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Abstract Due to the advance of image capturing devices, huge size of images are
available in our daily life. As a consequence the processing of large scale image data
is highly demanded. Since the total variation (TV) is kind of de facto standard in im-
age processing, we consider block decomposition methods for TV based variational
models to handle large scale images. Unfortunately, TV is non-separable and non-
smooth and it thus is challenging to solve TV based variational models in a block
decomposition. In this paper, we introduce a primal-dual stitching (PDS) method
to efficiently process the TV based variational models in the block decomposition
framework. To characterize TV in the block decomposition framework, we only fo-
cus on the proximal map of TV function. Empirically, we have observed that the
proposed PDS based block decomposition framework outperforms other state-of-art
methods such as Bregman operator splitting based approach in terms of computa-
tional speed.
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1 Introduction

Image restoration problems frequently appear in various applications such as remote
sensing, medical image reconstruction, and computer vision. Due to the fast techno-
logical advance in image capturing devices, the real time processing of large scale
image data is highly demanded. Nowadays, the total variation (TV) [23] is kind of
de facto standard in image processing problems such as image deblurring, inpainting,
denoising, and segmentation. Also, recent advances of optimization methodologies
[1,7,10,16,29,31,34] reduce computational complexity for finding a solution of TV
based variational model and we could thus find a solution in a reasonable CPU time.
In modern multi-core CPU environment, real time processing of large scale image
data is highly demanded. Therefore, it is natural to study block decomposition meth-
ods for TV based image restoration problems. However, due to the non-smoothness
and non-separability of TV, it is not easy to directly apply the conventional block de-
composition method [3] to the TV based models. Note that, if the non-differentiable
function is separable, e.g., ℓ1-norm minimization problem, then we can establish a
global convergence of block decomposition methods [4,12] and a block coordinate
method [24]. Due to the non-differentiability and non-separability of TV, theoretical
global convergence is only available for overlapped domain decompositions [13,19].
Note that recently, dual based approaches [9,20] are also introduced to overcome the
difficulties of TV in domain decomposition applications. Although the theoretical
global convergence is not known, the block decomposition method is highly useful
due to the simple structure of the method. In this paper, we introduce primal-dual
stitching (PDS) based block decomposition methods. The proposed PDS can make
us efficiently decompose the non-separable TV function. The proposed block decom-
position framework gives a plausible answer in terms of efficient implementation of
parallelism for TV based models.

Since we focus on the block decomposition framework for TV based models,
we only treat the ROF model [23], which is also known as a proximal map of TV
(proxTV) [2]. See also [5] for various features of the proximal map. Note that proxTV
is the basic model for various image restoration problems such as deblurring [31] and
denoising [21]. Now, let us assume that b ∈ RM×N

+ (the set of M×N matrices whose
entries are nonnegative real numbers) be given image data and the corresponding
M×N image domain as Ω , then we get the following proxTV formulation:

min
u∈V

J(u) = ∥u−b∥2
2 +µTV(u) (1)

where µ > 0 and V ⊂ R+
M×N is a closed convex set. Note that, TV is defined as

TV(u)= ∥∇u∥1 =∑i, j ∥(∇u)i, j∥2 with (∇u)i, j =((∇u)x
i, j,(∇u)y

i, j)∈R2 and ∥(∇u)i, j∥2 =√
((∇u)x

i, j)
2 +((∇u)y

i, j)
2. Here the backward difference scheme is used for the dis-

crete gradient operator ∇. Let Ω be an M×N image domain and we use the Neumann
adiabatic boundary condition [8] on the boundary of the image domain Ω for the dis-
crete gradient operator ∇ (i.e., ∇u|∂Ω = 0).

The paper is organized as follows. In section 2, we describe the general block
decomposition framework. In section 3, we introduce a PDS method for the proximal
map of TV. In section 4, we show the performance of the proposed PDS based block
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decomposition method via numerical experiments on various test images. Finally, we
give our conclusion in section 5.

2 Block Decomposition Method

In this section, we introduce a sequential block decomposition method (nonlinear
block Gauss-Seidel method) and a parallel block decomposition method (nonlinear
block Jacobi method) for proxTV (1). Note that the block decomposition methods we
consider are nonoverlapping block decomposition methods [22]. For an overlapping
block decomposition method, see [13,19].

Let V = ∪I
i=1Vi be a given domain such that Vk ∩Vl = /0 for k ̸= l. That is, V =

⊕I
i=1Vi is a direct sum of each subspace Vi. Then we get the following nonoverlapping

sequential block decomposition framework (BD-S):

For k = 1, ...,K
For i = 1, ..., I

u
(k+ 1

2 )
i = argmin

ui∈Vi

J(u(k+1)
1 + ...+u(k+1)

i−1 +ui +u(k)i+1 + ...+u(k)I )

u(k+1)
i = ωu

(k+ 1
2 )

i +(1−ω)u(k)i
End
u(k+1) = ∑I

i=1 u(k+1)
i

End

(2)

where ω > 0 is a tuning parameter. Note that when ω = 1, BD-S becomes the con-
ventional nonlinear block Gauss-Seidel method. If 0 < ω < 1 then the model is un-
derrelaxed and if ω > 1 then the model is overrelaxed. In fact, the best value for ω
should be determined. Note that this block decomposition method is also known as a
nonlinear block successive over relaxation (NBSOR) [17,27]. Since the structure of
BD-S (2) is sequential, it requires elaborated effort to be implemented efficiently in
a parallel computing machine. For instance, the coloring technique [30] is used for
the block decomposition method of TV. To overcome this drawback, the following
parallel nonoverlapping block decomposition method (or nonlinear block Jacobi) is
commonly used.

For k = 1, ...,K
ParFor i = 1, ..., I

u
(k+ 1

2 )
i = argmin

ui∈Vi

J(u(k)1 + ...+u(k)i−1 +ui +u(k)i+1 + ...+u(k)I )

End

u(k+1) = ∑I
i=1(ωu

(k+ 1
2 )

i +(1−ω)u(k)i )
End

(3)

where ω > 0. We call this model BD-P. Note that the BD-P method (3) only uses
the previous k-th iteration result when i-th variable of the (k+ 1)-th iteration is up-
dated. Hence the algorithm is highly parallelizable and easy to implement. Note that,
to guarantee the monotonicity property of J, i.e. J(u(k+1)) ≤ J(u(k)), the relaxation
parameter ω = 1/I is used in [12,14].
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Remark 1 In the image restoration problems such as image deblurring [31] and de-
noising [21] problems, we often solve

min
u∈V

f (u)+µTV(u) (4)

for a convex and smooth function f . Note that, for typical image restoration problems,
f (u) = ∥Au−b∥2

2, where A depends on the type of the restoration model, for example,
for the deblurring problem, A is a convolution operator and b is the given blurred
image. For Poisson noise reduction problems, we have f (u) = ⟨u−b logu, 1⟩. Since
f in (4) is convex and smooth, a typical approach to find a solution of (4) is to use
the proximal gradient method. That is, by using Taylor expansion of the fidelity term
f (u) at a, we introduce the following surrogate function for the fidelity term in (4) :

f s(u;a) := f (a)+ ⟨∇ f (a), u−a⟩+ 1
2
∥u−a∥2

H ,

where ∥u−a∥H = ⟨u−a, H(u−a)⟩. Note that H is a positive definite diagonal matrix
which approximates ∇2 f (a) and H −∇2 f (a) is a positive definite matrix. See also
[21]. By using this surrogate function, we can easily find a solution of (4) with the
following iterations:

u(r+1) = argmin
u∈V

f s(u;u(r))+µTV (u), r = 1,2, ... (5)

For more details on this proximal gradient method, see [1,2]. We note that, since the
surrogate function f s(u,u(r)) is separable, it is naturally parallelizable for the block
decomposition method. Therefore, in this paper, we focus on the proxTV (1).

2.1 Descent property of the block decomposition methods

In this section, we study the descent property of BD-S (2) when 0 < ω ≤ 1 and BD-P
(3) when ω = 1/I.

The following lemma provides a key inequality for establishing the descent prop-
erty of the BD-S method and the BD-P method.

Lemma 1 For any u = ∑I
i=1 ui, we have that

J(ū)− J(u)≤−ω∥ū−u∥2
2, (6)

where ū = ω ũ(i)+(1−ω)u with

ũ(i) = u1 + ...+ui−1 + ũi +ui+1 + ...+uI

and
ũi = argmin

ui∈Vi

J(u1 + ...+ui−1 +ui +ui+1 + ...+uI)

for 1 ≤ i ≤ I.
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Proof Since a2 −b2 = 2⟨b, a−b⟩+(a−b)2, we have that

J(ũ(i))− J(u) = ∥ũ(i)−b∥2
2 −∥u−b∥2

2 +µTV(ũ(i))−µTV(u)

= 2⟨u−b, ũ(i)−u⟩+∥ũ(i)−u∥2
2 +µTV(ũ(i))−µTV(u). (7)

For any ω ∈ (0,1), we have from the definition of ũ(i), i.e., ũi, and the convexity
of µTV(·) that

2⟨u−b, ũ(i)−u⟩+∥ũ(i)−u∥2
2 +µTV(ũ(i))

=
(
∥ũ(i)−b∥2

2 −∥u−b∥2
2
)
+µTV(ũ(i))

≤
(
∥ū−b∥2

2 −∥u−b∥2
2
)
+µTV(ū)

= 2⟨u−b, ū−u⟩+∥ū−u∥2
2 +µTV(ū)

≤ 2ω⟨u−b, ũ(i)−u⟩+∥ω(ũ(i)−u)∥2
2 +ωµTV(ũ(i))+(1−ω)µTV(u),

where the last inequality uses the definition of ū. Rearranging terms yields

2(1−ω)⟨u−b, ũ(i)−u⟩+(1−ω)(µTV(ũ(i))−µTV(u))+(1−ω2)∥ũ(i)−u∥2
2 ≤ 0.

Since 1−ω2 = (1−ω)(1+ω), dividing both sides by 1−ω > 0 and then taking
ω ↑ 1 imply that

2⟨u−b, ũ(i)−u⟩+(µTV(ũ(i))−µTV(u))+∥ũ(i)−u∥2
2 ≤−∥ũ(i)−u∥2

2. (8)

This together with (7) yields that

J(ũ(i))− J(u)≤−∥ũ(i)−u∥2
2. (9)

For any ω ∈ (0,1], by the convexity of J and using (9), we have that

J(ū)− J(u) ≤ ωJ(ũ(i))+(1−ω)J(u)− J(u)

= −ω∥ũ(i)−u∥2
2

≤ −ω∥ū−u∥2
2

which proves (6).

The next theorem establishes the descent property of the BD-S method.

Theorem 1 Let {u(k)} be the sequences generated by the BD-S method (2) with 0 <
ω ≤ 1. Then the following properties are hold.

(a) J(u(k))> J(u(k+1)) for all k unless u(k) = u(k+1).
(b) limk→∞ ∥u(k+1)−u(k)∥2 = 0.

Proof (a) Let

ũ(k)(i) = u(k+1)
1 + ...+u(k+1)

i−1 +u(k)i +u(k)i+1 + ...+u(k)I

and
ũ(k+1)(i) = u(k+1)

1 + ...+u(k+1)
i−1 +u(k+1)

i +u(k)i+1 + ...+u(k)I .
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Then, by Lemma 1 with ū = ũ(k+1)(i) and u = ũ(k)(i), we obtain that, for all k and
i = 1, . . . , I,

J(ũ(k)(i))− J(ũ(k+1)(i))≥ ω∥ũ(k+1)(i)− ũ(k)(i)∥2
2.

Summing the above inequality over i = 1, . . . , I, we have that

J(u(k))− J(u(k+1))≥ ω∥u(k+1)−u(k)∥2
2. (10)

Hence if u(k) ̸= u(k+1), then J(u(k))> J(u(k+1)).
(b) Summing up the inequalities (10) for all k implies that

J(u(1))− lim
k→∞

J(u(k))≥
∞

∑
k=1

ω∥u(k+1)−u(k)∥2
2. (11)

Since J(u) is bounded below and the sequence {J(u(k))} is monotonically decreasing,
(11) yields that limk→∞ ∥u(k+1)−u(k)∥2 = 0.

Remark 2 For the BD-S method, the coordinate block is cyclically selected, i.e., the
Gauss-Seidel rule is applied; see [25] and references therein. Although the objective
value decreases, it does not guarantee that the sequence generated by the method con-
verges to the optimial solution. But if the Gauss-Southwell type rule [25] is applied,
then it does guarantee that the sequence generated by the method converges to the
optimal solution even if TV is nonseparable.

The next theorem establishes the descent property of the BD-P method.

Theorem 2 Let {u(k)} be the sequences generated by the BD-P method (3) with ω =
1/I. Then the following properties are hold.

(a) J(u(k))> J(u(k+1)) for all k unless u(k) = u(k+1).
(b) limk→∞ ∥u(k+1)−u(k)∥= 0.

Proof (a) Let

û(k+
1
2 )(i) = u(k)1 + ...+u(k)i−1 +u

(k+ 1
2 )

i +u(k)i+1 + ...+u(k)I .

Then, by Lemma 1 with ū = û(k+
1
2 )(i) and u = u(k), we obtain that, for all k and

i = 1, . . . , I,

J(u(k))− J(û(k+
1
2 )(i))≥ ∥û(k+

1
2 )(i)−u(k)∥2

2. (12)

Let
û(k+1)(i) = u(k)1 + ...+u(k)i−1 +u(k+1)

i +u(k)i+1 + ...+u(k)I ,

then, by using the inequality (12), we have that

J(u(k))− J(û(k+
1
2 )(i))≥ ω2∥û(k+1)(i)−u(k)∥2

2. (13)
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Summing the above inequality over i = 1, . . . , I and dividing by I on both sides, we
have that

J(u(k))−ω
I

∑
i=1

J(û(k+
1
2 )(i))≥ ω3∥u(k+1)−u(k)∥2

2. (14)

By the definition of û(k+
1
2 )(i) and the convexity of J, we have that

J(u(k+1)) = J

(
I

∑
i=1

ωu
(k+ 1

2 )
i +(1−ω)u(k)i

)

= J

(
ω

(
I

∑
i=1

(û(k+
1
2 )(i))− (I −1)u(k)

)
+(1−ω)

I

∑
i=1

u(k)i

)
= J

(
ω

I

∑
i=1

(û(k+
1
2 )(i))

)

≤ ω
I

∑
i=1

J(û(k+
1
2 )(i)), (15)

where the third equality uses u(k) = ∑I
i=1 u(k)i . This inequality together with (14) im-

plies that
J(u(k))− J(u(k+1))≥ ω3∥u(k+1)−u(k)∥2

2. (16)

Hence if u(k) ̸= u(k+1), then J(u(k))> J(u(k+1)).
(b) Summing up the inequalities (16) for all k implies that

J(u(1))− lim
k→∞

J(u(k))≥
∞

∑
k=1

ω3∥u(k+1)−u(k)∥2
2. (17)

Since J(u) is bounded below and the sequence {J(u(k))} is monotonically decreasing,
(17) yields that limk→∞ ∥u(k+1)−u(k)∥2 = 0.

3 Primal-Dual Stitching

In this section, we introduce the PDS technique for the block decomposition (i.e.
domain decomposition).

To find a solution of BD-S (2) and BD-P (3) for each block variable ui ∈ Vi, we
need to solve the following subproblems

u(k+1)
i = argmin

ui∈Vi

J(ui +U (k)
i ), (18)

where U (k)
i = ∑ j<i u(k+1)

j +∑ j>i u(k)j for BD-S (2) and U (k)
i = ∑ j ̸=i u(k)j for BD-P (3).

Since TV is non-separable, we need to be careful when we find a solution of (18).
One method is to reformulate it with a projection operator. The following is the re-
formulation of (18):

u(k+1)
i = argmin

u∈V
{ J(u) : πV c

i
(u) =U (k)

i } , (19)
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where V c
i =V1 ⊕ . . .⊕Vi−1 ⊕Vi+1 ⊕ . . .⊕VI and πX is the orthogonal projection onto

X ⊂V . We can solve this problem by using a thin stripe line around the block ui:

u(k+1)
i = argmin

ui∈Vi⊕Ṽi

{ J(ui) : πṼi
(ui) = Ũ (k)

i } , (20)

where Ũ (k)
i =U (k)

i |Ṽi
. Note that Ωi is a subdomain of Ω and Vi =V |Ωi . The additional

thin stripe line around Ωi is denoted as Ω̃i, i.e., Ω \Ωi ⊃ Ω̃i and ∂ (Ω \Ωi)∩∂Ωi =
∂Ωi ∩ ∂Ω̃i. Therefore, Ṽi = V |Ω̃i

. Langer et al. [22] solved the equality constraints
in (20) with Bregmanized operator splitting (BOS) [32]; see Section 3.2 for Breg-
manized Domain Decomposition (BDD) in more details. Although BDD [22] easily
handles the constraints in (20), as shown in Fig. 4 and Fig. 5, the BDD algorithm for
(20) has some drawbacks. It requires many iterations to satisfy the constraint condi-
tion in (20).

Now, we consider the following different reformulation of (18):

u(k+1)
i = argmin

ui∈Vi,zi

{ ∥ui −bi∥2
2 +µ∥zi∥1 : zi = ∇(ui +U (k)

i ) }, (21)

where bi = b|Ωi . A solution of (21) could be found via an augmented Lagrangian
based optimization method, such as the proximal linearized alternating direction
(PLAD) method [28]. For this, at each subdomain Ωi, we exploit the additional infor-
mation U (k)

i into the gradient operator ∇ and the corresponding divergence operator
div under the following equality condition on the whole domain Ω :

⟨p, ∇u⟩W = ⟨−div p, u⟩Vi⊕V c
i
, (22)

where W = (⊕I
i=1Vi)× (⊕I

i=1Vi). Hence, in the following Definition 1 and 2, we in-
troduce the domain dependent gradient operator ∇̄iui for ui ∈ Vi and the modified
domain dependent divergence operator divi pi for pi ∈ Wi. We call the optimization
methodology using the modified operators as the PDS (Primal-Dual Stitching) based
method1.

Definition 1 Let Ω = ∪I
i=1Ωi, where if k ̸= l then Ωk ∩Ωl = /0, and Vi = [0,255]|Ωi|

with |Ωi|= Mi ×Ni. Let us define the domain dependent gradient operator

∇̄i : Vi →Wi, (23)

as follows;
(∇̄iui)m,n = ((∇̄iui)

x
m,n,(∇̄iui)

y
m,n), (24)

where Wi =Vi ×Vi and

(∇̄iui)
x
m,n =

{
ui(m,n)−ui(m−1,n) if 1 < m ≤ Mi
ui(m,n)− cx

i (1,n) if m = 1,

(∇̄iui)
y
m,n =

{
ui(m,n)−ui(m,n−1) if 1 < n ≤ Ni
ui(m,n)− cy

i (m,1) if n = 1.

1 It is inspired from an image stitching method in [26].
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Fig. 1: Primal stitching of the backward difference gradient operator. (a) is the given
data u. (b) is the backward gradient operator ∇u = u(n)−u(n−1). Here, ∇u = 0 at
V 1

1 , due to the Neumann adiabatic boundary condition of the whole domain. However,
we need to define ∇u at V 1

2 . (c) is BDD (44) for primal variables. In BDD, ∇u at V 1
2

is naturally defined with unknown u at V 4
1 with constraint πV 4

1
(u) = □. Also, the

Neumann adiabatic boundary condition is used at V 4
1 . Note that this additional pixel

V 4
1 (i.e., πV 4

1
(u) =□) can be extended to several pixels [22]. (d) is the proposed PDS

for primal variables. In PDS, we simply use u at V 4
1 as a boundary data for the domain

V2. That is, we use a local Dirichlet boundary condition at V 1
2 with global Neumann

adiabatic boundary condition at V 1
1 for the modified gradient in PDS.

We note that cx
i (1,n) is the adjacent pixel value in the negative x-direction on the

location (1,n) of i-th block. If the location (1,n) of i-th block is the first pixel (in
x-axis) of the given image domain Ω , then cx

i (1,n) = ui(1,n) and thus (∇̄iui)
x
m,n = 0.

Also, cy
i (m,1) is the adjacent pixel value in the negative y-direction on the location

(m,1) of i-th block. If the location (m,1) of i-th block is the first pixel (in y-axis)
of the given image domain Ω , then cy

i (m,1) = ui(m,1) and thus (∇̄iui)
y
m,n = 0. That

is, we use local Dirichlet boundary condition on each subdomain Ωi and the global
Neumann adiabatic boundary condition on the whole domain Ω ; see also Fig. 1. Note
that, for convenience, we let ∇̄ = [∇̄1, ..., ∇̄I ].

Now, we also modify the divergence operator div : W → V to be the negative
adjoint operator of the gradient operator ∇̄ on the whole domain Ω and thus (22) is
preserved.
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Fig. 2: Dual stitching of the proposed PDS for the forward difference divergence
operator. In the TV based optimization algorithm, we are naturally required to calcu-
late the forward difference operator div p = p(n+1)− p(n). Since div is the forward
difference operator, we only need to know boundary information of the domain V1.
Note that as observed in Fig. 1, for ∇, we need to know boundary information of the
domain V2.

Definition 2 Let Ω = ∪I
i=1Ωi, where if k ̸= l then Ωk ∩Ωl = /0, and Vi = [0,255]|Ωi|

with |Ωi|= Mi ×Ni. Let us define the domain dependent divergence operator

divi : Wi →Vi (25)

as follows;

(divi pi)m,n =

 px
i (m+1,n)−dx

i (1,n) if m = 1
px

i (m+1,n)− px
i (m,n) if 1 < m < Mi

ex
i (Mi,n)− px

i (m,n) if m = Mi

(26)

+

 py
i (m,n+1)−dy

i (m,1) if n = 1
py

i (m,n+1)− py
i (m,n) if 1 < n < Ni

ey
i (m,Ni)− py

i (m,n) if n = Ni,

where we set dx
i (1,n) = 0 if (1,n) of i-th block is on the boundary of the whole

domain Ω otherwise dx
i (1,n) = px

i (1,n). Also, we set dy
i (m,1) = 0 if (m,1) of i-th

block is on the boundary of the whole domain Ω otherwise dy
i (m,1) = py

i (m,1). Note
that ex

i (Mi,n) is the adjacent px value in the positive x-direction on the location (Mi,n)
of i-th block if (Mi,n) is not on the boundary of the whole domain Ω , otherwise
ex

i (Mi,n) = 0. Also, ey
m is the adjacent py value in the positive y-direction on the

location (m,Ni) if (m,Ni) is not on the boundary of the whole domain Ω , otherwise
ey

i (m,Ni) = 0. See also Fig. 2. For convenience, we let div = [div1, ...,divI ].

Although we define ∇̄ = [∇̄1, ..., ∇̄I ] and div = [div1, ...,divI ] to satisfy (22) on the
whole domain Ω , the following Lemma shows that (22) is approximately satisfied
on each subdomain Ωi. Note that in Section 3.1, we show when the effects of this
approximation is negligible.

Lemma 2 Let V = Vi ⊕V c
i and W = Wi ⊕W c

i , where Wi = Vi ×Vi, Vi = V |Ωi , Ωi =
Mi ×Ni, and Ω = ∪I

i=1Ωi. Then, (22) is approximately satisfied on each subdomain
Ωi:

⟨pi, ∇̄iui⟩Wi = ⟨−divi pi, ui⟩Vi +Xi, (27)
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where Xi is the distortion terms on ∂Ωi.

Proof For simplicity, we characterize Xi in one dimension (x-axis):

⟨pi, ∇̄iui⟩Wi =
Mi

∑
mi=2

pi(mi)[ui(mi)−ui(mi −1)]+ pi(1)[ui(1)− ci(1)]

= pi(Mi)ui(Mi)− [pi(Mi)− pi(Mi −1)]ui(Mi −1)...− [pi(2)− pi(1)]ui(1)− pi(1)ci(1)

= {pi(Mi)ui(Mi)−
Mi−1

∑
mi=2

[pi(mi +1)− pi(mi)]ui(mi)− pi(2)ui(1)}+ pi(1)ui(1)− pi(1)ci(1)

= −⟨divi pi, ui⟩Vi + ei(Mi)ui(Mi)−di(1)ui(1)+ pi(1)ui(1)− pi(1)ci(1)

Now, we have characterize Xi for three different cases:

(a) ∂Ωi = ∂Ω : (ci(1),di(1),ei(Mi)) = (ui(1),0,0)

⟨pi, ∇̄iui⟩Wi =−⟨divi pi, ui⟩Vi

(b) ∂Ωi ∩∂Ω = /0: (ci(1),di(1),ei(Mi)) = (ui−1(Mi−1), pi(1), pi+1(1))

⟨pi, ∇̄iui⟩Wi =−⟨divi pi, ui⟩Vi + pi+1(1)ui(Mi)− pi(1)ui−1(Mi−1)

(c) ∂Ωi ∩∂Ω ̸= /0 and ∂Ωi ̸= ∂Ω
(c-1) Left side of ∂Ωi = Left side of ∂Ω : (ci(1),di(1),ei(Mi)) = (ui(1),0, pi+1(1))

⟨pi, ∇̄iui⟩Wi =−⟨divi pi, ui⟩Vi + pi+1(1)ui(Mi)

(c-2) Right side of ∂Ωi = Right side of ∂Ω : (ci(1),di(1),ei(Mi))= (ui−1(Mi−1), pi(1),0)

⟨pi, ∇̄iui⟩Wi =−⟨divi pi, ui⟩Vi − pi(1)ui−1(Mi−1)

Note that when ∂Ωi∩∂Ω = /0, we get the worst boundary distortion Xi = pi+1(1)ui(Mi)−
pi(1)ui−1(Mi−1). See also Example 1.

To understand clearly the proposed PDS method, we introduce one-dimensional
example in the following:

Example 1 Let u= [u(1),u(2),u(3),u(4),u(5)]∈V ⊂R5 and p= [p(1), p(2), p(3), p(4), p(5)]∈
W ⊂ R5. V =V1 ⊕V2 where u1 = [u1(1),u1(2),u1(3)] = [u(1),u(2),u(3)] ∈V1,u2 =
[u2(1),u2(2)] = [u(4),u(5)] ∈ V2. W = W1 ⊕W2 where p1 = [p1(1), p1(2), p1(3)] =
[p(1), p(2), p(3)] ∈W1, p2 = [p2(1), p2(2)] = [p(4), p(5)] ∈W2. Then we get the fol-
lowing in each subdomain:

∇̄1u1 = [0,u1(2)−u1(1),u1(3)−u1(2)] = [0,u(2)−u(1),u(3)−u(2)] ∈V1,

∇̄2u2 = [u2(1)−u1(3),u2(2)−u2(1)] = [u(4)−u(3),u(5)−u(4)] ∈V2

div1 p1 = [p1(2) , p1(3)− p1(2),p2(1)− p1(3)] = [p(2) , p(3)− p(2),p(4)− p(3)] ∈W1,

div2 p2 = [p2(2)− p2(1), −p2(2)] = [p(5)− p(4), −p(5)] ∈W2
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Fig. 3: For performance comparison of PDS and BDD for 2× 2 block decomposi-
tion, we use 256× 256 synthetic image (Left). The center of 2× 2 block boundary
(128,128) is shifted by (dx,dy), where −10 ≤ dx ≤ 10 and −10 ≤ dy ≤ 10 (Right).
See Fig. 4, Fig. 5, and Table 1 for test results.

Fig. 4: Performance comparison of PDS and BDD for 2×2 block decomposition (see
Fig. 3). The PSNR and Obj values at each pixel location corresponds to the shifted
center (dx,dy) with −10 ≤ dx ≤ 10 and −10 ≤ dy ≤ 10. For BDD, we use one BOS
iteration. The PDS based model obtains smaller variation in PSNR and Obj value
than the BOS based method.

Also, we get the following on the whole domain V and W :

∇̄u = [∇̄1u1, ∇̄2u2] = [0 ,u(2)−u(1),u(3)−u(2),u(4)−u(3),u(5)−u(4)]
divp = [divp1,divp2] = [p(2) , p(3)− p(2), p(4)− p(3), p(5)− p(4), −p(5)]

which satisfy ⟨p, ∇̄u⟩W = ⟨−divp, u⟩V . Note that we get ⟨pi, ∇̄iui⟩Wi ≈⟨−divi pi, ui⟩Vi .
For instance, we have

⟨p1, ∇̄1u1⟩W1 = ⟨−div1 p1, u1⟩V1 −p(4)u(3).

As shown in Fig. 1, the main difference between BDD [22] and the proposed PDS
method is that BDD need additional equality constraints on the outside of the domain
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Fig. 5: Performance of BDD vs. the number of BOS iterations. (a) and (c) are the
averaged value of 25 different cases (i.e., −2≤ dx ≤ 2 and −2≤ dy≤ 2) in Fig. 3. (b)
and (d) are the variance of each case. As we increase the number of BOS iterations,
the PSNR and Objective value are getting better. To obtain comparable performance
to the proposed PDS, we need more than 15 BOS iterations. However, as observed in
(b) and (d), the variance is still larger than the PDS based model.

with the adiabatic Neumann boundary condition (Fig. 1 (c)). However, the proposed
PDS uses information outside of the domain into the boundary condition and defines
new gradient operator ∇̄ (24) and divergence operator div (26) (Fig. 1 (d) and Fig.
2 (c)). Therefore, the proposed PDS could remove the additional iterations to satisfy
the equality constraint in (20). Due to this simplification process, as observed in Fig.
4, the proposed PDS method is more consistent with respect to changes of the do-
main in Fig. 3 when compared with the BDD method [22]. Note that Fig. 3 shows
the experimental setting for Fig. 4, Fig. 5, and Table 1. In Fig. 5, we show the perfor-
mance of BDD versus the number of BOS iterations. For comparable performance to
the proposed PDS based model, BDD is required more than 15 BOS iterations. Al-
though BDD obtains higher PSNR and lower Objective value, the BOS based model
shows relatively large variance in PSNR and Objective value than the proposed PDS
based model. In addition, Table 12 reports that the PDS based approach shows con-
sistent performance irrespective of the number of iterations for the inner solver. Note
that BDD also shows consistent performance between sequential method and parallel

2 As shown in Theorem 3, the sequential method (i.e., BD-S) with subMaxIt = 1 and ω = 1 corresponds
to the method (i.e. PLAD) without using block decomposition.
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Method subMaxIt Sequential Parallel
S in (43) PSNR(dB)/Obj PSNR(dB)/Obj

1 46.7976/5.4283×106 46.7976/5.4283×106

PDS 10 46.7977/5.4282×106 46.7978/5.4282×106

20 46.7978/5.4283×106 46.7986/5.4283×106

BDD 10 46.9772/5.1602×106 46.9773/5.1602×106

Table 1: Comparison of consistency of the PDS based method and the BDD method
for the synthetic data in Fig. 3. Here, we set ω = 1 for sequential algorithm, ω = 1/4
for parallel algorithm, and (dx,dy) = (0,0). Also we run 1000 iterations for all algo-
rithms with different number of sub-iterations. The PDS based method is consistent
regardless of choice of the number of iterations for the inner solver and the method-
ology (sequential vs. parallel). Here, the case with subMaxIT = 1 (i.e., S = 1 in (43))
corresponds to the case without using block decomposition (Theorem 3). Note that
BDD shows consistent performance irrespective of the methodology. However, PDS
and BDD show different results due to the different choice of parameters and different
approach for block decomposition.

method. However, PDS and BDD obtain different results due to the different choice
of parameters and different approach for block decomposition.

3.1 Block proxTV solver

There are various optimization methods, e.g. penalty method, alternating minimiza-
tion algorithm (AMA), alternating direction method of multiplier (ADMM), proximal
linearized alternating direction (PLAD) to implement block decomposition method
proposed in Section 2. In this section, we introduce the PLAD method under the
block decomposition framework for proxTV (1).

Let us start with the following reformulated proxTV (1):

min
u∈V,z

{∥u−b∥2
2 +µ∥z∥1 : ∇u = z }. (28)

To find a solution of (28), we introduce Lagrangian based formulations, augmented
Lagrangian and its linearized version. First, the augmented Lagrangian function for
(28) is

Lα(u,z, p) := ∥u−b∥2
2 +µ∥z∥1 + ⟨p, z−∇u⟩+ α

2
∥z−∇u∥2

2, (29)

where α is a nonnegative constant and when α = 0, we get the Lagrangian function
L0(u,z, p) of (28). By using the Taylor expansion of F (u) := α

2 ∥z−∇u∥2
2 of the

augmented Lagrangian function (29) at ǔ, we have that

F (u) = F (ǔ)+ ⟨∇uF (ǔ), u− ǔ⟩+ 1
2
(u− ǔ)T ∇2

uF (ǔ)(u− ǔ).
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We replace F (u) of the augmented Lagrangian function Lα(u,z, p) by the above
second-order approximation, with D being a positive definite diagonal matrix ap-
proximating the Hessian matrix ∇2

uF (u), then we obtain

L L α(u,z, p; ǔ,D) := ∥u−b∥2
2 +µ∥z∥1 + ⟨p, z−∇u⟩ (30)

+ F (ǔ)+ ⟨∇uF (ǔ), u− ǔ⟩+ 1
2
(u− ǔ)T D(u− ǔ).

We call L L α(u,z, p; ǔ,D) as the linearized augmented Lagrangian function with the
generalized proximal function.

Now, let us start with the following min-max problem with the Lagrangian func-
tion of (28):

max
p

min
u∈V,z

L0(u,z, p), (31)

where each term is separable except ⟨p, ∇u⟩. However, by using the PDS method with
∑i⟨pi, ∇̄iui⟩= ⟨p, ∇̄u⟩= ⟨p, ∇u⟩, we could decompose the Lagrangian function into
small blocks:

L0(u,z, p) = ∑
i

L i
0(ui,zi, pi), (32)

where
L i

0(ui,zi, pi) = ∥ui −bi∥2
2 +µ∥zi∥1 + ⟨pi, zi − ∇̄iui⟩.

Note that, since ∇ in the i-th local block Vi has the Neumann adiabatic boundary
condition, we could not replace ∇̄i with ∇. For that reason, it is more natural to use
PDS for primal-dual block decomposition.

To analyze the structure of primal-dual block decomposition, we first consider the
following unblocked virtual primal-dual optimization to find a saddle point of (31):

For k = 1, ...,K
(u(k+1),z(k+1), p(k+1)) = Opt(u(k),z(k), p(k))

End
(33)

Actually, we could use simple sequential primal-dual block decomposition (i.e., BD-
S (2) with ω = 1) for (33):

For k = 1, ...,K
For i = 1, ..., I
(u(k+1)

i ,z(k+1)
i , p(k+1)

i ) = Opti(U
(k)
i ,Z(k)

i ,P(k)
i )

End
u(k+1) = ∑I

i=1 u(k+1)
i

End

(34)

where I ≥ 2 and

(U (k)
i ,Z(k)

i ,P(k)
i ) = ∑

j<i
(u(k+1)

j ,z(k+1)
j , p(k+1)

j )+∑
j>i

(u(k)j ,z(k)j , p(k)j ).

Note that Opti is a virtual optimization method with PDS on the i-th block Vi. It
is not easy to analyze the relation between unblocked optimization (33) and multi-
blocked optimization (34). However, in the following Lemma, we show that when
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Opt is carefully designed to satisfy some specific conditions then (33) is equal to the
multi-blocked primal-dual optimization (34).

Lemma 3 (Pseudo Explicit Method: Dependency on previous information) For
any u(mi,ni) ∈ Vi and u(m j,n j) ∈ Vj, let us assume that block index i is a non-
decreasing sequence in the forward direction at each pixel location (mi,ni). That
is, if mi ≤ m j and ni ≤ n j then i ≤ j. For simplicity, let u,z, p at (m,n) be ordered
as [a(1,m,n),a(2,m,n),a(3,m,n)] = [u(m,n),z(m,n), p(m,n)]. We also update the
variable a (i.e. u,z, p) in lexicographic order:

[a(k+1)(1,1,1)→ a(k+1)(2,1,1)→ a(k+1)(3,1,1)]→
[a(k+1)(1,2,1)→ a(k+1)(2,2,1)→ a(k+1)(3,2,1)]→
. . .

[a(k+1)(l −1,m,n)→ a(l,m,n)→ a(k)(l +1,m,n)]→
[a(k)(1,m+1,n)→ a(k)(2,m+1,n)→ a(k)(3,m+1,n)]→
. . .

Now we say that a(l,m,n) depends only on previous information when a(k+1)(l,m,n)
is updated by using a(k) and a(k+1)(lg,mg,ng) where (lg,mg,ng) < (l,m,n). Let us
assume that Opti and Opt have one iteration3. Then unblocked virtual optimization
Opt (33) can be replaced with multi-block decomposition method Opti in (34).

Proof In min-max problem (31), the only non-separable part is the following func-
tion:

⟨p, ∇u⟩= ⟨−div p, u⟩,

where ∇ is the backward difference operator and div is the forward difference oper-
ator. Due to the dependency on previous information condition, Opt should be de-
signed to use a(k) for the forward difference operator div. Also, since the block index
i increases in forward direction (i.e., matched with the update direction of each pixel
location), the information is always available for the backward difference operator ∇.
In this case, we could replace ∇ and div in Opt with ∇̄i and divi in Opti. That is, PDS
is naturally processed under the previous information dependency condition. Now,
we can replace Opt in (33) with [Opt1, ...,OptI ] in (34).

At this point, the question is which optimization method is transparent under
the block decomposition in the sense of Lemma 3. Let us start with the well-known
ADMM [10] for the virtual optimization algorithm Opt(·) in (33):

ADMM(u(k),z(k), p(k)) :=


u(k+1) = argmin

u∈V
Lα(u,z(k), p(k))

z(k+1) = argmin
z

Lα(u(k+1),z, p(k))

p(k+1) = p(k)+α(z(k+1)−∇u(k+1)).

(35)

3 Note that one iteration condition is used in coordinate optimization only with primal variable to find
a solution of fused Lasso problem [11].
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In the first step of ADMM (35), we need to solve the following system equation to
update u(k+1).

2(u−b)+α div(∇u)+div(p(k)+αz(k)) = 0. (36)

Here, when we try to update u(k+1)(m,n) (i.e., u at (m,n)), we need u(k+1)(m+1,n)
and u(k+1)(m,n+ 1) information in advance. It violates the dependency of previous
information in Lemma 3 and thus we cannot replace div with divi. Note that the first
step of ADMM (35) is a typical implicit method, which does not have a closed form
solution.

The interesting part is the second step of ADMM (35). This step is also an implicit
method in general. However, it has a closed form solution for the TV based model:

z(k+1) = shrink(∇u(k+1)− p(k)

α
,

µ
α
). (37)

Here, the shrink operator has a separable structure and is defined as

shrink(a,c) = max(∥a∥2 − c,0)
a

∥a∥2
,

where a = (ax,ay) ∈ R2 and ∥a∥2 =
√
(ax)2 +(ay)2. Note that ∇ is the backward

difference operator and satisfy the dependency of previous information property in
Lemma 3. Therefore we could use block decomposition for (37), though the second
step of ADMM (35) is an implicit scheme:

z(k+1)
i = shrink(∇̄iu

(k+1)
i −

p(k)i
α

,
µ
α
). (38)

The third step of ADMM (35) is also satisfy Lemma 3, since ∇ is the backward differ-
ence operator and it can be replaced with ∇̄i without any harm in ADMM algorithm:

p(k+1)
i = p(k)i +α(z(k+1)

i − ∇̄iu
(k+1)
i ).

Now, we need to replace the first step of ADMM with an explicit method to
satisfy the dependency condition of previous information in Lemma 3. For this, we
use linearized augmented Lagrangian function (30) for the first step of ADMM:

u(k+1) = argmin
u∈V

L L α(u,z(k), p(k);u(k),
1
δ

I), (39)

Since we use linearized augmented Lagrangian function (30), u(k+1) in (39) has a
closed form solution and also satisfies the condition in Lemma 3:

u(k+1) =

(
2+

1
δ

)−1

(2b+
1
δ

u(k)−div p(k)−α div(z(k)−∇u(k))),
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where the forward difference operator div is applied to the previous iteration (u(k),z(k), p(k)).
This optimization method is called the PLAD4 algorithm [28]:

PLAD(u(k),z(k), p(k)) :=


u(k+1) = argminu∈V L L α(u,z(k), p(k);u(k), 1

δ I)
z(k+1) = argminz Lα(u(k+1),z, p(k))
p(k+1) = p(k)+α(z(k+1)−∇u(k+1)).

(40)

We summarize the usefulness of PLAD (40) for block decomposition in the fol-
lowing theorem.

Theorem 3 The PLAD algorithm (40) can be used for the virtual optimization Opt
(33) with PLADi (i.e., PLAD with PDS on the i-th block Vi) for block decomposition
Opti (34). That is, with the one iteration condition, PLAD is equal to the sequential
block decomposition method with PLADi.

Proof By (37), (38), and (39), the PLAD algorithm (40) satisfies the dependency of
previous information condition in Lemma 3. Therefore, we could replace unblocked
PLAD with multi-blocked PLADi.

In general, PLAD (40) is more appropriate for primal-dual block decomposition
method (34) compared to the ADMM method. Based on Theorem 3, we introduce
PDS based sequential primal-dual block decomposition with PLAD:

For k = 1, ...,K
For i = 1, ..., I

(u
(k+ 1

2 )
i ,z(k+1)

i , p(k+1)
i ) = PLADi(U

(k)
i ,Z(k)

i ,P(k)
i )

u(k+1)
i = ωu

(k+ 1
2 )

i +(1−ω)u(k)i
End

u(k+1) = ∑I
i=1 u(k+1)

i
End

(41)

where ω > 0. We call this framework sPDS. Also in the same way we get the PDS
based parallel primal-dual block decomposition framework with PLAD:

For k = 1, ...,K
ParFor i = 1, ..., I

(u
(k+ 1

2 )
i ,z(k+1)

i , p(k+1)
i ) = PLADi(U

(k)
i ,Z(k)

i ,P(k)
i )

End

u(k+1) = ∑I
i=1 ωu

(k+ 1
2 )

i +(1−ω)u(k)i
End

(42)

where ω > 0. We call this framework pPDS. Note that (U (k)
i ,Z(k)

i ,P(k)
i ) is the avail-

able previous information while we update (ui,zi, pi). Note that the PDS based block
optimization algorithm PLADi in (41) and (42) can have multiple iterations. See also
Remark 4.

4 Note that the original PLAD algorithm in [28] linearizes fidelity term and augmented term at the same
time. However, since the fidelity term of the proxTV model (1) is a simple proximal term, the original
PLAD method is up to constant equal to (40), which we called PLAD in this paper.
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Remark 3 The global convergence to the saddle point in the min-max problem (28)
of the PLAD algorithm (40) can be derived with the analysis in [18, Theorem 1]
under the condition 0 < δ < 1

α∥∆∥2
. See also [33].

Remark 4 Note that, in general, PLADi have multi iteration (i.e., S > 1):

PLADi(U
(k)
i ,Z(k)

i ,P(k)
i ) := lim

s=1→S


u(s+1)

i = argminui∈Vi
L L i

α(ui,z
(s)
i , p(s)i ;u(s)i , 1

δ I)
z(s+1)

i = argminzi
L i

α(u
(s+1)
i ,zi, p(s)i )

p(s+1)
i = p(s)i +α(z(s+1)

i − ∇̄iu
(s+1)
i ).

(43)
When S > 1, the convergence of PDS based block decomposition with PLAD (i.e.,
sPDS (41) and pPDS (42)) is unknown.

3.2 Bregmanized Domain Decomposition

In this section, we briefly describe the Bregmanized domain decomposition (BDD)
method [22] to find a solution of (20).

By using Bregman operator splitting [32], we can handle the linear constraint
πṼi

(ui) = Ũ (k)
i in (20) as follows:

u(s+1)
i = argmin

ui∈Vi⊕Ṽi

J(ui)+
1

2δ
∥ui −{u(s)i −δπT

Ṽi
(πṼi

(u(s)i )− f (s)i )}∥2
2 (44)

f (s+1)
i = f (s)i +Ũ (k)

i −πṼi
(u(s+1)

i )

where f (1)i = Ũ (k)
i . For each BOS iteration, we need to solve the following reformu-

lated problems:
min

ui∈Vi⊕Ṽi,di

{X(ui,di) | di = ∇ui},

where

X(ui,di) = ∥ui −bi∥2
2 +µ∥d∥1 +

1
2δ

∥ui −{u(s)i −δπT
Ṽi
(πṼi

u(s)i − f (s)i )}∥2
2.

Note that they use split Bregman with the Neumann adiabatic boundary condition for
all sub-block Ωi. The following is the split Bregman iteration to find a solution of
(44): 

u(t+1)
i = argmin

ui∈Vi⊕Ṽi

X(ui,d
(t)
i )+ α

2 ∥d(t)
i −∇ui −b(t)i ∥2

2

d(t+1)
i = argmin

di

X(u(t+1)
i ,di)+

α
2 ∥di −∇u(t+1)

i −b(t)i ∥2
2

b(t+1)
i = b(t)i +∇u(t+1)

i −d(t+1)
i .

(45)

As recommended in [22], when we apply the above BOS with split Bregman to BD-
S (2) with ω = 1, we get the sequential BDD. We call it sBDD. When we apply to
BD-S (3) with ω = 1/I, we get the parallel BDD. We call it pBDD.

As observed in Fig. 4 and Fig. 5, this BDD framework shows better performance
in terms of PSNR and Objective values when we run sufficiently large number of BOS
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Fig. 6: Dataset for the numerical experiments - seven different real images. The size
of images varies from 256×256 to 6048×4032. The grayscale of images is [0,255].

iterations. Although we could obtain meaningful performance in terms of PSNR, the
computational time is significantly increased as we increase BOS iterations. This is
the main drawback of the BDD framework.

4 Numerical Experiments

In this section, we report numerical experiments for the block decomposition of
proxTV (1). We compare sPDS (41) and pPDS (42) with the BOS based block de-
composition method; sBDD and pBDD in Section 3.2. Note that all algorithms are
implemented in MATLAB (version 8.3.0.532 (R2014a)). All runs are performed on
a laptop with an Intel i7 CPU (2.9GHz) and 8GB memory. The operating system is
64-bit OS X. We use seven test images in Fig. 6. The image scale is from 256×256 to
6048×4032. Note that we add Gaussian additive noise with σ = 20 to all test images
and set the TV regularization parameter µ = 10 for all experiments. We terminate all
the algorithms by the relative error stopping condition:

∥u(k+1)−u(k)∥2 ≤ τ∥u(k)∥2 (46)

with a maximum iteration MaxIt = 300 and τ = 10−4. For each denoising subprob-
lem, PLAD (43) for PDS and split Bregmann (45) for BDD are applied and we use
relative error stopping condition (46) with τ = 10−3 and subMaxIt = 10. In case of
BDD, we need to set the number of Bregman iterations. As noticed in Fig. 4 and Fig.
5, when we choose small number of Bregman iterations, the linear constrains in (20)
is not well satisfied. It causes artifacts on the boundary of each block and degrades
the performance of BDD. Therefore, based on Fig. 5, we set 15 Bregmann iterations.
We note that PSNR is defined by

10log10

(
2552MN
∥b−u∗∥2

2

)
,
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where MN is the size of M ×N image, b is the given original image, and u∗ is the
recovered image. Other parameters are tuned for the best performance. For instance,
in PLAD (43), we set α = 0.3 and δ = 0.2. For BDD, we set δ = 0.1 in BOS (44)
and α = 1.0 in split Bregmann (45).

In Table 2, we report various block decompositions (from 1× 1 to 16× 16) for
‘Cameraman’ test image in Fig. 6. For pPDS and pBDD, we set ω = 1/I (I = #Block)
to guarantee the theoretical convergence. However, when we choose large number of
blocks I, it causes extremely slow convergence or unusual behavior such as early
termination with respect to relative error stopping condition. Therefore, we only use
maximum iteration stopping condition for worst 16×16 case in parallel methods. In
general, PSNRs of all methods are consistent irrespective of various block decompo-
sitions, except the pBDD method.

In Table 3, we report the overall performance of PDS for various acceleration
rates ω ∈ [0.5,1.5]. Note that sPDS shows the best performance when ω ∈ [1.2,1.3]
and pPDS shows the best performance when ω = 1, irrespective of domain decom-
position method (e.g., 4×4 vs. 8×8). Although we don’t have any theoretical guar-
antee for convergence when we choose large ω , we empirically observed that the
proposed PDS based block decomposition algorithm converges well for the proxTV
problem (1).

In Figure 7, we compare performance for various acceleration rates (0.7 ≤ ω ≤
1.3). In case of sPDS (41), we have empirically observed that, as we increase ω in
limited range [0.7,1.3], the number of iterations is decreasing. We use ‘Lena’ image
and 4×4 block decomposition scheme. Note that when we use Jacobi-type iteration
(i.e., ω = 1.0) for pPDS (42), we obtain the best performance, although we can not
guarantee the convergence for this chosen parameter.

In Figures 8-13, we use ‘Cameraman’,‘Boat’, ‘House’,‘Lena’, ‘Man’, and ‘Build-
ing’ test images for 8×8, 4×4, 2×2, 8×2, 8×8, 4×4 block decompositions. The
proposed PDS based approach outperforms BDD based schemes in terms of CPU
time.

5 Conclusion

In this paper, we have introduced primal-dual block decomposition method with the
primal-dual stitching. The proposed PDS based block decomposition method shows
consistent performance irrespective of domain decomposition type and image type.
Note that, although we do not know the convergence of parallel block decomposition
method BD-P (3) when ω > 1/I, it has a strong advantage in parallel processing of
large scale problems. The future work is to implement the proposed PDS based BD-P
method on parallel processing machine.
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Domain sPDS pPDS sBDD pBDD
PSNR/TIME/ITER PSNR/TIME/ITER PSNR/TIME/ITER PSNR/TIME/ITER

1x1 44.41/1.1/10 - - -
1x2 44.41/0.8/10 44.42/1.7/20 44.38/10.9/ 5 44.39/17.3/ 8
1x4 44.41/0.8/10 44.42/3.2/39 44.34/8.8/ 5 44.36/26.2/15
1x8 44.41/0.8/ 9 44.42/6.6/75 44.39/9.6/ 5 44.44/45.9/24
1x16 44.41/0.9/ 9 44.42/15.4/145 44.39/13.6/ 5 44.48/99.4/37
2x1 44.41/0.9/10 44.42/1.9/20 44.28/13.4/ 6 44.29/19.7/ 9
2x2 44.24/1.0/10 44.26/4.0/39 44.32/15.2/ 5 44.35/42.5/14
2x4 44.41/1.0/ 9 44.42/8.0/76 44.43/13.0/ 5 44.48/60.7/24
2x8 44.41/1.0/ 9 44.42/16.9/147 44.41/22.9/ 7 44.51/118.0/37
2x16 44.41/1.0/ 9 44.42/34.4/286 44.39/22.1/ 5 44.46/223.0/52
4x1 44.41/0.9/10 44.42/3.6/38 44.40/10.2/ 5 44.42/30.6/15
4x2 44.21/1.0/ 9 44.21/8.5/76 44.33/14.6/ 5 44.38/70.1/24
4x4 44.34/1.2/ 9 44.35/20.0/148 44.41/15.8/ 5 44.49/114.1/37
4x8 44.38/1.2/ 9 44.39/41.0/289 44.40/19.3/ 5 44.44/195.3/52
4x16 44.40/1.5/ 9 44.44/62.3/300 44.41/26.3/ 5 43.75/301.6/58
8x1 44.41/0.9/ 9 44.42/7.5/74 44.45/10.8/ 5 44.50/51.3/24
8x2 44.42/1.1/ 9 44.43/18.8/146 44.46/20.5/ 6 44.55/123.2/37
8x4 44.41/1.3/ 9 44.43/44.3/288 44.47/24.4/ 6 44.47/208.4/52
8x8 44.41/1.8/ 9 44.45/73.5/300 44.45/31.4/ 6 43.77/298.2/58
8x16 44.41/2.5/ 9 44.44/129.7/300 44.42/40.1/ 5 41.39/205.2/26
16x1 44.41/1.0/ 9 44.42/17.1/143 44.41/14.6/ 5 44.50/106.0/37
16x2 44.39/1.4/11 44.41/38.2/286 44.39/22.6/ 5 44.44/228.5/52
16x4 44.41/1.6/ 9 44.45/65.6/300 44.39/27.0/ 5 43.76/304.3/58
16x8 44.41/2.5/ 9 44.43/133.8/300 44.42/40.7/ 5 41.38/217.6/26
16x16 44.41/4.1/ 9 44.40/253.2/300 44.41/72.7/ 6 42.31/2326/ 300

Table 2: Performance comparison of PDS and BDD for various block decomposi-
tions. Note that we decompose from 1× 1 to 16× 16. The ‘Cameraman’ image in
Fig. 6 is used. For parallel version, we use ω = 1/I and for sequential version, we
use ω = 1. Here, the maximum iteration is set as 300. The BOS iteration for BDD
(44) is 15. Both methods, PDS and BDD, show consistent PSNR, except pBDD.
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Fig. 7: Performance comparison with respect to relaxation parameter ω . The ‘Lena’
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Fig. 8: Performance comparison between PDS and BDD. The ‘Cameraman’ image
is used and 8× 8 block decomposition is used. For sPDS, we set ω = 1.2 and, for
pPDS, ω = 1.0. Note that for pBDD, we set ω = 1/64. The proposed PDS method
requires small number of iterations and computation time.
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Fig. 9: Performance comparison between PDS and BDD. The ‘Boat’ image is used
and 4× 4 block decomposition is used. For sPDS, we set ω = 1.2 and, for pPDS,
ω = 1.0. Note that for pBDD, we set ω = 1/16. The proposed PDS method requires
small number of iterations and computation time.

Fig. 10: Performance comparison between PDS and BDD. The ‘House’ image is used
and 2× 2 block decomposition is used. For sPDS, we set ω = 1.2 and, for pPDS,
ω = 1.0. Note that for pBDD, we set ω = 1/4. The proposed PDS method requires
small number of iterations and computation time.
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Fig. 11: Performance comparison between PDS and BDD. The ‘Lena’ image is used
and 8× 2 block decomposition is used. For sPDS, we set ω = 1.2 and, for pPDS,
ω = 1.0. Note that for pBDD, we set ω = 1/16. The proposed PDS method requires
small number of iterations and computation time.

Fig. 12: Performance comparison between PDS and BDD. The ‘Man’ image is used
and 8× 8 block decomposition is used. For sPDS, we set ω = 1.2 and, for pPDS,
ω = 1.0. Note that for pBDD, we set ω = 1/64. The proposed PDS method requires
small number of iterations and computation time.
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Fig. 13: Performance comparison between PDS and BDD. The ‘Building’ image is
used and 4× 4 block decomposition is used. Note that for pBDD, we set ω = 1/16
and for others, we set ω = 1.0. The proposed PDS method requires small number of
iterations and computation time.


