A Proximal Gradient Algorithm for
Decentralized Composite Optimization

Wei Shi, Qing Ling,

Abstract—This paper proposes a decentralized algorithm
for solving a consensus optimization problem defined in
a static networked multi-agent system, where the local
objective functions have the smooth+nonsmooth composite
form. Examples of such problems include decentralized
constrained quadratic programming and compressed sens-
ing problems, as well as many regularization problems
arising in inverse problems, signal processing, and machine
learning, which have decentralized applications. This paper
addresses the need for efficient decentralized algorithms
that take advantages of proximal operations for the nons-
mooth terms.

We propose a proximal gradient exact first-order
algorithm (PG-EXTRA) that utilizes the composite struc-
ture and has the best known convergence rate. It is a
nontrivial extension to the recent algorithm EXTRA. At
each iteration, each agent locally computes a gradient
of the smooth part of its objective and a proximal map
of the nonsmooth part, as well as exchange information
with its neighbors. The algorithm is “exact” in the sense
that an exact consensus minimizer can be obtained with a
fixed step size, whereas most previous methods must use
diminishing step sizes. When the smooth part has Lipschitz
gradients, PG-EXTRA has an ergodic convergence rate
of O (4) in terms of the first-order optimality residual.
When the smooth part vanishes, PG-EXTRA reduces to P-
EXTRA, an algorithm that does not compute the gradients
(so no “G” in the name), which has a slightly improved
convergence rate at o () in a standard (non-ergodic) sense.
Numerical experiments demonstrate effectiveness of PG-
EXTRA and validate our convergence results.

Index Terms—Multi-agent network, decentralized opti-
mization, composite objective, nonsmooth, regularization,
proximal

I. INTRODUCTION

This paper considers a connected network of n agents
that cooperatively solve the consensus optimization prob-
lem in the form

n
. r e 1

where  fi(w) = s,(x) +14(a),
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and s;,7; RP — R are convex differentiable and
possibly nondifferentiable functions, respectively, that
are kept private by agent ¢ = 1,...,n. We say that the
objective has the smooth+nonsmooth composite struc-
ture. We develop an algorithm for all the agents in
the network to obtain a consensual solution to problem
(1). In the algorithm, each agent ¢ locally computes the
gradient Vs; and the so-called proximal operation of r;
(see Section I-C for its definition) and performs one-hop
communication with its neighbors. The iterations of the
agents are synchronized.

The smooth+nonsmooth structure of the local ob-
jectives arises in a large number of signal processing,
statistical inference, and machine learning problems.
Specific examples include (i) the geometric median
problem in which s; vanishes and r; is the f3-norm
[2], [3]; (ii) the compressive sensing problem, where s;
is the data-fidelity term, which is often differentiable,
and r; is a sparsity-promoting regularizer such as the
f1-norm [4], [5]; (iii) optimization problems with per-
agent constraints, where s; is a differentiable objective
function of agent ¢ and r; is the indicator function of the
constraint set of agent i, that is, ;(z) = 0 if z satisfies
the constraint and oo otherwise [6]—-[8].

A. Background and Prior Art

Pioneered by the seminal work [9], [10] in 1980s, de-
centralized optimization, control, and decision-making in
networked multi-agent systems have attracted increasing
interest in recent years due to the rapid development
of communication and computation technologies [11]—
[13]. Different to centralized processing, which requires
a fusion center to collect data, decentralized approaches
rely on information exchange among neighbors in the
network and autonomous optimization by all the indi-
vidual agents, and are hence robust to failure of critical
relaying agents and scalable to the network size. These
advantages lead to successful applications of decentral-
ized optimization in robotic networks [14], [15], wireless
sensor networks [4], [16], smart grids [17], [18], and
distributed machine learning systems [19], [20], just to
name a few. In these applications, problem (1) appears
as a generic model.

The existing algorithms that solve problem (1) in-
clude the primal-dual domain methods such as the de-



centralized alternating direction method of multipliers
(DADMM) [16], [21] and the primal domain methods
including the distributed subgradient method (DSM)
[22]. DADMM reformulates problem (1) in a form to
which ADMM becomes a decentralized algorithm. In
this algorithm, each agent minimizes the sum of its
local objective and a quadratic function that involves
local variables from of its neighbors. DADMM does
not take advantages of the smooth+nonsmooth structure.
In DSM, each agent averages its local variable with
those of its neighbors and moves along a negative
subgradient direction of its local objective. DSM is
computationally cheap but does not take advantages of
the smooth+nonsmooth structure either. When the local
objectives are Lipschitz differentiable, the recent exact
first-order algorithm EXTRA [23] is much faster, yet it
cannot handle nonsmooth terms.

The algorithms that consider smooth+nonsmooth ob-
jectives in the form of (1) include the following primal-
domain methods: the (fast) distributed proximal gradient
method (DPGM) [24] and the distributed iterative soft
thresholding algorithm (DISTA) [25], [26]. Both DPGM
and DISTA consist of a gradient step for the smooth part
and a proximal step for the nonsmooth part. DPGM uses
two loops where the inner one is dedicated for consensus.
The nonsmooth terms of the objective functions of all
agents must be the same. DISTA is exclusively designed
for compressed sensing problems and ¢; minimization
and has a similar restriction on the nonsmooth part.
In addition, primal-dual type methods include [7], [27],
which are based on DADMM. In this paper, we propose
a simpler algorithm that does not explicitly use any
dual variable. We establish convergence under weaker
conditions and show that the residual of the first-order
optimality condition reduces at the rate of O (%) , where
k is the iteration number.

When r; = 0, the proposed algorithm PG-EXTRA
reduces to EXTRA [23]. Clearly, PG-EXTRA extends
EXTRA to handle nonsmooth objective terms. This ex-
tension is not the same as the extension from the gradient
method to the proximal-gradient method. As the reader
will see, PG-EXTRA will have two interlaced sequences
of iterates, whereas the proximal-gradient method inher-
its the sequence of the iterates in the gradient method.

B. Paper Organization and Contributions

Section 1II of this paper develops PG-EXTRA, which
takes advantages of the smooth+nonsmooth structure of
the objective functions. The details are given in Section
II-A. The special cases of PG-EXTRA are discussed in
Section II-B. In particular, it reduces to a new algorithm
P-EXTRA when all s; = 0 and the gradient (or the “G”)
steps are no longer needed.

Section III establishes the convergence and derives
the rates for PG-EXTRA and P-EXTRA. Under the
Lipschitz assumption of Vs;, the iterates of PG-EXTRA
converge to a solution and the first-order optimality
condition asymptotically holds at an ergodic rate of
0] (%) The rate improves to non-ergodic o (%) for P-
EXTRA.

The performance of PG-EXTRA and P-EXTRA is
numerically evaluated in Section IV, on a decentralized
geometric median problem (Section IV-A), a decentral-
ized compressive sensing problem (Section IV-B), and
a decentralized quadratic program (Section IV-C). Sim-
ulation results confirm theoretical findings and validate
the competitiveness of the proposed algorithms.

We have not yet found ways to further improve the
convergence rates or theoretically grounded methods
to relax our algorithms for stochastic or asynchronous
steps, though some numerical experiments with modified
algorithms appeared to be successful.

C. Notation

Each agent 7 hold a local variable Z() € RP, whose
value at iteration k is denoted by x’(“l.). We introduce an
objective function that aggregates all the local terms as

where

T (2)

[I>

c R"*P,
T
L(n)

The ith row of x corresponds to agent 7. We say that x
is consensual if all of its rows are identical, i.e., xT(1) =
-++ = x(y). Similar to the definition of f(x), we define

n

s(x) = Z si(zy) and r(x) £ Zri(x(i)).
i=1

i=1
By definition, f(x) = s(x) + r(x).

The gradient of s at x is given by

— (Vsilzy) —

T
— (Vaale@)) — | o

Vs(x) = .
— (Usnlz@m)) —

where Vs;(2(;)) is the gradient of s; at ;. We let Vr(x)



denote a subgradient of Vr at x:
- T
— (VTl (,T(l) )) —_—

- T
— (Vv —
Tr(x) £ ( rz(x(z))) € R,

— (@rn(m(n)))T —

where Vr; (x(;y) is a subgradient of r; at ;. The ith row
of x, Vs(x), and Vr(x) belongs to agent i.
In the proposed algorithm, agent ¢ needs to compute
the proximal map of r; in the form
. 1 2
min ri(z) + oIz~ yll2,
where y € RP is a proximal point and o > 0 is a scalar.
We assume that it is easy to compute the proximal map,
which often has an explicit solution.

The Frobenius norm of a matrix A is denoted as || A||¢.
Given a symmetric positive semidefinite matrix G, define
the G-norm: ||A|l¢ £ +/trace(ATGA). The largest
singular value of a matrix A is denoted as opax(A). The
largest and smallest eigenvalues of a symmetric matrix
B are denoted as A\pax(B) and Ay, (B), respectively.
The smallest nonzero eigenvalue of a symmetric positive
semidefinite matrix B is denoted as ;\min(B). We have
Amin(B) > Amin(B). Let null{ A} £ {z € R"|Az = 0}
denote the null space of A, and span{A} = {y €
Rm‘y = Az,Vx € R"} denote the subspace spanned
by the columns of A.

II. ALGORITHM DEVELOPMENT

This section derives PG-EXTRA for problem (1) in
Section II-A and discusses its special cases in Section
1I-B.

A. Proposed Algorithm: PG-EXTRA

PG-EXTRA starts from an arbitrary initial point x° €
R™*P_ that is, each agent ¢ holds an arbitrary point :c(()i).
The next point x' is generated by a proximal gradient
iteration

x? =Wx° — aVs(x’), (2a)

. 1 1
x! =argmin r(x) + o~ [x — x|,

(2b)
where o € R is the step size and W = [w;;] € R"*™ is
the mixing matrix which we will discuss later. All the
subsequent points x2,x3,... are obtained through the

following update: k£ = 0,1, ...
X xR xR Tk

— a[Vs(x"*1) — Vs(x")], (3a)

1
x"? = argmin r(x) 4+ —||x — xFt1+3 2. (3b)
x 2«

In (32), W = [@;;] € R™*™ is another mixing matrix,
which we typically set as @ though there are more
general choices. With that typical choice, Wx = W
can be easily computed from Wx. PG-EXTRA is out-
lined in Algorithm 1, where the computation for all
individual agents is presented.

Algorithm 1: PG-EXTRA
Set mixing matrices W € R"X™ and W € R"*";
Choose step size a > 0;
1. All agents i =1,...,n
pick arbitrary initial x?i> € RP and do
1 n
o= v 2y — Vi)

1
1 P 1 2 2.
(;) = argmin ri(z) + 55z x(i)||2,

2. fork:O,l,u',‘allagentsi:1,...,nd0

k141 D k+1 k+1 noo
o T Z ety tew T T 2 DatG)
—« [Vsi(xl(cgl) - Vsi(a:ﬁ.))];
. +1+4
ofA? = argmin ;(z) + 5¢llz — x5
end for

We will require w;; = 0 and w;; = 0 if 7, j are not
neighbors and i # j. Then, the terms like Z?zl Wi ()
and Z?Zl W (5 only involve x(;y, as well as x(; that
are from the neighbors j of agent i. All the other terms
use only local information. ~

We impose the following assumptions on W and W.

Assumption 1 (Mixing matrices). Consider a con-
nected network G = {V,E} consisting of a set of
agents V = {1,2,--- ,n} and a set of undirected edges
E. An unordered pair (i,j) € & if agents i and j
have a direct communication link. The mixing matrices
W = [wi;] € R™*™ and W = [i;;] € R™ ™ satisfy
1) (Decentralization property) If i # j and (i,7) € &,
then Wi; = QIJZ‘j =0.
2) (Symmetry property) W = WT, w=wT.
3) (Null space property) null{W — W} = span{1},
null{7 — W} D span{1}.
4) (Spectral property) W = 0 and % =W = W.

The first two conditions together are standard (see
[22], for example). The first condition alone ensures
communications to occur between neighbor agents. All
the four conditions together ensure that W satisfies
Amax(WW) = 1 and its other eigenvalues lie in (—1,1).
Typical choices of W can be found in [23], [28]. If a
matrix W satisfy all the conditions, then W = % also
satisfies the conditions.

B. Special Cases: EXTRA and P-EXTRA

When the possibly-nondifferentiable term r = 0, we
1.
have x! = x2 in (2a) and (2b) and thus

x! =Wx" — aVs(x?). “4)



In (3a) and (3b), we have x*+2 = x*+1+3 and thus
X2 —xh okt Xt
— a[Vs(x**1) — Vs(x")]. 5)

The updates (4) and (5) are known as EXTRA, a recent
algorithm for decentralized differentiable optimization
[23].

When the differentiable term s = 0, PG-EXTRA
reduces to P-EXTRA by removing all gradient compu-
tation, which is given in Algorithm 2.

Algorithm 2: P-EXTRA
Set mixing matrices W € R?"X™ and W € R"*";
Choose step size o > 0;
1. All agents i =1,...,n
pick arbitrary initial :1:?“ € RP and do

bR 0
) = 2 Wiy

7= 1
r%i) = argmin ri(T) + o |l — x{%”%

2.for k=0,1,---,all agents ¢ = 1,...,n do

P S S,
Tay T L waTy) Yt T 2 Vut)
i= i=
1
k+2 _ : 1 z+lt3, 9
z(;) " = argmin ri(x)+%Hx7x(i) 25.
end for

III. CONVERGENCE ANALYSIS
A. Preliminaries
Unless otherwise stated, the convergence results in this

section are given under Assumptions 1-3.

Assumption 2 (Convex objective functions and the
smooth parts having Lipschitz gradients). For all i =
1,...,n, functions r; and s; are proper closed convex
and s; satisfy

IVsi(z) = Vsi(y)ll2 < Ls,

z—yl2, Vz,y€R”,
where Ly, > 0 are constant.

Following Assumption 2, f(x) = Y1, fi(z(;)) is
proper closed convex and Vs satisfies

Vs(x) = Vs(y)llp < Ls[lx — ylr,

with constant Ls = max;{Ls, }.

Vx,y € R"*P

Assumption 3 (Solution existence). The set of solu-
tion(s) X* to problem (1) is nonempty.

We first give a lemma on the first-order optimality
condition of problem (1).

Lemma 1 (First-order optimality conditions). Given
mixing matrices W and W and the economical-form
singular value decomposition W—-W=VSsVT, define
U 2 vsY2yT — (W — W)Y2 e R™™. Then,
under Assumptions 1-3, the following two statements are
equivalent

o X* € R™" " s consensual, that is, xz‘l) = xz‘z) =
cee = xZ‘n), and every xZ‘i) is optimal to problem
(),

o There exists q* = Up for some p € R"*? and
subgradient Vr(x*) € Or(x*) such that

(6a)
(6b)

Proof: According to Assumption 1 and the defini-
tion of U, we have

{ Uq* + a(Vs(x*) + Vr(x*)) = 0,
Ux* = 0.

null{U} = null{VT} = null{W — W} = span{1}.

Hence x is consensual if and only if (6b) holds.

Next, any row of the consensual x* is optimal if and
only if 1T(Vs(x*)+Vr(x*)) = 0. Since U is symmetric
and UT1 = 0, (6a) gives 1T(Vs(x*) + Vr(x*)) =
0. Conversely, if 1T(Vs(x*) + Vr(x*)) = 0, then
Vs(x*) 4+ Vr(x*) € span{U} follows from null{U} =
(span{1})" and thus a(Vs(x*)+ Vr(x*)) = —Uq for
some q. Let q* = Proj;;q. Then, Uq* = Uq and (6a)
holds. [ ]

Let x* and q* satisfy the optimality conditions (6a)
and (6b). Introduce an auxiliary sequence

k
qk & Z Ux'.
t=0

The next lemma restates the updates of PG-EXTRA in
terms of x*, qk, x*, and q* for convergence analysis.

Lemma 2 (Recursive relations of PG-EXTRA). In
PG-EXTRA, the quadruple sequence {x* q* x* q*}
obeys

(I + W —2W)xFH1 4 W (xF 1 — xF)

= —Ug"*t! — aVs(xF) — aVr(xF*1) ™
and
(I +W —2W)(xF1 — x*)
+IV (xFH1 — xF) ®)
= —U(@""" —q*) — a[Vs(x*) — Vs(x*)]
—a|Vr(xFt1) — Vr(x*)],
forany k=0,1,---.

Proof: By giving the first-order optimality condi-
tions of the subproblems (2b) and (3b) and eliminating
the auxiliary sequence xk+3 for k = 0,1,---, we have
the following equivalent subgradient recursions with
respect to xk:

x! = Wx% - aVs(x®) — aVr(x!),
xkHl = (I +W)xF — Wxk—1
—a[Vs(xF) — Vs(xF1)]

—a[Vr(xF1) - vr(xF)], k=1,2,---.



Summing these subgradient recursions over times 1
through k 4 1, we get
~ ko
E+1 — wwxk — Z (W _ W)Xt
P ©)
—aVs(xF) — aVr(xF1).

k+1

X

Using g* Ux! and the decomposition W —
W=U 2, (7) follows from (9) immediately.

Since (I + W —2W)1 = 0, null{U} = (span{1})"
and Ux* = 0, we have

(I+W —2W)x* =0, (10)
Subtracting (10) from (7) and adding 0 = Uq" +
a(Vs(x*) + Vr(x*)) to (7), we obtain (8). [ ]

The recursive relations of P-EXTRA are shown in the
following corollary of Lemma 2.

Corollary 1 (Recursive relations of P-EXTRA). In P-
EXTRA, the quadruple sequence {x* q* x* q*} obeys

(I+W = 2W)xF*1 4 W (x"+! — xF)
= —Uqg"! —aVr(xF)

and

11

(I+W —2W)(x++1
+ IV (xFH1 — xF)

= U@ —q)
—a[Vr(xFtl) — Vr(x*)],

forany k=0,1,---.

_x*)

12)

The convergence analysis of PG-EXTRA is based on
the recursions (7) and (8) and that of P-EXTRA based

on (11) and (12). Define
k *

ka4 «a (4 a1 9
s (g) () os (5 )
For PG-EXTRA, we show that x* converges to a so-
lution x* and the successive iterative difference ||z —
z"T1||% converges to 0 at an ergodic O (1) rate (see
Theorem 2); the same ergodic rates hold for the first-
order optimality residuals, which are defined in Theorem
2. For the special case, P-EXTRA, x* also converges
to an optimal solution x*; the progress |z — z*+1|2,
and the first-order optimality residuals converge to O at
improved non-ergodic o (1) rates (see Theorem 3).

B. Convergence and Convergence Rates of PG-EXTRA

1) Convergence of PG-EXTRA: We first give a theo-
rem that shows the contractive property of PG-EXTRA.
This theorem provides a sufficient condition for PG-
EXTRA to converge to a solution. In addition, it pre-
pares for analyzing convergence rates of PG-EXTRA in
subsection III-B2 and its limit case gives the contractive
property of P-EXTRA (see Section III-C).

Theorem 1. Under Assumptions -3,
2)\mm(W)

if we set the

step size o € (O , then the sequence {z*}
generated by PG- EXTRA satisfies

l2* —2*|[& — 12" = 2"[|g > ¢llz" — 2" TH[E, (13)

k=01,

alLsg
where ( =1 — 7,".“(W)

k

Furthermore Z" converges to

an optimal z*

Proof: By Assumption 2, s and r are convex, and
Vs is Lipschitz continuous with constant Lg, we have

QLf\\VS(Xk)—VS( *)||%
< 2a(xF —x*, Vs(xF) — Vs(x*)) (14)
= 2()(’““‘1 x* a[Vs(x) Vs(x*)])
+2a(x* k“,Vs xF) — Vs(x*)),
and
0 < 2(xF1 — x* a[Vr(xF1) — Vr(x*)])).  (15)
Substituting (8) from Lemma 2 for «a[Vs(x*) —

Vs(x*)] + a[Vr(xF*+1) — Vr(x*)], it follows from (14)
and (15) that
2Vs(x*) — Vs(x)|#
= 2(xM —x* a[Vs(xk) Vs(x*)]
+olVr(x ) Vr(x*)])
+2a(xk — xF*1 Vs(xF) — Vs(x*))

(16)

< 2 —xt U(q - q’““))
F2(xM (xR — Xk
|| k1 2
2|[x X ||I+ —2W
+2a(xF — xF*+1 Vs(xF) — Vs(x*)).
For the terms on the right-hand side of (16), we have
2<Xk+1 T* U( qk+1)> (17
— 2<qk+1 7q q 7qk+1>
2xk T — x* W (xF — xFH1)) (18)
= 2(xF —xF W(x* — xFH)),
and
2a(xk — xF*1 Vs(xF) — Vs(x*))
< opeflxF - xFHR 4 22| Vs(xF) — Vs(x")|[}-
(19)
Plugging (17)—(19) into (16), we have
2IVs(x*) — Vs(x*)|[1&
S 2<qk+1 _ qk7 q* _ qk+1>
+2<Xk+1 k W(X* Xk+1)>
—ZHX’““ X1 2W + 2= |xF —xFE
+32[Vs(x*) — Vs(x") |2
(20)
Using the definitions of z*, z* and G, (20) is equivalent
to
0< 2< k+1 _ 4k G( Zk+1)>
k41 _ o aLS k41|12
—2|x X7, o + 52 XN — lIE-

21



Applying the basic equality

2(zF ! — 2% G(z* — ZF 1))

= |lz" — 2[5 — 12" — 2*)1g — 12 — 2"
to (21), we have
0< |lz" —2z*|g — [z — 2 H2 — ||z* — 2" 12,
Lg
_2”}(]64"»1 *||I+W 2W 042 ka - Xk+1||%"
@3
By Assumption 1, in particular, I + W — 2W = 0, we
k+1 _ *
have ||x ||I+W o = 0 and thus
12" — 2" — 2"+ —2*|%
> 2" — 2| — okt xR (24
> (2" - 2",
where ( =1 — m > 0. The last inequality holds
since q < Z2min(V)

It shows froLnsl (24) that for any optimal solution z*,
|2t~z b
z*||% is converging as long as ||z* — z"*+1||Z — 0. The
convergence of z* to an optimal solution z* follows from
the standard analysis for contraction methods; see, for
example, Theorem 3 in [29]. |

2) Ergodic O ( ) Rates of PG-EXTRA: To establish
rate of convergence, we need the following proposition.
Parts of it appeared in recent works [30], [31].

Proposition 1. If a sequence {ar} C R obeys: (1) a, >
0 and (2) Zt 1 Gy < 0o, then we have: (i) limy o ar, =
0; (i) L 5 Zt a0 =0 (k), (i) ming<p{a;} = o(i),
If the sequence {ay} further obeys: (3) a1 < ay, then
in addition, we have: (iv) a = o (%)

Proof: Part (i) is obvious. Let b, £ %Zle a;. By
the assumptions, kby, is uniformly bounded and obeys

lim kby < oo,

k—o0

from which part (ii) follows. Since c; = m<i]r€1{at} is
t<

monotonically non-increasing, we have
2k
ko, = kmln{at} < Z ag.
t=k+1
This and the fact that limy_, oo Zt:k_H ay — 0 give us
CcL =0 (%) or part (iii).
If ay, is further monotonically non-increasing, we have

2k
kagy < Z ag.

t=k+1

This and the fact that limy_, o Z?ik+1 ay — 0 gives us
part (iv). [ |

This proposition serves for the proof of Theorem 2, as
well as that of Theorem 3 appearing in Section III-C. We

give the ergodic O (%) convergence rates of PG-EXTRA
below.

Theorem 2. In the same setting of Theorem 1, the
following rates hold for PG-EXTRA:

(i) Running-average successive difference:

1 k 1
Z t_ 112 = O :

(ii) Running-best successive difference:

1
5} =o (1)

(iii) Running-average optimality residuals:

min {||z* -

k
Z IUQ" +a(Vs(x')+Vr(x")||Z, = O <11:> ,

k‘\»ﬂ

1o 1
P loxE=o (1)
t=1
(iv) Running-best optimality residuals:

minee. { [UG" + a(Vs(xt) + Ve ) 2, |

- o),
min{||UXt||2}:0 1
t<k F k)’

Before proving the theorem, let us explain the rates.
The first two rates on the squared successive difference
are used to deduce the last two rates on the optimal-
ity residuals. Since our algorithm does not guarantee
to reduce objective functions in a monotonic manner,
we choose to establish our convergence rates in terms
of optimality residuals, which show how quickly the
residuals to the KKT system (6) reduce. Note that
the rates are given on the standard squared quantities
since they are summable and naturally appear in the
convergence analysis. With particular note, these % rates
match those on the squared successive difference and
optimality residual in the classical (centralized) gradient-
descent method.

Proof: Parts (i) and (ii): Since ||z* —z*||% converges
to 0 when k goes to oo, we are able to sum (13)
in Theorem 1 over k = 0 through oo and apply the
telescopic cancellation, which yields

o0
;O 12" — 2|2,
1 = t * (|2 t+1 * (|2
N L e ONEE
llzo—2"1IZ
< 0oQ.

Then, the results follow from Proposition 1 immediately.



Parts (iii) and (iv): Using the basic inequality ||a +
bl > Jllallf — 5ilb[|E which holds for any p > 1
and any matrices a and b of the same size, it follows
that

sz k+1||
la" — k+1||2 + [JxF = xEH
[l 1%
+|I( - W)x +Uq* + a(Vs(xF) + @r(xk“))ﬂﬁv
> |\Xk+1||w -
+5 ||Uq +a(Vs(xk) + Vr(xF)|[2,
(= W)xk|2

. . (26)

Since W — W and (I — W)W (I — W) are symmetric

and
null{W — W} C null{(I - W)W (I — W)},

there exists a bounded v > 0 such that

O A [ [
It follows from (26) that
k
%;_31 2" — 2" g + £l

&
B2 (0 = 5o Uy )

Y

+5lx 1HW -
+1 Z 1||Uq + a(Vs(x
(1etp>v+1)

b) + VeI

= ktZ( =t )||UXt||%+%HXk+1||W -
k .
+3 Z: S0+ a(Vs(xF) + Ve ) % .
i 27
As part (i) shows that L S°F_ [|z8 —2/*1]|2, = O (),

we have %Zle lUQt + a(Vs(x?) + @r(x“’l))ﬂffv =
k
O (k) and S, [UXIR = 0 (1),

From (27) and (25), we see that both |UqF
a(Vs(x*) +Vr(x¥1))[|2 and [[Ux* |2 are summable.
Again, by Proposition 1, we have part (iv), the o (1)
rates of the running best first-order optimality residuals.

|

The monotonicity of ||z* — is an open ques-
tion. If it holds, then o () convergence rates will apply
to the sequence itself.

k+1H2

C. Convergence Rates of P-EXTRA

Convergence of P-EXTRA follows from that of PG-
EXTRA directly. Since P-EXTRA is a special case
of PG-EXTRA and its updates are free of gradient
steps, it enjoys slightly better convergence rates: non-
ergodic 0( ) Let us brief on our steps. First, as a

special case of Theorem 1 by letting Ls — 07, the
sequence {||z* — z**1||Z} is summable. Second, the
sequence {||z* —z**1||2,} of P-EXTRA is shown to be
monotonic in Lemma 3. Based on these results, the non-
ergodic o () convergence rates are then established for

successive difference and first-order optimality residuals.

Lemma 3. Under the same assumptions of Theorem 1
except s(x) = 0, for any step size o > 0, the sequence
{z"} generated by P-EXTRA satisfies

[+ = 22 < l2F - 22,

k=01, (28)

Proof: To simplify the description of the proof,
define AxFT1 2 xkb _ xktl Agh+l & gk _ gh+l)
Azhtl & gk _ gh+1 and AVr(xFt1) £ vr(xF) —

Vr(x**1). By convexity of r in Assumption 2, we have
(AxFHLAVE(xFF)) > 0. (29)

Taking difference of (7) at the k-th and (k + 1)-th
iterations yields

QAVT(x*Y) £ UAQH! 4 (I + W — 2IW) AxF+H!

+W (AxFH — AxF) =
(30)

Combine (29) and (30) it follows that
(AxFTL U AgF+Y)
+{AXFTL W (AxFFT — AxF)) 31)
k41
> AR L

Using the definition of q*, AqF*! = —Ux**!. Thus,
we have

AqF — AgFtt = —UAxFTL (32)
Substituting (32) into (31) yields
<Aqk _ Aqk+1,Aqk+1>
<Axk+1 _W(Axk+1 _ Axk» (33)
k+1
> ATy
or equivalently
(AzF — Az GAZFHL) > HAXkHHH_W -
(34)
By applying the basic equality 2(Az*F —
Az GAZMY) = [ AZF|[E — [[AZME — Azt -
AzF12, to (34), we finally have
HAZ’“H2 |Az" 12
> [|Azr — A 2 AT L (39)
= 0,
which implies (28) and completes the proof. [ ]

The next theorem gives the o ( k) convergence rates of
P-EXTRA. Its proof is omitted as it is similar to that of
Theorem 2. The only difference is that {||z* —z**1||%,}
has been shown monotonic in P-EXTRA. Invoking fact



Fig. 1. The underlying network for the experiments.

(iv) in Proposition 1, the rates are improved from ergodic

O () to non-ergodic o ().

Theorem 3. In the same setting of Lemma 3, the
following rates hold for P-EXTRA:

(i) Successive difference:

1
k_ o k+ig2 (L)
I 2 = o (1)

(ii) First-order optimality residuals:

~ 1
IUa* + Vet = o () ,

k
1
Ux*|z =0~ ).
1Ux I 0<k>

Remark 1 (Less restriction on step size). We can see
from Section III-C that P-EXTRA accepts a larger range
of step size than PG-EXTRA.

IV. NUMERICAL EXPERIMENTS

In this section, we provide three numerical exper-
iments, decentralized geometric median, decentralized
compressed sensing, and decentralized quadratic pro-
gramming, to demonstrate the effectiveness of the pro-
posed algorithms. All the experiments are conducted
over a randomly generated connected network showing
in Fig. 1, which has n = 10 agents and W =18
edges.

{n thegnumerical experiments, we use the relative error
w and the successive difference ||x* — x**1||2
as performance metrics; the former is a standard metric
to assess the solution optimality and the later evaluates
the bounds of the rates proved in this paper.

A. Decentralized Geometric Median

Consider a decentralized geometric median problem.
Each agent i € {1,---,n} holds a vector y;) € RP,
and all the agents collaboratively calculate the geometric
median x € R? of all y(;’s. This task can be formulated
as solving the following minimization problem:

. RS
min f(z) = = 3" ke = yio o
i=1
Computing decentralized geometric medians have in-
teresting applications: (i) in [2], the multi-agent system
locates a facility to minimize the cost of transportation
in a decentralized manner; (ii) in cognitive robotics [32],
a group of collaborative robots sets up a rally point
such that the overall moving cost is minimal; (iii) in
distributed robust Bayesian learning [33], decentralized
geometric median is also an important subproblem.
The above problem can further be generalized as the
group least absolute deviations problem

. 1
min f(z) = — > [ Mz =yl
i=1

(M; is the measurement matrix on agent ¢), which can
be considered as a variant of cooperative least squares
estimation while being capable of detecting anomalous
agents and maintaining the system out of harmful effect
caused by agents of collapse.

The geometric median problem is solved by P-
EXTRA. The minimization subproblem in P-EXTRA
xF+2 « argminf(x) + 5 |x — xF+1+3]12 has an
explicit solution

6lc+1+%
k+2 _ (2) k+1+4
o = w0 — —eor— (et —a)
”e(i) Il2
1 . 1
where eq 2 £y — f‘cl(gz'J)rlJr2 and (a)y =

max{a, 0&2 Va € R, Vi.
We set p = 3, that is, each point y(;) € R3. Data

Yy(;) are generated following the uniform distribution in

[—200, 200] x [—200, 200] x [—200, 200]. The algorithm

starts from x?i) = Y@i), Vi. We use the Metropolis

constant edge weight for 1/ and W = %

as a constant step size a.

We compare P-EXTRA to DSM [22] and DADMM
[21]. In DSM, at each iteration, each agent combines
the local variables from its neighbors with a Metropolis
constant edge weight and performs a subgradient step
along the negative subgradient of its own objective with
a diminishing step size a* = O(k~2). In DADMM, at
each iteration, each agent updates its primal local copy
by solving an optimization problem and then updates
its local dual variable with simple vector operations.

, as well
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Fig. 2.

DADMM has a penalty coefficient c as its parameter. We
have hand-optimized this parameter and the step sizes for
DADMM, DSM, and P-EXTRA.

The numerical results are illustrated in Fig. 2. It
shows that the relative errors of DADMM and P-EXTRA
both drop to 10~® in 100 iterations while DSM has a
relative error of larger than 10~2 before 400 iterations.
P-EXTRA is better than DSM because it utilizes the
problem structure, which is ignored by DSM. In this
case, both P-EXTRA and DADMM can be considered
as proximal point algorithms and thus have similar
convergence performance.

B. Decentralized Compressed Sensing

Consider a decentralized compressed sensing problem.
Each agent ¢ € {1,--- ,n} holds its own measurement
equations, y;) = M;)T + e(;), where y;) € R™ is a
measurement vector, My € R™i*P ig a sensing matrix,
x € RP is an unknown sparse signal, and e(;) € R™ is
an i.i.d. Gaussian noise vector. The goal is to estimate
the sparse vector x. The number of total measurements
> m; is often less than the number of unknowns p,
which fails the ordinary least squares. We instead solve

an /;-regularized least squares problem

) ~ ~ 1 n 1 n
min () +7(x) = - ; si(x) + - ;Ti(a:),
where
1
si(z) = 5[1M@e — v l3,  ri(@) =A@z,

and A(; is the regularization parameter on agent 4.

The decentralized compressed sensing is a special
case of the general distributed compressed sensing [34]
where its intra-signal correlation is consensus. This case
appears specifically in cooperative spectrum sensing for
cognitive radio networks. More of its applications can
be found in [5] and the references therein.

Considering the smooth+nonsmooth structure, PG-
EXTRA is applied. In this experiment, each agent ¢
holds m; 3 measurements and the dimension of
x is p = 50. Measurement matrices M(;) and noises
vectors e(;y are randomly generated with their elements
following an i.i.d. Gaussian distribution and M;, have
been normalized to have ||M;)|2 = 1. The signal x is
randomly generated and has a sparsity of 0.8 (containing
10 nonzero elements). The algorithm starts from ¥, =
0, Vi. In PG-EXTRA, we use the Metropolis constant
edge weight for W and W = #, and constant step
size a.

We compare PG-EXTRA with the recent work DISTA
[25], [26], which has two free parameters: temperature
parameter ¢ € (0,1) and 7 < |[M;|5°,Vi. We have
hand optimized ¢ and show the effect of 7 in our
experiment.

The numerical results are illustrated in Fig. 3. It
shows that the relative errors of PG-EXTRA drops
to 107° in 1000 iterations while DISTA still has a
relative error larger than 10~2 when it is terminated
at 4000 iterations. Both PG-EXTRA and DISTA utilize
the smooth+nonsmooth structure of the problem but PG-
EXTRA achieves faster convergence.

C. Decentralized Quadratic Programming

We use decentralized quadratic programming as an ex-
ample to show that how PG-EXTRA solves a constrained
optimization problem. Each agent ¢ € {1,--- ,n} has
a local quadratic objective 3zTQ;x + hlz and a local
linear constraint a] = < b;, where the symmetric positive
semidefinite matrix Q; € RP*P, the vectors h; € RP and

€ RP, and the scalar b; € R are stored at agent ¢. The
agents collaboratively minimize the average of the local

objectives subject to all local constraints. The quadratic
program is:

min % 2 si(r) = + 2 (327 Qix + hfx),
z =1 i=1
s.t. x b, Yi=1,...,n.
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We recast it as

n
min g 3 ful®) =3

-

i=1

(36)
where
if ¢ <0,

400, otherwise,

I(e) = { 0,

is an indicator function. Setting s;(z) = 227 Q;x+hlz
and r;(z) = Z(afz — b;), it has the form of (1)
and can be solved by PG-EXTRA. The minimization

subproblem in PG-EXTRA x**2 «+ argminf(x) +

1 “ . .
5 ||x — x¥*1%2||Z has an explicit solution. Indeed, for
agent ¢, the solution is

k4141 k4143
T, 2, if alx 2 < b;,
k42 (1) v (4)
T, T = T k14l
(2) k+1+4 (bi—a; 2Ya; .
T, + 3 , otherwise.
(@) llaill3

In this experiment, we set p = 50. Each @Q); is gener-
ated by a p-by-p matrix, whose elements follow and i.i.d.
Gaussian distribution, multiplying its transpose. Each
h;’s elements are generated following and i.i.d. Gaussian
distribution. We also randomly generate the constraints

(%mTQix + h;Fg; -|-I(a;fx - bi)) )

10

data a; and b; but guarantee that the feasible set is
nonempty and the optimal solution to the problem (36)
is different to the optimization problem with the same
objective of (36) but without constraints aiTx <b;, Vi.In
this way we can make sure at least one of the constraints
a;F:zr < b;, Vi is activated. In PG-EXTRA, we use the
Metropolis constant edge weight for W and W= #,
and constant step size a.

The numerical experiment result is illustrated in Fig.
4. We compare PG-EXTRA with two distributed sub-
gradient projection methods (DSPMs) [35] (denoted
as DSPM1 and DSPM2 in Fig. 4). DSPM1 assumes
that each agent knows all the constraints a;rx <
b;, Vi so that DSPM can be applied to solve (36).
The iteration of DSPM1 at each agent i is zF™! =
Pa (>j= wijah —aszi(fo where the set ) =
{#laf® < b;, Vi} and Pq(-) stands for projection
on to 2. The projection step employs the alternating
projection method [8] and its computation cost is high.
To address this issue, we modify DSPM1 to DSPM2

ML — Py, (E?Zl wijah — oszsi(xf)) where
Q; = {#|al# < b;}. DSPM2 is likely to be convergent
but has no theoretical guarantee. Both DSPMI1 and
DSPM2 use diminishing step size a = O(k~2) and
we hand-optimize the initial step sizes.

It is shown in Fig. 4 that the relative errors of PG-
EXTRA drops to 10~* in 4000 iterations while DSPM1
and DSPM2 still have relative errors of larger than
10~ when they are terminated at 20000 iterations. PG-
EXTRA is better than DSPM1 and DSPM2 because it
utilizes the specific problem structure.

with x

V. CONCLUSION

This paper attempts to solve a broad class of decen-
tralized optimization problems with local objectives in
the smooth+nonsmooth form by extending the recent
method EXTRA, which integrates gradient descent with
consensus averaging. We proposed PG-EXTRA, which
inherits most properties of EXTRA and can take advan-
tages of easy proximal operations on many nonsmooth
functions. We proved its convergence and established
its O (%) convergence rate. The preliminary numeri-
cal results demonstrate its competitiveness, especially
over the subgradient and double-loop algorithms on the
tested smooth+nonsmooth problems. It remains open to
improve the rate to O (k%) with Nesterov acceleration
techniques, and to extend our method to asynchronous
and stochastic settings.
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