
1

Feature-Preserving Noise Removal
Khalid Youssef, Graduate Student Member, IEEE, Nanette N. Jarenwattananon and Louis-S. Bouchard

Abstract—Conventional image restoration algorithms use
transform-domain filters, which separate the noise from the
sparse signal among the transform components or apply spatial
smoothing filters in real space whose design relies on prior
assumptions about the noise statistics. These filters also reduce
the information content of the image by suppressing spatial
frequencies or by recognizing only a limited set of shapes. Herein
we demonstrate efficient denoising using a nonlinear filter that
operates along patch neighborhoods and multiple copies of the
original image. The use of patches enables the algorithm to
account for spatial correlations in the random field whereas the
multiple copies are used to recognize the noise statistics. The
nonlinear filter, which is implemented by a hierarchical multi-
stage system of multilayer perceptrons, outperforms state-of-the-
art denoising algorithms such as those based on collaborative
filtering and total variation. Compared to conventional denoising
algorithms, our filter can restore images without blurring them,
making it attractive for use in medical imaging where the
preservation of anatomical details is critical.

Index Terms—multilayer perceptrons, image restoration, image
denoising, magnetic resonance imaging, multiple copies.

I. INTRODUCTION

THE process of removing noise in an image requires a
priori knowledge of the noise distribution. In Wiener

filtering, for example, the optimal filter requires knowledge
of the power spectra of signal and noise [1]. It is common
practice to perform denoising in some transform domain where
the signal is sparse and discard the transform coefficients that
do not overlap with those containing the signal [2], [3], [4].
Multi-resolution techniques such as the wavelet transform can
achieve better sparsity and separation of the noise depending
on the type of basis element that are used and the over-
completeness of the basis [5], [6]. A recent method, Block-
matching and 3D filtering (BM3D), also termed “collaborative
filtering” has shown state-of-the-art performance by grouping
patches that look similar into 3D blocks and performing
transform domain filtering of each 3D similarity block [7].
These algorithms yield outstanding performance as long as
the images obey certain conditions consistent with algorithm
assumptions, such as noise statistics or the type of patterns
contained in the image. If the assumptions are not met, this can
give rise to artifacts or losses in the image fine structure [8].

From an experimental standpoint, the simplest method to
reduce noise is signal averaging. In the case of additive white
Gaussian noise (AWGN) signal averaging can be performed

K. Youssef and L.-S. Bouchard are with the Department of Bioengineering,
University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA
90095 USA

N.N. Jarenwattananon and L.-S. Bouchard are with the Department of
Chemistry and Biochemistry, University of California, Los Angeles, 607
Charles Young Drive East, Los Angeles, CA, 90095 USA

until the mean value of the signal is sufficiently high rel-
ative to the noise. In magnetic resonance imaging (MRI),
signal transients from each phase-encode step are acquired
and averaged to produce a mean-value image with higher
signal-to-noise ratio (SNR). In photography, the analogous
process consists of increasing the exposure time. The “mean-
value” image in the case of AWGN generally reveals better
contrast-to-noise. In the general case, there are three potential
problems with the signal-averaging approach. First, there is an
implicit assumption about the noise statistics. The mean value
is the best estimate of the signal only in special cases. For
example, signal averaging fails to remove multiplicative noise.
Second, averaging does not account for spatial correlations
in the image. Third, in the process of averaging data from
multiple transients into single values (the mean values), much
information is discarded about the noise, whose true nature can
only be revealed upon realizations of the random experiment.

In this paper, we propose to denoise each pixel of an image
using a nonlinear filter that operates along a data block which
consists of patch neighborhoods of a pixel and multiple copies
of the same image. Thus, an image pixel is denoised using
information from one block of size D = r×Np, where Np is
the number of pixels in a patch and r is the number of copies.
In this study, we use rectangular patches of size Np = 17×17
and r = 7 copies of the image. The nonlinear filter is designed
based on multilayer perceptrons (MLP), which have been
shown to be universal function approximators [9]. The purpose
of operating along patches is to account for possible spatial
correlations in the random field of the image. The method
makes no assumptions about the noise statistics. There is
also no guesswork involved in determining suitable thresholds,
parameters or dictionaries. Because every algorithm deserves
an acronym, we propose to call it multiple copies-multilayer
perceptrons (MC-MLP).

Our test case will be MRI images, due to the common
practice in MRI to perform signal averaging as a way to
improve SNR. Poor SNR in MRI may arise in low magnetic
fields or during the detection of metabolites or insensitive
nuclei such as 23Na. Such an MRI experiment can be readily
configured to save individual transients separately to provide
multiple copies of the same image. Magnitude-mode MRI
images typically feature Rician noise. We validate MC-MLP
by comparing its performance to the total variation method
(TV) [10], [11], and a Rician noise MRI implementation of the
state-of-the-art denoising algorithm Block-matching and 4D
filtering (BM4D) [12], which performs collaborative filtering.
MC-MLP outperforms both methods in terms of conventional
methods such as peak signal-to-noise ratio (PSNR), feature
similarity (FSIM), and mean structural similarity (MSSIM), as
well as subjective visual quality metrics [13], [14]. We also
demonstrate excellent performance in the removal of multi-

2

plicative noise, illustrating the independence of the method to
the type of noise.

II. DENOISING BY MULTIPLE COPIES

A. Nonlinear Filter Design With MLP

An image Y is a mapping

Y : {1, . . . , Nx} × {1, . . . , Ny} → S, (1)

where S is a set of allowed pixel values. The Cartesian product
{1, . . . , Nx} × {1, . . . , Ny} will be indexed by t = (i, j). An
experimentally measured image contains noise and is therefore
a random field X whose realization is denoted by X(ω). It
is convenient to denote Xt(ω) the value of the t-th pixel in
the image X(ω) (a matrix of size Nx ×Ny). The probability
space is (Ω,F , P), where ω ∈ Ω and Ω is the set of all possible
outcomes

Ω = {I1, I2, . . . , INI
}, NI = (#S)Nx×Ny (2)

where Ij (j = 1, . . . , NI) is a Nx×Ny matrix whose elements
belong to the set S and Ii 6= Ij for i 6= j. There is no
fundamental restriction on S. For example, if S is a discrete
set such as S = {0, 1, . . . , 255}, then the σ-algebra on Ω
can be taken to be the power set F = 2Ω whereas if S is a
continuous interval such as [0, 255] then Ω can be taken to be
the Borel σ-algebra generated by the interval.
P is a probability measure depending on the nature of the

experiment and could be unknown or arbitrary. Its structure
can be inferred from individual realizations ω1, ω2, For
fixed ω ∈ Ω, the mapping Xt(ω) → S as a function of t
yields a realization (sample path) of the random field. The
sample path is an image in the sense of the mapping (1).

Denoising by multiple copies is the task of finding an esti-
mator Ỹ of the true image Y given the prior information from
r realizations of the sample path {X(ω1), X(ω2), . . . , X(ωr)}
where X(ω) = η(ω, Y), such that Ỹ ≈ Y according to a
suitable distance metric. Here, η(ω, ·) stands for the noise
function, which is determined by the probability measure,
P . An example of η(ω, ·) is AWGN, which takes the form,
X(ω) = Y +Γ(ω), where Γ(ω) is a Nx×Ny matrix of random
values that are Gaussian-distributed.

To obtain a good estimate Ỹ ≈ Y , we must reduce the
uncertainty of the estimate. There are at least two ways to
do this. The first is to look at more instances of X , for
example, by having several copies of the same image, i.e.
{X(ω1), X(ω2), . . . , X(ωr)} where r is sufficiently large.
Since X(ω) varies with each instance ω according to the noise
distribution whereas Y is independent of ω, the more instances
ω we have, the more certain we can be about the value of our
estimate. Although in practice, this increases computational
cost, we found that r = 7 is a good compromise.

The second approach to obtain more information is to look
at the neighborhood of the pixel Xt(ω). We will denote the
coordinates of the neighborhood by the set of points in a square
region Ut centered on t = (i, j):

Ut = {t′ = (i′, j′)|i′ ∈ [i− d, i+ d], j′ ∈ [j − d, j + d]} (3)

Ut is referred to as a patch in the text below, where d is the
number of pixels included away from the pixel’s coordinates
t = (i, j). This patch region Ut contains Np = (2d + 1)2

pixels. When denoising images it is important to account for
spatial correlations in the random field X(ω) due to the shape
of the deterministic function Y , or possible spatial correlations
in the noise function (if any). Modern denoising algorithms
operate on patches on the premise that images contain specific
shapes and patterns such as curves, edges and plain surfaces.
Denoising algorithms often take the mean of all available
copies and recognize one or more type of low level patterns
in patches such as edges. Yet a general searching algorithm
can learn higher level patterns and can increase certainty by
taking separate copies into consideration rather than just their
mean.

The nonlinear filter design utilizes the information from
r copies and a patch Ut centered on the pixel Xt with
neighborhood distance d and finds a function

∃f(X(ω1)|Ut
, X(ω2)|Ut

, . . . , X(ωr)|Ut
) = Ỹ ◦t (4)

where X(ω1)|Ut
denotes the restriction of the matrix X(ω1)

to the Ut neighborhood. It is a (2d+1)×(2d+1)-dimensional
matrix with entries taking values in S. Ỹ ◦ is the best estimate
of Y that can be obtained from the information provided
by all r copies X(ω1)|Ut , X(ω2)|Ut , . . . , X(ωr)|Ut of the Ut

neighborhood, for all such neighborhoods (∀t). The r two-
dimensional matrices X(ω1)|Ut

, X(ω2)|Ut
, . . . , X(ωr)|Ut

are
reshaped into 1D vectors of length Np, then concatenated
into a 1D vector of length D = r × Np denoted by ~xt and
used inputs to a MLP whose transfer function is a hyperbolic
tangent. Thus, a MLP with D inputs, K outputs, one hidden
layer with M nodes yields a K-dimensional output vector
~̃yt whose k-th component is given by the iterated hyperbolic
tangents:

ỹt (k) = tanh

 M∑
l=0

θ
(2)
l,k tanh

 D∑
j=0

θ
(1)
j,l xt (j)

 (5)

where z(l) = tanh
(∑D

j=0 θ
(1)
j,l xt (j)

)
, for l = 0, . . . ,M are

the outputs of the hidden layer. We use the convention where
xt(0) = 1 and z(0) = 1, so that θ(1)

0,l and θ
(2)
0,k represent

biases to the transfer function. The generalization to arbitrary
numbers of hidden layers is straightforward by nesting addi-
tional hyperbolic tangents. The calculation of the vector ~̃y is
called feed forward propagation. In our implementation, each
MLP has a single output corresponding to a single pixel in the
image. Thus, K = 1 and we may drop the vector notation,
writing ỹt instead of ~̃yt.

Let ~Θ =
[
θ

(1)
j,l |l=0..M

j=0..D , θ
(2)
l,k |k=0..K

l=0..M

]
be a vector of length m

containing weights and bias values for all the nodes. The MLP
is trained to solve for f by searching for an optimal ~Θ that
minimizes the sum of square errors in (6)

E(~Θ) =
1

2

S∑
s=1

es(~Θ)2, (6)

3

where es(~Θ) = ys − ỹs is the MLP error corresponding to
sample s for a given set of MLP parameters. Here, ys is the
desired target value from a low noise image for an input vector
~xs from a noisy training sample, and ỹs is the MLP estimate
of ys. While the coordinate t is a suitable index in the feed
forward phase where every pixel in the image is processed,
we denote it by s in the training phase where an error is
calculated. Training samples are input-output pairs (~xs, ys)
picked from training images in no specific order where the
entire image or only parts of the image might be used for
training. s corresponds to the sample number in the training
dataset. S is the total number of training samples.

The algorithm minimizes the errors at all nodes. Back-
propagation uses the output error in (6) to determine er-
rors of individual nodes in the remaining layers [15]. From
n(k) =

∑M
l=0 θ

(2)
l,k tanh

(∑D
j=0 θ

(1)
j,l x(j)

)
, the partial error for

a weight θ(2)
l,k is obtained by

∂E(~Θ)

∂θ
(2)
l,k

=
∂E(~Θ)

∂n(k)
z(l). (7)

The error at a node is determined by taking into account the
sum of partial errors of weights for all connections emanating
from it. ~Θ is iteratively updated using Levenberg-Marquardt
search [16]. ∆~Θ is calculated at each iteration using the update
rule,

∆~Θ = −[JTJ + µ1]−1JT~e, (8)

and is added to ~Θ. ~e = (e1, e2, . . . , eS) is a vector of MLP
errors for all samples.

Here, 1 is an identity matrix and

J =

∂e1(~Θ)

∂Θ1

∂e1(~Θ)

∂Θ2
· · · ∂e1(~Θ)

∂Θm

∂e2(~Θ)

∂Θ1

∂e2(~Θ)

∂Θ2
· · · ∂e2(~Θ)

∂Θm
...

...
. . .

...
∂eS(~Θ)

∂Θ1

∂eS(~Θ)

∂Θ2
· · · ∂eS(~Θ)

∂Θm

(9)

is the Jacobian matrix containing first derivatives of MLP
errors with respect to the ~Θ parameters. When µ is large the
method behaves like a steepest descent method. When µ is
small the method is equivalent to a Gauss-Newton method. µ
is updated at each iteration depending on how E changes.

While denoising by MLP has been shown to be possible
given enough layers, nodes and training samples, several chal-
lenges exist in practice to make it computationally feasible.
Burger and co-workers [17] studied the use of MLPs as a pure
learning denoising approach by training a relatively large MLP
to denoise images corrupted by AWGN. Their MLP did not
use multiple copies. It was trained to denoise patches of size
17×17 stitched together after denoising to reconstruct the final
image. Their MLP contained four hidden layers with 2,047
nodes each, and was trained with 362 million samples derived
from a database of 1,500 images and requires approximately
one month of training time on a GPU for a specific noise
level. While their MLP could compete with BM3D, it remains

Fig. 1. System design for the MC-MLP denoising algorithm as implemented
by multiple stages.

impractical in real applications due to its exceedingly high
computational cost and lengthy execution times.

Here we use an entirely different approach where the
system’s architecture (Fig. 1) uses multiple stages of MLP. We
divide our system into two phases, a training phase and a feed
forward phase. The training phase is where the MLPs learn
to build an optimized model for the application at hand. This
is where the nonlinear filter is designed. This phase can take
anywhere from 15 minutes to several hours on a modern laptop
computer, depending on the noise level. Once the training
phase is complete, the MLPs operate in feed forward mode.
This is the phase where the nonlinear filter is applied to the
image data. The feed forward phase is much faster than the
training phase. The time required to denoise an image is on
the order of several seconds to a few minutes, depending on
the size of the image.

B. Training Phase

1) Multiple Stages: The first step to reducing computational
cost is using several small MLPs trained in multiple stages
instead of one large MLP. While the MLP architecture can
be optimized to further enhance performance, architecture
optimization is a topic on its own and will not be considered
here. The MLPs used in our tests feature 6 hidden layers
each with 10 nodes per layer. Performance is better with
more training samples, but larger datasets require more nodes,
increasing MLP size and computation time. The lower the
noise level, the less training is required. Thus, we do training
in a first stage of small MLPs with a relatively small dataset
to minimize noise to a high degree, albeit not state-of-the-art
level. When training is done, first stage MLPs operate in feed
forward mode and are used to denoise original training images.
The end result is a set of estimates with arbitrary residual
errors, yielding arbitrary noise distributions with much smaller
standard deviation. Seven first stage MLPs are shown in the
diagram and yield seven estimates for each training image with
much lower noise than original copies. Estimates are used to
generate a new dataset for training the second denoising stage

4

Input Stage 1
250

125

0
0 0-1 -0.5

0
0.5 1

800

400

-0.01 0.01 0.03 0.05

Fig. 2. Example of the evolution of the noise distribution after a denoising
stage. Here (left) the Gaussian input noise distribution is very different from
the (right) noise distribution after the first denoising stage.

MLPs. Multiple MLP stages can be added in a similar manner
and trained hierarchically. A third denoising stage uses dataset
generated from estimates of the second denoising stage MLPs
and so on. In our tests, four MLP stages were used. For clarity,
only two MLP denoising stages are shown in Fig. 1. The last
stage in the diagram is a little different and will be discussed
separately.

This multistage denoising approach is extremely powerful
and is a major driving force behind the performance of our
algorithm. Multistage denoising is, unfortunately, not possible
with other denoising methods. This is because other methods
make assumptions about the noise statistics whereas the MLP
approach is noise independent. For example, an algorithm that
is designed for use with Rician noise cannot be used for
multistage denoising because its output does not necessarily
have a Rician noise distribution.

2) Multiple Copies: Before patches from r noisy copies
are introduced to the input layers of the first denoising stage
MLPs, they are first grouped into r combinations of (r − 1)
copies. This produces r distinct realizations of an image
random field, but with reduced noise levels. This is denoted by
the
(

7
6

)
block in the diagram, where 7 combinations of 6 copies

are grouped and added together. This reduces noise levels at
the input to enable shorter training times. This operation is
made possible because the MLP denoising process is noise
independent. This technique is also not applicable in general
to other methods where assumptions are made about noise
distribution. For example, adding images with Rician noise
produces an image with non-Rician noise, violating the basic
assumption of the algorithm.

3) Patch Size: Using d = 8 for (3) produces patches of size
17×17. When 7 copies are used this yields an input vector of
length 2023. Multistage training allows using smaller patches
per stage while still allowing the system to use information
from a large patch size. This concept is illustrated in Fig. 3.
For d = 2 for first stage MLPs, each output represents a center
pixel from patches of size 5 × 5 from original noisy copies.
Using d = 2 for second stage, each output represents a center
pixel from the 5 × 5 patches from the first denoising stage
MLPs estimates. This collectively gives an effective patch size
of 9 × 9 from original noisy copies to be used as inputs for
the second denoising stage MLPs. In general, the effective d
value for a stage is the sum of individual d values from pre-
vious stages. This technique reduces processing and memory
requirements, making our method applicable to devices with
low computational resources. Using a smaller d value in a
consecutive stage yields a reduction in dimensionality, giving
the option of optimizing for speed or memory. Larger d values

Fig. 3. Multiple stage training allows for using smaller patches at each stage.
Here, a 17 × 17 patch is subdivided into smaller patches which are sent to
the multiple stages of denoising for processing.

are typically assigned for the first training stage where smaller
data sets can be used. Decreasing d in subsequent stages allows
for larger data sets.

4) Feature Extraction: In our discussion so far, each stage
includes multiple MLPs. Ultimately, we need one final value
for each pixel. One way to do this is by averaging values
of all estimates from the final stage MLPs. Alternatively, an
additional stage can be added with one MLP and d = 0 to get
a final value. However, instead of using raw MLP outputs to
train this additional (now final) stage, we use feature extraction
to enhance generalizing ability. This is indicated by the feature
extraction block where the mean, standard deviation, minimum
and maximum of outputs from stage 2 are used to train the
MLPs in stage 3 to get a final result.

C. Feed Forward Phase

After completing MLP training for all stages, the system
is used in feed forward mode where image denoising is per-
formed. In our case, we require 7 noisy copies of an image to
produce a clean estimate. Patches are extracted for each pixel
from its surrounding neighbors for all 7 copies, producing
7 patches of size Np = (2d + 1)2. Denoising is performed
hierarchically. While MLPs in each stage are independent
and can be processed in parallel, the performance at each
stage depends on results from preceding stage. Pixels estimates
from the first stage are reorganized into their corresponding
positions in the image. The same data acquisition process is
performed on the first stage image estimates using d values of
the second stage. The final stage produces one final estimate
for each pixel. The estimates are regrouped to produce a final
estimate of the denoised image. The total time for denoising an
image depends on its size. The computer used in our work is
a laptop equipped with a 4-core Intel R© CoreTM i7-3610QM
CPU @ 2.30 GHz per core. The average time required for
denoising of an 128 × 128 image was approximately 15 s.
Time grows linearly with the number of pixels, i.e. a 256×256
image requires approximately 15 s × 4 = 60 s.

III. RESULTS

Results obtained for various noise levels and distributions
indicate that our method can outperform the current state-
of-the-art denoising methods provided the algorithm is given
enough training time and samples, under the condition of

5

reasonable training time. The longest training time we en-
countered was less than 10 hours. Because our method al-
lows optimizing performance for specific applications while
maintaining good generalizing ability, datasets need only be
on the order of hundreds of thousands training samples. We
first perform a time comparison to find out how much training
time it takes our system to achieve comparable results with
the benchmark MLP from [17] and BM3D. We then apply
our method to denoising MRI images with Rician noise and
compare our results under different noise levels with BM4D
and TV. We also apply our method to denoising images
under arbitrary noise including multiplicative and additive
components for different noise levels. Finally, we apply our
method to real MRI data and compare our results to an array
of MRI denoising algorithms. In order to keep comparisons
consistent, we use implementation demos provided by each
group for their algorithm on their website. Links for each
method can be found in the reference section. Note that as our
approache is learning-based, noise estimation is not explicitly
required by our method. In practical applications, learning-
based denoising approaches implicitly learn the noise distri-
bution for the specific application from training data and do
not require a separate noise estimation step. When a learning-
based approach is used for general denoising, a database for
different noise levels is created and noise estimation methods
are considered at that point, however this is outside the scope
of this paper.

A. Time Comparison With Benchmark MLP and BM3D

A demo for the BM3D method is provided by [7] which can
be downloaded at the URL [18]. The demo provided by [17]
contains weights for an MLP that was trained for 1 month on a
GPU system to denoise images with pixel values in the range
[0, 255] contaminated by AWGN of standard deviation 25 (in
units of the pixel range). The demo for the MLP method can
be downloaded at the URL [19]. We applied our MC-MLP
method to denoise an MRI image after adding AWGN with
equivalent standard deviation to the one provided by the MLP
method of [17] and measured the time it takes to train our
system to achieve comparable results. Given that our method
uses 7 copies, we use a standard deviation of 25

√
7 for the

AWGN introduced to each copy as shown in (10),

Xt(ω) = Yt + 25
√

7Γt(ω), (10)

where the probability measure P is defined as follows: Γt is
a zero-mean Gaussian random field which is spatially uncor-
related in the sense that Γt is independent of Γu whenever
t 6= u. Thus, the spatial correlations in Xt, as seen by the
denoising algorithm, are due to the signal Yt only.

We generate 7 copies Xt(ω1), Xt(ω2), . . . , Xt(ω7) with a
standard deviation of 25

√
7 and use them as inputs to the MC-

MLP algorithm. The individual copies are averaged to generate
one copy with a standard deviation of 25 to be denoised
by the other algorithms. Our method outperformed the MLP
from [17] after only 1 hour of training on a standard laptop
computer, as compared to 1 month of training in their case.

(a) single copy (b) mean of 7 copies (c) original image

(d) MLP (e) BM3D (f) MC-MLP

Fig. 4. Comparison of MC-MLP with MLP and BM3D after 10 hours of
training at noise level σ = 25. The goal here is to demonstrate computational
efficiency of MC-MLP as compared to MLP, by measuring the training time
required to obtain similar performance as BM3D. (a) Noisy image (1 copy).
PSNR: 11.723 dB. FSIM: 0.450. MSSIM 0.135. (b) The average of 7 copies.
PSNR 20.242 dB. FSIM: 0.687. MSSIM 0.425. (c) Original (ideal) image
with high SNR used as the gold standard for comparison. (d) MLP method
applied to average of the 7 copies. PSNR 30.615 dB. FSIM: 0.922. MSSIM
0.869. (e) BM3D method applied to average of the 7 copies. PSNR 31.228
dB. FSIM:0.933. MSSIM 0.908. (f) Denoising using the MC-MLP method
with 7 copies. PSNR 31.242 dB. FSIM:0.936. MSSIM 0.919.

Our method also outperformed BM3D after only 10 hours of
training. The results are shown in Fig. 4.

B. Rician Denoising Comparison With BM4D and TV

BM3D is adapted to Rician noise by using a transform
to map it to AWGN and then perform AWGN denoising.
The Rician noise implementation was applied to volumetric
MRI data. This extension to volumetric data is called BM4D.
Instead of grouping similar 2D patches together in 3D blocks,
BM4D groups similar 3D patches in 4D blocks. A demo with
a dataset of volumetric MRI brain image is provided at the
URL [20]. A minimum of 9 slices is required for the demo to
work. We apply our method to the same problem and compare
its performance on the same dataset used by the BM4D demo
for different noise levels by changing the value of σ in the
Rician noise distribution added to images. Images with Rician
noise are generally defined as shown in (11),

Xt(ω) =

√
(YtR + σΓ

(1)
t (ω))2 + (YtI + σΓ

(2)
t (ω))2. (11)

where YtR and YtI are the real and imaginary signal com-
ponents respectively. P is defined as follows: Γ

(1)
t and Γ

(2)
t

are zero-mean Gaussian random fields which are statistically
independent of each other and spatially uncorrelated in the
sense that Γ

(i)
t , i = 1, 2 is independent of Γ

(i)
u whenever t 6= u.

Thus, the spatial correlations in Xt are due to the signal Yt
only.

We generated 7 copies for each noise level to be used by
our method. Since BM4D requires 9 slices, we generate 7
noisy copies for 9 adjacent slices to be denoised by BM4D.
Only the last slice is denoised by our method and compared

6

(a) single copy (b) original image (c) BM4D denoised (e) MC-MLP denoised

(f) mean of 7 copies (g) original image

(zoom-in)

(h) BM4D denoised

(zoom-in)

(j) MC-MLP denoised

(zoom-in)

Fig. 5. Comparison of MC-MLP with BM4D and TV methods (σ = 20).
(a) Noisy image (1 copy). PSNR 13.378 dB. FSIM 0.658. MSSIM 0.073.
(b) Original (ideal) image with high SNR used as the gold standard for
comparison. (c) BM4D method applied to each of the 7 copies. The average
of 7 denoised copies is shown. PSNR 28.789 dB. FSIM 0.894. MSSIM 0.804.
(d) TV method applied to each of the 7 copies. The average of 7 denoised
copies is shown. PSNR 21.793 dB. FSIM 0.896. MSSIM 0.703. (e) Denoising
using the MC-MLP method with 7 copies. PSNR 33.314 dB. FSIM 0.951.
MSSIM 0.907. (f) Signal-averaged image corresponding to the mean of 7
copies. PSNR 16.718 dB. FSIM 0.832. MSSIM 0.273. (g) Close-up on the
lower left quadrant of (b) (h) Close-up on the lower left quadrant of (c). (i)
Close-up on the lower left quadrant of (d). (j) Close-up on the lower left
quadrant of (e).

(a) single copy (b) original image (c) BM4D denoised (e) MC-MLP denoised

(f) mean of 7 copies (g) original image

(zoom-in)

(h) BM4D denoised

(zoom-in)

(j) MC-MLP denoised

(zoom-in)

(d) TV denoised

(i) TV denoised

(zoom-in)

Fig. 6. Comparison of MC-MLP with BM4D and TV methods (σ = 70).
(a) Noisy image (1 copy). PSNR 1.863 dB. FSIM 0.373. MSSIM 0.005.
(b) Original (ideal) image with high SNR used as the gold standard for
comparison. (c) BM4D method applied to each of the 7 copies. The average
of 7 denoised copies is shown. PSNR 20.658 dB. FSIM 0.743. MSSIM 0.594.
(d) TV method applied to each of the 7 copies. The average of 7 denoised
copies is shown. PSNR 18.647 dB. FSIM 0.708. MSSIM 0.486. (e) Denoising
using the MC-MLP method with 7 copies. PSNR 22.678 dB. FSIM 0.806.
MSSIM 0.652. (f) Signal-averaged image corresponding to the mean of 7
copies. PSNR 3.523 dB. FSIM 0.560. MSSIM 0.030. (g) Close-up on the
lower left quadrant of (b) (h) Close-up on the lower left quadrant of (c). (i)
Close-up on the lower left quadrant of (d). (j) Close-up on the lower left
quadrant of (e).

to BM4D. This provides the BM4D implementation 9 times
more data than our method. To keep the comparison as fair as
possible, we resized slices used for BM4D by a factor of 3×3,
yielding the same amount of data for each method. Unlike
the case with AWGN, taking the mean of copies with Rician
noise distribution does not produce a Rician noise distribution.
Instead, we performed BM4D separately on each copy and
took the average of all the outcomes.

For further validation, we also compared our method to
a TV implementation for Rician noise provided by Center
of Domain Specific Computing (CSDC) at UCLA [21].
Figures 5 and 6 show results for low and extreme noise levels,
respectively. Results from all noise levels are summarized

20 40 60

22

24

26

28

30

32

P
S
N
R

BM4D

MC-MLP

20 40 60
0.6

0.7

0.8

0.9

M
S
IM

BM4D

MC-MLP

Fig. 7. PSNR and MSIM comparison of MC-MLP with BM4D method for
different noise levels (σ = 20, 40, 60 and 70).

in Fig. 7. According to all three metrics used here, peak
signal to noise ratio (PSNR), feature similarity (FSIM) and
mean structural similarity (MSSIM), our method displayed
superior performance across all noise levels. But aside from
these metrics, the best assessment is the ability to identify
specific anatomical features. It is clear by comparing (say)
Fig. 6(j) to Fig. 6(h) or Fig. 6(i) that our method preserves
the anatomical features whereas competing algorithms merely
smooth and blur out important details. In particular, the
gray to white matter contrast remains clearly defined with
our denoising method. From a clinical point of view, this
property is most important. Our method is able to depict
much of the layering cortex whereas information is lost in
the images from competing algorithms [Fig. 6(h,i)] compared
to the original image [Fig. 6(g)], for example, in the dark
signal regions in the inner surface of the sulcus. These results
demonstrate the ability of our method to capture finer features
than conventional denoising algorithms are able to.

C. Noise With a Multiplicative Component

In this test, we demonstrate the ability of our method to
perform in the presence of multiplicative noise. We applied
our method to denoising MRI images of a cherry tomato
contaminated by the noise distribution of (12),

Xt(ω) = σ1Γ
(1)
t (ω)(Yt + σ2Γ

(2)
t (ω)), (12)

where P is defined as follows: Γ
(1)
t and Γ

(2)
t are zero-mean

Gaussian random fields which are statistically independent of
each other and spatially uncorrelated in the sense that Γ

(i)
t ,

i = 1, 2 is independent of Γ
(i)
u whenever t 6= u. Thus, the

spatial correlations in Xt are due to the signal Yt only.
We tested our method with different noise levels by varying

the value of σ2. Since we are not aware of other methods
designed for this type of noise, we compared the results of
our system to the mean value of the noisy copies. The latter
approach is the most commonly used method for reducing
noise in experiments. The results are shown in Fig. 8. By
comparing Fig. 8(c) to Fig. 8(b) [relative to the reference
image, Fig. 8(g)], it is clear that the method does a very good
job at removing the noise even under conditions of extreme
noise.

7

TABLE I
PSNR, FSIM, AND MSSIM VALUES CORRESPONDING TO EACH IMAGE IN FIG. 9.

1 Copy Mean MC-MLP BM4D TV ORNLM AONLM ONLM ODCT PRINLM
Noise Level 1 - PSNR

FSIM
MSSIM

17.95,
0.72,
0.09

20.61,
0.87,
0.33

26.13,
0.93,
0.81

22.56,
0.92,
0.79

25.82,
0.92,
0.78

25.78,
0.90,
0.70

23.07,
0.90,
0.73

25.71,
0.90,
0.71

23.13,
0.89,
0.71

24.01,
0.92,
0.78

Noise Level 2 - PSNR
FSIM

MSSIM

14.02,
0.57,
0.04

16.46,
0.72,
0.09

21.71,
0.85,
0.70

19.50,
0.85,
0.58

19.48,
0.79,
0.42

20.77,
0.76,
0.41

19.25,
0.76,
0.37

21.15,
0.76,
0.44

19.17,
0.78,
0.47

20.30,
0.85,
0.52

Noise Level 3 - PSNR
FSIM

MSSIM

12.95,
0.53,
0.03

13.85,
0.58,
0.04

19.39,
0.78,
0.60

17.81,
0.76,
0.33

16.73,
0.60,
0.12

18.33,
0.76,
0.31

16.54,
0.54,
0.11

18.28,
0.54,
0.18

16.54,
0.63,
0.26

17.06,
0.78,
0.33

(a) single copy (b) mean of 7 copies (c) MC-MLP

(d) single copy (e) mean of 7 copies (f) MC-MLP

(g) original

Fig. 8. Comparison of MC-MLP with mean for arbitrary noise including
multiplicative component. (a) Noisy image (1 copy) σ2 = 50. (b) The average
of 7 copies (σ2 = 50). PSNR 13.82 dB. FSIM 0.37. (c) Denoising using the
MC-MLP method with 7 copies σ2 = 50. PSNR 26.88 dB. FSIM 0.87. (d)
Noisy image (1 copy) σ2 = 10. (e) The average of 7 copies (σ2 = 10).
PSNR 26.52 dB. FSIM 0.79. (f) Denoising using the MC-MLP method with
7 copies σ2 = 10. PSNR 33.77 dB. FSIM 0.95. (g) Original (ideal) image
with high SNR used as the gold standard for comparison.

D. Application to MRI Images With Real Noise

So far we have evaluated the performance of the algorithm
using MRI images that were contaminated by noise, as is
common practice when evaluating novel denoising algorithms.
This enabled us to select the noise distribution and type. In
this section, we collected noisy MRI data sets and evalu-
ated the denoising performance of our algorithm against a
wide variety of high-performance denoising algorithms. The
nature of the noise was not known a priori. Noisy MRI
data was obtained using a spin-echo imaging pulse sequence
with different repetition times (TR) to alter the SNR. All
measurements were performed on a 9.4 T vertical bore Varian
VNMRS micro-imaging system, using a 40 mm-i.d. imaging
probe. The imaging parameters were: TR = 100 ms for noise
level 1, 50 ms for noise level 2, TR = 30 ms for noise
level 3 (Fig. 9), and 2000 ms for the high SNR original
image (Fig. 10). TE = 19 ms for all noise levels (Fig. 9),
and TE = 18 ms for original image (Fig. 10). Matrix size =
512 × 512, and field of view (FOV) = 45 mm × 30 mm.
We compared our method to BM4D, TV, adaptive non-local
means filter [22] (AONLM), adaptive multiresolution non-
local means filter [23] (ONLM), optimized blockwise Rician
non local means filter [24], [25], [26] (ORNLM), oracle-
based 3D discrete cosine transform filter [27] (ODCT), and
prefiltered rotationally invariant nonlocal means filter [27]
(PRINLM). Our MC-MLP algorithm outperformed all other

methods in terms of all the metrics used (PSNR, FSIM, and
MSSIM) for quantification. The results are shown in Fig. 9
and in Table I.

IV. CONCLUSION

We presented a feature-preserving image denoising algo-
rithm in which a nonlinear filter is designed using a hierar-
chical multistage system of MLPs. From the point of view
of conventional metrics (PSNR, FSIM, MSIM), the algorithm
outperforms state-of-the art methods from low to high noise
levels, and can handle both additive and muliplicative noises,
including Gaussian and signal-dependent Rician nosies. For
moderate to low noise levels, competing algorithms are limited
to special cases where the known noise distribution meets
narrow criteria. Our approach is general and is applicable
to situations with arbitrary noise distributions and can even
operate under extreme noise levels. It can also be used in
situations where the noise distribution is not known, where it
can still learn to model it from experimental data.

The filtering is computationally efficient and shows that
multiple copies of the same image enable more effective
noise removal with better preservation of anatomical features.
Competing denoising algorithms tend to smooth images to
the point where important anatomical details are lost. There
are several possible scenarios in which our method could be
applied. One such application is MRI, where low SNR or
low contrast-to-noise ratio situations frequently arise. Namely,
with low-field MRI, MRI of lower sensitivity nuclei (such
as 23Na or 31P), diffusion tensor imaging in the presence of
strong diffusion gradients, MR spectroscopy of metabolites at
low concentrations or functional MRI. Other scenarios could
include photography under poor lighting conditions or low
exposure times, electron microscopy, x-ray, position emission
tomography and ultrasound imaging. Our method could also
be applied to video data using neighboring frames provided
that the motion is not too large or that motion tracking is used.
We have shown that as little as 7 copies are required for good
performance, making the method practical in terms of data
acquisition times, as low-SNR situations generally require far
more than 7 signal averages.

ACKNOWLEDGMENT

The authors would like to thank Stanley Osher for useful
discussions. This work was partially funded by AFOSR grant
no. FA9550-11-1-0270, DARPA QuASAR and NIH grant no.
5-R01-HL114086-03.

8

N
o

is
e

1 Copy Mean MCMLP BM4D ORNLM AONLM ONLM ODCT PRINLMTV

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

e1

e3

f1

f2

f3

g1

g2

g3

h1

h2

h3

i1

i2

i3

j1

j2

j3

e2

L
e
v
e
l1

N
o

is
e

L
e
v
e
l2

N
o

is
e

L
e
v
e
l3

Fig. 9. Comparison of MC-MLP algorithm with several MRI denoising methods (BM4D, TV, ORNLM, AONLM, ONLM, ODCT, PRINLM) applied to a
T1-weighted image of a cherry tomato acquired on a Varian 9.4 T microimaging system using a spin-echo imaging sequence. Different noise levels (noise
level 1, 2 and 3) were created by adjusting the TR (repetition time) value in the pulse sequence. The performance of each denoising algorithm is evaluated
using the performance metrics of PSNR, FSIM, and MSSIM and the values are given in Table I. The MC-MLP algorithm outperformed other methods for
all noise levels, according to all performance metrics. A high SNR image of the cherry tomato is shown in Fig. 10 for comparison. The salient feature of our
algorithm is that not only the SNR of the denoised image is higher, even under conditions of extreme noise levels, but the features of the image are preserved
as opposed to blurred out, as is the case for conventional algorithms.

Fig. 10. High resolution MRI image of the cherry tomato used for evaluating
denoising performance of the results of Fig. 9.

REFERENCES

[1] J. W. Tukey, “The extrapolation, interpolation and smoothing of station-
ary time series with engineering applications.” J. Am. Statist. Assoc.,
vol. 47, pp. 319–321, 1952.

[2] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” Proc. Int. Conf. Mach. Learn., vol. 8, pp. 689–696,
2009.

[3] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, pp. 3736–3745, 2006.

[4] M. Protter and M. Elad, “Image sequence denoising via sparse and
redundant representations,” IEEE Trans. Image Process., vol. 18, pp.
842–861, 2010.

[5] C. S. Anand and J. S. Sahambi, “Wavelet domain non-linear filtering for
MRI denoising,” Magn. Reson. Imaging, vol. 28, pp. 175–191, 1961.

[6] R. Yan, L. Shao, and Y. Liu, “Nonlocal hierarchical dictionary learning
using wavelets for image denoising,” IEEE Trans. Image Process.,
vol. 22, pp. 4689–4698, 2013.

[7] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image
Process., vol. 16, pp. 1–16, 2007.

[8] A. Buades, B. Coll, and J. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Model. Simul., vol. 4, pp. 490–
530, 2005.

[9] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward

networks are universal approximators,” Neural Networks, vol. 2, pp.
359–366, 1989.

[10] R. W. Liu, L. Shi, W. Huang, J. Xu, S. C. H. Yu, and D. Wang,
“Generalized total variation-based mri rician denoising model with
spatially adaptive regularization parameters,” Magn. Reson. Imaging,
vol. 32, pp. 702–720, 2014.

[11] P. Getreuer, “Rudin-Osher-Fatemi total variation denoising using split
bregman,” Image Processing On Line, vol. 4.2, pp. 74–95, 2012.

[12] M. Maggioni and A. Foi, “Nonlocal transform-domain denoising of vol-
umetric data with groupwise adaptive variance estimation,” Proceedings
SPIE 8296, Computational Imaging, 2012.

[13] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, pp. 1–14, 2004.

[14] L. Zhanga, L. Zhanga, X. Moub, and D. Zhang, “FSIM: a feature
similarity index for image quality assessment,” IEEE Trans. Image
Process., vol. 20, pp. 2378–2386, 2011.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[16] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE Trans. Neural Networ., vol. 5, pp. 989–
993, 1994.

[17] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can
plain neural networks compete with BM3D?” Proc. CVPR IEEE, pp.
2392–2399, 2012.

[18] K. Dabov, A. Danieyan, and A. Foi. (2014) BM3D demo software
for image/video restoration and enhancement public release v2.00.
http://www.cs.tut.fi/∼foi/GCF-BM3D/.

[19] H. Burger. (2012) Image denoising with multi-layer perceptrons.
http://people.tuebingen.mpg.de/burger/neural denoising/cvpr2012.html.

[20] M. Maggioni and A. Foi. (2013) BM4D software for volu-
metric data denoising and reconstruction public release ver. 2.3.
http://www.cs.tut.fi/∼foi/GCF-BM3D/.

[21] P. Getreuer. (2009) reciandenoise: 2D and 3D total variation based
Rician denoising. https://code.google.com/p/cdsc-image-processing-
pipeline/downloads/list.

[22] J. Manjon, P. Coupe, L. Marti-Bonmati, D. Collins, and M. Robles,
“Adaptive non-local means denoising of MR images with spatially
varying noise levels,” J. Magn. Reson. Imaging, pp. 192–203, 2010.

[23] P. Coupe, J. Manjon, M. Robles, and D. Collins, “Adaptive multireso-
lution non-local means filter for three-dimensional magnetic resonance
image denoising,” IET Image Process., pp. 558–568, 2012.

[24] P. Coupe, J. Manjon, E. Gedamu, D. Arnold, M. Robles, and D. Collins,
“Robust Rician noise estimation for mr images,” Med. Image Anal., pp.
483–493, 2010.

[25] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot, “An
optimized blockwise non local means denoising filter for 3D magnetic
resonance images,” IEEE Trans. Med. Imaging, pp. 425–441, 2008.

9

[26] N. Wiest-Daessle, S. Prima, P. Coupe, S. Morrissey, and C. Barillot,
“Rician noise removal by non-local means filtering for low signal-to-
noise ratio MRI: Applications to DT-MRI,” 2008, pp. 171–179.

[27] J. Manjon, P. Coupe, A. Buades, D. Collins, and M. Robles, “New
methods for MRI denoising based on sparseness and self-similarity,”
Med. Image Anal., pp. 18–27, 2012.

