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Quasi-conformal Statistical Shape Analysis of Hippocampal Surfaces
for Alzheimer Disease Analysis

Hei Long Chan · Hangfan Li · Lok Ming Lui

Abstract Alzheimer’s Disease (AD) is a no-cure disease that frustrates scientists for many years. An-
alyzing the disease has become an important but challenging research topic. The shape analysis of the
sub-cortical structure of AD patients has been commonly used to understand this disease. In this paper,
we assess the feasibility of using shape information on the hippocampal (HP) surfaces to detect some
sub-structural changes in AD patients. We propose a quasi-conformal statistical shape analysis model,
which allows us to study local regional shape differences of the HPs amongst normal control (NC) and AD
groups. A shape index defined by the quasi-conformality and surface curvatures is used to characterize
region-specific shape variations of the HP surfaces. Feature vectors can be extracted for each HPs, with
which a classification model can be built using the machine learning methods to classify HPs between NC
and AD subjects. Experiments have been carried out on 99 normal controls and 41 patients with AD.
Results demonstrate the proposed quasi-conformal based model is effective for classifying HPs into NC
and AD groups with high classification accuracy (with highest overall classification accuracy reaches up
to 87.86% in a leave-one-out experiment).

Keywords Alzheimer’s Disease, Beltrami Coefficient, Hippocampus, Machine Learning, P-value, Shape
Classification, Surface Registration.

1 Introduction

The Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by a decline in
cognitive functions. The cause of AD is poorly understood. It usually starts slowly, gets worsen over time
and eventually leads to death. Early detection of AD is thus an important but challenging task.

Amongst the various subcortical structures, the hippocampus (HP) has demonstrated pronounced
shape changes in the early stage of AD. For example, the hippocampal atrophy has been recognized to
be more aggressive in AD in comparison with the normal aging [1,2,3,4,5,6]. The HP surface is therefore
amongst the most important biomarker for the early diagnosis of the disease.

HP shape analysis has usually been carried out by studying its global and local shape changes. For
global shape analysis, the overall HP volumes are usually evaluated to study global shape differences
amongst AD patients. It is believed that HP volumetric decline is correlated to the memory lost [7]. Tissue
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losses in the HP have also been found in the AD [8]. As a matter of fact, HP volumetry on MR images
has been widely used and found helpful for the diagnosis of AD.

Although the HP volume can provide significant information to discriminate AD from normal control
subjects, significant regional shape changes in the HP have been observed in the neurodegenerative process
of AD [9,10]. For example, neuron loss has commonly been found in CA1 and subiculum subfields [11,12,
13]. In view of this, the examination of the local regional shape changes in the HPs is expected to provide
better information to analyze the disease and classify HPs between AD and NC groups. Besides, another
potential limitation of the global shape analysis approach is that geometric differences between AD and
NC groups may only occur at some specific local regions. Taking into account of the overall shape change
of the whole HP volume may average out or diminish the discriminative power of the geometric differences
amongst the normal and diseased group, which hinders the shape analysis accuracy. It is therefore desirable
to design local shape analysis model that can measure regional shape changes effectively.

In order to analyze the localized pattern of HP shape changes, surface-based morphometry can be
employed. A shape index that quantifies regional shape changes is often defined, with which statistical
shape analysis can be performed for the HP classification. In this work, we propose a quasi-conformal based
shape analysis approach, which allows us to study local regional shape differences of the HP amongst NC
and AD groups. A shape index based on the quasi-conformality and surface curvatures is applied to
characterize region-specific shape variations of the HP surfaces amongst different subjects. The shape
index is a positive real-valued function defined on every vertices of the HP. Feature vectors for each HP
can be extracted from their shape indices using statistical methodologies. A classification model can then
be built using the extracted feature vectors. The proposed quasi-conformal based model is found to be an
effective approach to classify HPs into NC and AD groups.

Our experiments are performed on 99 normal controls and 41 patients with AD. The data is obtained
using 1.5T magnetic resonance imaging (MRI) scanner. Using our method, we can accurately achieve a
high accuracy of classification between NC and AD groups.

The rest of the paper is organized as follows. In Section 2, we review some previous literatures closely
related to this work. Our proposed quasi-conformal shape analysis model will be described in details in
Section 3. Experimental results will be shown in Section 4 and 5. The paper is concluded in Section 6, in
which possible future works are discussed.

2 Previous Works

The shape analysis of the HP for the disease analysis of AD has been widely studied by various research
groups. Different approaches have been developed. For global shape analysis, HP volume has been used for
classifying AD subjects and AD diagnosis [5,6,14,15,16,17]. In particular, by studying the HP volumes,
[18] has reported the classification result between AD and cognitively normal subjects with a success rate
about 72-74% over an Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. To further improve
the accuracy for the analysis of AD, local shape changes in the HP have been taken into account. Surface-
based morphometry of the HP surfaces has been extensively studied. The spherical harmonic (SPHARM)
representation of the HP surface has been exploited to extract shape features to quantify shape changes
caused by AD [18,19,20,21,22]. Longitudinal approaches which study the HP atrophy rates over times
have been proposed for AD classification problems [23,24]. These approaches can often achieve higher
classification accuracy than the volumetric approaches (e.g. 82% on 568 images of the ADNI dataset by
Wolz et al.[24]). Younes et al.[25] applied the large deformation diffeomorphic metric mapping method for
HP surface registration and successfully detected the changing point that indicated the AD. Wang et al.
[26] proposed the tensor-based surface morphometry on the HP to analyze shape changes in HPs of AD
subjects. To better examine the regional shape changes of the HP, algorithms which segment subfields
of the HP has been proposed to detect the local atrophy pattern [27,28]. Lui et al. [29] also proposed to
obtain HP registration using Beltrami holomorphic flow. Using the registration, vertex-wise shape changes
can be detected and statistical significance map (p-map) can be computed to visualize the regions with
significant shape differences.

Statistical shape analysis methods to analyze AD has also drawn much attention recently. For instance,
Miklossy et al. [30] used the Koch’s and Hill’s criteria in finding the AD. The analysis of the reviewed data
following Koch’s and Hill’s postulates shows a probable causal relationship between neurospirochetosis
and AD. Comelli M et al.[31] combined the univariate tests and logistic regression in proposing a therapy
for AD. Thompson et. al [32] used the statistical region-of-interest method in assessing the twelve-month
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metabolic declines in probable AD and Amnestic Mild Cognitive Impairment. It is noteworthy that both
the statistical analysis and surface mapping take an important role in human brain analysis especially
for the study of AD. Recently, multidimensional classification methods have been widely used for disease
classification [19,33,34,35,36,37].

In order to perform local shape analysis, surface registration that captures the one-to-one vertex-
wise correspondence between different HP surfaces is crucial. Harmonic surface registration has been
widely used [38,39], which produces smooth surface mapping by simply solving a elliptic PDE. Landmark-
matching optimized harmonic map has also been proposed to obtain an optimal harmonic map that
matches corresponding landmark features [40,41,42,43].

Quasi-conformal theory will be applied in this work. Computational quasi-conformal mapping has been
studied recently and applied successfully in the medical imaging field. Lui et al. proposed to obtain quasi-
conformal surface registration using the Beltrami holomorphic flow method [29]. The method has been
applied to compute HP surface registration [44]. Quasi-conformality has also been utilized to quantify
non-isotropic deformations, which can be used to detect abnormal growth or deformation [45]. To deal
with higher genus surfaces, different methods have been developed to compute quasi-conformal mappings
of surfaces with general topologies [46,47]. Landmark-based surface quasi-conformal registration has also
been investigated [46,48].

3 Quasi-conformal Statistical Shape Analysis model

In this section, we will describe our proposed quasi-conformal statistical shape analysis model in details.
Suppose we are given a collection of hippocampal (HP) surfaces of normal controls (NC) and diseased
subjects suffering from the Alzheimer disease (AD) . Our goal is to learn a classification model using their
shape information, with which a new input HP surface can be classified into either normal or diseased
subject. This can potentially assist physicians for the diagnosis of the AD. For this purpose, we propose
to combine quasi-conformal theories and statistical tools to develop a shape classification machine. Shape
deformation measurement are firstly obtained through quasi-conformal theories, which provide accurate
measurement of local geometric differences amongst subjects. A shape classification model can then be
learnt through statistical tools and machine learning procedures.

Denote the collection of HP surfaces of m normal controls and n diseased subjects by Ñ = {Sti}mi=1

and Ã = {Sti}m+n
i=m+1 respectively, where t = 0 or 1. The HP surface of each subject was captured at the

base-time t = 0 and after one year t = 1. Their surfaces are denoted by S0
i and S1

i respectively. Our
proposed quasi-conformal statistical shape analysis can be summarized as follows, which consists of five
main steps.

1. Surface registration: For each subject i, the deformation fi : S0
i → S1

i of subject i is obtained. Also,
surface registrations gij : S0

i → S0
j are computed. These registrations give point-wise correspondence

between subjects for further shape analysis.
2. Shape deformation measurement: For each subject i, measure the shape deformation at each

vertex of the HP from t = 0 to t = 1 using quasi-conformal theories. A shape index Eishape : S0
i → R+

is obtained that measures the degree of deformation at each vertex.
3. Extraction of statistical significant regions: Statistical significant p-map is obtained based on the

shape index computed for each subject. A statistical significant region Ω can be extracted to obtain
more accurate classification results.

4. Extraction of feature vector: The shape index Eishape together with the statistical significant region

Ω give rise to a discriminative feature vector c̃i for each subject. A mean feature c̃NCmean amongst the
normal control group can also be extracted. Distance di between each feature vector c̃i and the mean
feature vector c̃NCmean can be computed, which can be used to build the shape classification machine.

5. Building the classification model: Using the discriminative feature vector, a classification model
is to be built to classify a new input subject into either NC group or AD group.

We will now explain each steps in details.
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Fig. 1: Infinitesimal behaviour of quasi-conformal map

3.1 Surface registration

Registration between HP surfaces must be computed to obtain point-wise correspondences between
surfaces. With the registration, vertex-wise geometric difference between subjects can be measured and
local shape analysis can be carried out. In this work, we apply the radial registration about the centerlines
of the HP surfaces to obtain the surface registration. Given two HP surfaces S0

i and S0
j , the centerlines

of each surfaces are computed. From the centerlines, corresponding radial loops on each surfaces can be
extracted. The radial loops can be parameterized using the angular parametrization, with which point-wise
correspondences of each pair of corresponding loops can be computed. Combining the registrations of every
pairs of radial loops, the surface registration gij : S0

i → S0
j between S0

i and S0
j can be obtained. Similarly,

the surface registration fi : S0
i → S1

i between the HP surfaces of a subject measured at different times can
be computed. For details of the registration algorithm, we refer the readers to [19].

3.2 Shape deformation measurement

The surface registration fi : S0
i → S1

i for each subject allows us to analyze the shape deformation
at each vertex of the HP surface. It is believed significant shape deformations (atrophy) occur on HP
surfaces of patients suffering from AD [2,11,12,13,14,15]. Understanding the shape deformation pattern
of the HP surface over time can possibly provide information to classify HP surfaces into normal and AD
groups. To quantitatively measure the degree of shape deformation, we compute a shape index using the
quasi-conformality and curvatures to measure subtle deformation of the HP surface. Given the surface
registration fi : S0

i → S1
i , the shape index Eishape : S0

i → R+ is a positive real-valued function on S0
i . In

practice, HP surfaces are represented discretely by triangular meshes. Eishape is defined on each vertex vji
of S0

i as follows.

Definition : (Shape index) Given the surface registration fi : S0
i → S1

i , the shape index Eishape(v
j
i ) at the

vertex vji of S0
i is defined as:

Eishape(v
j
i ) = γ|µ(fi)(v

j
i )|+ α|H0(vji )−H1(fi(v

j
i ))|+ β|K0(vji )−K1(fi(v

j
i ))| (1)

where α, β and γ are real positive scalar parameters. |µ(fi)(v
j
i )| is the complex dilation defined by:

|µ(fi)(v
j
i )| = |

∂fi
∂z̄

(vji )|/|
∂fi
∂z

(vji )|. (2)

H1 and H2 are the mean curvature on S0
i and S1

i respectively. K1 and K2 are the gaussian curvature on
S0
i and S1

i respectively.

The complex dilation |µ(fi)(v
j
i )| measures the conformality distortion of the deformation at the vertex

vji . Intuitively, a general deformation maps an infinitesimal circle at vji to an infinitesimal ellipse at fi(v
j
i ).

The distortion from the small circle to the small ellipse can be measured by |µ(fi)(v
j
i )|. More specifically,
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the maximal stretching and shrinkage can be measured by 1 + |µ(fi)(v
j
i )| and 1− |µ(fi)(v

j
i )| respectively

(see Figure (1)). In particular, the deformation is conformal or locally isotropic at vji if |µ(fi)(v
j
i )| = 0.

The partial derivatives ∂fi
∂z̄ (vji ) and ∂fi

∂z (vji ) are defined using the coordinate charts of S0
i and S1

i . Let

φj : Uj ⊂ S0
i → C and ϕj : Vj ⊂ S1

i → C be coordinate charts of S0
i and S1

i around vji and fi(v
j
i )

respectively. The partial derivatives can be defined as:

∂fi
∂z̄

(vji ) :=
∂ϕj ◦ fi ◦ φ−1

j

∂z̄
(φj(v

j
i ));

∂fi
∂z

(vji ) :=
∂ϕj ◦ fi ◦ φ−1

j

∂z
(φj(v

j
i )), (3)

where ∂
∂z̄ = 1

2 ( ∂∂x + i ∂∂y ) and ∂
∂z = 1

2 ( ∂∂x − i
∂
∂y ).

This shape index has been used to formulate an energy functional over all possible surface mappings
to solve the geometric matching surface registration problem [44]. Note that Eishape is a complete shape
index measuring different kinds of distortions of the deformation. A different combination of parameters
gives rise to different shape indices measuring different kinds of distortions, which can be summarized as
below:

– α = β = 0 and γ 6= 0: Eishape measures the conformality distortion of the deformation. In other words,

Eishape ≡ 0 if the deformation is locally isotropic everywhere.

– α = 0, β 6= 0 and γ 6= 0: Eishape measures the isometric distortion of the deformation. An isometric

deformation preserves the metric (both length and angle). In other words, Eishape ≡ 0 if the deformation
deforms the shape while keeping the length and angle structure of the shape.

– γ = 0, α 6= 0 and β 6= 0: Eishape measures the curvature deviation of the deformation.

– α 6= 0, β 6= 0 and γ 6= 0: Eishape measures all kinds of distortion of the deformation. In particular,

Eishape ≡ 0 under the deformation fi if and only if S0
i and S1

i are equal up to a rigid motion.

In this work, we set α 6= 0, β 6= 0 and γ 6= 0 to measure all kinds of distortions of the deformation.
The shape index functions can be computed for every subjects. A feature matrix can then be built to
learn a classification machine. Since all HP surfaces are registered, we assume all HP surface meshes have
the same number of vertices and connectivity. Suppose the vertices of S0

i are ordered and denoted by
{v1
i , v

2
i , ..., v

N
i }. Without loss of generality, we may assume vki and vkj correspond to each others for every

1 ≤ k ≤ N . Using the shape index function Eishape, a feature vector ci can be computed for each subject:

ci = (ci1, ci2, ..., cij , ..., ciN ) (4)

where cij = Eishape(v
j
i ). Combining all feature vectors, we obtain a feature matrix C, which can be used

to study the geometric difference of the HP deformations and build the classification model:

C =



c1

...
ci
...

cm+n

 =



c11 c12 . . . c1j . . . c1N
...

...
...

...
ci1 ci2 . . . cij . . . ciN
...

...
...

...
cm+n,1 cm+n,2 . . . cm+n,j . . . cm+n,N

 (5)

Without loss of generality, we may assume the first m rows of C are the feature vectors of the HP
surfaces from the normal control group. The last n rows are the feature vectors of the HP surfaces from the
AD group. Each column of C captures the degrees of distortions of the HP deformations at a particular
(corresponding) vertex of all subjects. Since AD is believed to be related to the shape changes of the HP,
the feature matrix provide full information of the shape deformation of the HP and hence can be used to
develop a classification model.

3.3 Extraction of statistical significant regions

The feature matrix C gives full information about the shape deformation at every vertices of the HPs.
In real situation, AD may have effect only on some particular regions or positions of the HP. Utilizing
the full information of the deformation at every vertices to build the statistical model may hinder the
classification accuracy. To solve this issue, we propose to extract significant regions and analyze their
shape deformations to enhance the classification accuracy.
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More specifically, we proceed to look for a set of vertices {vj1i , ...,v
jk
i , ...,v

jl
i }, whose shape deformations

give the most important information for the classification of the HPs. Each column j of C captures the
degree of distortions of the HP deformation at a particular vertex. To determine the importance of the
shape deformation information at this vertex, we quantitatively measure its statistical significance. We
perform a t-test on each column to get a p-value pj at the vertex j. pj reports the probability of the
geometric difference in the deformation at vertex j occurring from the same distribution by chance. The
smaller pj is, the higher the probability that the shape deformation at vertex j can distinguish between
the normal and AD groups.

In order to stabilize and advance the discriminative power of the selected feature points, we make use
of the famous bagging predictors [49]. We compute Pij , the p-value computed at vertex j, using all the
m+ n subjects from the database except for the ith one. Then we assign

p̃j = min
i=1,...,m+n

Pij (6)

to the vertex j. Hence, we obtain a p-map p̃ : S̃ → [0, 1], where S̃ is a template mesh having the same
number of vertices and connectivity as the HP dataset, such that p̃(vj) = p̃j .

From the p-map p̃, the statistical significant regions can be extracted:

Ω :=
⋃

j∈Isig

{ṽj} ⊆ S̃, (7)

where ṽj is the jth vertex of the surface mesh S̃ and the index set Isig is defined as:

Isig = {j1, j2, ..., jl : p̃jk ≤ pcut for 1 ≤ k ≤ l}. (8)

Here, pcut is some constant threshold. In other words, we extract all vertices having p-value less than or
equal to pcut as statistical significant regions for our investigation.

3.4 Extraction of discriminative feature vectors

Once the statistical significant region Ω is extracted, the shape deformations at statistical significant
vertices can be analyzed and build the classification model. The discriminative feature vector c̃i can be
computed for each subject i as follows:

c̃i = (cij1 , ..., cijk , ..., cijl). (9)

Combining discriminative feature vectors of all subjects together gives the discriminative feature matrix
C̃ defined as:

C̃ =



c1j1 c1j2 . . . c1jk . . . c1jl
...

...
...

...
cij1 cij2 . . . cijk . . . cijl

...
...

...
...

cm+n,j1 cm+n,j2 . . . cm+n,jk . . . cm+n,jl

 (10)

The discriminative feature matrix captures distortions of HP deformations at vertices which provide the
most significant information to classify HP surfaces into normal and AD groups. The mean discriminative
feature vectors of the normal group can also be constructed:

c̃NCmean =
m∑
i=1

1

m
c̃i (11)
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3.5 Building the classification model

The discriminative feature vectors can be used to build a classification machine. In this work, both for
simplicity and efficiency, we use a simple L2 classification model, which is based on the mean discriminative
feature vector c̃NCmean of the NC group. For each subject i, we compute the distance of c̃i from c̃NCmean to
get:

di = ||c̃i − c̃NCmean||2. (12)

We make the assumption that the deformation patterns of the HPs in the normal group are similar to
each others. Thus, di is assumed to be small if subject i is in the NC group. We proceed to search for a
parameter δ to classify the HP surfaces into either NC or AD groups. More specifically, we conclude the
HP is from the NC group if the distance of its discriminative feature vector from c̃NCmean is less than δ.
Otherwise, we conclude the HP comes from the AD group.

Our goal is to search for the optimal classification parameter δopt that yields the best classification
accuracy. We first rearrange the distances di’s in ascending order:

di1 ≤ di2 ≤ . . . ≤ dim+n . (13)

For each δ, we can obtain the true positive set (TPS(δ)) and true negative set (TNS(δ)) with respect
to δ as follows:

TPS(δ) = {S0
i : S0

i is classified as a normal subject and 1 ≤ i ≤ m};

TNS(δ) = {S0
i : S0

i is classified as an AD subject and m+ 1 ≤ i ≤ m+ n}.
(14)

The true positive rate (TPR(δ)) and the true negative rate (TNR(δ)) with respect to δ can be defined
as follows:

TPR(δ) = |TPS(δ)|/m; TNR(δ) = |TNS(δ)|/n (15)

The optimal classification parameter δopt can then be computed by solving the following optimization
problem:

δopt = argmaxδ{
|TPS(δ)|+ |TNS(δ)|

m+ n
} (16)

In practice, the number of HP surfaces are finite. Therefore, the optimization problem (16) above is
optimized over a finite set. More specifically, we define:

P = {δ̃ : δ̃ =
dij + dij+1

2
for some j such that dij < dij+1}. (17)

Then, P is a finite set and the optimization problem (16) can be formulated as:

δ̃opt = argmaxδ̃∈P {
|TPS(δ̃)|+ |TNS(δ̃)|

m+ n
}. (18)

It becomes an optimization problem over a finite set, which can be solved by maximizing amongst all
possible choices.

Once the optimal classification parameter is computed, the classification model can be built. Suppose
a new input HP surface S is given, S will be registered to the template surface S̃. The discriminative
feature vector c̃S of S will be constructed. The distance between c̃S and c̃NCmean will then be computed:
dS = ||c̃S − c̃NCmean||2. If dS ≤ δ̃opt, we conclude S belongs to the NC group. Otherwise, we conclude S
belongs to the AD group.

Apart from the simple L2 classification, we can also use other clustering method, like the K-mean
clustering and the Support Vector Machine (SVM) clustering.

If we turn to use K-mean clustering, then after applying p-value test to select feature points, we split
those NC HP into KNC sub-groups and those AD HP into KAD sub-groups, by packing those with similar
shape index on the statistical significant region together. A mean discriminative feature vectors of each
sub-group is built. Whenever a new subject is imported, we compute its distance from all the KNC +KAD
sub-groups similarly as (12). If the smallest distance is recorded to any sub-group of NC HP models, we
classify the new subject as NC. Otherwise we classify it as AD.

This K-mean clustering is more advanced than the simple L2 classification since we have in total
KNC+KAD sub-groups instead of just one for each class. However, we should note that firstly, the number
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KNC and KAD must be selected carefully. Too few sub-groups may have only limited help to boost up
the classification accuracy of our algorithm, while too many sub-groups will induce over-determining effect
and hence causing inaccuracy. Also, the proportion between the two class of data is important. Unbalanced
proportion of data will significantly induce bias to our algorithm and hence limit its performance.

On the other hand, we can also choose to use the famous SVM clustering to replace the simple L2

classification above. In SVM clustering, we compute a hyperplane which best separates the NC HPs and the
AD HPs into zones concerning the shape index Eshape on the region Ω. When a new subject is imported,
we compute Eshape on this subject and see which zone, NC or AD, it belongs to, so as to classify it.

3.6 Overall algorithm

The overall algorithm can be described as follows.

Algorithm 1: Quasi-conformal statistical shape analysis

Input: Training data: NC HP {Sti}1≤i≤m,t∈{0,1}; AD HP {Sti}m+1≤i≤m+n,t∈{0,1}. Input surface S to be
classified.

Output: Classification value C(S) =

{
0 if S is NC

1 if S is AD

Step 1: Compute the deformations fi : S0
i → S1

i and the pairwise registrations gij : S0
i → S0

j .

Step 2: For each Si, compute Eishape that measures the distortion of the shape deformation of S0
i .

Step 3: Extract the statistical significant region Ω.

Step 4: Compute the discriminative feature vector c̃i for each S0
i and the mean discriminative feature

vector of the normal control group c̃NCmean.

Step 5: Compute di = ||c̃i − c̃NCmean||2 for 1 ≤ i ≤ n + m. Compute the optimal classification parameter
δopt.

Step 6: Compute the discriminative feature vector c̃S of S. Compute dS = ||c̃S − c̃NCmean||2 If dS ≤ δopt,
set C(S) = 0. If dS > δopt, set C(S) = 1.

Remark: Step 5 and Step 6 can be replaced by other classification models such as the K-mean clustering
or the support vector machine (SVM) clustering. In this work, we use a simple L2 thresholding classifi-
cation model, which can be computed efficiently. We have found that even with such a simple model, the
classification accuracy is reasonably good. We have also compared this simple classification model with
the K-mean clustering and the SVM clustering in Section 5.

4 Experimental Results

In this section, we focus on analyzing the accuracy of our proposed algorithm via different experiments.
We have altogether 99 NC HP models and 41 AD HP models (140 models in total). To evaluate the
accuracy of our algorithm, we employ the Leave-one-out test. In each experiment we will perform 140
sub-experiments, and in the ith sub-experiment, we input the ith model as the input surface, and the
remaining 139 models as training data into Algorithm 1 stated in section 3.6. Then we count the TPR,
TNR and the classification accuracy over all the 140 sub-experiments.

There are several parameters in our algorithm. The first three are α, β and γ, the weighting function
of shape index. We will test the effect of each of them on the accuracy of our model. By normalizing
the shape index we can always assume γ = 1 if complex dilation is included and γ = 0 if not. The next
parameter is the threshold cutting pcut in the p-Value test, we will also check its contribution.

Among all experiments, our fundamental setup is:

α = 3.05, β = 0.35, γ = 1.00, pcut = 0.03

In each experiment, we will vary each parameter one-by-one and show the above setup generates the
best accuracy. By a set of ‘good’ parameters we mean the one that gives high TPR, TNR and total accuracy
simultaneously, so that our algorithm is clinically effective.
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Not only those parameters stated above may affect the effectiveness of our algorithm, but the total
number of HP surfaces and the ratio of NC HP surfaces to AD HP surfaces may also be crucial factors.
So the variation of the number of subjects used will also be included as one of our experiments.

After that, we plot the template mesh S̃ with colors indicating the p-value at each vertex. This may
help us further understand the geometric region being included in Ω by the p-value test.

Lastly, to further validate the accuracy of our algorithm (with the optimal parameters), we perform
an evaluation of our model, which will be explained in detail in the corresponding sub-section.

4.1 The Energy Model Test

To begin with, we show the importance of each element in the shape index. The result is reported in
table (1):

α β γ TPR TNR Total accuracy
0 0.35 1.00 0.8687 0.7805 0.8429

3.05 0 1.00 0.8990 0.7805 0.8643
3.05 0.35 0 0.8586 0.5610 0.7714
3.05 0.35 1.00 0.9091 0.8049 0.8786

Table 1: Importance of each energy element (0 for excluding the corresponding element)

From the above, we see that including all three elements gives the highest accuracy. Among the three
elements, the complex dilation plays the most important role in the classification model as without it,
the accuracy drops the most significantly. The mean curvature and the Gaussian curvature are not that
important but still helps to give a higher accuracy.

Our next goal is to investigate the effect of varying the weighting of each element. As discussed before,
we always assume γ = 1 since this normalization of the shape index does not affect the algorithm. The
result is reported in table (2) and (3). The graph of TA (total classification accuracy) versus alpha and
versus beta are plotted in Figure (2).

α(mean curvature) β(Gaussian curvature) TPR TNR Total accuracy

0.00

0.35

0.8687 0.7805 0.8429
0.35 0.8687 0.7805 0.8429
0.80 0.8485 0.7561 0.8214
1.25 0.8586 0.7561 0.8286
1.70 0.8384 0.8049 0.8286
2.15 0.8586 0.7561 0.8286
2.60 0.8990 0.8049 0.8714
3.05 0.9091 0.8049 0.8786
3.50 0.8687 0.7805 0.8429

Table 2: Classification results with different α
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α(mean curvature) β(Gaussian curvature) TPR TNR Total accuracy

3.05

0.00 0.8990 0.7805 0.8643
0.35 0.9091 0.8049 0.8786
0.80 0.8990 0.8049 0.8714
1.25 0.8889 0.8049 0.8643
1.70 0.8889 0.8049 0.8643
2.15 0.8788 0.8049 0.8571
2.60 0.8889 0.8049 0.8643
3.05 0.8889 0.8049 0.8643
3.50 0.8687 0.7805 0.8429

Table 3: Classification results with different β

(a) Varying α (b) Varying β

Fig. 2: Plot of TA (total accuracy) versus α and β

From the results we see that α = 3.05, β = 0.35, γ = 1.00 give rise to the best overall performance.

4.2 The Threshold Test

It now comes to the investigation of pcut. By setting α = 3.05, β = 0.35, γ = 1.00, we vary pcut
evenly with step size 0.01 and perform leave-one-out experiment each time. Note that smaller pcut means
a stricter decision that less vertices are included in Ω. And on the contrary if pcut is large, more vertices
can be included Ω but too many feature points may weaken the significance of those critical vertices.
Therefore, a balance is needed and this is the role of pcut.

The result is recorded in table (4).

pcut TPR TNR Total accuracy pcut TPR TNR Total accuracy

0.01 0.8788 0.8049 0.8571 0.11 0.9192 0.5366 0.8071

0.02 0.8586 0.8049 0.8429 0.12 0.9293 0.5122 0.8071

0.03 0.9091 0.8049 0.8786 0.13 0.9293 0.5366 0.8143

0.04 0.8788 0.7805 0.8500 0.14 0.9293 0.5366 0.8143

0.05 0.8788 0.7317 0.8357 0.15 0.9192 0.5366 0.8071

0.06 0.8687 0.6829 0.8143 0.16 0.9192 0.5366 0.8071

0.07 0.8586 0.5610 0.7714 0.17 0.9192 0.5366 0.8071

0.08 0.9192 0.5854 0.8214 0.18 0.9192 0.5366 0.8071

0.09 0.9596 0.5854 0.8500 0.19 0.9394 0.5366 0.8214

0.10 0.9596 0.5854 0.8500 0.20 0.9697 0.5366 0.8429

Table 4: Classification results with different pcut
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Fig. 3: Plot of TA versus different pcut

From the table we see that choosing pcut = 0.03 gives the best accuracy. Therefore pcut is set to be
0.03. This means that any vertex on a registered HP surface must have p-value p̃j less than or equal to
0.03 so that it is extracted as feature points under the p-value test. About 1,600 vertices out of total 6,002
vertices are selected as feature points under the setting pcut = 0.03. Also, from the graph in Figure (3),
we record a gradual decline in overall performance of our algorithm in increasing pcut, declaring more
points to be feature points. Hence, a loose restriction on feature points selection does worsen the accuracy.
Nevertheless, a very strict restriction may also have negative effect, as shown in Figure (3).

We also validate the importance of this threshold cutting. If we do not perform p-value test and take
every vertex as feature points, under the experiment with the same setting, TPR=0.9495, TNR=0.4390,
and total accuracy=0.8000. Clearly the accuracy of our algorithm when employing feature selection domi-
nates that when all points are included in the significant region Ω. In particular, TNR falls sharply to less
than 0.5. Therefore, the threshold cutting is necessary to our algorithm.

4.3 The Database Test

In all of the above tests, we note that TNR is always lower than TPR. While TPR can often pass through
0.85 under different parameters setting, TNR seems to face resistance getting over 0.80. To evaluate this
observation, we note that on one hand, we have near 100 NC HP subjects, but on the other hand we
do not even have 50 AD HP subjects. We believe that this great bias in our pool of models is the most
contributing factor. So to validate our assertion, we are going to test the effect of this proportion to the
classification accuracy of our model. Since we have just a few AD HP models, we will vary the size of NC
HP models from 10 to 90 with step size 10 each time, and finally the whole database is used. The ratio of
NC HP models to AD HP models varies from around 1:4 to around 2:1, and the total number of models
involved varies from 51 to 140. The result is recorded in table (5).

No. of NC HP No. of AD HP TPR TNR Total accuracy

10

41

0.6000 0.9756 0.9020
20 0.5500 0.9512 0.8197
30 0.7333 0.8049 0.7746
40 0.7750 0.8049 0.7901
50 0.8800 0.8293 0.8571
60 0.8500 0.8293 0.8416
70 0.9000 0.8049 0.8649
80 0.8625 0.7805 0.8347
90 0.8556 0.7561 0.8244
99 0.9091 0.8049 0.8786

Table 5: Classification results with different numbers of HP models used
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Fig. 4: Plot of TA versus different number of HP models used

From the result, two conclusions can be made. Firstly, the ratio of the two types of HP models used
is crucial to the performance of our algorithm. When the number of AD HP models is far more than
that of NC HP models, TPR is significantly lower than TNR, which is almost 1.00. Another conclusion is
that the total number of models used also affect much. As the total number of models used increases, the
performance of our algorithm comes better and more stable. The result shows that if more sample models
are available, the total accuracy of our algorithm can be further boosted up.

4.4 The p-value region

In this sub-section, we want to understand the locations of feature points being chosen in our classifi-
cation model. We plot the template mesh S̃ with colors indicating the p-value at the corresponding vertex
in Figure (5).

(a) Smooth color plot (front view) (b) Smooth color plot (back view)

(c) Feature points highlight (front view) (d) Feature points highlight (back view)

Fig. 5: Color-map of HP surface indicating p-values at each vertex



Quasi-conformal Statistical Shape Analysis of Hippocampal Surfaces for Alzheimer Disease Analysis 13

Figure 5(a) and (b) shows a smooth color plot of the p-value at each vertex from the front view and
back view respectively. (c) and (d) shows the highlighting (in red) showing vertices with p-values less than
0.03 from the front view and back view respectively.

4.5 Evaluation of our model

In this section, we want to further evaluate the classification accuracy of our algorithm. Recall that we
have altogether 140 subjects in our database. We perform 140 experiments, and in the i-th experiment,
we remove the i-th subject out of our database, and use the remaining 139 subjects to do a leave-one-out
test. So ultimately we would have done 140 leave-one-out testes. We compute the statistical distribution
of these 140 classification accuracy values. Figure (6) shows the histogram of the 140 values. The mean,
median and standard deviation are 0.8720, 0.8777 and 0.0081 respectively and the 95% confidence interval
is (0.8707, 0.8734).

Fig. 6: Histogram of the classification accuracy of our algorithm under the optimal parameters

5 Comparison with other classification models

In our work, a simple L2 classification model is applied to classify the HPs into NC and AD groups. In
this section, we investigate the classification accuracies when other classical classification models are used,
namely, 1. K-mean clustering and 2. Support Vector Machine (SVM) clustering.

5.1 K-mean Clustering

In this subsection, we modify our algorithm using the K-mean clustering, and compare this with our
original algorithm.

Now, with α = 3.05, β = 0.35, γ = 1.00 and pcut = 0.03, we set KNC = 2 and KAD = 2. The accuracy
varies the size of NC HP data is recorded in table (6) and in Figure (7).

From the result, the K-mean clustering method is worse than the L2 classification model only when
large number of NC HP models are included. However, as discussed above, this may probably be caused
by the unbalanced data size. When the size of two data set are more balanced, the overall performance of
the modified algorithm is significantly better than the original one. This motivates us to use the K-mean
clustering instead of the simple L2 classification when a large balanced data set is available.
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No. of NC HP No. of AD HP TPR TNR Total accuracy

10

41

0.9000 0.9756 0.9608
20 0.8500 0.9268 0.9016
30 0.8333 0.8293 0.8310
40 0.8750 0.8537 0.8642
50 0.9200 0.8537 0.8901
60 0.8833 0.8049 0.8515
70 0.8714 0.8293 0.8559
80 0.8750 0.6585 0.8017
90 0.8444 0.6829 0.7939
99 0.8687 0.6829 0.8143

Table 6: Classification results with different numbers of HP models used (K-mean clustering)

Fig. 7: Plots of TA versus different numbers of HP models using L2 classification and K-mean clustering

5.2 SVM clustering

In this sub-section, we tried to apply the famous SVM clustering to modify our algorithm.
As in the above, we set α = 3.05, β = 0.35, γ = 1.00 and pcut = 0.03 and this yields the following

results in table (7) when we vary the size of our database.

No. of NC HP No. of AD HP TPR TNR Total accuracy

10

41

0.8000 0.9756 0.9412
20 0.8500 0.9024 0.8852
30 0.8667 0.8293 0.8451
40 0.9000 0.8780 0.8889
50 0.8800 0.8293 0.8571
60 0.8667 0.8293 0.8515
70 0.8429 0.7073 0.7928
80 0.8625 0.6829 0.8616
90 0.8556 0.6341 0.7863
99 0.8687 0.6585 0.8071

Table 7: Classification results with different numbers of HP models used (SVM clustering)

From the result, we see that SVM clustering allows our algorithm to reach higher total accuracy when
the database has quite balanced data. When the number of NC HP models used are closed to the number
of AD HP models used, the total accuracy generated by employing the simple L2 classification is generally
worse than that using SVM clustering. As the size of the database increases, the accuracy using SVM
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Fig. 8: Plots of TA versus different numbers of HP models using L2 classification and SVM clustering

clustering method seems to decline, but this is more likely to be a drawback of the unbalanced database
instead of a defect or limitation of the SVM clustering. Therefore, similar as in the situation using the
K-mean clustering, we are motivated by this result to replace the simple L2 classification method by the
more advanced SVM clustering method, provided once again we have a larger and balanced data size.

6 Conclusion and Future Work

In this paper, we proposed a quasi-conformal based statistical shape analysis model on hippocampal
surfaces to study Alzheimer disease. Given a set of HP surfaces as training data, our algorithm computes the
shape index, which measures local regional geometric changes including quasi-conformality and curvatures,
on each vertex of the surface. Based on the shape index, an automatic algorithm is then built, using machine
learning methods, to classify any newly imported HP surface into either NC or AD group. Experimental
results show that, in particular, the quasi-conformality plays a crucial role in the classification accuracy of
our proposed model. According to the results, the maximal total classification accuracy of our algorithm is
87.86%. In addition, the results show there is a possibility to further boost up the classification accuracy of
our algorithm using more advanced clustering methods, provided that the database is balanced and large
enough.

There are several directions which are still under investigation. Firstly, our current algorithm fixes the
parameters, such as α and β in defining Eishape and pcut. In the future, we aim to develop an algorithm to
simultaneously search for the optimal parameters in our classification model. Secondly, the current classi-
fication algorithm utilizes a simple L2 threshold clustering model. While this simple model together with
the quasi-conformality gives reasonably satisfactory classification accuracy, a more advanced classification
model may further boost up the classification accuracy. One of our future works will be to investigate
more classification models and combine them into our current model to improve the performance of our
method. Finally, we will examine our method on a larger and more balanced dataset.
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