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Abstract. We consider the problem of embedding unweighted, directed k-nearest neighbor graphs in low-dimensional
Euclidean space. The k-nearest neighbors of each vertex provides ordinal information on the distances between points, but
not the distances themselves. We use this ordinal information along with the low-dimensionality to recover the coordinates of
the points up to arbitrary similarity transformations (rigid transformations and scaling). Furthermore, we also illustrate the
possibility of robustly recovering the underlying density via the Total Variation Maximum Penalized Likelihood Estimation
(TV-MPLE) method. We make existing approaches scalable by using an instance of a local-to-global algorithm based on
group synchronization, recently proposed in the literature in the context of sensor network localization and structural biology,
which we augment with a scaling synchronization step. We demonstrate the scalability of our approach on large graphs, and
show how it compares to the Local Ordinal Embedding (LOE) algorithm, which was recently proposed for recovering the
configuration of a cloud of points from pairwise ordinal comparisons between a sparse set of distances.
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1. Introduction. Embedding unweighted k-nearest neighbor (kNN) graphs is a special case of ordi-
nal embedding, or non-metric embedding. Generally, one seeks a spatial embedding of n points {~xi}ni=1

in Rd that satisfy

∀(i, j, k, l) ∈ C, ‖~xi − ~xj‖2 < ‖~xk − ~xl‖2,

where C denotes the set of ordinal constraints. In the case of unweighted kNN graph embedding, C =
C(G) =

{
(i, j, i, l)

∣∣ij ∈ E(G), il 6∈ E(G)
}
, where E(G) is the set of directed edges in the kNN graph G.

Graph-based methods are of utmost importance in several modern machine learning methods with
applications such as clustering, dimensionality reduction, ranking and image processing. Many such meth-
ods rely on weighted graphs, with weights often based on similarity functions, i.e., wij = S(xi, xj). From a
practical standpoint, storing unweighted kNN graphs instead would allow for a very sparse representation
of the data. If one could recover the source data {xi}ni=1 from unweighted kNN graphs, such a computa-
tionally efficient sparser representation would incur no information loss. Because of the extreme sparsity
of the representation, this is generally a hard problem. Just recently, however, a related method for
recovering data distributions from unweighted kNN graphs was shown to converge to the correct solution
[58], albeit in a suboptimal given regime.

The original work on this problem dates back to Shepard [47, 48] and Kruskal [33, 34], and lately has
been studied intensively in the machine learning literature [42, 43, 1, 46, 38, 52, 2, 41, 39, 28, 29, 36, 60].
In this work, we compare against and extend the new Local Ordinal Embedding method presented in
[53], which enjoys several favorable comparisons with other modern methods.

Another motivation for this problem comes from an instance of the popular sensor network localization
problem, where each sensor is able to transmit only limited connectivity information to a central location,
in the form of ID names of its k nearest neighbor sensors, but transmits neither the estimated distance
measurements nor a complete list of all its neighbors within a given fixed radius. Note that either of these
last two scenarios renders the localization problem (of estimating the sensor coordinates) easier to solve.
Similar to the sensor network application, one could potentially apply this framework to cooperative
control and sensing involving swarms of robot micro-vehicles with limited payloads communicating via
radio with limited bandwidth [37, 23].

One key step presented here is an application of the As-Synchronized-As-Possible (ASAP) method [16,
17, 11], which makes existing embedding methods scalable via a divide-and-conquer, non-incremental, non-
iterative local to global approach. This application reduces computational complexity, allows for massive
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parallelization of large problems, and increases robustness to noise. The ASAP algorithm introduced in
[16], on which we rely in the present paper, renders our approach to reconstructing kNN graphs scalable to
graphs with thousands or even tens of thousands of nodes, and is an example of a local-to-global approach
that integrates local ordinal information into a global embedding calculation.

We detail in Section 4 the exact approach used to decompose the initial kNN graph into many
overlapping subgraphs, that we shall refer to as patches throughout the rest of the paper. Each resulting
patch is then separately embedded in a coordinate system of its own using an ordinal embedding algorithm,
such as the recent LOE algorithm [53]. In the hypothetical scenario when LOE recovers the actual ground
truth coordinates of each patch, such local coordinates agree with the global coordinates up to scaling
and some unknown rigid motion (such as translation, rotation and possibly reflection), in other words, up
to a similarity transformation. However, in most practical instances, it is unreasonable to expect that the
LOE algorithm will recover the exact coordinates only from ordinal data. On a related note, we point out
the recent work of Kleindessner and von Luxburg, who settled a long-known conjecture in the community
claiming that, given knowledge of all ordinal constraints of the form ||xi − xj || < ||xk − xl|| between an
unknown set of points x1, . . . , xn ∈ R (for finite n), it is possible to approximately recover the ground
truth coordinates of the points up to similarity transformations such as rotations, translations, rescalings,
or reflections. Furthermore, the same authors show that the above statement holds even when we only
have local information such as the distance comparisons between points in small neighborhoods of the
graphs, thus giving hope for a local-to-global approach, in the spirit of the one we propose in the present
paper. Finally, we also mention here a somewhat related problem, investigated in [31] in the context
of localization of sensor networks, where the authors propose an algorithm that accurately recovers the
ground truth coordinates based only on connectivity information in the random geometric graph model,
under certain assumptions on the graph and noise model. However, this setting is quite different than the
one we consider (the kNN graph versus random geometric graph) - as pointed out previously, knowledge
of the sensing radius renders the density recovery problem and the closely related kNN reconstruction
problems much easier to solve.

For every local patch reconstruction, there corresponds a scaling and an element of the Euclidean
group Euc(2) of two-dimensional rigid transformations, and our goal is to estimate the scalings and group
elements that will properly align all the patches in a globally consistent framework. The local optimal
alignments between pairs of patches whose intersection is large enough, yields noisy measurements for
the ratios of the above unknown group elements. Finding group elements from noisy measurements
of their ratios is also known as the group synchronization problem, first encountered in the context of
synchronization over R of clocks in a distributed network, from noisy measurements of their time offsets
[32, 21]. In [50], Singer introduced spectral and semidefinite programming (SDP) relaxations for solving
the angular synchronization problem over the group SO(2) of planar rotations, algorithms which served
as a building block for the recent ASAP (As-Synchronized-As-Possible) graph localization algorithms
[16, 17, 11]. Using the local alignments of the patches, ASAP formulates the graph realization problem as
three consecutive synchronization problems that overall solve the synchronization problem over Euc(2):
it uses the eigenvector method for the compact part of the group (reflections and rotations), and the
least-squares method for the non-compact part (translations). We refer the reader to Figure 2 of [16] for
a schematic overview of the 2D-ASAP algorithm, and to Figure 5.1 of this paper for the approach we
employ in our present work, and present more details on the implementation of ASAP in the Appendix.

While in the present paper we have used the ASAP algorithm exclusively for two-dimensional exper-
iments, we remark that the approach extends naturally to higher dimensions. In the three-dimensional
case, ASAP has been recently used as a scalable robust approach to the molecule problem, well studied in
the structural biology community [17]. For the d-dimensional general case, one can extend ASAP by first
synchronizing over O(d) (or over Z2, followed by SO(d)), and then over Rd to recover the translations via
a simple least-squares approach. Another recent application of group synchronization is to the Structure
from Motion problem [3], a fundamental task in computer vision where one is asked to recover three-
dimensional structure from a collection of images. In general, one can apply the synchronization problem
whenever the underlying problem exhibits a group structure, and there are readily available (possibly
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noisy) pairwise measurements of ratios of the group elements. Finally, we point out that the LOE ap-
proach that can be used to obtain the local patch embeddings required by ASAP, has a natural extension
to the d-dimensional case, thus rendering the entire pipeline amenable to dealing with higher-dimensional
data.

The rest of the paper is organized as follows. Section 2 is a summary of other existing methods for
related problems, including the metric and ordinal embedding problems. Section 3 details our proposed
linear programming based formulation for kNN embedding, and implicitly density estimation. Section 4
summarizes the approach used for breaking the initial graph into patches relying on spectral clustering and
rigidity theory. Section 5 presents an addition to the existing ASAP algorithm by incorporating scaling
synchronization, as well as a brief outline of the standard ASAP algorithm. In Section 6 we remark
on the connection to the density estimation problem, and describe the post-processing step performed
via Total-Variation Maximum Penalized Likelihood Estimation. Section 7 details the results of several
experiments and compares to the existing LOE algorithm. We discuss several possible research directions
in Section 8. Finally, we summarize in Appendix 9.1 the main steps of the ASAP algorithm introduced
in [16], and in Appendix 9.2 basic notions from the rigidity theory literature.

2. Related Work.

2.1. Multidimensional Scaling. Broadly speaking, multidimensional scaling refers to a number
of related problems and methods. In Classical Multidimensional Scaling [55], one is given all Euclidean
Squared-Distance (ESD) measurements ∆ij = ‖~xi − ~xj‖22 on a set of points X = {~xi}ni=1 and wishes
to approximate the points themselves, assuming that they approximately lie in a low-dimensional space
d� n. The standard method is to apply Principal Component Analysis to the Gram matrix K = XTX,
which has a linear relationship with the ESD matrix given by

∆ij = Kii − 2Kij +Kjj

K = −1

2
V∆V, where V = I − 1

N
11T , (2.1)

assuming the points have mean 0. Let Πσ1,...,σr(A) denote the projection of A onto its r leading singular
vectors. Recall that solution of

B̂ = arg min
B

‖A−B‖2F s.t. rank(B) ≤ r

is given by B̂ = Πσ1,...,σr(A). Then Classical Multidimensional Scaling can be written as

K̂ = arg min
K∈Sn+,∆(K)

‖∆−∆(K)‖2F

s.t. ∆(K)ij = Kii − 2Kij +Kjj ,∑
i,j

Kij = 0, rank(K) ≤ d

=Πσ1,...,σd

(
−1

2
V∆V

)

X̂ =Λ1/2ΦT , where K̂ = ΦΛΦT .

We note that the solution for the coordinates themselves is unique only up to rigid transformations,
and that solutions do not exist for all possible input ∆. In particular, the matrix ∆ is only a ESD
corresponding to n points in Rd if K = −1

2V∆V gives a true Gram matrix (i.e. K ∈ Sn+) that has rank
≤ d.
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One can generalize Classical Multidimensional Scaling to incorporate additional nonnegative weights
Wij on each distance. In particular, this makes sense when some distances are missing, or most distances
are noisy, but some are known. The optimization involves minimizing an energy known in the literature
as stress. There are a few variants, but one popular stress is Kruskal’s stress [35]

min
X

σ(X) =

√√√√∑ijWij (Dij −Dij(X))2∑
ijWijD2

ij

s.t. X ∈ Rd×n.

Here D denotes the unsquared Euclidean distance, i.e., Dij =
√

∆ij and Dij(X) = ‖xi − xj‖2. One
approach to minimize this energy is to iteratively minimize a majorizing function of two variables, where
we say that σ(X,Y ) majorizes σ(X) if σ(X,Y ) ≥ σ(X) and σ(X,X) = σ(X). For non-classical multidi-
mensional scaling, one specifies metric or non-metric. The above is metric Multidimensional Scaling since
the input matrix D represents explicit measurements of the metric.

A further generalization of metric Multidimensional Scaling is non-metric Multidimensional Scaling,
or Ordinal Embedding, in which the input D is assumed to be an increasing function applied to distance
measurements [47, 48]. This may be the case if D represents dissimilarity between points, as opposed to
measured distances. The problem can again be expressed with stress functionals

min
X

σ(X) =

√√√√∑ijWij (Dij − f(Dij(X)))2∑
ijWijD2

ij

,

s.t. X ∈ Rd×n, f increasing

and is usually solved with isotonic regresion [34].

2.2. Semidefinite Programming methods. Semidefinite Programming methods (SDP) have been
applied frequently to MDS and related problems. Classical MDS can be stated as an SDP, with a
closed form solution. Any formulation of the problem that optimizes over the Gram matrix requires the
semidefinite constraint K ∈ Sn+. Indeed, for metric MDS, if one penalizes the squared error on the squared
distance measurements, the problem can be written as

min
X∈Rd×n

∑
ij

Wij(∆ij −∆ij(X))2

= min
K∈Sn+,X∈Rd×n

∑
ij

Wij(∆ij − (Kii − 2Kij +Kjj))
2

s.t. K = XTX.

Constraints of the form K = XTX are usually not allowed however, and are typically relaxed to [54, 45][
I X
XT K

]
� 0.

via Schur’s Lemma. Furthermore, one encourages K to be approximately low-rank by introducing a
nuclear norm or trace penalty ‖K‖∗ = ‖σ(K)‖1 = tr(K), as a convex relaxation of a rank constraint.
Intuitively, since the `1 norm promotes sparsity, the nuclear norm should promote few nonzero singular
values. Elsewhere [61], it is argued that one should maximize tr(K), in the spirit of the popular Maximum
Variance Unfolding approach [61]. Neither minimizing nor maximizing the trace actually imposes an
exact rank constraint, which is non-convex and NP-hard. One approach that could achieve exact rank
constraints would be to use the Majorized Penalty Approach of Gao and Sun [20] with an alternating
minimization method.
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A group of methods have studied the graph realization problem, where one is asked to recover the
configuration of a cloud of points given a sparse and noisy set of pairwise distances between the points
[10, 8, 9, 7, 62]. One of the proposed approaches involves minimizing the following energy

min
p1,...,pn∈R2

∑
(i,j)∈E

(
‖pi − pj‖2 − d2

ij

)2
. (2.2)

which unfortunately is nonconvex, but admits a convex relaxation into a SDP program. We refer the
reader to Section 2 of [16] for several variations of this approach, some of which have been shown to be
more robust to noise in the measured distances.

2.3. Local Ordinal Embedding. Terada and von Luxburg [53] have recently proposed an algorithm
for ordinal embedding and kNN embedding specifically, called Local Ordinal Embedding. LOE minimizes
a soft objective function that penalizes violated ordinal constraints, with a scale parameter δ > 0 included,

min
X∈Rd×n

∑
i<j,k<l,(i,j,k,l)∈C

max [0, Dij(X) + δ −Dkl(X)]2.

An advantage of this energy in contrast to ones that normalize by the variance of X (to guarantee
nondegeneracy) is its relatively simple dependence on X, making the above energy easier to minimize.
In their work, they introduce a few different algorithms to minimizing the above energy, one based on
majorization minimization and another one based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
approximation of Newton’s method. The same group also presented some theoretical results on the
uniqueness of solutions to the ordinal embedding problem [59], as well as a different approach to kNN
embedding, via density estimation [58].

3. A Linear Program Alternative to SDP embedding. In contrast to the SDP methods which
cast embedding problems in terms of the Gram matrix K our Linear Program (LP) approach for kNN
embedding optimizes over the variables D (the distance matrix), R (the radius at each node), and the
slack variables. The radius at each node i, denoted by Ri is defined to be the distance between node i and
its k-th closest neighbor. Thus Ri is the radius of the neighborhood at node i. In kNN embedding, the
objective and constraints can be written as linear constraints in D,R and the slack variables, altogether
leading to a linear program (LP) which is computationally cheaper to solve than an SDP. Although SDP-
based methods can encompass a larger class of problems, they currently do not approach the scalability
or numerical maturity of LP and SOCP solvers.

Our proposed LP approach requires solving a linear program for candidate distance matrix D and
radii R, then feeding the resulting D into a standard mdscale (see Algorithm 1), where by T we mean the

Algorithm 1 LP approach

(D∗, R∗) = arg min
R∈Rn×1,D∈Rn×n

+,sym,α,β

∑
ij∈E(G)

αij +
∑

ij /∈E(G)

βij

subject to Dij ≤ Ri + αij , if j ∈ Ni
Dij > Ri − βij , if j /∈ Ni
αij ≥ 0, βij ≥ 0

Ri > 0,∀i = 1, . . . , n
n∑
i=1

Ri = V

Dij +Dik ≤ Dkl, (i, j, k) ∈ T
X =mds (D∗, d)
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set of triangle inequalities we considered (ordered set (i, j, k)). If (i, j, k) ∈ T , the same holds true for the
two other permutations. The full set of triangle inequalities are necessary, though not sufficient, for the
matrix D to correspond to an Euclidean distance matrix. If one omits slack variables, there are n(n−1)/2
distance values to solve for along with n radii, and thus n(n + 1)/2 unknowns in total. Considering the
ordinal constraints, for the upper bounds on the entries Dij , there are n ways to choose i, and for each i
there are k ways to choose j, thus nk/2 constraints (accounting for symmetric distances). For the lower
bounds on the entries Dij there are n ways to choose i and for each i there are n−k−1 ways to choose j,
giving n(n− k − 1)/2 constraints. So there are n(n− 1)/2 ordinal constraints on relating the n(n− 1)/2
distances and n radii. In other words, the intuition behind the added triangle inequalities is that they
help to better constrain the system. There are on the order of n3 triangle inequalities (choose any three
points), so for large n, there are many more constraints than unknowns.

To avoid the added complexity from imposing all triangle inequalities, one could consider models that
impose only a fraction of such constraints via either imposing them locally, for k-hop neighboring triples
of points, or globally, such as picking edges via an Erdős-Rényi model, or mixing the two approaches.

We remark that dropping triangle inequalities altogether could certainly speed up the embedding
process. The resulting non-metric D may correspond to an increasing function of distance (e.g., distance
squared), which suggests that non-metric MDS would be appropriate.

In general, even if the recovered distance metric corresponds to a metric distance, this is not a
guarantee that the distance is realizable in a low-dimensional space. That requires a rank constraint on
D, which is non-convex and is computationally intractable for an LP or SDP. The ultimate embedding into
a low-dimensional space thus potentially gives up some structure in both the LP and SDP formulation,
and it can be argued that this effect is lessened via the local to global approach.

4. Breaking up the kNN graph into patches. The first step we use in breaking the kNN graph
into patches is to apply normalized spectral clustering [57] to a symmetrized version of the graph. Nor-
malized spectral clustering segments the nodes of a graph into N � n clusters by performing k-means
on the n entries of the leading N eigenvectors of the random-walk normalized graph Laplacian. It is
shown [57] that normalized spectral clustering minimizes a relaxation of the normalized graph cut prob-
lem. From there, we enlarge the clusters with their 1-hop neighborhood, so that the resulting patches
have significant overlap, a prerequisite for the ASAP synchronization algorithm. The higher the overlap
between the patches, the more robust the pairwise group ratio estimates would be, thus leading overall
to a more accurate final global solution. Finally, we check each patch for global rigidity. We comment
more about global rigidity and its role here later in this section. If a patch is not globally rigid, we drop
a constant fraction of the added nodes 1 with the lowest degree while retaining all nodes that were in the
original cluster generated by k-means in the corresponding patch. This uses the heuristic that low-degree
nodes tend to render a graph not globally rigid. After dropping nodes, we check the remaining patch for
globally rigidity again. We stop the pruning process when the patch contains fewer than 4/3 the number
of nodes in the original cluster, or the patch is globally rigid.

We refer the readers to Appendix 9.2 for for a brief description of global rigidity, and relevant results
in the literature, and use the remainder of this section as a brief discussion of the main definitions. In the
graph realization problem (GRP), one is given a graph G = (V,E) together with a non-negative distance
measurement dij associated with each edge, and is asked to compute a realization of G in Rd. In other
words, for any pair of adjacent nodes i and j, the distance dij = dji is available, and the goal is to find
a d-dimensional embedding p1, p2, . . . , pn ∈ Rd such that ‖pi − pj‖ = dij , for all (i, j) ∈ E. The main
difference between the GRP and the problem we aim to address in our paper is the input information
available to the user. Unlike the GRP problem where distances are available to the user, here we only
have information of the adjacency matrix of the graph and have the knowledge that it represents a kNN
graph. Both problems aim to recover an embedding of the initial configuration of points.

A graph is globally rigid in Rd if there is a unique (up to the trivial Euclidean isometries) embedding
of the graph Rd such that all distance constraints are preserved. It is well known that a necessary

1At each round we choose to drop a quarter of the nodes
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condition for global rigidity is 3-connectivity of the graph. Since the problem at hand that we are trying
to solve is harder (as we do not have distance information available) we require that the patches we
generate are globally rigid graphs. Even in the favorable scenario when we do have available distance
measurements (which we do not in the present problem, but only ordinal information), any algorithm
seeking an embedding of the graph would fail if the graph were to have multiple non-congruent realizations.

5. ASAP synchronization with global scaling. Before applying the ASAP algorithm to the
embedded patches, we introduce an additional step that further improves our approach. In the graph
realization problem, distance information is readily available to the user and thus the local embedding
of the patches are on the same scale as the ground truth solution. One need only estimate the rigid
transformation that aligns the local frame of each patch with the global solution. However, in the kNN
embedding problem, distances are not known and thus the scale of one patch relative to another must be
approximated. Any ordinal embedding approach has no way of relating the scaling of the local patch to
the global scale. To this end we augment the ASAP algorithm of [16, 17] by introducing an additional
step where we synchronize local scaling information to recover an estimate for the global scaling of each
patch thus overall synchronizing over the group of similarity transformations.

The pipeline of steps is as follows. Given a set of patches, {Pi}Ni=1, we can create a patch graph in
which two patches are connected if and only if they have sufficiently many nodes in common2. We then
construct a matrix Λ ∈ RN×N as

Λij =


median

{
DPi
a,b/D

Pj

a,b

}
a6=b∈Pi∩Pj

if Pi ∼ Pj , i ≤ j,

1/Λji if Pi ∼ Pj , i > j,

0 otherwise,

.

The matrix Λ approximates the relative scales between patches. If all distances in all patches were
recovered correctly up to scale, and all patches had sufficient overlap with each other, then each row of
Λ would be a scalar multiple of the others and each column of Λ would be scalar multiple of the others.
Therefore the desired Λ matrix is rank-1, and in order to get a consistent estimate of global scaling, we
compute the best rank-1 approximation of Λ (up to a scalar multiple), given by its leading eigenvector.
We use this approximation of global scaling to rescale the embedded patches before running ASAP.

To illustrate the importance of the scaling synchronization step in Figure 7.1 we compare ASAP
synchronized embeddings of a set of points with and without the scaling synchronization step. Clearly,
the scaling synchronization step significantly improves the recovery of the original points.

We summarize the ASAP method here and present more details on its implementation in the Ap-
pendix. After applying the optimal scaling to each patch embedding, we perform the ASAP synchronization-
based algorithm to integrate all patches in a global framework, as illustrated in the pipeline shown in
Figure 5.1. We estimate, for each patch Pi, an element of the Euclidean group Euc(2) = O(2) ×R2 which,
when applied to that patch embedding Pi, aligns all patches as best as possible in a single coordinate
system. In doing so, we start by estimating, for each pair of overlapping patches Pi and Pj , their optimal
relative rotation and reflection, i.e., an element Rij of the orthogonal group O(2) that best aligns Pj with
Pi. Whenever the patch embeddings perfectly match the ground truth, Rij = OiO

−1
j . Finding group

elements {Oi}Ni=1 from noisy measurements of their ratios is also known as the group synchronization
problem, an NP-hard problem for which spectral and SDP relaxations exist [50]. We rely on the spectral
relaxation for synchronization over O(2), and estimate a consistent global rotation (and possibly reflec-
tion) of each patch via an eigenvector problem, using the top d = 2 eigenvectors of the associated graph
Connection Laplacian [51], thus solving (5.1). Finally, we estimate the optimal translations of each patch

2In general aligning two patches in Rd can be done provided the two patches overlap in at least d+ 1 points, which stems
from the fact that the union of two globally rigid graphs Pi and Pj that intersect in at least d + 1 nodes is itself a globally
rigid graph.
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Fig. 5.1. ASAP and scale synchronization diagram.

via least squares on an overdetermined linear system.

min
O1,...,ON∈O(2)

∑
Pi∼Pj

‖O−1
i Oj −Rij‖2F . (5.1)

6. Density Estimation. In this section, we remark on the explicit connection between the graph
embedding problem considered in this paper and the density estimation problem. In particular, one may
approach the problem of recovering the unknown coordinates underlying the kNN graph by first aiming
to estimate the density function that generates the coordinates. Suppose for example that one is able to
estimate the pointwise density u : Ω ⊆ Rd → [0, 1], up to some constant multiple, evaluated at each vertex
of the graph, xi. Next, as outlined in [58], one can assign weights to the originally unweighted kNN graph,
defined by w(xi, xj) = (u−1/d(xi) + u−1/d(xj))/2. Furthermore, it can be shown that the shortest path
distance on resulting weighted kNN graphs converges to the Euclidean distance of the original points as
the number of points increases. In other words, applying multidimensional scaling to the shortest path
distances on the weighted kNN graph will yield increasingly accurate embeddings of the original points
{xi}ni=1 as n→ +∞.

In contrast to finding an approximate embedding from a density estimate, under certain conditions,
the reverse process is also straightforward. With sufficiently many points and sufficiently strong priors
on the distribution, the methodology of Maximum Penalized Likelihood Estimation (MPLE) applies [18].
One first assumes that the locations correspond to points drawn independently identically distributed
according to some unknown underlying spatial distribution. MPLE approximates the most likely spatial
distribution given the points observed and some assumed prior distribution on the space of distributions.
The data fidelity term comes in the form of a log-likelihood term, a function of the distribution estimate
and the point locations, and is given by

L(u, {xi}ni=1) =

n∑
i=1

log(u(xi)),

and the penalty term, P (u) enforces the prior distribution on the space of distributions. Typical choices
for P (u) include the H1-seminorm regularizer, P (u) = λ

2

∫
Ω |∇u|

2dx, enforcing smoothness, and Total
Variation (TV) norm regularization, P (u) = λ

∫
Ω |∇u|dx, which enforces smoothness, but also allows for

edges. Therefore, general MPLE seeks to optimize the following energy over all probability distributions
on the spatial domain Ω ⊆ Rd

û = arg max
u≥0,

∫
Ω udx=1

L(u, {xi}ni=1)− P (u).

The form and scale of P encodes different types and amounts of regularity in the resulting density estimate
u. In practical settings, cross-validation should be performed to determine the appropriate amount of
regularity to impose on a given data set.
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For the purpose of using kNN graphs to recover densities, we will include a post-processing step for
a subset of the embedding experiments, to which we apply a standard implementation of TV MPLE [40]
to the embedded points. TV is a good choice of penalty because we will be applying it to points that
are drawn from a piecewise constant density. The good density estimates based on good embeddings
shown in Section 7 illustrate that there is in fact a strong connection between the embedding and density
estimation problems.

The actual implementation of the TV MPLE relies on the Split Bregman (equivalently Alternating
Direction Method of Multipliers) minimization technique in which one introduces a splitting and equality
constraints that are enforced by performing saddle-point optimization of the augmented Lagrangian. This
results in an iterative update procedure given by

(
û, d̂
)

= arg min
u≥0,d

{
‖d‖1 −

n∑
i=1

log(u(xi)) +
ρ

2
‖∇u− d+ y‖22 +

γ

2
(‖u‖1 − 1 + z)2

}
,

y = y + ∇̃û− d̂
z = z + ‖û‖1 − 1.

The first minimization step is actually replaced by minimizing over u, and d individually, making use of
the shrinkage proximal operator associated with the `1 norm.

7. Experimental Section. We experiment with three different densities, piecewise constant half-
plane and square densities, and the two-dimensional Gaussian distribution. We test Laplacian Eigenmaps
[6], the LOE BFGS and MM method [53], and ASAP with LOE BFGS used for the patch embedding.
Throughout the rest of the paper, we refer to the latter approach as ASAP LOE BFGS. Because LOE
was already compared with several methods in [53], attaining better performance than LOE suggests
better performance than a number of relevant methods such as the method of Kamada and Kawai [30],
the method of Fruchterman and Reingold [19], and t-SNE [56]. The input to each method consists of
kNN adjacency matrices corresponding to points sampled from one of the three distributions. For each
distribution, sample size, n, and graph parameter k, we only sample the points once so that each method
gets the same adjacency matrix. We evaluate the methods based on runtime and error, which we define
as the percentage of edge disagreement between the kNN adjacency matrix of the embedded points and
the original kNN adjacency matrix. In other words, for n points in Rd represented by the columns of
X ∈ Rd×n, and given k, if we let AkX ∈ {0, 1}n×n denote the adjacency matrix of the corresponding kNN
graph, then the ordinal error of X̃ in recovering X is given by

error(X̃,X) =
1

n2

n∑
i,j=1

∣∣∣∣(AkX̃)ij − (AkX)ij
∣∣∣∣ .

Also to allow for a fair comparison, we set varying limits on the number of LOE iterations {5, 10, 50, 100, 300, 500},
and we use varying maximum patch sizes for ASAP (which relates indirectly to the number of patches).
In this way, the LOE methods and the ASAP method give for each distribution and values n and k, an
error-runtime Pareto curve (with low values in both coordinates being best). We show in Figure 7.2,
adjacency matrix error versus runtime of these methods applied to sample sizes n = {500, 1000, 5000}
and k = d2 log(n)e, i.e., sparse adjacency matrices. We show in Figure 7.3, adjacency matrix error versus
runtime of these methods applied to sample sizes n = {500, 1000, 5000} and k = d

√
n log(n)e, i.e., dense

adjacency matrices. Though adjacency matrix error better captures the extent to which the methods
solve the ordinal problem, for completeness we also evaluate the methods using the Procrustes error [49]
that corresponds to registering the embedded points with the original points. We show in Figure 7.4,
Procrustes error versus runtime of these methods applied to sample sizes n = {500, 1000, 5000} and
k = d2 log(n)e, i.e., sparse adjacency matrices. We show in Figure 7.5, Procrustes error versus runtime of
these methods applied to sample sizes n = {500, 1000, 5000} and k = d

√
n log(n)e, i.e., dense adjacency

matrices. We show in Figure 7.9, scaled adjacency matrix error and procrustes error versus increasing

9



ASAP LOE BFGS mps 400 
PCm4 n=1000 dense k

PCm4 n=1000

ASAP LOE BFGS no scale mps400
PCm4 n=1000 dense k

Fig. 7.1. ASAP LOE BFGS max patch size 400, n = 1000, k = 14 Left: with scale synchronization: time 463.869980 s,
0.006602 A error, 0.0031053 Procrustes error Middle: Original embedding of the points Right: without scale synchronization:
time 468.174236 s, 0.037506 A error, 0.1132305 Procrustes error

values of k for n = {5000} points drawn from the piecewise constant half-planes distribution using the
method ASAP LOE BFGS with max patch size 300. To further illustrate how the methods perform, we
plot the Procrustes aligned points for n = 1000 sampled from each of the three densities in Figure 7.6.
In each instance plotted, the ASAP LOE BFGS with max patch size 400 took less time to run and yields
smaller adjacency matrix and Procrustes errors than the LOE BFGS with 100 maximum iterations. We
only run LOE MM for n = 500 because of difficulties we had when trying to get the provided R im-
plementation 3 to run on our Linux-based remote computing resource. We ran into no problems with
the LOE BFGS implementation. The computers used have 12 CPU cores which are Intel(R) Xeon(R)
X5650 @ 2.67GHz, and have 48GB ram. The R implementation of LOE does not (as far as the authors
are aware) take advantage of multiple cores, and runs a single process on a single core. In contrast, our
ASAP Matlab implementation uses the Multicore package 4 to divide up the local embedding problems
among the available cores. Ideally, one would run these experiments many times over and average the
results (to get an estimate of average performance), but this is effect already partially accomplished by
running the LOE and ASAP methods with multiple parameters to get a more holistic measurement of
performance.

In several instances we find that ASAP + LOE BFGS is either faster than or better-performing
than direct LOE BFGS, or both. This is partly due to the massively parallel embedding step in ASAP,
which can take advantage of multiple cores as the problem scales. One would expect that as n continues to
grow, if more processors are made available and memory increases sufficiently, the advantage of embedding
parallelization would continue to increase.

We also see in Figure 7.9 and Figure 7.10 that for large n, adjacency matrix error and Procrustes
error remain relatively small and stable over a range of small increasing k.

In Figure 7.7 we show the results of applying TV MPLE to some of the embeddings shown in Figure 7.6.
The regularization parameter used is .0001 . This is not obtained by cross-validation, but it simply seems
to perform well on the originally sampled points. The densities of the approximate embeddings are as
expected, with ASAP LOE BFGS recovering the density best, with LOE BFGS behind, and LE doing
the worst. This shows suggests that better embedding results do lead to better density estimation, if that

3The package is available for download at
http://cran.r-project.org/web/packages/loe/index.html

4The package is available for download at
http://www.mathworks.com/matlabcentral/fileexchange/13775-multicore-parallel-processing-on-multiple-cores
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Fig. 7.2. Adj. matrix error vs. time, n = {500, 1000, 5000}, k sparse, ◦ ASAP LOE BFGS, × LOE BFGS, � LE , ?
LOE MM

is the end goal.

In Figure 7.8 we show adjacency matrix error vs runtime and Procrustes error versus runtime for
ASAP LOE BFGS run on a data set of n = 50, 000 points with k = 22. Despite this increase in the size
of the problem, ASAP LOE BFGS is able to produce reasonable results in a reasonable amount of time.
On the other hand, for n = 50, 000, we were unable to get any LOE BFGS results because the full setup
of the problem in R, with some small Matlab overhead, does not fit within the memory constraints of the
machine.

8. Summary and discussion. Our experiments have demonstrated that the computation efficiency
of existing methods for the kNN embedding problem can be significantly improved, while maintaining or
improving spatial and ordinal accuracy when run in a distributed setting. Our application of the local
to global, divide-and-conquer ASAP method renders the problem of kNN embedding in low-dimensions
significantly more tractable, distributing the embedding steps, and using fast spectral methods to combine
them. We expect that such improvements will make it possible to use kNN embeddings in a broader range
of data sets and settings. We summarize below some potential future research directions that may further
improve on our proposed method.
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Fig. 7.3. Adj. matrix error vs. time, n = {500, 1000, 5000}, k dense, ◦ ASAP LOE BFGS, × LOE BFGS, � LE , ?
LOE MM

8.1. Patch extraction via redundant spectral clustering. In contrast to the 1-hop neighbor-
hood expanded spectral clusters used for patches discussed in Section 4, we discuss a possible alternative
for extracting patches, which guarantees the redundant coverage of each node thus benefiting ASAP.
Suppose we seek N patches in such that each node appears in P distinct patches. First, we perform
spectral clustering on the initial graph, clustering into c = N/P clusters, via repeated instances of the
k-means algorithm with different random initializations. Next, we pick the P partitions in such a way
that minimizes the resulting Jaccard index between each partition [26]. This results in N patches, no two
of which are very similar, but that cover every node exactly P times. We also expect that the resulting
patches should also be very dense, thus leading to more noise-robust embeddings.

8.2. Alternating minimization method. In the interest of preserving ordinal structure exactly
in a low-dimensional setting, we present an alternating minimization approach. We approximate a rank
constraint on the Gram matrix K by minimizing the residual of K projected onto the current low-rank
approximation of K [20] (see Algorithm 2).

Because we are attempting to solve a non-convex problem, we have no expectation of converging to the
global minimum of this problem. One subproblem involves projecting onto the nearest low-rank matrix
(as discussed above), and the other subproblem solves ordinal embedding with a regularizer dependent on
the previous low-rank approximation. To project onto the nearest low-rank matrix, and SVD computation
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Fig. 7.4. Procrustes error vs. time, n = {500, 1000, 5000}, k sparse, ◦ ASAP LOE BFGS, × LOE BFGS, � LE , ?
LOE MM

Algorithm 2 Alternating minimization method

Initialize L = 0 or L = LP-Embedding(A)

while L doesn’t satisfy the ordinal constraints

(K∗, R∗) = arg minK∈Sn+,R trace
(
K(I − ULV T

L )T
)

subject to ij ∈ E(G)⇒ (Kii − 2Kij +Kjj) ≤ Ri
ij 6∈ E(G)⇒ (Kii − 2Kij +Kjj) > Ri

L = Πσ1,...,σd(K∗)

L = (1/2)(L+ LT )

X = Λ1/2ΦT , where L = ΦΛΦT
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Fig. 7.5. Procrustes error vs. time, n = {500, 1000, 5000}, k dense, ◦ ASAP LOE BFGS, × LOE BFGS, � LE , ?
LOE MM

is needed, and the ordinal subproblem is still an SDP, which may need to be solved many times. It would
likely help performance to initialize the low-rank approximation with the approximate solution from
another, fast ordinal problem solver. It is not clear, however, that fast convergence would be attainable,
nor whether embedding points that exactly satisfy the ordinal constraints in a given low-dimensional
space is worth the extra effort, especially if noisy measurements are expected.

8.3. Rigidity for Ordinal Constraints. Another possible future research direction relates to devel-
oping an analogous rigidity theory for graphs arising from ordinal constraints information. For example,
one may encode the given ordinal information into a graph G̃(Ṽ , Ẽ) whose vertex set Ṽ is given by all(
n
2

)
pairs of nodes u ∈ G̃ with u = (i, j) ∈ V (G) × V (G), and there exists a directed edge (u, v) ∈ Ẽ

if and only if one has available ordinal constraints for a quadruple {i, j, k, l}, such that u = (i, j) ∈ Ṽ ,
v = (k, l) ∈ Ṽ and dist(xi, xj) < dist(xk, xl). The goal of ordinal embedding is to find a realization of the
vertices of G in Rd, such that all the given ordinal constraints encoded in the graph G̃ are preserved.

A related problem worth investigating, for a set of ordinal constraints given as quadruples (i, j, k, l),
is whether there are infinitely many or finitely many possible realizations, or a unique realization subject
to the given ordinal constraints, and up to local permissible displacements of the points (for example,
allowing each point to move only within a ball of small fixed radius r). The latter condition excludes the
trivial case when one may slightly perturb a satisfactory embedding P to produce yet another embedding
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Fig. 7.6. Example embeddings for n = 1000, k dense, and rows corresponding to LE, LOE BFGS maxIt=100, ASAP
LOE BFGS max patch size 400 (the latter one being always faster than the corresponding LOE BFGS).15
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Fig. 7.8. Top row: A errors vs time for n = 50, 000, k = 22 sparse, Bottom row: A errors vs time for n = 50, 000, k
sparse
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Fig. 7.10. ASAP LOE BFGS max patch size 300, n = 5000, k increasing by 20, Top left : originally sampled points,
Remaining plots : recovered embeddings

Q that satisfies all given ordinal constraints, with P and Q not necessarily congruent. We expect that
such a characterization would allow for a principled approach to extracting patches from the graph of
constraints G̃, thus leading to a more robust local-to-global approach, such as the one considered here.
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9. Appendix.

9.1. ASAP Implementation. This section details aspects of the group synchronization problem
used in the ASAP algorithm [16]. In the first step, ASAP solves a synchronization problem over Z2 for
the possible reflections of the patches using the eigenvector method, while in the second step, it solves
a synchronization problem over SO(2) for the rotations also using the same eigenvector method. Note
that we choose to combine these two steps into a single one, and synchronize over the orthogonal group
O(2) = Z2×SO(2), similar to the approach in [17]. By pairwise aligning overlapping patches we consider
the following 2n× 2n matrix given by

Rij =

{
rij (i, j) ∈ EP (Pi and Pj have enough common points)

O3×3 (i, j) /∈ EP (Pi and Pj cannot be aligned)
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The least squares solution to synchronization over R1, . . . , Rn ∈ O(d) minimizes the following sum of
squared deviations

minimize
R1,...,Rn∈O(d)

∑
(i,j)∈E

wij‖R−1
i Rj −Rij‖2F (9.1)

where || · || denotes the Frobenius norm, wij are non-negative weights representing the confidence in
the noisy pairwise measurements Rij . Spectral and semidefinite programming relaxations for solving
an instance of the above synchronization problem were originally introduced and analyzed by Singer,
[50], in the context of angular synchronization, over the group SO(2) of planar rotations, where one is
asked to estimate n unknown angles θ1, . . . , θn ∈ [0, 2π) given m noisy measurements δij of their offsets
θi − θj mod 2π. The difficulty of the problem is amplified on one hand by the amount of noise in the
offset measurements, and on the other hand by the fact that m �

(
n
2

)
, i.e., only a very small subset

of all possible pairwise offsets are measured. In general, one may consider other groups G (such as
SO(d), O(d)) for which there are available noisy measurements gij of ratios between the group elements
gij = gig

−1
j , gi, gj ∈ G.

ASAP relies on the spectral relaxation of the above minimization problem, via the graph Connection
Laplacian L. Letting W ∈ Rnd×nd with blocks Wij = wijRij , and D ∈ Rnd×nd diagonal with Dii = diId
where di =

∑
j wij , the graph Connection Laplacian is defined as

L = D −R, with LR̄T = 0

Note that L � 0, and in the noiseless case LRT = 0. We recover the estimated rotations from the bottom
d eigenvectors of L, by projecting each of the resulting d×d matrices to the closest rotation matrix, via a
simple SVD decomposition. In practice, we choose to work with the L = D−1R, similar to the symmetric
matrix D−1/2RD−1/2 via

H = D−1/2(D−1/2RD−1/2)D1/2.

Note that for the normalized graph Connection Laplacian

L = D−1/2LD−1/2 = Ind −D−1/2WD−1/2,

Bandeira, Singer, and Spielman proved recently [5] a Cheeger-type inequality, providing a deterministic
worst case performance guarantee for the synchronization problem over the group O(d) of orthogonal
transformations.

If we let hi denote the d×d matrix corresponding to the ith submatrix in the d×N matrix [vH1 , . . . , v
H
d ],

in the noise free case, hi is the solution that aligns patch Pi in the global coordinate system (up to a
global orthogonal transformation). We denote by h the dN × d matrix formed by concatenating the true
orthogonal transformation matrices h1, . . . , hN and by GP the patch graph, with nodes corresponding to
the patches P1, . . . , Pn and edges to pairwise alignments of patches which overlap. If GP is complete, it
can be easily seen that H is a rank d matrix since H = hhT , and its top three eigenvectors are given by
the columns of h

Hh = hhTh = hNI3 = Nh

With a bit of extra work, it can be shown that in the general and more realistic case when GP is a sparse
connected graph

Hh = Dh, hence D−1Hh = Hh = h, (9.2)

with the columns of h as eigenvectors of H, with eigenvalue λ = 1 of multiplicity d. It can be shown that
λ = 1 is the largest eigenvalue of H.

Note that if the user has readily available information about the embedding of certain patches and
possibly of their ground truth reflection and rotations (often referred to as anchor nodes), then it is
possible to incorporate such constraints in the synchronization problem. We refer the readers to Section 7
of [17] for an analysis of the synchronization problem Z2 with anchor information, which we solve via
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Quadratically Constrained Quadratic Programming. In the setting where one has further additional infor-
mation that certain subsets of nodes represent the same (unknown) group element, in [15] we consider and
compare several algorithms for synchronization over Z2, based on spectral and semidefinite programming
relaxations (SDP), and message passing algorithms. In the final step, ASAP solves a synchronization
problem over R2 for the translations by solving an overdetermined linear system of equations using the
least squares method, a solution which yields the estimated coordinates of all the nodes up to a global
rigid transformation.

Finally, we remark that from a computational point of view, all steps of the algorithm can be imple-
mented in a distributed manner and scale linearly in the size of the network, except for the eigenvector
computation, which is almost linear, since each iteration of the power method is linear in the number of
edges of the graph, but the number of iterations is greater than O(1) as it depends on the spectral gap.
We refer the reader to Section 7 in [16] for a complexity analysis of the 2D-ASAP algorithm, and also
demonstrate its scalability by reconstructing a kNN-graph with 50,000 nodes, as illustrated in Figure 7.8.
Several other additional experiments demonstrate the robustness of the proposed approach to noise and
to sparse connectivity of the kNN graph providing the ordinal information.

9.2. Rigidity Theory Appendix. One of the main questions in the field of rigidity theory asks
whether one can uniquely determine (up to rigid transformations, such as translations, rotations, reflec-
tions) the coordinates of a set of points p1, . . . , pn given a partial set of distances dij = ||pi− pj || between
n points in Rd. To make our paper self-contained, this short appendix if a very brief summary of the
main definitions and results related to local and global rigidity from the literature (e.g., [14, 24, 25, 44,
and references therein]). Readers who are unfamiliar with rigidity theory may use this short Appendix
as a glossary. As previously discussed in Section 4, one of the steps of the divide-and-conquer approach
proposed for the kNN-recovery problem relies to testing whether the underlying resulting patches are
globally rigid. As observed in our numerical simulations detailed in Figures 7.2,7.3,7.4,7.5,7.6 the final
reconstruction is more accurate when we rely on global rigidity as a postprocessing step for the parti-
tions obtained via spectral clustering. The intuition behind our approach is as follows. In the case when
distance information is available, testing for global rigidity is a crucial step in making sure that each of
the local patches has a unique embedding in its own reference frame, approximatively consistent with the
ground truth, up to a rigid transformation. Since in the kNN-recovery problem, we do not have distance
information but only ordinal data, thus we are faced with solving even a harder problem, we expect that
the global rigidity check will improve the accuracy of the local patch embeddings. One specific example
where our current rigidity heuristics improved results was in performing ASAP LOE BFGS with max
patch size 300, on n = 5000 points drawn from the constant half-plane distribution, letting k = 18. In
that example, performing the rigidity check and pruning gave a runtime of 107.056 s, an ordinal error of
0.00107096, and 0.0585465 Procrustes error, while skipping the rigidity check and pruning gave a runtime
of 192.606 s, an ordinal error of 0.00154208 A error, and 0.175992 Procrustes error.

A bar and joint framework in Rd is defined as an undirected graph G = (V,E) (|V | = n, |E| = m)
together with a configuration p which assigns a point pi in Rd to each vertex i of the graph. The edges of the
graph correspond to distance constraints, that is, (i, j) ∈ E if an only there is a bar of length dij between
points pi and pj . We say that a framework G(p) is locally rigid if there exists a neighborhood U of G(p)
such that G(p) is the only framework in U with the same set of edge lengths, up to rigid transformations.
In other words, there is no continuous deformation that preserves the given edge lengths. A configuration
is generic if the coordinates do not satisfy any non-zero polynomial equation with integer coefficients (or
equivalently algebraic coefficients).

Local rigidity in Rd has been shown to be a generic property, in the sense that either all generic
frameworks of the graph G are locally rigid, or none of them are. A consequence of the seminal results of
Gluck [22] and Asimow and Roth [4] asserts that the dimension of the null space of the rigidity matrix is
the same at every generic point, and hence local rigidity in Rd is a generic property, meaning that either
all generic frameworks of the graph G are locally rigid, or none of them are. With probability one, the
rank of the rigidity matrix that corresponds to the unknown true displacement vectors equals the rank of
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the randomized rigidity matrix. A similar randomized algorithm for generic local rigidity was described
in [24, Algorithm 3.2]. In other words, generic local rigidity in Rd can be considered a combinatorial
property of the graph G itself, independent of the particular realization. Using this observation, generic
local rigidity can therefore be tested efficiently in any dimension using a randomized algorithm [25]: one
can just randomize the displacement vectors p1, . . . , pn while ignoring the prescribed distance constraints
that they have to satisfy, construct the so called rigidity matrix corresponding to the framework of the
original graph with the randomized points and check its rank. This is approach we use to make sure the
obtained patches are local rigid.

Since local generic rigidity does not imply unique realization of the framework, it is possible that there
exist multiple non-congruent realizations that satisfy the prescribed distances (which we do not even have
available in the kNN recovery problem) One may consider for example, the 2D-rigid graph with n = 4
vertices and m = 5 edges consisting of two triangles that can be folded with respect to their joint edge. We
call a framework G(p) globally rigid in Rd if all frameworks G(q) in Rd which are G(p)-equivalent (have all
bars the same length as G(p)) are congruent to G(p) (i.e., related by a rigid transformation). Hendrickson
proved two key necessary conditions for global rigidity of a framework at a generic configuration:

Theorem 9.1 (Hendrickson [25]). If a framework G(p), other than a simplex, is globally rigid for a
generic configuration p in Rd then:

• The graph G is vertex (d+ 1)-connected;
• The framework G(p) is edge-2-rigid (or, redundantly rigid), in the sense that removing any one

edge leaves a graph which is infinitesimally rigid.
We say that a graph G is generically globally rigid in Rd if G(p) is globally rigid at all generic

configurations p [12, 13]. Though it has been conjectured for many years that global rigidity is a generic
property, this fact was shown to be true only very recently. The seminal work of [13, 24] proves that
global rigidity is a generic property of the graph in each dimension. The conditions of Hendrickson as
stated in Theorem 9.1 are necessary for generic global rigidity. They are also sufficient on the line, and
in the plane [27]. However, by a result of Connelly [12], K5,5 in 3-space is generically edge-2-rigid and
5-connected but is not generically globally rigid.

One of the tools used in testing for global rigidity of frameworks relies on the notions on stress matrices,
more popular perhaps in the engineering community. A stress is defined an assignment of scalars wij to
the edges of the given graph G such that for every node i ∈ V it holds that∑

j: (i,j)∈E

ωij(pi − pj) = 0. (9.3)

Alternatively, it can be show that a stress is a vector w in the left null space of the rigidity matrix:
RG(p)Tw = 0. A stress vector can be rearranged into an n× n symmetric matrix Ω, known as the stress
matrix, such that for i 6= j, the (i, j) entry of Ω is Ωij = −ωij , and the diagonal entries for (i, i) are
Ωii =

∑
j: j 6=i ωij . Since all row and column sums are zero, it follows that the all-ones vector (1 1 · · · 1)T

is in the null space of Ω as well as each of the coordinate vectors of the configuration p. Therefore, it
follows that for generic configurations the rank of the stress matrix is at most n− (d+ 1). The following
pairs of theorems give sufficient and necessary conditions for generic global rigidity:

Theorem 9.2 (Connelly [13]). If p is a generic configuration in Rd, such that there is a stress, where
the rank of the associated stress matrix Ω is n− (d+ 1), then G(p) is globally rigid in Rd.

Theorem 9.3 (Gortler, Healy, and Thurston [24]). Suppose that p is a generic configuration in Rd,
such that G(p) is globally rigid in Rd. Then either G(p) is a simplex or there is a stress where the rank
of the associated stress matrix Ω is n− (d+ 1).

Based on the latter theorem, the authors of [24] also provided a randomized polynomial algorithm for
checking generic global rigidity of a graph [24, Algorithm 3.3], which we use to test for global rigidity of
the patches in the kNN-recovery problem. If a given patch is generically locally rigid then their algorithm
picks a random stress vector of the left null space of the rigidity matrix associated to this patch, and
converts it into a stress matrix. If the rank of the stress matrix is exactly n− (d+ 1), then we conclude
that the patch is globally rigid, and if the rank is lower, then the respective patch is not globally rigid.

20



REFERENCES

[1] S. Agarwal, J. Wills, L. Cayton, G. Lanckriet, D. J. Kriegman, and S. Belongie. Generalized non-metric multidimen-
sional scaling. In International Conference on Artificial Intelligence and Statistics, pages 11–18, 2007.

[2] N. Ailon. Active learning ranking from pairwise preferences with almost optimal query complexity. In NIPS, pages
810–818, 2011.

[3] M. Arie-Nachimson, S. Z. Kovalsky, I. Kemelmacher-Shlizerman, A. Singer, and R. Basri. Global motion estimation
from point matches. In 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization
& Transmission, Zurich, Switzerland, October 13-15, 2012, pages 81–88, 2012.

[4] L. Asimow and B. Roth. The rigidity of graphs. Trans. Amer. Math. Soc., 245:279–289, 1978.
[5] A. S. Bandeira, A. Singer, and D. A. Spielman. A cheeger inequality for the graph connection laplacian. SIAM Journal

on Matrix Analysis and Applications, 34(4):1611–1630, 2013.
[6] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Compu-

tation, 15(6):1373–1396, June 2003.
[7] P. Biswas, H. Aghajan, and Y. Ye. Semidefinite programming algorithms for sensor network localization using angle

of arrival information. In Proc. 39th Annu. Asilomar Conf. Signals, Systems, and Computers, pages 220–224, Oct.
2005.

[8] P. Biswas, T. C. Lian, T. C. Wang, and Y. Ye. Semidefinite programming based algorithms for sensor network
localization. ACM Transactions on Sensor Networks, 2(2):188–220, 2006.

[9] P. Biswas, T. Liang, K. Toh, Y. Ye, and T. Wang. Semidefinite programming approaches for sensor network localization
with noisy distance measurements. IEEE Transactions on Automation Science and Engineering, 3(4):360–371, 2006.

[10] P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network localization. In Proceedings of
the Third International Symposium on Information Processing in Sensor Networks, pages 46–54, New York, 2004.
ACM.

[11] K. N. Chaudhury, Y. Khoo, and A. Singer. Global registration of multiple point clouds using semidefinite programming.
SIAM Journal on Optimization, accepted, 2013.

[12] R. Connelly. On generic global rigidity. Applied Geometry and Discrete Mathematics, 4:147–155, 1991.
[13] R. Connelly. Generic global rigidity. Discrete Comput. Geom, 33:549–563, 2005.
[14] R. Connelly and W. J. Whiteley. Global rigidity: The effect of coning. Discrete and Computational Geometry, 2009.
[15] M. Cucuringu. Synchronization over Z2 and community detection in bipartite networks. in progress.
[16] M. Cucuringu, Y. Lipman, and A. Singer. Sensor network localization by eigenvector synchronization over the Euclidean

group. ACM Trans. Sen. Netw., 8(3):19:1–19:42, Aug. 2012.
[17] M. Cucuringu, A. Singer, and D. Cowburn. Eigenvector synchronization, graph rigidity and the molecule problem.

Information and Inference, 1(1):21–67, 2012.
[18] P. P. B. Eggermont and V. N. LaRiccia. Maximum Penalized Likelihood Estimation: Regression, volume 2. Springer,

2001.
[19] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Software: Practice and

experience, 21(11):1129–1164, 1991.
[20] Y. Gao and D. F. Sun. A majorized penalty approach for calibrating rank constrained correlation matrix problems.

2010.
[21] A. Giridhar and P. R. Kumar. Distributed clock synchronization over wireless networks: Algorithms and analysis. In

45th IEEE Conference on Decision and Control, pages 4915–4920, 2006.
[22] H. Gluck. Almost all simply connected closed surfaces are rigid. Geometric Topology, Lecture Notes in Mathematics,

438:225–239, 1975.
[23] M. Gonzalez, X. Huang, D. S. H. Martinez, C. H. Hsieh, Y. R. Huang, B. Irvine, M. B. Short, and A. L. Bertozzi. A

third generation micro-vehicle testbed for cooperative control and sensing strategies. In ICINCO (2), pages 14–20,
2011.

[24] S. J. Gortler, A. D. Healy, and D. P. Thurston. Characterizing generic global rigidity. AMERICAN JOURNAL OF
MATHEMATICS, 4:897, 2010.

[25] B. Hendrickson. Conditions for unique graph realizations. SIAM J Comput, 21:65–84, 1992.
[26] P. Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist, 11(2):37–50, 1912.
[27] B. Jackson and T. Jordán. Connected rigidity matroids and unique realizations of graphs. Journal of Combinatorial

Theory, Series B, 94(1):1–29, 2005.
[28] K. G. Jamieson and R. D. Nowak. Active ranking using pairwise comparisons. In NIPS, volume 24, pages 2240–2248,

2011.
[29] K. G. Jamieson and R. D. Nowak. Low-dimensional embedding using adaptively selected ordinal data. In Communi-

cation, Control, and Computing (Allerton), pages 1077–1084. IEEE, 2011.
[30] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information processing letters, 31(1):7–

15, 1989.
[31] A. Karbasi and S. Oh. Distributed sensor network localization from local connectivity: Performance analysis for the

hop-terrain algorithm. SIGMETRICS Perform. Eval. Rev., 38(1):61–70, June 2010.
[32] R. Karp, J. Elson, D. Estrin, and S. Shenker. Optimal and global time synchronization in sensornets. Technical report,

Center for Embedded Networked Sensing, University of California, Los Angeles, 2003.

21



[33] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika,
29(1):1–27, 1964.

[34] J. B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2):115–129, 1964.
[35] J. B. Kruskal and M. Wish. Multidimensional scaling, volume 11. Sage, 1978.
[36] Y. Lan, J. Guo, X. Cheng, and T.-Y. Liu. Statistical consistency of ranking methods in a rank-differentiable probability

space. In NIPS, pages 1241–1249, 2012.
[37] D. S. H. Martinez, M. Gonzalez, X. Huang, B. Irvine, C. H. Hsieh, Y. R. Huang, M. B. Short, and A. L. Bertozzi.

An economical testbed for cooperative control and sensing strategies of robotic micro-vehicles. In Informatics in
Control, Automation and Robotics, pages 65–75. Springer, 2013.

[38] B. McFee and G. R. Lanckriet. Partial order embedding with multiple kernels. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 721–728. ACM, 2009.

[39] B. McFee and G. R. Lanckriet. Metric learning to rank. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pages 775–782, 2010.

[40] G. O. Mohler, A. L. Bertozzi, T. A. Goldstein, and S. J. Osher. Fast tv regularization for 2d maximum penalized
likelihood estimation. Journal of Computational and Graphical Statistics, 20(2):479–491, 2011.

[41] H. Ouyang and A. Gray. Learning dissimilarities by ranking: from sdp to qp. In Proceedings of the 25th international
conference on Machine learning, pages 728–735. ACM, 2008.

[42] M. Quist and G. Yona. Distributional scaling: An algorithm for structure-preserving embedding of metric and nonmetric
spaces. The Journal of Machine Learning Research, 5:399–420, 2004.

[43] R. Rosales and G. Fung. Learning sparse metrics via linear programming. In Proceedings of the 12th ACM SIGKDD
international conference on knowledge discovery and data mining, pages 367–373. ACM, 2006.

[44] B. Roth. Rigid and flexible frameworks. The American Mathematical Monthly, 88:6–21, 1981.
[45] D. Shamsi, N. Taheri, Z. Zhu, and Y. Ye. On Sensor Network Localization Using SDP Relaxation. ArXiv e-prints, Oct.

2010.
[46] B. Shaw and T. Jebara. Structure preserving embedding. In Proceedings of the 26th Annual International Conference

on Machine Learning, pages 937–944. ACM, 2009.
[47] R. N. Shepard. The analysis of proximities: Multidimensional scaling with an unknown distance function i. Psychome-

trika, 27(2):125–140, 1962.
[48] R. N. Shepard. The analysis of proximities: Multidimensional scaling with an unknown distance function ii. Psychome-

trika, 27(3):219–246, 1962.
[49] R. Sibson. Studies in the robustness of multidimensional scaling: Procrustes statistics. Journal of the Royal Statistical

Society. Series B, pages 234–238, 1978.
[50] A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput. Harmon. Anal.,

30(1):20–36, 2011.
[51] A. Singer and H.-T. Wu. Vector diffusion maps and the connection laplacian. Communications on Pure and Applied

Mathematics, 65(8):1067–1144, 2012.
[52] O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. T. Kalai. Adaptively learning the crowd kernel. arXiv preprint

arXiv:1105.1033, 2011.
[53] Y. Terada and U. V. von Luxburg. Local ordinal embedding. In Proceedings of the 31st International Conference on

Machine Learning, pages 847–855, 2014.
[54] K. Toh, P. Biswas, and Y. Ye. SNLSDP- a MATLAB software for sensor network localization, October 2008.
[55] W. S. Torgerson. Theory and methods of scaling. Wiley, 1958.
[56] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2008.
[57] U. von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.
[58] U. von Luxburg and M. Alamgir. Density estimation from unweighted k-nearest neighbor graphs: a roadmap. In

Advances in Neural Information Processing Systems, pages 225–233, 2013.
[59] U. von Luxburg and M. Kleindessner. Uniqueness of ordinal embedding. In Proceedings of The 27th Conference on

Learning Theory, pages 40–67, 2014.
[60] F. Wauthier, M. Jordan, and N. Jojic. Efficient ranking from pairwise comparisons. In Proceedings of the 30th

International Conference on Machine Learning, pages 109–117, 2013.
[61] K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimensionality reduction by maximum variance

unfolding. In AAAI, volume 6, pages 1683–1686, 2006.
[62] Z. Zhu, A. M. C. So, and Y. Ye. Universal rigidity: Towards accurate and efficient localization of wireless networks. In

Proc. IEEE INFOCOM, 2010.

22


