orientation. Therefore, the point x is located

close to an image edge. When both eigenvalues are large there are high variations on both directions

specified by the corresponding eigenvectors and, thus, the point x is close to an image corner.

Based on the above, it appears that the eigenvalues of the structure tensor are more informative of

the geometric structure of the image than the gradient magnitude which is computed completely locally.

This observation has led to the introduction of the Structure tensor Total Variation (STV) functionals [7]

which are defined as:

STVp (u) =

∫

Ω

(
d∑

i=1

λ
p/2
i (x)

)1/p

dx, (7)

where λi (x) is the ith eigenvalue of the structure tensor evaluated at the point x and p ≥ 1.

E. Non-local Regularization Functionals

Non-local regularization functionals have been recently introduced as a means of modeling complex

image structures. These regularizers exploit the non-local self-similarity property which is inherent in

natural images. The interest for designing such functionals was initiated by the introduction of the non-

local means (NLM) filter, which has been used for the task of image denoising [19], [20].

The NLM filter is a patch-based extension of the bilateral filter [21] and it is defined as

NLM(u) (x) =
1

Z (x)

∫

Ω
e−

dα(u(x),u(y))

β2 u (y) dy, (8)
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where

dα (u (x) ,u (y)) =

∫

Ω
Gα (t) |u (x+ t)− u (y + t)|2 dt, (9)

Gα is a Gaussian kernel of standard deviation α, β acts as a filtering parameter, and Z (x) =
∫

Ω e
−dα(u(x),u(y))/β2

dy is the normalization factor. According to the definition of NLM, the filtered

version of u at the spatial coordinates x corresponds to a weighted average of the values of all the image

points whose Gaussian neighborhood (image patch) is similar to the neighborhood of x. The weights

are determined according to the degree of similarity between two image patches, which is given by

the distance metric defined in Eq. (9). This filtering strategy differs significantly from standard filtering

approaches that involve convolutions and it exploits the simple but very effective idea that two points

centered in similar patches are very likely to have the same intensity values. Since the search for similar

points is not restricted in a local region of the image domain, the averaging in Eq. (8) can involve points

that are located far from each other. This leads to a non-local filtering which has been shown to be very

effective in eliminating noise.

Due to its success, NLM gathered great attention and it was first interpreted in [22] as a non-convex

regularizer based on non-local functionals. These functionals are non-local in the sense that the involved

operators allow a point to interact with any other point in the image domain. Then, in [23] NL-means

was expressed as a non-local quadratic functional. Later, Gilboa and Osher following ideas from graph

theory and specifically the gradient and divergence on graphs, which were first introduced in [11] in a

discrete setting, they developed in [10] a non-local regularization framework defined in the continuous

domain, while a discrete analog was considered in [12]. This framework made possible the extension of

the non-local quadratic regularizers to non-smooth functionals.

The best representative of the existing non-local functionals is the non-local total variation (NLTV) [10].

NLTV is a convex regularizer that involves the non-local graph gradient operator. This operator is defined

as

∇wu (x) = (u (y)− u (x))
√

w (x,y), ∀y ∈ Ω, (10)

where w (x,y) : Ω×Ω 7→ R+ is a non-negative weighting function that assigns weights between a pair

of spatial points (x,y) by taking into account their relative distance as well as the similarity of their

corresponding values u (x), u (y).
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Based on the non-local graph gradient, NLTV can be expressed in the generic form of (3) as

NLTV (u) =

∫

Ω
‖∇wu (x)‖2 dx

=

∫

Ω

√
∫

Ω
(u (y)− u (x))2 w (x,y) dydx. (11)

From its definition it is clear that NLTV exhibits a non-local behavior, since it permits all the points in

the image domain Ω to interact with each other. Moreover, the weights w (x,y) are chosen to be large

for pairs of points whose neighborhoods are similar and smaller for the rest of the pairs. The non-local

interactions and the L1-type penalty allow NLTV to model more efficiently complex geometric image

structures than the local regularization functionals, such as TV. Therefore, its use can lead to improved

image reconstructions. Discrete-domain extensions of NLTV for vector-valued images have been studied

in [24], [25].

F. Proposed Non-Local Structure Tensor Total Variation

The non-local functionals that have been introduced so far in the literature are based on the notion of

the non-local gradient which is defined on graphs. Therefore, under this approach an image is treated

as a generic graph and, thus, its underlying structure is not fully exploited. In this work, we follow an

alternative approach with our goal being to introduce non-local regularization functionals that employ the

standard gradient operator and, thus, can be directly related to the classical Total Variation and provide a

measure of non-local image variation. The motivation for designing such non-local functionals is that by

combining ideas from local and non-local regularization strategies we can model at the same time two

important image properties, namely the local structural regularity and the non-local self similarity.

The underlying idea of our approach is to define a non-local differential operator and use it as the

regularization operator in a functional of the form (3). To do so, our starting point is the structure tensor

operator which is defined in Eq. (5). As we mentioned earlier, the power of the structure tensor lies in its

ability to encode richer information about the image variation than the gradient operator. This is because

its computation involves a local neighborhood of a spatial point, as opposed to the gradient which is

computed pointwise. Having in mind the non-local principle, a simple but useful observation is that the

information encoded by the structure tensor could be further enriched by extending its scope to the entire

image domain.

This idea can be formally presented as follows: Let us consider a 2D vector-valued image u and let

r be an arbitrary 2D direction (‖r‖2 = 1). The vectorial directional derivative of u in the direction
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r is computed as ∂ru (x) = (Ju (x))T r and its magnitude, ‖∂ru (x)‖2, yields a measure of intensity

change in the location x of the image u at the direction r. For a more robust estimation of the intensity

change at a specific direction one can instead use the following measure of local directional variation [7]

Vr (u (x)) =

√
(

kσ ∗ ‖∂ru‖22
)

(x) =
√

rTSku (x) r, (12)

which involves the structure tensor. This measure is more informative, since it captures the behavior of

u in a local neighborhood of x specified by the support of the convolution kernel kσ. This measure

of directional variation can be further improved by modifying it so that its range becomes non-local.

Specifically, the reasoning here is that if two image patches are similar, then the gradients at the centers

of these patches are also expected to be similar. Subsequently, the averaging of similar gradients can lead

to a more robust and accurate estimation of image variations. Based on this observation, we consider

a non-local directional variation, which is computed as the weighted average of the magnitude of the

directional variation over points centered in similar neighborhoods. We define this non-local directional

variation as

VNL (u (x)) =

(∫

Ω
w (x,y) ‖∂ru (y)‖22 dy

)1/2

=

√

rT
(∫

Ω
w (x,y) Ju (y) (Ju (y))T dy

)

r, (13)

where w (x,y) is a non-negative weighting function that assigns appropriate weights between pairs of

points (x,y). These weights, as opposed to the local directional variation, are computed not only based on

the relative distance of the two points but also based on the photometric distance of their neighborhoods

(similarity of their intensity values). A potential candidate for this weighting function is the one used in

the NLM filter and reads as

w (x,y) = e
−dα(u(x),u(y))

β2 , (14)

where dα is the “patch distance” defined in (9).

Motivated by the non-local measure of image variation, we introduce a non-local counterpart of the

structure tensor which we define as:

Swu (x) =

∫

Ω
w (x,y) Ju (y) (Ju (y))T dy. (15)

The non-local (NL) structure tensor Sw, similarly to Sk, when evaluated at a point x corresponds to a

symmetric PSD matrix of dimensions d× d where its (i, j) entry, 1 ≤ i, j ≤ d, is computed as

S
(i,j)
w u (x) =

∫

Ω
w (x,y)

C∑

c=1

∂xi
uc (y) ∂xj

uc (y) dy, (16)
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(a) (b) (c)

Fig. 1. Image edge information captured by the ℓ1-norm of the square rooted eigenvalues of (b) the structure tensor and (c)

the proposed NL structure tensor when applied on image (a).

with ∂xi
um denoting the partial derivative of the mth channel of the vector-valued image u w.r.t the i-th

dimension. To show the potential benefits of using such a non-local operator, in Fig. 1 we present the

information captured by the standard structure tensor and its non-local counterpart when they are applied

on a grayscale image. From this figure we observe that the edge content of the image is better encoded

in the eigenvalues of the NL structure tensor. Indeed the image edges in Fig. 1(c) are sharper and better

resolved than in Fig. 1(b).

Having introduced the NL structure tensor, we can now employ it to define our novel family of

regularization functionals. Since most of the important information is encoded in the eigenvalues of the

NL structure tensor, our non-local energy functionals will be expressed in the generic form

RNL (u) =

∫

Ω
Φ (ε1 (x) , . . . , εd (x)) dx, (17)

where εi, i = 1, . . . , d are the d eigenvalues of the NL structure tensor and Φ (·) is a potential function. In

this work we restrict our attention to potential functions that correspond to ℓp norms of the square rooted

eigenvalues of the NL structure tensor and can provide a synopsis of the non-local image variation. This

leads us to define the family of non-local structure tensor total variation (NLSTV) functionals for p ≥ 1

as

NLSTVp (u) =

∫

Ω

(
d∑

i=1

ε
p/2
i (x)

)1/p

dx. (18)

Next, we prove the following result.

Theorem 1. The NLSTV regularizers for a fixed weighting function w (·, ·) are 1-homogeneous and convex

functionals of u for all p ≥ 1.
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Proof: Our proof follows closely the proof of [7][Theorem A.3]. Let us introduce the compact linear

operator Tx = T (u,y;x) =
√

w (x,y)
[
∇u1 (y) , . . . ,∇uC (y)

]
∈ H = L2

(
Ω,Rd×C

)
for arbitrary

x,y ∈ Ω and a fixed weighting function w (·, ·). The adjoint of Tx is the unique operator T ∗
x : H 7→ Ω

that satisfies

〈f , Txu〉H = 〈T ∗
xf , u〉. (19)

Now, we can specify the Gram matrix G = T ∗
xTx of size d × d, which characterizes the spectrum of

Tx, as

Gi,j =〈
√

w (x,y)∂xi
u (y) ,

√

w (x,y)∂xj
u (y)〉H

=

∫

Ω
w (x,y)

C∑

c=1

∂xi
uc (y) ∂xj

uc (y) dy

=S
(i,j)
w u (x) . (20)

From (20) it occurs that the singular values of Tx are related to the eigenvalues of Swu (x). Indeed, it

holds that the i-th singular value of the finite rank operator Tx, denoted as σi (Tx), 1 ≤ i ≤ d, can be

computed as σi (Tx) =
√

εi (x). Consequently, we have that

(
d∑

i=1

ε
p/2
i (x)

)1/p

=

(
d∑

i=1

σpi (Tx)

)1/p

= ‖σ (Tx)‖p . (21)

The NLSTV functionals can now be equivalently written as

NLSTVp (u) =

∫

Ω
‖σ (Tx)‖p dx. (22)

From this reformulation of NLSTV it is straight-forward to show the 1-homogeneity property. Next, to

show the convexity of NLSTV we use that for two compact operators Tx,Λx and for any 1 ≤ p, q ≤ ∞
with 1/p + 1/q = 1 it holds that [7]

‖σ (Tx)‖p = sup
‖σ(Λx)‖q

≤1
trace (Λ∗

xTx) . (23)

Therefore, for t ∈ [0, 1] we can show that:

‖σ (tT1,x + (1− t)T2,x)‖p

≤ t sup
‖σ(Λ1,x)‖q

≤1
trace

(
Λ

∗
1,xT1,x

)
+ (1− t) sup

‖σ(Λ2,x)‖q
≤1

trace
(
Λ

∗
2,xT2,x

)

= t ‖σ (T1,x)‖p + (1− t) ‖σ (T2,x)‖p . (24)
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Since the operator Tx is linear in u, it turns out that ‖σ (Tx)‖p is a convex functional of u. This further

implies that the NLSTV functional in (22) is also a convex functional of u.

Finally, we can also show that our non-local functionals are directly related to the TV semi-norm.

Specifically, if we consider a grayscale image u, then by choosing the weighting function so that it is

completely localized, i.e,

w (x,y) =







0, if x 6= y

1, if x = y,

(25)

we get

∥
∥
∥

√

ε (x)
∥
∥
∥
p
= ‖∇u (x)‖2 for any p ≥ 1. It is then clear that in this degenerate case our regularizer

in (18) reduces to the classical TV. In this sense, our regularizers can be considered as a non-local

extension of TV.

III. DISCRETE NON-LOCAL STRUCTURE TENSOR TOTAL VARIATION

Typically, for most of the inverse imaging problems of interest we have to deal with discrete

measurements. Therefore, in the rest of this paper we focus on the discrete problem formulation of (1)

and its treatment. In this case v and u are discretized versions of the measurements and the underlying

image, respectively, while the discrete analog of the operator A is the system matrix A that behaves as

the impulse response of the imaging device.

A. Discrete Non-local Gradient

In this section we introduce a novel discrete non-local gradient operator. We will use this operator later

to re-express the discrete version of our NLSTV functionals in an alternative form that will allow us to

employ robust tools from convex optimization so that we can design an efficient minimization strategy.

It is important to note that our non-local operator differs significantly from the non-local gradient that

has been introduced in [10], [11]. The main difference is that in our case the non-local gradient operator

is not based on the concept of derivatives on graphs but instead it involves the discrete counterpart of

the standard gradient operator.

We assume that the discretized d-dimensional vector-valued image u =
(
u1, . . . ,uC

)
is defined on

a rectangular grid with unary steps and consists of N = N1 ·N2 · . . . ·Nd pixels. Each channel c of u

(c=1, .., C) is rasterized in a vector uc ∈ RN and all the image channels are stacked together to form

the single vector u ∈ RNC . We use the notation uc
n to refer to the value of the n-th pixel of the grid

for the c-th channel of u and we use un to refer to the tuple
(
u1
n, . . . ,u

C
n

)
.
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Now, let us define the discrete non-local gradient of a grayscale image uc as the linear mapping

Dw : RN 7→ X , RN×d×N . The non-local gradient Dw, when applied on the n-th pixel of uc,

corresponds to a matrix of the form1:

Dwu
c
n =

[√
wn,1∇uc

1 . . .
√
wn,N ∇uc

N

]
∈ R

d×N , (26)

where ∇uc
n is the discrete gradient of uc evaluated at pixel n and wn,k is the discrete weight that has

been assigned to the pair of pixels (n, k). Based on the above definition, the non-local gradient evaluated

at pixel n is constructed by : (1) evaluating the discrete gradient of the image at all pixel locations in the

image domain, (2) weighting these gradients with the square root of the weights wn,k with 1 ≤ k ≤ N ,

and (3) stacking all these two-dimensional vectors horizontally to form the final matrix. To handle the

image boundaries we assume symmetric boundary conditions and employ the discrete gradient as defined

in [26]. Note however, that our framework is general enough to accommodate for different discretizations

of the gradient operator with alternative assumptions on the image boundaries.

Since the non-local gradient operator is linear, we can further define its adjoint operator, which provides

a reverse linear mapping from the space X to RN . To do so, we first need to equip the space X , which

is the target space of Dw, with the inner product 〈· , ·〉X and the norm ‖·‖X . To define them, let X ,

P ∈ X with Xn,Pn ∈ Rd×N ∀n = 1, 2, . . . , N . Then, we have:

〈X , P 〉X =

N∑

n=1

trace
(
PT
n Xn

)
(27)

and

‖X‖X = 〈X , X〉1/2X =

(
N∑

n=1

‖Xn‖2F

) 1

2

, (28)

where trace (·) is the trace operator of a matrix and ‖·‖F is the Frobenius matrix norm. For the Euclidean

space RN we use the standard inner product and norm which we denote as 〈· , ·〉2 and ‖·‖2, respectively.

The definition of the adjoint operator D∗
w : X 7→ RN is provided through the following relation of the

inner products

〈Dwu
c , P 〉X = 〈uc , D∗

wP 〉2. (29)

After carrying out some linear algebra calculations we can express D∗
w in a more suitable form that

facilitates its numerical computation. This form is provided in the following proposition.

1In practice, as we describe in Section III-B we use a sparse version of the weighting function wn,k and therefore the number

of “active” neighbors for each pixel of the image will be equal to K which is significantly smaller than N . Consequently, the

target space of the non-local gradient will be X , R
N×d×K and Dwu

c
n ∈ R

d×K .
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Proposition 1. The adjoint operator D∗
w of the discrete non-local gradient evaluated on the n-th matrix

entry, Pn ∈ Rd×N , of the multidimensional matrix P ∈ X is given by:

D∗
wPn = −div

(
N∑

k=1

√
wk,nPk (:, n)

)

, (30)

where div is the discrete divergence operator, defined in accordance to the discretization scheme of the

gradient operator, and Pk (:, n) ∈ Rd refers to the n-th column of the k-th matrix entry of P .

Having defined the non-local gradient and its adjoint operator, we can further introduce the discrete non-

local Jacobian which applies on vector-valued images. The non-local Jacobian, Jw : RNC 7→ RN×d×(NC),

is a matrix-valued operator which, similarly to the standard Jacobian operator, when evaluated on the

n-th pixel of a vector-valued image u corresponds to a matrix of the form:

Jwun =
[
Dwu

1
n . . . Dwu

C
n

]
∈ R

d×(NC). (31)

By employing the adjoint of the non-local gradient, we can easily obtain the adjoint of the non-local

Jacobian as

J∗
wYn =

[
D∗

wY
1
n . . . D∗

wY
C
n

]T ∈ R
C , (32)

where Yn =
[
Y 1
n . . .Y

C
n

]
∈ Rd×(NC).

B. Non-local Weights Computation

In the definitions of the non-local operators that we provided above, a weight wn,k is assigned to every

pair of pixels (n, k). In practice, mainly due to computational considerations, we use a sparse version of

the discrete weighting function which is computed as follows: (1) For each pixel n in the image domain

we extract a patch P (un) of size τ × τ centered around this pixel. (2) We compute the distance of this

patch from all the patches whose centers lie inside a specified search window of size r × r. To do so,

we use (dα)n,k which is the discrete version of (9) and it is defined as

(dα)n,k =

τ/2
∑

j=−τ/2

(gα)j |un+j − uk+j|2 , (33)

with gα denoting a discrete weighting function of size τ × τ that defines the image neighborhood. Note

that k is restricted to be at most r/2 pixels far from pixel n. (3) Out of all the computed distances we

keep the K smallest ones while the rest are set to infinity. Then, we compute the corresponding weights

as wn,k = e−(dα)n,k
/β2

. We note that our strategy for computing the non-local weights is similar to the

one used in NLTV [10].
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An efficient computation of the patch distance (dα)n,k was proposed in [27] and uses a similar idea

with the integral image [28]. However, this method is only applicable when a uniform kernel gα is used.

Here, we consider an alternative fast implementation which is applicable to the more general case of a

symmetric kernel, (gα)j = (gα)−j . This is based on the observation that given the symmetric nature of

gα we can re-write (33) as

(dα)n,k =

τ/2
∑

j=−τ/2

(gα)j |un−j − un+l−j|2 , (34)

where −r/2 ≤ l ≤ r/2 is the relative distance of the pixel k from the pixel n. Clearly, (34) corresponds

to a discrete convolution of gα with zl
n = |un − un+l|2. Therefore, it is now possible to compute with a

single convolution the patch distances of all the pixel pairs (n, k) that have a relative distance of l pixels.

We note that a similar observation was made in [29] in order to speed-up the computation time of the

NLM method.

C. Discrete NL-STV

Let us indicate that a pixel k is linked to a pixel n with a non-zero weight wk,n by using the notation

k ∈ Nn where Nn = {k : wn,k > 0}. Next, we define a “sparse” version of the discrete non-local

structure tensor as

Swun =
∑

k∈Nn

wn,kJuk (Juk)
T

(35)

where J is the discrete Jacobian operator. Based on the discrete NL structure tensor we can now formally

define the discrete NLSTV regularizers as

NLSTVp (u) =

N∑

n=1

(
d∑

i=1

ε
p/2
n,i

)1/p

, (36)

where εn,i denotes the i-th eigenvalue of the discrete non-local structure tensor Sw applied on u and

evaluated at the pixel location n.

The current form of the proposed regularizers is difficult to work with, mainly because it involves

the eigenvalues of a non-linear operator. Consequently, it is not clear how one could proceed with the

minimization of such penalties in an inverse problem setting. To deal with this difficulty we derive an

alternative definition of the proposed functionals that will prove very useful. This new definition arises

by using the following result, whose proof is straight-forward and thus is omitted.
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Proposition 2. The discrete non-local structure tensor operator applied on u and evaluated at a pixel

location n can be expressed in terms of the non-local Jacobian as:

Swun = Jwun (Jwun)
T . (37)

Consequently, the eigenvalues of the NL structure tensor, εn,i for i = 1 . . . , d and n = 1, . . . , N , can be

computed from the singular values of the NL Jacobian, σn,i, as

εn,i = σ2n,i. (38)

Proposition 2 directly implies that the discrete NLSTV functionals can be equivalently expressed in

terms of the singular values of the non-local Jacobian. Indeed, from (36) and (38) we have

NLSTVp (u) =

N∑

n=1

(
d∑

i=1

σpn,i

)1/p

=

N∑

n=1

‖Jwun‖Sp
, (39)

where the r.h.s of (39) arises by using the definition of the Schatten norm of order p [30]. The Schatten

matrix norms are directly related to the ℓp vector norms. In particular, for a generic complex matrix

X ∈ Cn1×n2 the Sp norm of X can be expressed as the ℓp norm of the vector σ (X), whose entries are

the singular values of X , i.e, ‖X‖Sp
= ‖σ (X)‖p. Also note that the class of Schatten norms includes

as its members the nuclear norm (p = 1), the Frobenius norm (p = 2), and the spectral/operator norm

(p =∞).

This alternative formulation of the proposed functionals is much easier to handle in an optimization

framework. The reason is that the non-linear NL structure tensor has been substituted by the linear

operator Jw (Dw for the case of scalar images). Moreover, the expression in (39) better highlights the

fact that the proposed regularizers are convex w.r.t u ∀ p ≥ 1. Indeed, it is straight-forward for one

to show that these regularizers are convex, since they can be expressed as a composition of a norm,
∑

n ‖·‖Sp
, and a linear operator, Jw.

Based on (39) and Lemma 4.1 in [9] we further derive the following dual definition

NLSTVp (u) = max
Ω∈B∞,q

〈u , J∗
wΩ〉2, (40)

where Ω = [Ω1 . . .ΩN ] ∈ X and B∞,q =
{

Ω ∈ X : ‖Ωn‖Sq
≤ 1
}

. This expression is extremely useful

in case one needs to re-write the minimization of an objective function that includes NLSTV in a min-max

formulation. Such reformulation of the minimization problem is necessary when a primal-dual approach,

as those proposed in [31], [32], is employed to obtain the solution.
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IV. NUMERICAL OPTIMIZATION

Based on the discrete version of the forward model in (1) and under the assumption that the noise

perturbing the measurements is Gaussian, a solution of the regularized inverse problem is derived as

u⋆ = argmin
u

1

2
‖v −Au‖22 + τ ‖Jwu‖1,p + ιC (u) , (41)

for any p ≥ 1. In Eq. (41) ιC is the indicator function of a convex set C, while ‖·‖1,p is a shorthand

notation for the mixed vector-matrix norm
∑

n ‖·‖Sp
. The indicator function ιC takes the value 0 if u ∈ C

and ∞ otherwise, and its role is to enforce the solution to lie in C. The reason for including ιC in the

overall objective function is that in many cases the need for such a constraint arises naturally. For example

in many imaging applications it is common to require that the intensities of the reconstructed images

should either be non-negative (non-negativity constraint) or lie in a specific range (box constraint). If one

seeks for the unconstrained solution of (41), this can be obtained by simply setting C = RNC .

The form of the problem in (41) is difficult to work with mainly for two reasons. The first one is that

the objective function we want to minimize is non-smooth. This precludes the use of a gradient-based

scheme. Given the non-smoothness of the objective function, the second reason is the coupling that

exists among the different terms. This coupling makes the minimization task even more challenging. To

circumvent these difficulties a common strategy that we will also follow here, is to decouple the different

terms of the objective function by introducing a set of auxiliary variables. This will allow us to find the

solution by solving a sequence of simpler problems.

In particular, we use the auxiliary variables z1 = Jwu ∈ X and z2 = u ∈ RNC and we reformulate

the problem in (41) in the constrained form

argmin
u,z1,z2

Ku=z

1

2
‖v −Au‖22

︸ ︷︷ ︸

f(u)

+ τ ‖z1‖1,p
︸ ︷︷ ︸

g1(z1)

+ ιC (z2)
︸ ︷︷ ︸

g2(z2)

. (42)

The augmented Lagrangian [33] associated to (42) is given by

Lµ (u,z,η) = f (u) + g (z) + 〈η , Ku− z〉Y +
µ

2
‖Ku− z‖2Y , (43)

where Y , X×RN is a multilinear space, η = (η1,η2) ∈ Y are the Lagrange multipliers, z = (z1,z2) ∈
Y , g (z) = g1 (z1) + g2 (z2), K = (Jw, I) is a concatenated version of the non-local Jacobian Jw and

the identity operator I, and µ ≥ 0 is a penalty parameter. Note that L0 corresponds to the standard

Lagrangian of problem (42) while Lµ corresponds to the Lagrangian of the problem

argmin
u,z1,z2

Ku=z

f (u) + g (z) + ‖Ku− z‖2Y . (44)
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In any case, the two problems (42) and (44) are clearly equivalent, since for any feasible solution of (44)

the additional quadratic term in (44) evaluates to zero.

To solve the problem in (42) we use the augmented Lagrangian and employ the alternating-direction

method of multipliers (ADMM) [34]–[36]. This is an iterative method that attacks the constrained

optimization by replacing it by a series of unconstrained problems. To this end, one ADMM iteration

involves the minimization of Lµ w.r.t z while keeping u fixed, the minimization of Lµ w.r.t u while

keeping z fixed, and an update of the Lagrange multipliers η. Formally, we can describe the steps involved

in every ADMM iteration as:

zt+1 = argmin
z∈Y

g (z) +
µ

2

∥
∥z −

(
Kut + st

)∥
∥2

Y
(45a)

ut+1 = argmin
u∈RNC

f (u) +
µ

2

∥
∥Ku−

(
zt+1 − st

)∥
∥
2

Y
(45b)

st = st +Kut+1 − zt+1, (45c)

where s = η/µ corresponds to a scaled version of the original Lagrange multipliers and in each one of

the subproblems we have ignored constant terms that are irrelevant to the optimization task.

Next, we focus on the solution of the individual subproblems. First, based on the definition of g (z),

we note that the z-update of ADMM (45a) can be decoupled in the following two independent problems

zt+1
1 = argmin

z1∈X

1

2

∥
∥z1 −

(
Jwu

t + st1
)∥
∥2

X
+
τ

µ
‖z1‖1,p

zt+1
2 = argmin

z2∈RNC

1

2

∥
∥z2 −

(
ut + st2

)∥
∥2

2
+ ιC (z2) . (46)

The first problem corresponds to the evaluation of the proximal map of the function g1 (z1) scaled by µ.

Indeed, the proximal map of a function f with domf = X , evaluated at z is defined as [37]

proxf (z) = argmin
u∈X

1

2
‖u− z‖2X + f (u) . (47)

Therefore, it holds that

zt+1
1 = prox τ

µ
‖·‖

1,p

(
Jwu

t + st1
)
. (48)

Due to the separability of ‖·‖1,p and of the quadratic term ‖·‖2X , the above problem can be further

decomposed in N independent subproblems of the form:

(
zt+1
1

)

n
= prox τ

µ
‖·‖

Sp

(Ωn)

= argmin
(z1)n

1

2
‖(z1)n −Ωn‖2F +

τ

µ
‖(z1)n‖Sp

, (49)
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where Ω = Jwu
t + st1 ∈ X and Ωn ∈ Rd×KC denotes the n-th matrix entry of Ω (K is the number of

neighbors for a pixel n with non-zero weights wn,k).

To compute the solution in (49) we use the following result, where Un =
{
X ∈ Cn×n : X−1 = XH

}

denotes the set of unitary matrices and Dn1×n2 =
{
X ∈ R

n1×n2

+ : X(i,j) = 0 ∀ i 6= j
}

denotes the set of

PSD diagonal matrices.

Proposition 3 ( [38]). Let Y ∈ Cn1×n2 be a generic complex matrix with an SVD decomposition

Y = UΣV H, where U ∈ Un1 , V ∈ Un2 , and Σ ∈ Dn1×n2 . The proximal map

X⋆ = proxτ‖·‖
Sp

(Y ) (50)

can be obtained as

X⋆ = Udiag

(

proxτ‖·‖
p
(σ)
)

V H , (51)

where diag (·) is the operator that transforms a vector to a diagonal matrix and σ denotes the vector

whose entries are the singular values of Y .

In words, Proposition 3 states that the proximal map of an Sp matrix-norm can be computed by (1)

decomposing the matrix Y in its singular values and singular vectors, (2) evaluating the proximal map

of the ℓp norm at the vector σ consisting of the singular values of Y and, (3) deriving the final result by

a singular value reconstruction that involves the singular vectors of Y and as singular values the result

of step 2.

Efficient evaluation of the proximal map: Clearly the solution of (49) depends on our ability to

evaluate the proximal map of an ℓp norm weighted by a constant τ . To do so for an arbitrary p ≥ 1,

we rely on the iterative proximal algorithm introduced in [39]. Furthermore, for the most interesting

cases p = 1, 2 we can derive the solution in closed-form. Specifically, for p = 1 the proximal map

corresponds to the soft-thresholding function S1
τ (σ) = max (σ − τ, 0) [40] where the max is computed

component-wise. For p = 2 the proximal map corresponds to another shrinkage function of the form

S2
τ (σ) = max ((‖σ‖2 − τ) / ‖σ‖2 , 0) · σ [35], [37]. Notably in this case, we can obtain the proximal

map of the Frobenius norm (S2 norm) without having to resort to an SVD decomposition of the input

matrix. Specifically, we have

proxτ‖·‖
F
(Y ) = max

(‖Y ‖F − τ
‖Y ‖F

, 0

)

· Y . (52)

Another consideration regarding the evaluation of the proximal map of (49) is the efficient computation

of the singular values and vectors of the matrices Ωn = UnΣnV
T
n ∈ Rd×KC with n = 1, 2, . . . , N .
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Since even for images of moderate sizes the value of N can be of the order 105, we need an efficient

way to perform these SVDs. Here, we are interested in 2D images (d = 2) and we can follow an efficient

strategy as described next. First, we observe that the matrix ΩnΩ
T
n is 2×2 symmetric with an eigenvalue

decomposition UnΣ
2
nU

T
n . Therefore, both Un and Σn are obtained in closed-form. Now, let Σ+

n be the

pseudo-inverse of Σn. Then, based on Proposition 3 we can compute the proximal maps as

prox τ

µ
‖·‖

Sp

(Ωn) =
(
UnΣ

⋆
nΣ

+
nU

T
n

)
Ωn (53)

where Σ
⋆
n = diag

(

proxτ‖·‖
p
(σn)

)

and σn is the vector formed by the diagonal elements of Σn.

The second minimization problem in (46) corresponds to the projection of ut + st2 on the

convex set C. For the imaging applications that we study later, we consider the convex set C ,
{
u ∈ RN : 0 ≤ un ≤ γ, ∀n = 1, . . . , N

}
. In this case the projection is simple to compute and is given

by ΠC (u) = min (max (0,u) , γ) where the min and max operations are computed component-wise.

The problem in (45b) is quadratic and thus the u-update is obtained as the solution of the set of linear

equations

But+1 =
1

µ
ATv + J∗

w

(
zt+1
1 − st1

)
+ zt+1

2 − st2, (54)

where B =
(

1
µA

TA+ J∗
wJw + I

)

. In practice, the inversion of B is prohibitive due to its large size.

Therefore, given that B is a symmetric positive definite matrix, we employ instead the conjugate gradient

(CG) method [41]. We have experimentally observed that for several inverse imaging problems it suffices

to run as few as two CG iterations in every ADMM iteration. This choice does not seem to compromise

the convergence of the overall algorithm if we follow a “warm-start” strategy where in each ADMM

iteration we initialize CG with the solution of u obtained in the previous iteration.

Finally, the update of the scaled Lagrange multipliers in (45c) is decoupled and it is computed as

st+1
1 = st1 + Jwu

t+1 − zt+1
1 ,

st+1
2 = st2 + ut+1 − zt+1

2 . (55)

A summary of our overall minimization approach is provided in Algorithm 1.

V. APPLICATIONS AND EXPERIMENTS

To assess the potentials of the proposed non-local functionals, we compare their reconstruction

performance with that of other related methods on several inverse imaging applications. In particular, we

consider the problems of image denoising, image deblurring, and image reconstruction from undersampled
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Algorithm 1 : Image Reconstruction Algorithm.

Input: v, A, τ > 0, µ > 0, p ≥ 1.

Initialization: u0 = v, s01 = 0, s02 = 0, t = 0.

while stopping criterion is not satisfied do

zt+1
1 ← prox τ

µ
‖·‖

1,p

(
Jwu

t + st1
)
;

zt+1
2 ← ΠC

(
ut + st2

)
;

B ←
(

1
µA

TA+ J∗
wJw + I

)

;

ωt+1
1 ← zt+1

1 − st1;

ωt+1
2 ← zt+1

2 − st2;

ut+1 ← B−1
(

1
µA

Tv + J∗
wω

t+1
1 + ωt+1

2

)

;

st+1
1 ← st1 + Jwu

t+1 − zt+1
1 ;

st+1
2 ← st2 + ut+1 − zt+1

2 ;

t← t+ 1;

end

return ut;

Fig. 2. Thumbnails of the color versions of the 12 images used in the experiments (the numbering order is from left to right

and top to bottom). These images are of size of 481 × 321 pixel and are a subset of the Berkeley BSDS500 image dataset.

Fourier measurements. For all the problems under study we report results on both grayscale and color

versions of the images shown in Fig. 2, where their intensities have been normalized to lie in the range

[0, 1]. The comparisons are performed among the first-order functionals TV [2], STV1 [7], NLTV [10],

and our proposed NLSTV1. For the color case, since TV is applicable only to grayscale images we use

instead for our comparisons the vectorial total variation (VTV) that was proposed in [16]. The same

applies to NLTV where for the color case we use a vectorial version that has been studied in [24],

[25]. Furthermore, for the problem of image denoising we also include the results obtained by the NLM

filter [20].

The reconstruction performance of the regularization methods under comparison highly depends on



21

the choice of the regularization parameter τ . This also holds true for the NLM filter where the parameter

β in (8) needs to be tuned. In order our comparisons to be consistent, we have experimentally fine-tuned

these parameters and here we report only the results that led to the best peak signal-to-noise ratio (PSNR).

For STV1 we also had to choose the convolution kernel that is used for the computation of the structure

tensor in (5). This was set to be a Gaussian of standard deviation σ = 0.5 and support of 3 × 3 pixel.

For the non-local techniques we had to further specify the size of the neighborhood that is used for the

computation of the non-local weights w (·, ·). He have considered a uniform neighborhood (patch) of size

5× 5 and 7× 7 and a search window of size 11× 11. For NLTV and NLM we experimentally observed

that the 5× 5 patch led to better results on average than the 7× 7 patch, while for NLSTV1 the 7× 7

patch turned out to be the best choice. Finally, for NLTV and NLSTV1 we considered a sparse version

of the weight function, where only K neighbors are linked to each pixel of the image with a non-zero

weight. In order to be able to compare directly the performance of STV1 with our non-local extension

NLSTV1, we set K = 9. For NLTV we set K = 14 (the 4 closest neighbors plus the best 10 non-local

neighbors) as suggested in [42].

For the minimization of the objective functions that are related to the regularizers we are comparing,

we employ an optimization strategy similar to the one described in Algorithm 1. Our rationale for using

a common optimization framework for all the studied regularizers is that this way we can make sure

that the convergence behavior is comparable in all cases. Consequently, the image reconstruction quality

depends on the choice of the regularizer rather than on the efficiency of the employed minimization

scheme.

A. Image denoising

Image denoising is the simplest form of inverse imaging problem where the system matrix A reduces

to the identity operator I. In our scenario we consider i.i.d Gaussian noise at three different noise levels

(low, medium, and high) that correspond to a standard deviation of σn = 0.05, 0.075, 0.1, respectively.

Regarding the stopping criterion of the minimization algorithms, this is set to either reaching a relative

normed difference of 5·10−5 between two successive image estimates, or a maximum of 150 iterations. In

addition, for the non-local methods we need to compute the non-local weights. These weights according

to the definitions we provided earlier depend on the underlying image. Here, however, we compute them

from a smoothed version of the noisy image by a Gaussian filter. We have experimentally observed that

the weights obtained in this way lead to better denoising results than the ones computed directly from

the noisy image itself.
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TABLE I

ISNR COMPARISONS ON GRAYSCALE/COLOR IMAGE DENOISING

Method TV/VTV STV1 NLM (5×5) NLTV (5×5) NLSTV1 (7×7)

σ (std.) 0.05 0.075 0.1 0.05 0.075 0.1 0.05 0.075 0.1 0.05 0.075 0.1 0.05 0.075 0.1

Img.1 5.82/6.50 7.28/7.98 8.42/8.98 6.25/6.73 7.70/8.20 8.82/9.33 5.79/6.02 7.35/7.64 8.58/8.95 6.30/6.77 7.86/8.21 9.08/9.30 6.59/7.06 8.08/8.60 9.23/9.81

Img.2 9.21/9.95 10.85/11.64 12.06/11.72 9.87/10.40 11.42/12.00 12.57/13.18 10.01/10.29 11.61/12.03 12.74/13.28 10.04/10.48 11.62/12.03 12.72/13.04 10.19/10.60 11.76/12.25 12.89/13.44

Img.3 5.22/5.86 6.41/7.08 7.34/7.96 5.90/6.34 7.07/7.54 7.99/8.46 5.08/5.09 6.66/6.75 7.89/8.06 5.93/6.05 7.18/7.12 8.13/7.93 6.17/6.59 7.30/7.81 8.17/8.77

Img.4 8.10/8.89 9.51/10.35 10.57/10.80 8.57/9.15 9.98/10.61 11.04/11.69 8.20/8.61 9.83/10.30 11.06/11.56 8.58/8.85 10.11/10.22 11.23/11.22 8.84/9.42 10.23/10.94 11.28/12.10

Img.5 6.01/6.65 7.13/7.93 8.01/8.72 7.00/7.41 8.10/8.64 8.92/9.55 6.79/6.84 8.18/8.42 9.20/9.57 7.06/7.09 8.28/8.24 9.18/8.97 7.41/7.67 8.53/8.98 9.34/9.94

Img.6 5.40/6.09 6.75/7.48 7.83/8.51 5.85/6.34 7.21/7.73 8.28/8.81 5.69/5.89 7.14/7.44 8.21/8.61 6.01/6.55 7.47/7.97 8.60/9.02 6.30/6.80 7.71/8.28 8.79/9.42

Img.7 4.12/4.76 5.43/6.13 6.51/7.24 4.39/4.85 5.72/6.22 6.80/7.32 3.99/4.23 5.44/5.72 6.56/6.91 4.42/4.82 5.88/6.26 7.03/7.35 4.67/5.09 6.05/6.57 7.15/7.75

Img.8 4.81/5.47 6.28/6.96 7.47/8.11 5.24/5.71 6.69/7.17 7.85/8.33 4.73/4.95 6.38/6.67 7.68/8.03 5.17/5.57 6.71/6.99 7.92/8.12 5.44/5.82 6.88/7.31 8.02/8.53

Img.9 3.32/3.92 4.65/5.31 5.73/6.42 3.66/4.12 5.02/5.50 6.10/6.60 3.10/3.35 4.69/5.03 5.98/6.36 3.56/3.91 5.02/5.37 6.18/6.49 3.80/4.14 5.18/5.59 6.26/6.75

Img.10 5.74/6.46 7.22/7.96 8.45/9.10 6.16/6.69 7.61/8.15 8.80/9.33 5.69/5.96 7.19/7.56 8.45/8.87 6.05/6.60 7.61/8.08 8.87/9.25 6.45/6.93 7.89/8.40 9.05/9.61

Img.11 3.83/4.51 5.07/5.80 6.11/6.86 4.19/4.70 5.45/5.98 6.48/7.02 3.83/4.10 5.15/5.50 6.27/6.68 4.16/4.67 5.46/5.95 6.53/6.95 4.47/4.99 5.73/6.33 6.73/7.41

Img.12 5.06/5.72 6.15/6.90 7.02/7.81 5.62/6.12 6.72/7.28 7.58/8.17 5.82/5.98 7.05/7.34 7.96/8.37 6.00/6.47 7.22/7.67 8.14/8.54 6.13/6.57 7.25/7.80 8.09/8.75

Avg. 5.55/6.23 6.89/7.63 7.96/8.52 6.06/6.55 7.39/7.92 8.44/8.98 5.73/5.94 7.22/7.53 8.38/8.77 6.11/6.49 7.53/7.84 8.63/8.85 6.37/6.81 7.72/8.24 8.75/9.36

(a) Input (PSNR=22.50) (b) TV (PSNR=29.25) (c) NLM (PSNR=29.64) (d) NLTV (PSNR=29.97) (e) NLSTV1 (PSNR=30.22)

(a) Input (PSNR=20.00) (b) NLM (PSNR=28.06) (c) STV1 (PSNR=28.46) (d) NLTV (PSNR=27.94) (e) NLSTV1 (PSNR=28.77)

Fig. 3. Image denoising examples. Close-ups of noisy inputs and their corresponding denoised versions. Top row: grayscale

denoising of input image with noise level σn = 0.075. Bottom row: color denoising of input image with noise level σn = 0.1.

In Table I we report the grayscale and color denoising results for all test images and noise levels.

The performance of all the methods is measured in terms of the PSNR improvement (ISNR) w.r.t the

noisy image. By inspecting the grayscale results we observe that TV is the least performing method for

all noise levels. NLM filtering leads to better results than TV by exploiting the non-local self-similarity

property. However it performs worse than the semi-local STV1 regularizer. Additionally, NLTV which is

inspired by NLM performs better than all these methods. Finally, NLSTV1 consistently outperforms all

the tested methods and shows an improvement over its semi-local version of about 0.3 dBs on average.

Similar observations are drawn from the color denoising results. However, in this case STV1 outperforms
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TABLE II

ISNR COMPARISONS ON GRAYSCALE/COLOR DEBLURRING

Gaussian PSF
Method TV/VTV STV1 NLTV (5×5) NLSTV1 (7×7)

BSNR 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB

Img.1 4.19/4.81 5.28/5.84 6.49/6.97 4.55/4.99 5.67/6.04 6.88/7.20 4.63/4.98 5.70/6.00 6.88/7.11 4.75/5.34 5.91/6.43 7.13/7.52

Img.2 5.00/5.78 5.67/6.31 6.69/7.21 5.29/5.81 6.01/6.39 7.04/7.32 5.52/6.15 6.21/6.67 7.16/7.54 5.74/6.41 6.47/6.96 7.46/7.81

Img.3 4.41/5.19 5.58/6.33 6.89/7.56 5.12/5.54 6.27/6.68 7.52/7.92 5.09/5.08 6.19/6.16 7.45/7.44 5.19/5.64 6.35/6.81 7.65/8.12

Img.4 4.65/4.81 5.75/5.82 6.83/6.86 5.02/5.00 6.07/6.00 7.06/6.97 4.90/4.81 6.12/6.00 7.28/7.17 5.17/5.26 6.26/6.32 7.28/7.31

Img.5 4.07/4.65 5.19/5.60 6.54/6.84 4.78/5.09 5.95/6.09 7.35/7.40 4.78/4.79 5.96/5.80 7.44/7.15 4.94/5.14 6.16/6.19 7.65/7.58

Img.6 3.14/3.60 4.00/4.37 5.07/5.37 3.41/3.72 4.35/4.56 5.43/5.61 3.41/3.61 4.38/4.46 5.52/5.60 3.56/3.93 4.53/4.81 5.66/5.89

Img.7 2.58/2.92 3.08/3.40 3.81/4.13 2.74/2.99 3.28/3.50 4.02/4.24 2.75/2.89 3.31/3.44 4.10/4.26 2.81/3.09 3.38/3.67 4.18/4.44

Img.8 3.62/4.10 4.39/4.84 5.33/5.74 3.93/4.21 4.68/4.95 5.59/5.85 3.92/4.05 4.67/4.80 5.59/5.76 4.02/4.33 4.81/5.14 5.75/6.05

Img.9 3.72/4.01 4.70/4.92 5.73/5.89 3.96/4.10 4.98/5.07 5.98/6.03 4.20/4.18 5.13/5.11 6.12/6.09 4.18/4.26 5.22/5.25 6.23/6.22

Img.10 3.16/3.64 3.49/3.90 4.17/4.56 3.42/3.77 3.73/4.01 4.42/4.67 3.50/3.78 3.77/3.93 4.40/4.53 3.52/3.90 3.82/4.14 4.51/4.79

Img.11 3.00/3.33 3.90/4.19 4.92/5.14 3.27/3.46 4.20/4.35 5.16/5.28 3.18/3.26 4.10/4.18 5.14/5.25 3.34/3.51 4.28/4.44 5.29/5.44

Img.12 3.08/3.62 4.11/4.60 5.32/5.74 3.48/3.88 4.60/4.94 5.82/6.10 3.63/3.96 4.79/5.07 6.12/6.38 3.68/4.11 4.84/5.21 6.13/6.42

Avg. 3.72/4.21 4.60/5.01 5.65/6.00 4.08/4.38 4.98/5.21 6.02/6.22 4.13/4.29 5.03/5.13 6.10/6.19 4.24/4.58 5.17/5.45 6.24/6.47

Motion PSF
Method TV/VTV STV1 NLTV (5×5) NLSTV1 (7×7)

BSNR 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB 20 dB 25 dB 30 dB

Img.1 6.11/6.74 7.93/8.43 10.18/10.55 6.54/6.95 8.36/8.66 10.61/10.81 6.59/7.04 8.40/8.74 10.59/10.89 6.93/7.45 8.76/9.18 10.98/11.31

Img.2 6.62/7.34 8.02/8.60 9.94/10.42 7.12/7.57 8.62/8.94 10.66/10.86 7.19/7.73 8.76/9.14 10.78/11.04 7.56/8.02 9.04/9.37 11.00/11.21

Img.3 6.12/6.93 8.24/9.05 10.77/11.55 6.83/7.36 9.03/9.56 11.60/12.12 6.83/6.98 9.03/9.16 11.58/11.79 7.03/7.70 9.30/9.97 11.91/12.53

Img.4 7.89/7.79 10.41/10.10 13.19/12.71 8.40/8.05 10.93/10.41 13.69/13.02 8.13/8.03 10.84/10.39 13.60/12.98 8.76/8.57 11.29/10.92 14.00/13.50

Img.5 6.10/6.38 8.34/8.29 10.99/10.68 6.93/6.90 9.30/8.93 12.06/11.45 7.05/6.84 9.46/8.87 12.14/11.35 7.36/7.28 9.83/9.39 12.60/11.90

Img.6 5.14/5.47 6.85/7.03 9.10/9.11 5.56/5.69 7.33/7.30 9.60/9.43 5.61/5.78 7.44/7.54 9.70/9.78 5.88/6.10 7.73/7.83 10.03/10.03

Img.7 4.78/5.33 6.58/7.10 8.93/9.39 5.09/5.44 6.89/7.21 9.22/9.50 5.17/5.46 7.00/7.31 9.26/9.58 5.35/5.81 7.20/7.65 9.51/9.91

Img.8 5.68/6.32 7.37/7.97 9.47/10.02 6.06/6.50 7.79/8.20 9.92/10.29 5.89/6.16 7.59/7.89 9.71/10.03 6.19/6.61 7.95/8.33 10.10/10.43

Img.9 6.15/6.42 8.35/8.55 10.95/11.06 6.50/6.58 8.71/8.74 11.31/11.29 6.53/6.69 8.68/8.78 11.19/11.20 6.79/6.84 8.98/8.98 11.53/11.45

Img.10 4.81/5.38 6.03/6.53 7.92/8.35 5.18/5.55 6.47/6.75 8.40/8.61 5.13/5.32 6.32/6.51 8.18/8.39 5.32/5.68 6.62/6.91 8.56/8.79

Img.11 5.67/6.01 7.99/8.20 10.71/10.82 6.03/6.16 8.36/8.39 11.07/11.03 5.82/6.04 8.17/8.32 10.89/10.97 6.22/6.40 8.58/8.71 11.30/11.37

Img.12 5.47/6.02 7.72/8.19 10.51/10.83 6.08/6.40 8.40/8.63 11.17/11.31 6.38/6.96 8.89/9.35 11.64/12.01 6.59/7.00 9.03/9.37 11.84/12.08

Avg. 5.88/6.34 7.82/8.17 10.22/10.46 6.36/6.60 8.35/8.48 10.78/10.81 6.36/6.59 8.38/8.50 10.77/10.83 6.67/6.96 8.69/8.88 11.11/11.21

NLTV but not NLSTV1.

Besides the quantitative comparisons, to allow for a visual assessment of the reconstruction perfor-

mance, we provide in Fig. 3 representative grayscale and color image denoising results. From these

results we observe that our non-local functional achieves a satisfactory denoising performance without

introducing staircase artifacts, which are present in TV and NLTV reconstructions, or excessively

smoothing important image structures, such as in the case of NLM. Moreover, due to its non-local

nature NLSTV1 proves more efficient in removing the noise than its semi-local counterpart, STV1.

B. Image deblurring

In the image deblurring setting we consider a circulant system matrix A that models the point spread

function (PSF) of the imaging device. We test all the methods for two blurring kernels, a Gaussian of

support 9 × 9 pixel with a standard deviation σd = 6 and a motion kernel of support 19 × 19 pixel 2.

2This psf was obtained from http://www.wisdom.weizmann.ac.il/∼levina/papers/LevinEtalCVPR09Data.rar
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As an additional degradation we consider three different levels of Gaussian noise which correspond to

a blurred SNR (BSNR) of the input image of 20, 25, and 30 dBs, respectively. The BSNR is defined

as BSNR = var (Au) /σ2n, where var (Au) is the variance of the blurred input and σn is the standard

deviation of the noise.

For this problem a typical strategy for computing the non-local weights is to minimize the objective

function w.r.t to the underlying image and the weighting function [42]. This way the weights are updated

in every iteration of the algorithm. In this case, however, we need to solve a non-convex problem and,

thus, we lack any guarantees about reaching the global minimum. Here, we follow a different approach

which leads to a convex optimization problem. Specifically, we estimate the non-local weights from

a smooth version of the image that has been previously deblurred by a Wiener filter. Then, we use

these fixed weights to minimize the objective function. Finally, the stopping criteria of the minimization

algorithm remain the same with the ones used in the denoising problem.

In Table II we report the grayscale and color deblurring results for all test images, blurring kernels,

and noise levels. Once again the performance of the methods under comparison is measured in terms of

ISNR w.r.t to the blurred and noisy image. The conclusions that we can draw from these results are on

par with those in the image denoising case. Indeed, TV is the least performing regularizer, NLTV and

STV1 perform comparably, while NLSTV1 consistently outperforms all the other regularizers both on

the grayscale and color images. Representative deblurring examples are shown in Fig. 4.

C. Image reconstruction from sparse Fourier samples

In this section we examine the problem of image reconstruction from a limited number of Fourier

measurements. In this case the system matrix is expressed as A = MF , where F represents the Fourier

transform while M is a masking operator that retains only a subset of the Fourier coefficients and

discards the rest. For our comparisons we consider a mask consisting of 32 radial lines. This corresponds

to retaining about 7% of the Fourier coefficients. The Fourier measurements are further corrupted by

complex Gaussian noise at three different levels. These correspond to a SNR of the fully sampled image

in the Fourier domain of 10, 20, and 30 dBs. The adopted forward model is closely related to the

one encountered in magnetic resonance imaging (MRI). The main difference is that in our case the

underlying image is real-valued rather than complex-valued. Similarly to the deblurring problem, we use

fixed weights for the non-local regularizers. These weights are computed from the back-projected image

ub = FHMTv. Finally, regarding the stopping criterion of the minimization algorithm, the number of

maximum iterations is set to 200.
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(a) Input (PSNR=20.17) (b) TV (PSNR=25.64) (c) STV1 (PSNR=26.25) (d) NLTV (PSNR=26.55) (e) NLSTV1 (PSNR=26.77)

(a) Input (PSNR=21.68) (b) VTV (PSNR=27.51) (c) STV1 (PSNR=27.72) (d) NLTV (PSNR=27.67) (e) NLSTV1 (PSNR=28.10)

Fig. 4. Image deblurring examples. Close-ups of blurred and noisy inputs and their corresponding deblurred versions. Top row:

grayscale deblurring of input image degraded by motion blur and noise level of BSNR=20 dBs. Bottom row : color deblurring

of input image degraded by Gaussian blur and noise level of BSNR=25 dBs.

TABLE III

ISNR COMPARISONS ON GRAYSCALE/COLOR SPARSE FOURIER RECONSTRUCTION

Method TV/VTV STV1 NLTV (5×5) NLSTV1 (7×7)

PSNR 10 dB 20 dB 30 dB 10 dB 20 dB 30 dB 10 dB 20 dB 30 dB 10 dB 20 dB 30 dB

Img.1 2.39/2.79 2.98/3.35 3.78/3.98 2.53/2.86 3.29/3.56 4.16/4.31 2.32/2.77 2.88/3.52 3.55/4.24 2.60/2.93 3.48/3.87 4.39/4.66

Img.2 3.58/4.47 3.85/4.67 5.09/5.81 3.86/4.56 4.09/4.74 5.43/5.99 3.48/4.34 3.36/4.36 4.27/5.28 4.02/4.73 4.37/5.11 5.75/6.35

Img.3 1.82/2.19 2.58/2.91 3.07/3.32 2.14/2.39 2.92/3.15 3.42/3.61 1.68/2.18 2.43/2.99 2.83/3.44 2.14/2.34 3.09/3.44 3.61/3.98

Img.4 2.58/3.26 4.01/4.41 4.76/4.91 2.88/3.42 4.29/4.62 5.03/5.18 2.24/3.20 3.19/4.21 3.66/4.67 3.06/3.84 4.53/5.20 5.19/5.81

Img.5 2.67/3.37 3.69/4.45 4.23/5.07 3.08/3.70 4.21/4.89 4.88/5.64 2.60/3.35 3.70/4.68 4.29/5.42 3.10/3.64 4.39/5.01 5.12/5.79

Img.6 1.68/2.14 2.07/2.46 2.43/2.78 1.82/2.22 2.27/2.62 2.68/3.02 1.61/2.07 1.92/2.39 2.24/2.78 1.87/2.30 2.32/2.76 2.75/3.21

Img.7 1.48/1.82 1.95/2.21 2.34/2.46 1.64/1.89 2.16/2.34 2.59/2.66 1.33/1.65 1.86/2.09 2.29/2.44 1.63/1.94 2.20/2.40 2.63/2.72

Img.8 2.10/2.40 2.69/2.86 3.00/3.08 2.30/2.52 2.92/3.03 3.26/3.30 2.02/2.22 2.51/2.74 2.78/3.00 2.35/2.62 2.99/3.13 3.32/3.40

Img.9 1.56/1.72 1.91/1.92 2.04/2.02 1.69/1.78 2.06/2.03 2.22/2.16 1.46/1.60 1.80/1.85 1.96/1.99 1.75/1.84 2.10/2.01 2.26/2.10

Img.10 2.67/3.16 2.87/3.41 3.67/4.04 2.87/3.25 3.10/3.51 3.92/4.21 2.66/2.98 2.84/3.30 3.59/4.04 2.83/3.28 3.14/3.57 3.99/4.27

Img.11 1.05/1.34 1.53/1.69 1.80/1.85 1.21/1.43 1.74/1.83 2.02/2.05 0.90/1.19 1.37/1.60 1.64/1.82 1.16/1.47 1.73/1.87 2.01/2.09

Img.12 1.02/1.48 1.45/1.88 1.76/2.14 1.23/1.61 1.76/2.11 2.10/2.44 1.04/1.56 1.55/2.13 1.85/2.45 1.28/1.68 1.87/2.28 2.25/2.64

Avg. 2.05/2.51 2.63/3.02 3.16/3.46 2.27/2.64 2.90/3.20 3.48/3.71 1.94/2.43 2.45/2.99 2.91/3.46 2.32/2.72 3.02/3.39 3.61/3.92

In Table III we provide the ISNR scores of all the methods under comparison on both grayscale and

color images. Similarly to the previous two inverse problems, we observe that on average our NLSTV1

regularizer leads to the best reconstruction performance. On the contrary, NLTV shows a different behavior

and does not perform as well as it did in the denoising and deblurring tasks. In fact, the results indicate

that it is the worst performing method. This might be due to the computation of the non-local weights

from the back-projected images whose quality are rather poor compared to the ground-truth data. If this
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(a) Input (PSNR=26.34) (b) TV (PSNR=31.43) (c) STV1 (PSNR=31.78) (d) NLTV (PSNR=30.61) (e) NLSTV1 (PSNR=32.09)

(a) Input (PSNR=24.48) (b) VTV (PSNR=28.89) (c) STV1 (PSNR=29.10) (d) NLTV (PSNR=28.69) (e) NLSTV1 (PSNR=29.68)

Fig. 5. Examples of image reconstruction from sparse Fourier measurements. Close-ups of compressed and noisy inputs and

their corresponding reconstructed versions. Top row: grayscale input (back-projected) image sampled with a radial mask of 32

lines and at noise level of SNR=30 dBs. Bottom row: color input (back-projected) image sampled with a radial mask of 32 lines

and at a noise level of SNR=20 dBs.

is the case, then NLSTV1 is less sensitive in the choice of the non-local weights since it seems not to

be affected as much as NLTV.

VI. CONCLUSIONS

In this work we combined ideas from local and non-local regularization strategies and proposed a

novel family of non-local functionals to regularize inverse imaging problems. Our non-local regularizers

differ from the existing ones in the sense that they employ a non-local version of the structure tensor

as the regularization operator. Therefore, they depend on the standard image gradient rather than the

graph gradient. This way we are able to exploit both the local structural regularity and the non-local

self-similarity properties of natural images. Further, we proposed an efficient minimization algorithm

that is based on a variable splitting strategy. Finally, we assessed the reconstruction performance of our

regularizers on several inverse imaging problems. Our reconstruction results were shown to compare

favorably to the ones obtained by other competing local and non-local regularization methods.
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