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ABSTRACT. Region-based image segmentation has essentially been solved by the Chan-
Vese (CV) model. However, this model fails when images are affected by artifacts (out-
liers) and illumination bias that outweigh the actual image contrast. Here, we introduce a
model for segmenting such images. In a single energy functional, we introduce 1) a dy-
namic artifact class preventing intensity outliers from skewing the segmentation, and 2), in
Retinex-fashion, we decompose the image into a piecewise-constant structural part and a
smooth bias part. The CV-segmentation terms then only act on the structure, and only in
regions not identified as artifacts. The segmentation is parameterized using a phase-field,
and efficiently minimized using threshold dynamics.

We demonstrate the proposed model on a series of sample images from diverse modal-
ities exhibiting artifacts and/or bias. Our algorithm typically converges within 10-50 it-
erations and takes fractions of a second on standard equipment to produce meaningful
results. We expect our method to be useful where image damage prevents classical CV-
segmentation from working, and anticipate use in applications where artifacts and bias are
actual features of interest, such as lesion detection and bias field correction medical imag-
ing, e.g. in magnetic resonance imaging (MRI).
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1. Introduction. Image segmentation is the task of partitioning the image domain Ω into
homogeneous regions corresponding to individual objects, Ω = tiΩi, or by duality, to find
the contours Γ that define the boundaries ∂Ωi of these objects. Image segmentation is most
commonly formulated variationally as a minimization problem, where one optimizes a
parameterization of the regions or their contours towards specific segmentation criteria en-
coded in the objective functional. Fundamental image segmentation models underlying the
two respective segmentation goals are snakes [19] or geodesic active contours (GAC) [5]
for edge-based segmentation, and active contours without edges (ACWE, a.k.a. Chan-Vese
or CV model) [7] for region-based segmentation. For both GAC and CV, the segmentation
can conveniently be parameterized implicitly using the level set method [34], and various
efficient optimization schemes have been presented, e.g. [9, 27, 3, 15].

Here, we are interested in region-based image segmentation, and improvements to the
CV model in particular, to segment images that are affected by both image artifacts (sin-
gle or grouped outliers such as scars, occlusions, scratches) and illumination bias (gain
inhomogeneity, shadows). Examples of such images are found in atomic force microscopy
(AFM), where these image imperfections are due both to the samples and the image acqui-
sition, in infrared imaging, which suffers from noise and gain inhomogeneity, as well as in
medical imaging modalities such as magnetic resonance imaging (MRI; bias field inhomo-
geneity, coil sensitivity, lesions). In some applications, artifacts (and outliers) are not only
a nuisance but the actual object of interest, such as in lesion and tumor detection in brain
MRI [35], or exploration in geochemistry [16].

The CV model is initially derived from the Mumford-Shah functional (MS) [32], which
from an input image I0 : Ω ⊂ Rn → R recovers an image I : Ω→ R to be smooth almost
everywhere:

EMS(I,Γ) =
∫

Ω

(I− I0)
2 +α

∫
Ω\Γ
|∇I|2 +β

∫
Γ

, (1)

where the three terms aim towards data fidelity, smoothness, and short boundary length;
Ω ⊂ Rn is the entire image domain and Γ ⊂ Ω the boundary set of Hausdorff dimension
n−1 where the approximation I exhibits discontinuities. Indeed, the CV model is defined
as the cartoon-limit (α→ ∞) of the MS functional, where the recovered image is required
to be piecewise constant, and regions are thus characterized by a single representative color
each, µi:

ECV(µi,Ωi) = ∑
i

λi

∫
Ωi

(µi− I0)
2 +β/2∑

i

∫
∂Ωi

, (2)

with λi and β being parameters. The representative colors µi are to be determined along
with the optimal image domain partitioning Ω = tiΩi.

The reduction of the segmentation model to two phases and using the level-set represen-
tation of these two phases leads to the following classical formulation [7]:

ECV(µ1,µ2,φ) = λ1

∫
Ω

(µ1− I0)
2H(φ)+λ2

∫
Ω

(µ2− I0)
2(1−H(φ))+β

∫
Ω

|∇H(φ)|, (3)

where the levelset function φ is positive in object regions, negative in background regions,
zero on the object boundaries, and H is the Heaviside function. The last term represents the
total variation of the characteristic function of the object, H(φ), and is the co-area-formula
equivalent of the boundary length term.

The Chan-Vese active contour model has seen a number of specific modifications. For
example, while the initial model could only segment greyscale images into two regions,
the authors have extended it to adapt to vector-valued images [10], and they have also
illustrated an extension of the model to multi-phase segmentations [39]. Unfortunately, all
of these models often fail to segment images which feature damage, such as artifacts and
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bias. Occlusion of objects, scars, and other artifacts on the image, and images featuring
regional color inhomogeneity challenge CV and CV-like segmentation models. Several
models propose partial solutions.

Regarding images affected by artifacts, Jung, Kang, and Kang [18] created an L1 variant
of the CV scheme, which is more robust to outliers, along with a numerical scheme to
minimize it. Indeed, the original quadratic fidelity term in the CV model corresponds to a
Gaussian additive noise prior on top of the piecewise constant image model [4]. Impulsive
noise or other outliers, in particular due to image artifacts, therefore overly impact the
functional and skew the image statistics µi, against which the L1-term is more robust.

To deal with illumination bias, one could remove regional color inhomogeneity as a
preprocessing step, or build a model which explicitly incorporates non-constant piecewise
regions. An example of the former is an L1-Retinex model [28, 43, 44], which gathers the
piecewise-constant (or relatively constant) structure of an image by removing the smooth
bias field. Retinex models remove shadows, but do not guide their corrections to the seg-
mentation. On the other hand, Li et al. [24] propose a region-scalable fitting model which
replaces the piecewise constant requirement of the CV model with a local averaging fidelity
term which decreases penalty from distant points. This is effectively a partial roll-back
from the CV cartoon-limit of the MS-model insofar as regions are not required to be piece-
wise flat, but piecewise smooth, only. Wang et al. [40] apply this model to medical imaging
with success, while Yang et al. [42] use the split Bregman method to expedite segmenta-
tion. As illustrated in their papers, the model was able to identify inhomogeneous regions,
but, in our experience, the algorithm has trouble when objects are sparse and disconnected.
Moreover, the region-scalable fitting model is unable to effectively deal with artifacts.

Another (unspecific) approach is to use some prior knowledge of the object region’s
shape to guide the segmentation and overcome difficulties with pure intensity cues, e.g.
[36, 13, 8, 12]. In all cases, these models are able to use shape information to guide the
segmentation, but require an accurate shape prior to work with. Moreover, aligning this
shape prior can be computationally expensive, or require supervision.

In this paper, we propose a new model which dynamically identifies artifacts and cor-
rects shadows during the segmentation. The principal goal is to formulate an image seg-
mentation model that deals with artifacts detection and illumination bias correction inher-
ently, within the same single variational model. To this end, we introduce a binary artifact
label X , that marks individual pixels as artifacts if they violate the two-phase piece-wise
constancy assumption of the CV segmentation model. We show how this approach effec-
tively corresponds to statistical hypothesis testing; more particularly, a pixel is classified as
artifact if it fails the Gaussian null-hypothesis by virtue of a z−score more extreme than a
given threshold. This threshold parameter thus directly controls the statistical significance
level associated with the artifact classification, or the expected false-positive rate, respec-
tively. We call this the CV+X model. On the other hand, to deal with illumination bias,
we include a Retinex-like image decomposition. Starting from a simple additive image
formation model, I = B+S, we decompose the input image I into a structure part S and a
smooth bias B. The structure part is expected to be two-phase piecewise constant, as mod-
eled by the CV-terms. We call this second variant the CV+B model. Combining both parts
performs image segmentation coupled with dynamic artifacts detection and bias estimation
as intended. The resulting full CV+XB model yields as output: A binary segmentation u,
the region characteristics µ1 and µ2, an artifact map X , a nearly two-phase structure esti-
mate S, and a smooth bias field B. We also propose a numerical scheme to minimize this
model efficiently, based on MBO-like threshold dynamics, which has proven much faster
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than the gradient descent approach. In practical results included in this paper we show that
the model is adept at correctly segmenting artifact and bias affected images.

The remainder of this paper is structured as follows. First, in §2 we provide some more
complementary background on the CV model as relevant to our work. We then address
the artifact detection (§3) and bias correction (§4) problem separately, before we put them
together in a single combined variational model (§5). We present results and a discussion
of our model in §6 and conclude in §7.

2. More Background on the CV Model. In the following paragraphs, we review some
aspects of and modifications to the CV model [7], both in terms of model formulation and
algorithms for its optimization, that are going to guide the development of our proposed
artifact- and bias-resistant segmentation model.

2.1. Gradient descent. The original and immediate strategy to solve the CV model (3)
was gradient descent. Calculus of variations yields the following iterative updates:

µ1 =

∫
Ω

I ·H(φ)∫
Ω

H(φ)
, µ2 =

∫
Ω

I · (1−H(φ))∫
Ω
(1−H(φ))

, (4)

which is to say that µ1 and µ2 are the average colors of their respective regions, and

∂φ

∂t
= δ(φ)

[
βdiv

(
∇φ

|∇φ|

)
−λ1(I−µ1)

2 +λ2(I−µ2)
2
]
. (5)

2.2. Heaviside approximations. In practice, for this, the distributional Heaviside H and
its derivative δ need to be smoothly approximated by analytical Hε and δε = H ′ε(φ), such as
the logistic function and its derivative. Still, the δε(φ) term in the gradient descent means
that the contour φ cannot change except very near the zero-level set of φ. This makes it dif-
ficult to provide fast segmentations with changing topologies. Thus, most implementations
of the Chan-Vese model use a modified descent without the Dirac-masking (equivalently,
this corresponds to the ultimate Heaviside approximation Hε(φ) = φ and δε(φ) = 1),

∂φ

∂t
=

[
βdiv

(
∇φ

|∇φ|

)
−λ1(I−µ1)

2 +λ2(I−µ2)
2
]
, (6)

which arises from the energy functional proposed by Chan, Esedoglu, and Nikolova [9]:

ECEN(µ1,µ2,φ) =
∫
Ω

|∇φ|+
∫
Ω

[
λ1(I− c1)

2−λ2(I− c2)
2]

φ. (7)

The latter energy, however, is homogeneous of degree 1 in φ, and it does not have a mini-
mizer in general. In other words, the modified gradient descent does not have a stationary
state and the level set function φ would tend to±∞ if the evolution was carried out for long
enough time [9]. As a consequence, the level-set function is often restricted to take a par-
ticular shape, such as being a signed distance function [25, 26, 15]. Alternatively, Chan et
al. [9] show that restricting the level-set function to values within the convex set φ ∈ [0,1]
renders the solutions of (7) to be the solutions of the original CV model (3). The level-set
function in the modified model effectively represents a convex relaxation of the character-
istic function H(φ) of the original CV model, and is also called phase-field. By allowing
movement of the contour at all locations, this adapted model allows for faster changes in
topology and therefore faster segmentation.
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2.3. Threshold dynamics for mean curvature motion. Irrespective of the chosen Heav-
iside approximation Hε, the CV-PDE (5) is hard to solve, due to the presence of the diver-
gence term associated with the interface perimeter. This divergence term actually repre-
sents the mean curvature of the interface, i.e., if it were only up to this regularization term,
then the active contour would be moving with a velocity proportional to its mean-curvature.
Unfortunately, one can expect difficulties with this term, for example in flat regions where
|∇φ| → 0, which is why some authors prefer maintaining φ as a signed distance function
with |∇φ|= 1 (a.e.). Moreover, if the PDE is integrated explicitly, then the time step is also
heavily limited by the CFL condition [11].

An important contribution towards more efficient CV optimization stems from the phase-
field approach outlined in [14], and goes back to the diffusion-threshold scheme for ap-
proximating motion by mean curvature proposed by Merriman, Bence, and Osher [29].
The fundamental idea is to reproduce the motion by mean curvature due to the divergence
term in the CV-PDE (5) by more efficient means.

For this, let us replace the total variation of the phase field u ∈W 1,2(Ω), by the real
Ginzburg-Landau (also known as Allen-Cahn) functional [30] (we use the variable u instead
of φ to highlight its phase-field nature rather than just being a generic level set function):

Eε

GL(u) := ε

∫
Ω

|∇u(x)|2dx+
1
ε

∫
Ω

W (u(x))dx, ε > 0, (8)

where W (s) is a double well potential with two equal minima at s= 0 and s= 1, for example
W (s) := s2(1−s)2. Minimizing this functional yields a phase field that is smooth and tends
to be binary. In particular, it has been shown [30] that the GL-functional Γ-converges to
the total variation functional of binary phase-fields u ∈ {0,1} as ε→ 0:

E0
GL(u) = σ(W )

∫
Ω

|∇u|, (9)

where σ(W ) is a surface tension term depending on the double well potential. The minimiz-
ing flow of this functional for ε→ 0+ produces motion by mean curvature of the interface,
which is exactly what one needs in the CV model minimization. However, now, the PDE
associated with the GL-functional minimization is

∂u
∂t

= 2ε∇
2u− 1

ε
W ′(u), (10)

and this PDE is conveniently solved in a discrete-time two step time-splitting approach:

un+ 1
2
= un + τ

(
2ε∇

2un
)

(11)

un+1 = un+ 1
2
− τ

(
1
ε

W ′(un+ 1
2
)

)
, (12)

where the first step is simply diffusion by the heat equation (obviously not actually prop-
agated in such an explicit manner), and the second step is a simple ODE minimizing the
double well potential. Indeed, the heat equation is much more efficiently solved based
on convolution or spectral transforms [37]. The MBO-scheme [29] improves on this time-
split GL-optimization in that the ODE is recognized as essentially performing thresholding.
While the first step is reduced to propagation according to the standard heat equation, the
second step in MBO is actual thresholding (projection onto the binary set {0,1}):

un+ 1
2
= un + τ∇

2un (13)

un+1 =

{
0 if un+ 1

2
≤ 1

2

1 if un+ 1
2
> 1

2 .
(14)
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Note that other authors have devised time-split schemes for motion by mean curvature
based on alternating TV-minimization and signed distance function redistancing [6, 2].

2.4. CV model with threshold dynamics. Esedoglu and Tsai [14] devise the following
modified GL-based diffuse interface approximation to the CV-model:

Eε

CV(µ1,µ2,u) = ε

∫
Ω

|∇u|2 + 1
ε

∫
Ω

W (u)+λ

∫
Ω

[
u2(µ1− I0)

2 +(1−u)2(µ2− I0)
2] . (15)

This energy family differs from the original CV model (3) by the substitution of the TV-
term by the GL-functional (8), and the squaring of the phase-field terms in the data fidelity
expressions. The motivation behind the phase-field squaring is not immediately clear. It
can be shown, however, that the sequence of energies Eε

CV Γ-converges to (3) as ε→ 0+.
The corresponding gradient descent equation is

∂u
∂t

= 2ε∇
2u− 1

ε
W ′(u)−2λ

[
u(µ1− I0)

2 +(u−1)(µ2− I0)
2] , (16)

for which Esedoglu and Tsai propose several different time splitting variants [14]. Their
main scheme is to combine heat equation and data-fidelity forcing term in one step, and
perform thresholding in the second step. However, the one scheme that seems most in-
teresting in the context of the present work is a variant with an iteration over three steps,
namely propagation of the image fidelity term ODE, followed by heat diffusion, and even-
tually thresholding. Also, we will not use the quadratic phase field terms. As with the
original single CV-PDE, the region statistics µ1 and µ2 need to be updated regularly.

3. Image Segmentation with Dynamic Artifact Detection. Having spent some effort on
the background of the CV model and the use of threshold dynamics for efficient optimiza-
tion, it is now time to focus on the improvements we propose for artifact detection and bias
correction. Let us start with dynamic artifact detection.

The main issue to be addressed in this section is the presence of outliers (individual or
small groups of pixels) in images, that do not comply with the piecewise constant image
model underlying the CV image segmentation. These outliers greatly affect the regions’ in-
tensity statistics µ1 and µ2 and may effectively lead to image segmentation failure. In some
cases, artifacts may even be falsely detected as objects of interest in the image, because
their presence outweighs the actual image contrast between background and object. This
issue was partially addressed by [18] with the substitution of the quadratic data fidelity by
the absolute fidelity term. However, this also represents a major difference in the underly-
ing noise prior (Gaussian noise versus impulsive noise), and thus has consequences beyond
dealing with artifacts. Also, in Jung et al.’s model, artifacts are not actively dealt with and
they remain part of the segmentation.

3.1. Prelude: Static Artifact Classification in Preprocessing. Sometimes, artifacts are
readily identifiable through preprocessing steps such as thresholding or other heuristics. If
this is the case, then one simple approach is to eliminate the fidelity term in these regions.

Definition 3.1. We denote
X : Ω→{0,1}

as an artifact indicator function. We accommodate this additional information in the CV
model by using X as a mask on the data-fidelity term:

Estatic
CVX (µ1,µ2,φ) = λ1

∫
Ω

(1−X)(µ1− I0)
2H(φ)+λ2

∫
Ω

(1−X)(µ2− I0)
2(1−H(φ))

+β

∫
Ω

|∇H(φ)|, (17)
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where (1−X) = 1 in regions classified as non-artifacts.

Remark 1. It is important to note that the perimeter term is not affected by the artifact
classification, and interface regularization will exclusively drive the contour evolution in
regions classified as artifacts. The net effect of the introduction of X is to inhibit the data-
fidelity term locally in regions that are not believed to comply with the two-phase piecewise
constant image model in the first place.

This is illustrated by the (idealized) gradient descent equations:

∂φ

∂t
= δ(φ)

[
βdiv

(
∇φ

|∇φ|

)
−λ1(1−X)(I−µ1)

2 +λ2(1−X)(I−µ2)
2
]

(18)

for µ1,µ2 fixed. These region statistics in turn are determined as

µ1 =

∫
Ω
(1−X) · I ·H(φ)∫
Ω
(1−X) ·H(φ)

, µ2 =

∫
Ω
(1−X) · I · (1−H(φ))∫
Ω
(1−X) · (1−H(φ))

, (19)

i.e., the computation of the mean intensity is restricted to regions not being artifacts, and
provided that these regions are actually non-empty:∫

Ω

(1−X) · (1−H(φ)) 6= 0 6=
∫

Ω

(1−X) ·H(φ). (20)

3.2. Dynamic Artifact Classification. Being able to work with artifact classification from
preprocessing and partially excluding these regions from the segmentation process is one
thing. It would be much more elegant, however, if preprocessing could be avoided and the
artifact detection were integrated into the very same variational model. This is the goal of
this section.

While in some specific applications artifacts may follow known statistical distributions
in terms of shape, location, size or appearance, in the general case this is not true. Instead,
here we describe artifacts by exclusion, only knowing what they are not. Indeed, we may
characterize artifacts as isolated or small groups of pixels that fail to adhere to the two-
phase piecewise constant image model, without any other prior regarding their intensity
distribution or artifact shape regularity.

Definition 3.2. To this end, we simply add a penalty γ on the size of the artifact class,
and optimize for X along with the actual segmentation. The CV image segmentation with
dynamic artifact labeling model is defined as follows:

ECVX(µ1,µ2,φ,X) = λ1

∫
Ω

(1−X)(µ1− I0)
2H(φ)+λ2

∫
Ω

(1−X)(µ2− I0)
2(1−H(φ))

+β

∫
Ω

|∇H(φ)|+ γ

∫
Ω

X . (21)

The preliminary interpretation is that now the artifact indicator function X optimizes a
trade-off between size penalty γ and outlier elimination. This will become much clearer
once we look at the actual minimization scheme, next.

Remark 2. In support of this model, it is important to note that similar approaches are em-
ployed in other imaging tasks: in image sequences, Ayvaci, Raptis, and Soatto [1] identify
pixels overly violating the optical flow constraint as occlusions, while Yan [41] localizes
individual damaged pixels for impulse-noise image in-painting.
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3.3. Minimization using gradient descent. For the sake of analysis, we now consider the
naive minimization of the proposed CV model including dynamic artifact labeling through
classical alternate direction gradient descent.

Problem. We consider the problem

min
µ1,µ2∈R, φ : Ω→R, X : Ω→{0,1}

ECVX(µ1,µ2,φ,X). (22)

The gradient descent equations of this minimization problem with respect to the CV
variables µ1, µ2, and φ are identical to the ones derived from the static functional (17), and
have been given in (18) and (19). In addition, now, at each iteration of coordinate descent,
we need the optimal update of the artifact indicator X .

Lemma 3.3. At each iteration, the artifact indicator function X needs to satisfy

X∗ := argmin
X : Ω→{0,1}

ECVX(µ1,µ2,φ,X). (23)

This update is locally found as

X∗(x) =

{
0 if λ1(µ1− I0)

2H(φ)+λ2(µ2− I0)
2(1−H(φ))≤ γ

1 otherwise
x ∈Ω. (24)

Proof. The local cost associated with X is

c(x) := (1−X) ·
[
λ1(µ1− I0)

2H(φ)+λ2(µ2− I0)
2(1−H(φ))

]
+X · γ x ∈Ω, (25)

and the optimal X∗ satisfies

X∗(x) = argmin
X(x)∈{0,1}

c(x), ∀x ∈Ω. (26)

Since X ∈ {0,1} locally, there are only two cases to be considered at each pixel:

c(x) =

{
λ1(µ1− I0)

2H(φ)+λ2(µ2− I0)
2(1−H(φ)) if X(x) = 0

γ if X(x) = 1,
x ∈Ω. (27)

The optimizer X∗ simply picks the lesser cost between those two cases, locally for each
pixel.

Remark 3. We include this proof despite being trivial, because it highlights the impact of
the artifact indicator X . Indeed, let us assume that the parameters λ1 and λ2 represent the
inverse of the Gaussian noise variance from a Bayesian interpretation of the CV model [4].
Without loss of generality, consider now a pixel x in the object region, H(φ(x)) = 1. The
relevant term in (24) is thus

λ1(µ1− I0)
2

∝

(
I0−µ1

σ

)2

,

which is the squared z-score (standard score) of the local intensity under a Gaussian distri-
bution of corresponding region statistics. This squared z-score is then compared against the
threshold γ. The immediate interpretation is thus the following: the artifact classification
is effectively a concealed statistical hypothesis z-test of the pixel intensity with a Gaussian
distribution N (µi,λi) as null-hypothesis, and a pixel is classified as an artifact if the z-score
of its intensity is more extreme than

√
γ. The model parameter γ is thus intimately related

to the level of statistical significance attached to the artifact classification and its expected
false positives rate.
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3.4. Minimization using threshold dynamics. Let us now make use of the phase-field
approach and threshold dynamics to propose a more efficient optimization scheme for the
CV+X problem.

Definition 3.4. First, we replace the levelset function φ, respectively its Heaviside term,
H(φ), by the phase-field u : Ω→ [0,1]. We thus rewrite the CV+X model (21) as follows:

ECVX(µ1,µ2,u,X) = λ1

∫
Ω

(1−X)(µ1− I0)
2u+λ2

∫
Ω

(1−X)(µ2− I0)
2(1−u)

+β

∫
Ω

|∇u|+ γ

∫
Ω

X . (28)

Problem. The resulting image segmentation with dynamic artifact classification problem
thus becomes

min
µ1,µ2∈R, u : Ω→[0,1], X : Ω→{0,1}

ECVX(µ1,µ2,u,X). (29)

Due to the newly introduced artifact variable X modulating the data-fidelity term, the
resulting energy functional is non-convex and the global minimizer results from [9] do not
fully apply to the associated minimization problem. We propose solving the minimization
problem in a coordinate descent approach. Starting from some suitable initialization u0,
and X0 = 0, iterate

µn+1
1 ,µn+1

2 ← argmin
µ1,µ2∈R

ECVX(µ1,µ2,un,Xn) (30)

un+1← argmin
u : Ω→[0,1]

ECVX(µn+1
1 ,µn+1

2 ,u,Xn) (31)

Xn+1← argmin
X : Ω→{0,1}

ECVX(µn+1
1 ,µn+1

2 ,un+1,X) (32)

until convergence, and hope that the sequence (µn
1,µ

n
2,u

n,Xn) of subminimizers thusly ob-
tained converge to the true minimizer of the problem,

lim
n→∞

(µn
1,µ

n
2,u

n,Xn) = argmin
µ1,µ2∈R, u : Ω→[0,1], X : Ω→{0,1}

ECVX(µ1,µ2,u,X).

The idea behind our proposed minimization scheme is to combine the threshold dynam-
ics of Esedoglu and Tsai’s [14] CV-model with the artifact detection part outlined above.
To this end, we perform time-splitting on the gradient descent scheme w.r.t. the phase-field,
to separate the data-fidelity ODE from the heat-diffusion PDE, followed by thresholding,
and update the region statistics µ1 and µ2, and the artifact classification as before.

Algorithm 1. The phase-field CV+X energy (28) can be efficiently minimized, and thus
problem (29) (image segmentation with dynamic artifact classification) be solved, by re-
peating the following steps until convergence, for some appropriate time-step τ > 0:

1. Update µ1 and µ2 using (19),
2. Evolve phase-field u for some time τ each (possibly several times):

(a) According to the data term including the artifact mask,
∂u
∂t

= (1−X)
[
−λ1(I−µ1)

2 +λ2(I−µ2)
2]

(b) According to the heat equation
∂u
∂t

= ∇
2u

with the updated phase-field as initial condition and using appropriate boundary
conditions, (e.g. Neumann or periodic),



10 ZOSSO, AN, STEVICK, TAKAKI, WEISS, SLAUGHTER, CAO, WEISS AND BERTOZZI

(c) Update u by thresholding:

u =

{
1 if u > 1

2
0 otherwise

3. Update X as in (24).

The algorithm will be empirically corroborated by diverse practical results, in §6 below.

4. Image Segmentation with Bias Correction. Let us now entirely switch gears and fo-
cus not on the artifacts, but inhomogeneous illumination affecting the image to be seg-
mented. The consequence of inhomogeneous illumination is that the same material (object
or background) does not have a uniform appearance over the entire image domain. More
specifically, the image pixels of a region of interest are not all drawn from the same ideal-
ized Gaussian distribution, since the mean intensity of such a region varies across Ω due
to inhomogeneous illumination, and a region cannot be characterized by its mean intensity
and noise variance anymore. More abstractly, the very two-phase piecewise constancy as-
sumption of the Chan-Vese [7] cartoon limit to the Mumford-Shah [32] model is violated.
One way to deal with this complication is to abandon the CV assumptions partially, and
to model images to be segmented as piecewise smooth, instead. This path was chosen by
Li, Kao, Gore and Ding, with their popular region-scalable fitting energy for image seg-
mentation [24]. Here, we want to maintain the piecewise constancy assumption of the CV
model, and deal with the illumination inhomogeneity by decomposing the image into its
(piecewise constant) structure and an (illumination) bias part.

4.1. Retinex assumption. Retinex is a theory on the human visual perception [21, 22, 23].
It was an attempt at explaining how a combination of processes supposedly taking place
both in the retina and the cortex is capable of adaptively coping with illumination that
varies spatially [43, 44]. The fundamental observation is the insensitivity of human visual
perception with respect to a slowly varying illumination on a Mondrian-like piecewise
constant scene.

Starting from an additive image formation model2,

i(x) = b(x)+ s(x), (33)

where the illumination b is supposed to vary smoothly, the spatial derivatives of the ob-
served intensity i are mostly due to edges in the structure s. This is the core assumption
to most Retinex implementations, such as [17, 20, 31]. Here, we propose to integrate this
Retinex model into the CV image segmentation model, by considering only the piecewise
constant image part, and discarding the smoothly varying illumination bias.

4.2. Prelude: Static Bias Field Correction in Preprocessing. The most immediate solu-
tion might consist in performing Retinex image decomposition as a preprocessing step to
CV image segmentation. Indeed, one can pick his most favorite Retinex algorithm to split
the image to be segmented into a smooth bias field and a piecewise constant structure part,
for example [28], and then run the CV model on only the extracted structure part. This
could be an unwise strategy, however, since the CV image model is not just expecting a
piecewise constant input image, but more specifically a two-phase piecewise constant im-
age, which is a much stronger image prior, simply ignored in such Retinex preprocessing.

2Such an additive model can be derived from the common multiplicative image formation model I(x) =
B(x)S(x), where I is the observed intensity, B is illumination bias and S is reflectance, by taking the logarithm,
i := log(I) etc.
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4.3. Dynamic Bias Field Correction. Instead, we propose to integrate the Retinex image
decomposition and the CV image segmentation problem into a single variational model:
We are interested in an image decomposition consisting of a smooth bias field and a two-
phase piecewise constant structure part with regular phase interface. In this, rather than
segment an image directly, the model seeks to segment the image’s underlying structure.
Instead of extracting this structure via preprocessing, however, we optimize segmentation
and bias correction simultaneously.

Definition 4.1. Let
B,S : Ω→ R

denote the estimated bias and structure part, respectively. Then, we define the energy
functional for joint image segmentation and bias correction as follows (in original CV-like
notation):

ECVB(µ1,µ2,φ,B,S) := λ1

∫
Ω

(µ1−S)2H(φ)+λ2

∫
Ω

(µ2−S)2(1−H(φ))

+β

∫
Ω

|∇H(φ)|+α

∫
Ω

|∇B|2, (34)

where the first three terms are the classical CV model acting on the structure S instead of
the input image I0, while the new term models bias smoothness.

Remark 4. Note that the proposed model (34) differs from a simple two-phase approxima-
tion of the MS-functional (1) in that the bias field, B, representing the smooth variations, is
restricted to be smooth everywhere, thus in particular at the phase interface.

Problem. Performing joint image decomposition and segmentation based on the functional
(34) thus amounts to solving the following constraint minimization problem:

min
µ1,µ2∈R, φ,B,S : Ω→R

ECVB(µ1,µ2,φ,B,S) s.t. I0 = B+S, (35)

where the constraint represents the image formation model (33).

4.4. Minimization. As for the original CV model (3) or the CV+X model (21), the pro-
posed functional (34) can be reformulated in phase-field terms, replacing H(φ) by u : Ω→
[0,1]. The resulting minimization scheme is then analogous to the previous schemes as
regards the optimization of µ1, µ2, and u. The interesting part of the problem, namely, the
newly arising minimization with respect to the structure-bias decomposition, however, is
independent of the chosen domain parameterization (levelset vs. phase-field). Instead, an
interesting issue is related to the image formation constraint I0 = B+S.

Indeed, this linear constraint can be softly enforced by simply adding a quadratic penalty
term

ρ

∫
Ω

|I0−B−S|2,

and then solving the resulting unconstrained minimization problem (the Penalty method).
Strictly enforcing the image formation model using this penalty, only, would require ρ→∞,
which renders the functional ill-conditioned. If the constraint is to be imposed strictly, in
addition to the quadratic penalty term, a Lagrangian multiplier can be employed while
keeping ρ finite [33] (the Augmented Lagrangian method).

Definition 4.2. Let us do so and define the Augmented Lagrangian corresponding to the
functional (34) including the image formation constraint (33), in terms of the phase-field
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u : Ω→ [0,1], this time:

ALCVB(µ1,µ2,u,B,S,λ) := λ1

∫
Ω

(µ1−S)2u+λ2

∫
Ω

(µ2−S)2(1−u)+β

∫
Ω

|∇u|

+α

∫
Ω

|∇B|2 +ρ

∫
Ω

|I0−B−S|2 + 〈λ, I0−B−S〉Ω, (36)

where λ is the newly introduced Lagrangian multiplier and 〈·, ·〉Ω denotes the standard inner
product over the domain Ω.

Problem. Solving the constrained minimization problem (35) can now be substituted by
finding a saddle point of the Augmented Lagrangian (36):

max
λ : Ω→R

min
µ1,µ2∈R, u : Ω→[0,1], B,S : Ω→R

ALCVB(µ1,µ2,u,B,S,λ). (37)

This min-max problem can be solved in a coordinate descent/dual ascent approach. The
subminimizations w.r.t. µ1, µ2, and u are analogous to what we have seen earlier, and are
left as a simple exercise to the reader. We will instead focus on the new elements B, S, and
the dual λ.

Lemma 4.3. The Euler-Lagrange equation associated with the subminimization problem

B∗ = argmin
B : Ω→R

ALCVB(µ1,µ2,u,B,S,λ)

reads

−α∇
2B∗ = ρ(I0−B∗−S)+

λ

2
, (38)

which is simply the heat equation that can be efficiently solved, e.g., spectrally using the
Fourier transform F {·}(ω) (thus implicitly assuming periodic boundary conditions):

B∗ = F −1

F
{

ρ(I0−S)+ λ

2

}
(ω)

ρ+α|ω|2

 . (39)

Proof. These EL-equations directly result from simple calculus of variations on the three
relevant terms of (36) involving B. This first variation reads

∂BALCVB =−2α∇
2B−2ρ(I0−B−S)−λ, (40)

and using the optimality condition ∂BALCVB = 0, the EL equations (38) are immediately
obtained.

Remark 5. The immediate interpretation of the B-update is as follows: B strives to op-
timize the trade-off between image formation constraint I0− S and the smoothness prior
imposed by |∇B|2, and B is updated as a lowpass filtered version of what I0− S suggests.
As will be seen farther below, the Lagrangian multiplier λ accumulates the error on the
reconstruction constraint, and will eventually enforce that constraint strictly.

Similarly, let us now determine the EL-equations governing the update of the structure
image S:

Lemma 4.4. The Euler-Lagrange equation associated with the subminimization problem

S∗ = argmin
S : Ω→R

ALCVB(µ1,µ2,u,B,S,λ)

reads

S∗ =
λ1µ1u+λ2µ2(1−u)+ρ(I0−B)+ λ

2
λ1u+λ2(1−u)+ρ

∀x ∈Ω. (41)
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Proof. The EL equation (41) is immediately obtained by computing the first variation of
the Augmented Lagrangian (36) along S,

∂SALCVB =−2λ1(µ1−S)u−2λ2(µ2−S)(1−u)−2ρ(I0−B−S)−λ, (42)

and using the optimality condition ∂SALCVB = 0.

Remark 6. This update for the structure variable S again admits an immediate and intu-
itive interpretation: S balances the trade-off between the image decomposition rule I−B
and compliance with the piecewise constancy terms due to the CV model, achieved by av-
eraging the two contributions. Again, the error-accumulating Lagrangian multiplier adds
the error back into the updates.

Finally, we note that the Lagrangian multiplier is simply updated through gradient ascent
(dual ascent), through propagation of the following ODE

∂λ

∂t
= ∂λALCVB = I0−B−S, (43)

from which the error-accumulating nature of the Lagrangian multiplier becomes evident.
We summarize our proposed optimization algorithm for the CV+B image segmentation

with bias correction model, based on the phase-field approximation:

Algorithm 2. The joint image segmentation and bias correction problem can be solved
by minimizing the constrained CV+B energy (34), through its surrogate, the associated
Augmented Lagrangian saddle point problem (37). To this end, starting from some initial-
ization u0, and S0 = I0, B0 = 03, we repeat the following steps until convergence, for some
appropriate time-step τ > 0:

1. Update µ1 and µ2 using (4), substituting S for I
2. Evolve the phase-field u for some time τ each (possibly several times):

(a) According to the CV-data term on the structure part,

∂u
∂t

=
[
−λ1(S−µ1)

2 +λ2(S−µ2)
2]

(b) According to the heat equation

∂u
∂t

= ∇
2u

with the previously updated phase-field as initial condition and using appropri-
ate boundary conditions

(c) Rectify the diffused u by thresholding:

u =

{
1 if u > 1

2
0 otherwise

3. Update the bias field estimate B spectrally according to (39)
4. Update the structure estimate S according to (41)
5. Update the Lagrangian multplier λ by dual ascent (43).

Again, the algorithm is supported by positive practical results, as will be shown later in
this work (§6).

3A smarter initialization of the structure-bias-decomposition can be based on a Retinex-preprocessing step.
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5. Combined Artifact Detection and Bias Corrective Image Segmentation Model. Hav-
ing tuned the original CV model to deal with artifact or illumination bias corrupted images,
respectively, we have now all ingredients ready to build a single variational, region-based
image segmentation model that inherently detects local artifacts and corrects smoothly
varying illumination bias. Having both components is crucial, because either type of cor-
ruption has the critical potential to prevent correctly handling the other. On the one hand,
artifacts and outliers can exert a great negative impact on most Retinex decomposition mod-
els, since their resulting high contrast cannot be accommodated in the bias field but would
need to be attributed to the structure, distorting the intensity information even outside the
actual artifact regions. Uneven illumination, on the other hand, has the potential to identify
artifacts falsely if it pushes the intensities of some pixels outside their respective region’s
“comfort zone” in terms of distance from the mean intensity. Having artifact and bias terms
in a single variational functional allows handling of these complications concurrently.

5.1. Combined model. Formulating this single variational model involving both dynamic
artifact detection and bias correction is now merely a matter of combining the respective
definitions of CV+X (21) and CV+B (34):

Definition 5.1. Let X : Ω→{0,1} denote the artifact indicator function, and let B,S : Ω→
R be the bias and structure decomposition of the input image I0 : Ω→ R. We define the
CV+XB functional for joint image segmentation, artifact classification, and bias correction
as the following energy.

ECVXB(µ1,µ2,φ,X ,B,S) := λ1

∫
Ω

(1−X)(µ1−S)2H(φ)

+λ2

∫
Ω

(1−X)(µ2−S)2(1−H(φ))+β

∫
Ω

|∇H(φ)|+ γ

∫
Ω

X +α

∫
Ω

|∇B|2, (44)

or, for purposes of more efficient optimization, in terms of the phase-field approximation
H(φ)≈ u : Ω→ [0,1]:

ECVXB(µ1,µ2,u,X ,B,S) := λ1

∫
Ω

(1−X)(µ1−S)2u+λ2

∫
Ω

(1−X)(µ2−S)2(1−u)

+β

∫
Ω

|∇u|+ γ

∫
Ω

X +α

∫
Ω

|∇B|2. (45)

Remark 7. It is important to note that in this combined model, the artifact variable X only
masks the CV terms on the structure part S, while interface perimeter TV (u) and bias field
smoothness |∇B|2 are not affected.

Problem. To perform joint image segmentation, artifact classification and bias correction
we now propose to solve the following constrained minimization problem (here in terms of
the phase-field u already):

min
µ1,µ2∈R, u : Ω→[0,1], X : Ω→{0,1}, B,S : Ω→R

ECVXB(µ1,µ2,u,X ,B,S) s.t. I0 = B+S,

(46)

5.2. Minimization. Like in the CV+B case, one feasible way of solving this constraint
minimization problem is to incorporate the image formation model constraint as both a
quadratic penalty and a Lagrangian multiplier to form an Augmented Lagrangian, and then
to proceed by solving the associated (unconstrained) saddle point problem.
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Definition 5.2. To this end, we introduce the Augmented Lagrangian for the CV+XB min-
imization problem (46), based on its phase-field functional (45):

ALCVXB(µ1,µ2,u,X ,B,S) := λ1

∫
Ω

(1−X)(µ1−S)2u+λ2

∫
Ω

(1−X)(µ2−S)2(1−u)

+β

∫
Ω

|∇u|+ γ

∫
Ω

X +α

∫
Ω

|∇B|2 +ρ

∫
Ω

|I0−B−S|2 + 〈λ, I0−B−S〉Ω, (47)

where λ : Ω→ R is the Lagrangian multiplier.

Problem. The constrained minimization problem (46) can now be substituted by the saddle
point problem of the Augmented Lagrangian (47):

max
λ : Ω→R

min
µ1,µ2∈R, u : Ω→[0,1], X : Ω→{0,1}, B,S : Ω→R

ALCVXB(µ1,µ2,u,X ,B,S,λ). (48)

In the usual way, this saddle point problem is solved by coordinate descent and dual
ascent. All of the relevant subminimization problems have been discussed so far, and only
slight modifications are needed here; the subminimization problems w.r.t. S, X and µ1,µ2
are the only ones affected by an overlap of terms stemming from the artifact detection and
the bias correction model. Indeed, the CV terms include both the structure S and the mask
X , as well as the statistics, which impacts their respective subminimization problems as
follows:

1. The statistics are now updated based on the masked, estimated structure S.
2. The artifacts are detected based on the structure, rather than the original input image.
3. Finally, where no artifacts are detected the structure update is a tradeoff between

image formation model and CV two-phase piecewise constancy (as before); in the
presence of artifacts, however, the structure is exclusively derived from the image
formation model.

The Euler-Lagrange equation for the structure update

S∗ = argmin
S : Ω→R

ALCVXB(µ1,µ2,u,X ,B,S,λ)

is indeed found as

S∗ =
(1−X) [λ1µ1u+λ2µ2(1−u)]+ρ(I0−B)+ λ

2
(1−X) [λ1u+λ2(1−u)]+ρ

∀x ∈Ω. (49)

Putting all previous results and their adaptations together as described, we propose the
following algorithm for the CV+XB model:

Algorithm 3. The joint image segmentation, artifact detection, and bias correction prob-
lem can be solved by minimizing the constrained CV+XB energy (44), viz. by solving the
associated Augmented Lagrangian saddle point problem (48). Starting from some initial-
ization u0, X0 = 0, S0 = I0, and B0 = 0, we iterate these steps until convergence, for some
appropriate time-step τu,τλ > 0:

1. Update µ1 and µ2 using

µn+1
1 =

∫
Ω
(1−X) ·S ·H(φ)∫
Ω
(1−X) ·H(φ)

, µn+1
2 =

∫
Ω
(1−X) ·S · (1−H(φ))∫
Ω
(1−X) · (1−H(φ))

,

2. Evolve the phase-field u for some time τu each (possibly several times):
(a) According to the CV-data term on the structure part,

∂v
∂t

= (1−X) ·
[
−λ1(S−µ1)

2 +λ2(S−µ2)
2] ,

with v(x,0) = un(x) as initial condition,
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(b) According to the heat equation

∂w
∂t

= ∇
2w,

with the previously propagated phase-field w(x,0) = v(x,τu) as initial condition
and using appropriate boundary conditions,

(c) Rectify the diffused w by thresholding:

un+1(x) =

{
1 if w(x,τu)>

1
2

0 otherwise,
x ∈Ω,

3. Update the artifact classification X according to

Xn+1(x) =

{
0 if λ1(µ1−S)2u+λ2(µ2−S)2(1−u)≤ γ

1 otherwise,
x ∈Ω,

4. Update the bias field estimate B spectrally according to (39):

Bn+1 = F −1

F
{

ρ(I0−S)+ λ

2

}
(ω)

ρ+α|ω|2

 ,

5. Update the structure estimate S pointwise according to (49)

Sn+1 =
(1−X) [λ1µ1u+λ2µ2(1−u)]+ρ(I0−B)+ λ

2
(1−X) [λ1u+λ2(1−u)]+ρ

, ∀x ∈Ω,

6. Update the Lagrangian multiplier λ by dual ascent (43),

λ
n+1 = λ

n + τλ(I0−B−S).

Practical results obtained with this algorithm are presented in §6, next.

6. Results and Discussion. We have implemented the complete CV+XB model according
to the algorithm outlined in algorithm 3 of §5.2, in MATLAB4. This full model includes
the sub-models CV, CV+X, and CV+B, easily selected by simply suppressing some or all
of the sub-updates to X , S, and B listed in algorithm 3.

First, we use test images provided5 by the authors of the region-scalable fitting model
[24]. These five images mainly illustrate the use of bias field estimation incorporated into
the segmentation problem. In addition, for a specific case for the artifact detection model,
we test our model on a synthetic test image of ellipses6.

All six test images have been processed with all four models, and the results are illus-
trated in figures 1-3. Images and results are described in detail in the figure captions. Slight
tuning of model parameters was necessary between images (but not between models for
a single image). This is natural since images greatly vary in noise level, bias smoothness,
outlier presence, etc. The success of the segmentation models depends on the chosen model
and image considered; naturally, not all of the images are equally affected by bias and arti-
facts, and only appropriate priors and model choices fit. Most images worked impressively
well, and the algorithm converged rapidly, typically within 10 and 50 iterations, amount-
ing to fractions of a second on standard personal computing equipment (2011 laptop with
Intel Core i7 2.80 GHz (dual core), 4GB RAM, running 64-bit Fedora 20 Linux OS, and
MATLAB 2011b), as reported in table 1.

4code available at http://www.math.ucla.edu/˜zosso/code.html and at MATLAB Central
5http://www.engr.uconn.edu/˜cmli/code/RSF_v0_v0.1.zip
6found at http://www.cs.rug.nl/svcg/Shapes/Inpainting

http://www.math.ucla.edu/~zosso/code.html
http://www.engr.uconn.edu/~cmli/code/RSF_v0_v0.1.zip
http://www.cs.rug.nl/svcg/Shapes/Inpainting
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TABLE 1. Algorithm convergence: number of iterations and required
computer time. The algorithm is deterministic. Convergence is defined
as the phase-field u not changing during its update. Computation time is
statistical depending on CPU scheduling; here, we report average num-
bers over 50 repetitions. The extra cost of artifact is negligible compared
to basic CV, in particular since it may speed up convergence in appropri-
ate images. Bias correction roughly doubles the computational load per
iteration, which is an acceptable price for its benefits when appropriate.

I M×N CV CV+X CV+B CV+XB

i [1] t [s] i [1] t [s] i [1] t [s] i [1] t [s]

1 78 × 119 11 0.02 20 0.03 11 0.04 11 0.05
2 75 × 79 14 0.02 16 0.02 64 0.24 69 0.27
3 96 × 127 22 0.06 45 0.12 51 0.30 53 0.31
4 110 × 111 13 0.03 26 0.07 38 0.22 57 0.33
5 131 × 103 33 0.11 33 0.12 27 0.23 27 0.25
6 124 × 184 11 0.05 18 0.07 41 0.32 23 0.19

We further apply the proposed models to real images from atomic force microscopy
(AFM) and fluorescence microscopy. In figures 4 and 5 we present both the classical CV
result as well as the most appropriate proposed model for each case (CV+X, CV+B, or
CV+XB). In all these images, our models allow significant improvement of the segmenta-
tion, while also providing additional information about artifact location and/or structure-
bias decomposition, where applicable. For scientific use of these segmentations see [38].

7. Conclusions. In this paper, we have presented an energy functional that describes joint
region-based image segmentation, dynamic artifact classification, and bias field estimation.
Combining these tasks within a single functional allows simultaneous solution of the dif-
ferent problem aspects in a common variational approach, as opposed to more error-prone
sequential processing. Indeed, joint optimization enables making full use of the few priors
employed in the model, while sequential processing would each time focus on subsets of
priors, only.

We show relations between the proposed model and state-of-the-art techniques in image
processing: the proposed artifact handling is related to recent results in occlusion detection
in optical flow modeling [1] and outlier handling for impulse-noise denoising [41]. In
our case, we can make an elegant connection between the artifact classification performed
by our model and statistical hypothesis testing: the model classifies pixels as artifacts if
their z−score under a Gaussian noise model is more extreme than the parameter γ, which
means that we have direct control over the expected error rate on artifact labeling. The
bias field estimation, on the other hand, is intimately tied to the Retinex model for image
decomposition. However, using a joint model, our decomposition makes direct use of the
two-phase piecewise constancy assumption of the CV-model, which is a much stronger
prior on the structure part than typical Retinex models employ.

In addition to formulating a joint model for these tasks, we also devise an efficient al-
gorithm for the optimization of the proposed variational problem. Our algorithm makes
use of the phase-field parameterization and threshold-dynamics [29] that have successfully
been introduced to the CV-model in [9]. The algorithm solves the saddle-point problem
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Model I u X S B

CV Input:

CV+X

CV+B

CV+XB

CV Input:

CV+X

CV+B

CV+XB

FIGURE 1. Example cases 1 & 2. Top: Coronal MRI slice. Input image
and initial segmentation contour are shown in the top-right corner. The
image is heavily affected by intensity bias, such that the classical CV
model fails. The superior parts of the white-matter are undersegmented,
while the inferior regions are markedly oversegmented. CV+X is not
very helpful, here. In contrast, CV+B fixes the problem: the extracted
structure is nearly flat (the brain is essentially two-phase piecewise con-
stant), while CV+XB marks some non-brain pixels as outliers. Bottom:
This synthethic image is a combination of piecewise constant regions af-
fected by strong noise and oscillating bias. Again, CV fails, and artifacts
detection not appropriate. Bias correction greatly improves the segmen-
tation, but errors persist since from the simple initialization the algorithm
converges to a wrong local minimum (upper part of left hand structure).
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Model I u X S B

CV Input:

CV+X

CV+B

CV+XB

CV Input:

CV+X

CV+B

CV+XB

FIGURE 2. Example cases 3 & 4. Top: The seemingly simple scene
is not segmentable by the CV model alone, due to strong bias. CV+X
wrongly classifies bright regions as artifacts. Bias correction (CV+B)
results in accurate segmentation of the T-object. Bottom: The vessel
structure is not accurately segmented by classical CV: superior parts are
oversegmented due to brightening, inferior parts are undersegmented due
to darkening. CV+X is inappropriate, while CV+B fixes the problem and
leads to much improved vessel segmentation.
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Model I u X S B

CV Input:

CV+X

CV+XB

CV Input:

CV+X

CV+B

CV+XB

FIGURE 3. Example cases 5 & 6. Top: Compare to ex. 4 in figure 2.
Bottom: Three-phase piecewise constant synthetic image. The goal is
to separate the two black ellipses from the gray background, considering
the white ring to be an occlusion artifact. CV, however, groups the white
ring with the light background. CV+X successfully identifies the ring
as artifact, and closes the black ellipses thanks to the interface regular-
ization. The bias correction is misleading, since much of the white ring
will be considered overly illuminated background (CV+B, CV+XB), the
corners being captured as transient artifacts (CV+XB).
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Model I u X S B
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CV+XB
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CV Input:
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FIGURE 4. Microscopy example cases. Top: This AFM image is se-
verely affected by inhomogeneity compared to pattern contrast. As a
result, classical CV segmentation fails. The proposed CV+XB model is
able to capture some of the bias as such, and correctly segments some
of the actual pattern. The central-square contour initialization, however,
provokes an incorrect bias field estimate at early stages of the optimiza-
tion, and leads to an incorrect local minimum, misclassifying the central
portions. Middle: Starting from a near-optimal contour initialization
of a single pattern element, the CV model still fails entirely. The pro-
posed CV+XB model is not misled into incorrect minima, anymore, and
successfully separates bias from actual pattern contrast. Bottom: The
CV+XB model captures most of the inhomogeneity present in this AFM
sample image and leads to reasonable segmentation of the diamond pat-
tern. (Note: The inversion of foreground/background between CV and
CV+XB models is arbitrary and triggered by domain size.)
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FIGURE 5. Further microscopy examples. Top: Seemingly “easy” AFM
sample, actually affected by strong inhomogeneity at different scales.
CV+XB yields a flattened structural image and correct pattern segmen-
tation. Second row: Fluorescence microscopy image suffering from
strong bias and artifacts, failing classical CV. CV+XB corrects bias and
captures most artifacts. Third row: AFM sample with crack (white) and
bend (darkening). The darkening is beyond recovery, but the crack is
correctly identified as artifact. Bottom: Artifact detection collects bright
spots and the dark line, resulting in correct stripe-pattern segmentation.
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associated with the constrained functional optimization by iterating several steps of co-
ordinate descent and dual ascent. The resulting subproblems have closed form solutions
(region statistics µ1, µ2, artifacts map X , and structure and bias field decomposition S and
B, respectively), or admit efficient gradient descent/ascent steps (segmentation phase-field
u, through modified MBO, and dual update λ). The proposed algorithm typically con-
verges in about 10 to 50 iterations and takes fractions of a second on standard computing
equipment.

Practical results from disparate imaging modalities illustrate the range of images that
are successfully modeled by our joint energy functional. Finally, the MATLAB code im-
plementing our algorithm and that produces the results presented in this paper is made
available at http://www.math.ucla.edu/˜zosso/code.html and at MATLAB Central.
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