
MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000–000
S 0025-5718(XX)0000-0

FAST SPARSE RECONSTRUCTION:

GREEDY INVERSE SCALE SPACE FLOWS

MICHAEL MOELLER AND XIAOQUN ZHANG

Abstract. In this paper we analyze the connection between the recently pro-

posed adaptive inverse scale space methods for basis pursuit [6] and the well
known orthogonal matching pursuit method for the recovery of sparse solu-

tions [28, 22, 31] to underdetermined linear systems. Furthermore, we propose

a new greedy sparse recovery method, which approximates `1 minimization
more closely. A variant of our new approach can increase the support of the

current iterate by many indices at once, resulting in an extremely efficient al-

gorithm. Our new method has the advantage that there is a simple criterion to
determine a-posteriori if an `1 minimizer was found. Numerical comparisons

with orthogonal matching pursuit, weak orthogonal matching pursuit [30, 17],

hard thresholding pursuit [16] and compressive sampling matching pursuit [24]
underline that our methods indeed inherits some advantageous properties from

the inverse scale space flow.

1. Introduction

Compressed sensing and techniques exploiting sparsity in data analysis, image
processing, and inverse problems recently gained enormous interest. Representing
unknowns for (underdetermined) systems of linear equations in appropriate bases or
dictionaries can be reformulated as finding the sparsest solution of a linear system,
i.e., solving

(1.1) min
u
|u|0 such that Au = f,

where | · | is the so called `0 norm, which denotes the number of nonzero elements
and is not a norm in the mathematical sense. The `0 norm is the natural measure
for sparsity. The quantity f ∈ Rm is the given (or measured) data and A ∈ Rm×n is
the sensing matrix, usually with m much smaller than n. Unfortunately, minimizing
the `0 norm is a highly nonconvex problem. Solving (1.1) exactly has been shown to
be NP-hard [29], such that it quickly becomes infeasible in dimensions interesting
for practical applications. There are two different general strategies for providing
an approximation of the sparsest solution.

2010 Mathematics Subject Classification. Primary 65K10, 90C59, 90C26; Secondary 92C55.
This work was supported by the DFG grant ”Sparsity constrained inversion with Tomographic

Applications”. X.Zhang was additionally supported by the National Science Foundation of China
(grant numbers NSFC91330102, NSFC11101277 and NSFC11161130004) and by the Shanghai
Pujiang Talent program (grant number 11PJ1405900).

c©XXXX American Mathematical Society

1

2 MICHAEL MOELLER AND XIAOQUN ZHANG

The first is to use the convex relaxation by minimizing the `1- instead of the
`0-norm,

min
u
‖u‖1 such that Au = f.(1.2)

Various important results have been obtained on the equivalence of `0 and `1-
minimization under different conditions, we refer e.g. to [10, 9, 13, 12].

The second approach is to develop greedy methods to approximate the `0 mini-
mizing solution. One of the most popular greedy methods is the orthogonal match-
ing pursuit (OMP) as proposed in [28, 22, 31]. While OMP (like all greedy algo-
rithms) is based on heuristic assumptions, one can show that under certain condi-
tions on the matrix A, OMP recovers the `0 minimizing solution exactly [30].

Comparing the two approaches, the `1 minimization allows more analysis and
more general theoretical exact recovery results. Furthermore, `1 minimization of-
ten yields better recovery results in numerical experiments, particularly for ill-posed
matrices A, which we will confirm in our numerical results section. However, solv-
ing the minimization problem (1.2) requires the solution of a non-differentiable
constrained optimization problem, such that its numerical solution remains a chal-
lenge. Although many very efficient numerical methods for `1 minimization have
been proposed (cf. [26, 18, 2, 7, 35, 8, 36], or the references on the websites
http://dsp.rice.edu/cs or http://nuit-blanche.blogspot.com), greedy approaches of-
ten significantly outperform convex optimization methods in terms of speed such
that in applications that deal with extremely high dimensional problems or require
fast processing, greedy methods are often preferable (cf. [21, 14, 19]).

The goal of this paper is to close some parts of the gap between the greedy and
convex approach to sparse reconstruction. Our motivation will be to start from
the recently proposed adaptive inverse scale space method (aISS) [6] and see that
a small tweak in the method leads to a greedy method, which on the one hand is
similar to OMP but on the other hand approximates the `1 minimization idea much
more closely. We will analyze the proposed method and prove that it has similar
exact recovery guarantees as OMP while it additionally provides the opportunity
to check a-posteriori if the solution we obtain is the `1 minimizing solution. The
latter only depends on the coincidence of certain signs and, of course, does not
require the knowledge of the `1 minimizing solution itself.

Furthermore, we will look into methods that increase their support more quickly:
Note that OMP always adds a single component to the support at each iteration,
and, while the aISS method can theoretically change its support arbitrarily, it has
been observed in [6] that the support often only changes by a single or at least
only very few indices. For very high dimensional problems (e.g. with a one million
dimensional u), even a very sparse true solution will have several thousand nonzero
entries. For these kinds of problems the OMP strategy of adding only a single index
per iteration does not seem to be ideal since the algorithm will need at least several
thousand iterations - even in the best case where the method only acts on the
support of the true solution. We will therefore consider including multiple indices
in the support at each iteration similar to the idea of weak orthogonal matching
pursuit (WOMP) [30, 17].

We will compare our proposed method to the aISS method, OMP, WOMP,
(due to their similarity) as well as to hard thresholding pursuit (HTP) [16] and

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 3

compressive sampling matching pursuit (CoSaMP) [24] as a recently proposed state
of the art method, which immediately have a support of desired size.

The rest of the paper is organized as follows. In the next Section we will give an
(incomplete) summary of sparse reconstruction methods. While extremely many
greedy reconstruction methods as well as `1 minimization techniques have been
proposed, we will particularly focus on OMP, WOMP, HTP and CoSaMP among
the greedy methods, and recall the aISS method as an `1 minimization technique.
The reason that we choose aISS as the compared `1 minimization method is that
in [33], detailed comparison of several `1 minimization techniques (including aISS)
have been made for different compressive sensing settings and it has been observed
that aISS is the fastest or among the fastest with highest accuracy. In Section 3
we will see how similar OMP and the aISS method are and propose a small change
in the aISS method to obtain a new greedy method, which is related to OMP but
approximates `1 minimization more closely. We will see that the ideas of WOMP
can also be adapted to our new method to obtain quicker, more greedy results.
Furthermore, we will prove that our method allows to see a posteriori, if the result
is also the `1 minimizing solution. In Section 4 we will compare the results of all
algorithms in a series of numerical experiments and see that our newly proposed
algorithm indeed inherits many desirable properties from the aISS method, while
being as fast as OMP or WOMP. Finally, in Section 5 we will draw conclusions and
point out future areas of research.

2. State of the Art

2.1. Greedy Methods for Sparse Recovery. Many greedy methods for sparse
recovery have been proposed, like for instance iterative hard thresholding (IHT) [4],
compressive sampling matching pursuit (CoSaMP) [24], Subspace Pursuit (SP) [11],
iterative thresholding with inversion (ITI) [20], hard thresholding pursuit (HTP)
[16] and many others. Due to the huge number of greedy sparse recovery methods we
will neither summarize nor compare our proposed method to all of them. Instead,
we will focus on the most related methods, OMP and WOMP, and include the
recently proposed HTP and CoSaMP methods in our comparison.

2.1.1. Orthogonal Matching Pursuit. OMP, as proposed in [28, 22, 31], is a classical
and popular greedy recovery method. It iteratively adds components to the support
of the approximation uk whose correlation to the current residual is maximal.

To be more precise the pseudo code for OMP is given in algorithm 1 below. We
can see that OMP has three main iterative steps:

(1) Add an index i to the current index set Ik, such that the correlation between
the i column of A and the current residual rk is maximal.

(2) Solve a linear least squares problem on the index set Ik to obtain the next
approximation uk. We used PIk to denote the projection of u onto the
index set Ik.

(3) Update the residual.

Clearly, at the k-th iteration, uk is k-sparse such that the algorithm will converge
after at most m steps for A ∈ Rm×n. OMP is fast and easy to implement.

4 MICHAEL MOELLER AND XIAOQUN ZHANG

Algorithm 1 OMP

Parameters: A, f, threshold > 0
Initialization: r0 = f , I0 = ∅
while ‖rk‖ > threshold do

1. Compute Ik = Ik−1 ∪ i with i such that |(AT rk)i| = ‖AT rk‖∞

2. Compute uk = arg minu
{
‖APIku− f‖2

}
and set (uk)i = 0 for i /∈ Ik

3. Update rk+1 = f −Auk
end while
return uk

For theoretical guarantees, Tropp considered the following quantity in [30]:

Definition 2.1. We say that a uopt with Auopt = f and A having normalized
columns satisfies an exact recovery condition (ERC) of order α if

max
i/∈I
‖(API)†ai‖1 < α,(2.1)

where I is the index set of the support of uopt, PI is the projection onto the index
set I, ai is the i-th column of A and the superscript † denotes the pseudo inverse
of the matrix.

Theorem 2.2 (from [30]). If a solution u with Au = f satisfies an ERC of order
α ≤ 1, then OMP recovers u exactly.

While OMP shows nice recovery properties under the assumption of an ERC, it
seems to yield rather weak recovery results under the popular restricted isometry
property (RIP) [19], which is commonly used as a criterion for measuring up to
which sparsity `1 minimization or greedy approaches can recover a uopt exactly.

2.1.2. Weak orthogonal matching pursuit. WOMP is a faster and more greedy ver-
sion of OMP [30, 17]. It converges much faster since it does not only add a single
index to the support at each iteration, but all whose correlation to the currently
residual is large enough. The WOMP method is given as algorithm 2 below.

Algorithm 2 WOMP

Parameters: A, f, ρ ≤ 1, threshold > 0,
Initialization: r0 = f , I0 = ∅
while ‖rk‖ > threshold do

1. Compute Ik = Ik−1 ∪ {i | |(AT rk)i| ≥ ρ‖AT rk‖∞}

2. Compute uk = arg minu
{
‖APIku− f‖2

}
and set (uk)i = 0 for i /∈ Ik

3. Update rk+1 = f −Auk
end while
return uk

We can see that the only difference to OMP lies in the first step, where all
indices for which the absolute value of AT rk is close enough to the maximal value,

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 5

are included in the support. The parameter ρ controls how much more greedy
WOMP is in comparison to OMP. While WOMP comes with the advantage of
faster convergence, one pays for the additional speed by a reduced exact recovery
guarantee as shown in [30].

Theorem 2.3 (from [30]). If a solution u with Au = f satisfies an ERC of order
ρ, then WOMP recovers u exactly.

2.1.3. Compressive Sampling Matching Pursuit. CoSaMP has been proposed by
Needell and Tropp in 2009 as a very efficient greedy recovery algorithm. Instead
of iteratively increasing the support of the solution, the desired support size is an
input parameter of the algorithm. In this sense CoSaMP can rather be seen as an
approximation for solving

min
u
‖Au− f‖2 such that |u|0 ≤ s,

for a given sparsity level s. Although this formulation is very similar to OMP if s
is given, it seems that in general a stopping criterion on the residual ‖Au − f‖ is
more intuitive than the (unknown) sparsity level.

In general, CoSaMP consists of five iterative steps: In the first step the 2s in-
dices for which the correlation between columns of the sensing matrix and the
current residual is maximal are determined. In the second step, these components
are merged with the previous support. As the third step CoSaMP determines
the least squares solution with the increased support (of size 3s). Next, the least
squares solution is pruned such that only the s largest components in magnitude
are kept, or, in other words, hard thresholding is performed. Finally, the residual
is updated based on the pruned signal from the previous step. Pseudocode for the
complete CoSaMP algorithm is given as algorithm 3 below, where we denote the
hard thresholding operator, i.e. the operator setting all but the s largest compo-
nents in magnitude of u to zero, by Hs(u). In our numerical experiments, we used
the CoSaMP code from [3] with an additional upper bound of 500 on the total
number of iterations.

Algorithm 3 CoSaMP

Parameters: A, f, sparsity level s,
Initialization: r0 = f
while Stopping Criterion do

1. Compute Ωk+1 = supp(H2s(A
T rk))

2. Compute Ik+1 = Ωk+1 ∪ supp(uk)

3. Determine ũk+1 = arg minu
{
‖APIk+1

u− f‖2
}

and set (ũk+1)i = 0 for i /∈ Ik+1

4. Prune uk+1 = Hs(ũk+1)

5. Update rk+1 = f −Auk+1

end while
return uk

6 MICHAEL MOELLER AND XIAOQUN ZHANG

2.1.4. Hard thresholding pursuit. Recently, the HTP algorithm was proposed by Si-
mon Foucart in [16]. HTP can be seen as a combination between IHT and CoSaMP:
For a desired sparsity level s, HTP performs a gradient descent step on the objec-
tive function (zk = uk + µAT (f −Auk)), determines the index set I as the indices
corresponding to the s entries of largest magnitude in zk and obtains the next it-
erate uk+1 by solving a least squares problem on I. HTP is given as algorithm 4
below. Note that convergence of HTP can only be guaranteed for a small enough
time step, more precisely, for ν‖A‖22→2 < 1, where ‖A‖2→2 denotes the induced
2-norm of A.

Algorithm 4 Hard thresholding pursuit

Parameters: A, f, sparsity level s, step size ν,
Initialization: u0 = 0 r0 = f , z0 = 0
for k = 0 to K − 1 do

1. Gradient descend on z: zk+1 = uk + νAT rk

2. Update Ik+1 = supp(Hs(z
k+1)).

3. Compute uk+1 = arg minu
{
‖APIk+1u− f‖2

}
and

set (uk+1)i = 0 for i /∈ Ik+1

4. Update rk+1 = f −Auk+1

end for
return uK

The idea behind HTP was generalized in [19] by proposing a new family of sparse
greedy reconstruction algorithms (the OMPR family), one member of which is HTP.
While theoretical guarantees based on the restricted isometry property (RIP) were
optimal for changing just a single index in Ik (a particular algorithm of the OMPR
algorithm family), numerical experiments did not show any degradation in recovery
ability when using HTP [19], such that we will focus on a comparison to the HTP
method in this paper.

Similar to CoSaMP, the major difference between HTP and OMP is that HTP
fixes the size of the index set I by an input parameter s and immediately considers
larger supports. While this make the solution of the least squares problems more
expensive, one can hope to significantly reduce the number of iterations needed for
convergence. The clear drawback of fixing the sparsity level s is that s is unknown
in practical applications. The OMP approach of increasing the index set I until a
desired accuracy ‖Auk − f‖2 is reached is much more intuitive and it might take
several runs of HTP to find a suitable sparsity level s. Note that even knowing the
sparsity level of the true solution does not mean that HTP actually converges to a
u with Au = f .

2.2. The Convex Relaxation: `1 Minimization. While the previous subsection
summarized some greedy techniques for sparse recovery, let us now focus on sparse
recovery by minimizing the convex function that approximates the `0 norm most
closely, i.e., solving the `1 minimization problem (1.2). It is interesting to see that
the adaptive inverse scale space (aISS) method [6] allows to write `1 minimization

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 7

as an iterative method that keeps track of a support and solves a low dimensional
least-squares type problem at each iteration (similar to OMP, WOMP, CoSaMP,
or HTP). We will summarize the aISS approach in the next subsection.

2.2.1. The adaptive inverse scale space method for `1 minimization. Consider the
general optimization problem

min
u
J(u) such that Au = f(2.2)

with A ∈ Rn×m, f ∈ Rn, u ∈ Rm and a convex functional J . It is well know
that the so called Bregman iteration (BI) provides an efficient iterative method to
determine the above minimizer [25]. Particularly, BI was shown to be equivalent to
the augmented Lagrangian (AL) method for the above problem (cf. [35, 15]). BI
and AL find the solution to (2.2) by constructing the sequence

uk+1 = arg min
u
J(u) +

λ

2
‖Au− f‖2 − 〈pk, u〉,(2.3)

pk+1 = pk + λAT (f −Auk+1),(2.4)

which involves an unconstrained optimization problem and an explicit update of the
dual variable pk+1, where the optimality condition of (2.3) combined with Equation
(2.4) yields pk+1 ∈ ∂J(uk+1). Note that the second equation can be written as

pk+1 − pk

λ
= AT (f −Auk+1).(2.5)

Interpreting the parameter λ as a discrete time step, one finds BI to be backward
time stepping on the evolution equation

∂tp(t) = AT (f −Au(t)) such that p(t) ∈ ∂J(u(t)).(2.6)

The above differential inclusion is called inverse scale space flow and was analyzed
in [5].

The main finding of [6] was that in the case of J(u) = ‖u‖1, Equation (2.6) can be
solved exactly without any time discretization due to its discrete nature. While the
subgradient p(t) evolves continuously (piecewise linear), the solution u(t) remains
piecewise constant. This allowed the authors of [6] to determine the subgradient
p(tk) at some time tk at which the solution is changing, before actually knowing
the solution u(tk). Due to the characterization of the `1 subdifferential

p ∈ ∂‖u‖1 ⇔
{
pi = sign(ui), if ui 6= 0,
|pi| ≤ 1, else,

(2.7)

this restricts the support of u(tk) to the set I = {i | |pi(tk)| = 1} and leads to a
sequence of very low dimensional optimization problems. This approach was called
aISS method and is given as algorithm 5 below. It has been shown that the aISS
algorithm converges in finitely many iteration to an `1 minimizing solution. More
specifically, one obtains ‖Au(t)−f‖2 ∈ O(1/t) as well as a convergence rate of u(t)
to an `1-minimizing solution in the Bregman distance. We refer to [6] for a detailed
convergence analysis of the aISS method. Also note that the theory for solving the
inverse scale space flow equation exactly without any discretization was extended
in [23] to arbitrary regularizations J(u) that are polyhedral.

Note that a major difference between the aISS method and the BI is that the
optimization problem in the primal variable is low dimensional in the aISS algo-
rithm. In BI, one first computes the full primal variable uk+1 and then updates

8 MICHAEL MOELLER AND XIAOQUN ZHANG

Algorithm 5 aISS Method

Parameters: A, f, threshold ≥ 0
Initialization: r0 = f , t1 = 1/

∥∥AT r0∥∥∞ , p(t1) = t1 A
T r0

while ‖rk‖ > threshold do

1. Compute Ik = {i | |pi(tk)| = 1}

2. Compute u(tk) = arg minu
{
‖APIku− f‖2

}
subject to u(tk)p(tk) ≥ 0

3. Compute the residual rk = f −Au(tk).

4. Obtain tk+1 as

tk+1 = min{t | t > tk,∃j : |pj(t)| = 1, uj(tk) = 0, pj(t) 6= pj(tk)},(2.8)

where

pj(t) = pj(tk) + (t− tk)(AT rk)j(2.9)

5. Update the dual variable p(t) via (2.9) with t = tk+1

end while
return u(tk)

the dual variable pk+1 accordingly. In the aISS method, one knows the subgra-
dient p(tk) before knowing the corresponding solution, such that one can use the
characterization (2.7) to significantly reduce the size of the optimization problem.

On the other hand, the parameter λ in BI can be chosen arbitrarily large, while
the corresponding quantity in the aISS flow - the next time step tk+1− tk - is deter-
mined by the previous subgradient as well as the correlation between the current
residual and the columns of A by considering AT rk in (2.9). While the support in
BI changes almost arbitrarily, the support in the aISS method is often increased by
a single index per iteration. In this sense, and also due to the consideration of the
correlation between the current residual and the columns of A, the aISS method
has quite some similarities with the greedy sparse reconstruction method OMP.

In the next section we will first point out similarities and differences between
OMP, WOMP, HTP, CoSaMP and the aISS method, before adapting some ideas of
OMP and WOMP to the aISS flow to obtain a new sparse reconstruction method.

3. Approximating the Inverse Scale Space Flow

3.1. Similarities and Differences between OMP, HTP, CoSaMP and the
aISS method. As an overview, we have summarized the main differences between
the OMP, WOMP, HTP, CoSaMP and the aISS method in Table 1.

All five, OMP, WOMP, CoSaMP, HTP, and the aISS method, modify the index
set I based on the correlation of A to the current residual, which also has the
interpretation of the direction of steepest descend of the objective functional. While
the size of the index set varies in OMP, WOMP and aISS, it stays fixed for HTP and
CoSaMP. It is interesting to see that if AT f has a unique maximum, the first step of
OMP and the aISS method is exactly the same. Both methods start by computing
AT f and determine the first approximation u1 by the best approximation only
using the maximal component of AT f . After this first step, OMP and aISS differ:

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 9

While OMP and WOMP only take the correlation to the current residual into
account, the aISS method is based on the history of all previous correlations, i.e.
pk+1 = pk + (tk+1 − tk)AT rk for aISS vs. just AT rk for OMP.

The index set in HTP is determined by the largest values in the quantity resulting
from moving from the current iterate into the direction of steepest descend. While
the aISS method also moves in the direction of steepest descend, it adapts the
time step, such that the quantity p(tk) always maintains the interpretation of a
subgradient of u(tk+1). Note that having a uk versus a pk in the formula for
determining the index set makes a significant difference and, for instance, occurred
in the `1 minimization techniques iterative soft thresholding (cf. [1] and references
therein) versus linearized Bregman iteration [8].

The CoSaMP method takes yet a different approach to sparse recovery. In a
first step it relaxes the constraint that the sparsity of the solution has to be less or
equal to s and takes up to 3s indices as a support into account. After finding the
optimal solution on this larger/relaxed index set the hard thresholding operator is
applied to reduce the solutions support size back to s.

A difference between the aISS method and all greedy approaches is that the low
dimensional optimization problem is a least squares problem for OMP, WOMP,
CoSaMP and HTP, while it is a sign-constrained least squares problem for the
aISS method. Although this step can make the aISS algorithm significantly more
expensive, it allows indices to leave the support (opposed to OMP, WOMP), and
seems to make the difference between greedy approaches and `1 minimization. (For
details regarding the reason why the sign constraint allows indices to leave the
support we refer to [6]). By proposing a new greedy method whose only difference
to the aISS method is to replace the sign-constrained least squares problem by
a simple least squares problem, we will be able to investigate in our numerical
experiments (Section 4) how much of a difference the type of least squares problem
makes in practice.

Finally, let us mention that the computational costs per iteration are similar in
the sense that each algorithm has to multiply by AT and solve a least squares type
of problem. However, the actual costs and runtimes can be quite different as we will
confirm with our numerical experiments in Section 4. As mentioned already, the
aISS approach can be more computationally expensive since it requires the solution
to obey additional sign constraints. Another difference is the size of the least
squares problems. For instance, the first iterations of OMP are very cheap since
the support set contains only very few indices. In comparison, HTP immediately
solves problems of size s and CoSaMP even problems of size 3s. However, one
can hope to need significantly fewer iterations with HTP or CoSaMP. Since OMP
needs at least s iterations for s sparse solutions the advantage of having to take
fewer iterations with HTP and CoSaMP (also in comparison to aISS) will likely
increase with increasing s.

10 MICHAEL MOELLER AND XIAOQUN ZHANG

O
M

P
W

O
M

P
C

o
S

a
M

P
H

T
P

a
IS

S
fl

o
w

C
h

a
n

g
e

o
f

th
e

in
d

e
x

se
t

is
b

a
se

d
o
n

A
T
rk

A
T
rk

A
T
rk

u
k

+
ν
A
T
rk

fo
r

fi
x
ed

ν
p
k

+
∆
tk

+
1
A
T
rk

fo
r

va
ri

a
b

le
ti

m
e

st
ep

s
∆
tk

+
1

=
tk

+
1
−
tk

S
iz

e
o
f

th
e

in
-

d
e
x

se
t

in
cr

ea
se

s
b
y

o
n

e
at

ea
ch

it
er

at
io

n
in

cr
ea

se
s

b
y

m
o
re

th
a
n

o
n

e,
b

a
se

d
o
n

|(A
T
r k

) i
|

≥
ρ
‖A

T
r k
‖ ∞

is
fi

x
ed

a
t

a
g
iv

en
sp

a
rs

it
y

le
ve

l
s

p
ru

n
in

g
a

so
lu

ti
o
n

o
f

su
p

p
o
rt

se
t

3s
d

ow
n

to
s

ea
ch

st
ep

is
fi

x
ed

a
t

a
g
iv

en
le

ve
l

s,
in

d
ic

es
a
re

re
p

la
ce

d

m
o
st

o
ft

en
in

-
cr

ea
se

s
b
y

o
n

e
b

u
t

ca
n

ch
a
n

g
e

a
rb

it
ra

ri
ly

U
p

d
a
te

fo
r
u
k

v
ia

a
si

m
p

le
le

as
t

sq
u

a
re

s
p

ro
b

le
m

v
ia

a
si

m
p

le
le

a
st

sq
u

a
re

s
p

ro
b

le
m

v
ia

a
si

m
p

le
le

a
st

sq
u

a
re

s
p

ro
b

le
m

fo
l-

lo
w

ed
b
y

h
a
rd

th
re

sh
o
ld

in
g

v
ia

a
si

m
p

le
le

a
st

sq
u

a
re

s
p

ro
b

le
m

v
ia

a
si

g
n

-
co

n
st

ra
in

ed
le

a
st

sq
u

a
re

s
p

ro
b

le
m

b
a
se

d
o
n

th
e

si
g
n

s
o
f
p
k
+
1

M
a
in

c
o
m

-
p

u
ta

ti
o
n

a
l

e
x
p

e
n

se
s

p
e
r

it
e
ra

ti
o
n

M
u

lt
ip

li
ca

ti
o
n

w
it

h
A
T

,
so

lu
-

ti
on

of
a

le
a
st

sq
u

ar
es

p
ro

b
le

m
on

an
in

d
ex

se
t

of
va

ry
in

g
si

ze

M
u

lt
ip

li
ca

ti
o
n

w
it

h
A
T

,
so

lu
-

ti
o
n

o
f

a
le

a
st

sq
u

a
re

s
p

ro
b

le
m

o
n

a
n

in
d

ex
se

t
o
f

va
ry

in
g

si
ze

M
u

lt
ip

li
ca

ti
o
n

w
it

h
A
T

,
so

lu
-

ti
o
n

o
f

a
le

a
st

sq
u

a
re

s
p

ro
b

le
m

o
n

a
n

in
d

ex
se

t
o
f

si
ze

3s

M
u

lt
ip

li
ca

ti
o
n

w
it

h
A
T

,
so

lu
-

ti
o
n

o
f

a
le

a
st

sq
u

a
re

s
p

ro
b

le
m

o
n

a
n

in
d

ex
se

t
o
f

si
ze
s

M
u

lt
ip

li
ca

ti
o
n

w
it

h
A
T

,
so

-
lu

ti
o
n

o
f

si
g
n

-
co

n
st

ra
in

ed
le

a
st

sq
u

a
re

s
p

ro
b

le
m

o
n

a
n

in
d

ex
se

t
o
f

va
ry

in
g

si
ze

T
a
b
l
e
1
.

O
ve

rv
ie

w
ov

er
th

e
si

m
il

a
ri

ti
es

a
n

d
d

iff
er

en
ce

s
b

et
w

ee
n

O
M

P
,

W
O

M
P

,
C

o
S

a
M

P
,

H
T

P
a
n

d
th

e
a
IS

S
m

et
h

o
d

.

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 11

3.2. The greedy inverse scale space (GISS) method. Considering the sim-
ilarities between OMP, WOMP, CoSaMP, HTP and the aISS method one could
interpret the greedy methods as (faster) approximations of the inverse scale space
flow. Thus, considering that `1 minimization often yields very good/better recov-
ery results than greedy methods, it seems natural to develop a greedy method that
approximates the aISS flow even more closely than OMP.

While the fixed index set from HTP seems to be difficult to adapt to the aISS
framework, the ideas of OMP and even of WOMP are straight forward to include.
To obtain a greedy method like OMP which approximates the `1 solution more
closely, we propose to replace the constrained minimization of the aISS flow by an
unconstrained one. We will refer to this method as the greedy inverse scale space
(GISS) method. In terms of table 1, we will see that the only difference between
GISS and OMP will be what the change of index set is based on, AT rk for OMP
and pk + (tk+1 − tk)AT rk for GISS. Our numerical experiments in Section 4 show
that GISS indeed inherits some desirable properties from the aISS method, approx-
imating `1 minimization much more closely and yielding better recovery results.
The GISS algorithm (aISS method after replacing the constrained minimization by
an unconstrained minimization) is given as algorithm 6 below.

Algorithm 6 GISS method

Parameters: A, f, threshold ≥ 0
Initialization: r0 = f , t1 = 1/

∥∥AT r0∥∥∞ , p(t1) = t1 A
T r0

while ‖rk‖ > threshold do

1. Compute Ik = {i | |pi(tk)| = 1}

2. Compute u(tk) = arg minu
{
‖APIku− f‖2

}
3. Compute the residual rk = f −Au(tk).

4. Obtain tk+1 as

tk+1 = min{t | t > tk,∃j : |pj(t)| = 1, uj(tk) = 0, pj(t) 6= pj(tk)},(3.1)

where

pj(t) = pj(tk) + (t− tk)(AT rk)j(3.2)

5. Update the dual variable p(t) via (3.2) with t = tk+1

end while
return u(tk)

First of all note, that the above algorithm converges to a solution of Au = f :
At each iteration, the new time step tk is chose in a way that an index i enters
the index set Ik. Once a certain index j is in Ik the optimality condition to step
2. yields

(
AT (f − Auk)

)
j

= 0, such that it never leaves the index set. If no

more tk+1 exists, then we have to have AT rk = 0, which automatically yields
u(tk) ∈ arg minu ‖Au−f‖2 and the algorithm has converged. Naturally, this means
the GISS algorithm converges in a finite number of iterations, and, more precisely,
the number of iterations never exceeds the rank of A, i.e. m for A ∈ Rm×n in the
typical compressed sensing case.

12 MICHAEL MOELLER AND XIAOQUN ZHANG

Analog to [6] one can show the strict decrease of ‖Au − f‖2 at each step k as
well as the exact recovery of any one-sparse solution in a single step given that
A has normalized columns. It is interesting to see that even the result about
recovering solutions that meet an ERC exactly can be shown similar to Proposition
4 in [6]. Before we actually state and prove this result, let us consider additionally
incorporating the idea of WOMP into our framework. Our idea is to take a larger
step into the current direction of steepest descend and project the resulting p(tk+1)
back onto the unit `∞ ball. This slightly modified version of the GISS method is
given as algorithm 7 below. We will denote the modification by GISSρ where ρ is
the factor by which we enlarge the usual time step taken by GISS. Note that ρ ≥ 1
and that GISS1 is the same as GISS.

Algorithm 7 GISSρ method

Parameters: A, f, ρ ≥ 1, threshold ≥ 0
Initialization: r0 = f , t1 = 1/

∥∥AT r0∥∥∞ , p(t1) = t1 A
T r0

while ‖rk‖ > threshold do

1. Compute Ik = {i | |p̃i(tk)| = 1}

2. Compute u(tk) = arg minu
{
‖APIku− f‖2

}
3. Compute the residual rk = f −Au(tk).

4. Obtain tk+1 as

tk+1 = ρmin{t | t > tk,∃j : |pj(t)| = 1, uj(tk) = 0, pj(t) 6= pj(tk)},(3.3)

where

pj(t) = pj(tk) + (t− tk)(AT rk)j(3.4)

5. Update the dual variable p(t) via (3.4) with t = tk+1 and
set p̃(tk+1) = sign(p(tk+1)) min(|p(tk+1)|, 1)

end while
return u(tk)

3.3. Analysis of the GISSρ Method. The following exact recovery result (sim-
ilar to OMP/WOMP) is shown for GISSρ which - due to GISS1 being the same as
GISS - holds for all versions of our proposed algorithm:

Proposition 3.1. Let uopt with Auopt = f meet an ERC of order 1
ρ and let I be

the support of uopt. Then the GISSρ algorithm recovers uopt in at most |I| steps,
since |pj(t)| < 1 for all t and all j /∈ I.

Proof. We prove the above inductively. At t = 0, we have p(t) = 0 and u(t) = 0
such that the support of u(t) clearly is a subset of I. Now let the support of u(tk)
be a subset of I, particularly, let |pi(tk)| < 1 for all i /∈ I. We will show that
|pi(tk+1)| < 1 for all i /∈ I. Based on the update formula for p we have

p(tj+1) = p(tj) + (tj+1 − tj)ATA(uopt − u(tj))(3.5)

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 13

Since u(tj) is supported on a subset of I for j ≤ k we know that

uopt − u(tj) = PI(uopt − u(tj)),(3.6)

where PI denotes the projection onto the index set I. Projecting equation (3.5)
onto the index set I as well as using (3.6) yields

PI(p(t
j+1)− p(tj)) = (tj+1 − tj)PIATAPI(uopt − u(tj))(3.7)

⇒ (tj+1 − tj)PI(uopt − u(tj)) = (PIA
TAPI)

−1 (PI(p(tj+1)− p(tj))
)
.(3.8)

Inserting the above back into (3.5) leads to

p(tj+1)− p(tj) = AT API(PIA
TAPI)

−1︸ ︷︷ ︸
=((API)†)T

(
PI(p(t

j+1)− p(tj))
)
,(3.9)

= AT ((API)
†)T

(
PI(p(t

j+1)− p(tj))
)
.(3.10)

Now, we sum up all the above equations for j = 0 up to j = k to obtain

p(tk+1) = AT ((API)
†)TPIp(t

k+1).(3.11)

Now the GISSρ algorithm is designed such that ‖p(t)‖∞ ≤ ρ. Let us consider (3.11)
at an index i /∈ I and denote the i-th column of A by ai. Then

|pi(tk+1)| = aTi ((API)
†)TPIp(t

k+1),(3.12)

≤ ‖aTi ((API)
†)T ‖1 ‖PIp(tk+1)‖∞︸ ︷︷ ︸

≤ρ

,(3.13)

≤ ρ‖(API)†ai‖1,(3.14)

ERC
< 1.(3.15)

Thus, indices i /∈ I do not enter the support of u(tk) for any k. �

To avoid confusion regarding the meaning of ERC, we’d like to point out that
although [32] proves a theorem saying that ERC is met whenever the coherence
of the matrix A is small enough, ERC itself does not imply anything about the
coherence of the dictionary. It is a rather general criterion which, however, is very
difficult to verify since it depends on the support of the sparsest solution we are
looking for. Theorem 3.10 in [32] shows that whenever an ERC is not met there exist
signals which OMP fails to recover. In this sense the ERC is the best criterion that
guarantees the exact recovery with OMP. Our previous theorem therefore shows
that the GISS algorithm has at least the same exact recovery guarantees as OMP.
Looking at the proof of Theorem 3.10 in [32] we can see that the failure to meet
an ERC leads to OMP selecting a non-optimal atom in the first step. Since the
first steps of OMP and the GISS method coincide, the GISS algorithm will also
pick a non-optimal atom, such that OMP and GISS have the same exact recovery
guarantees.

Note that exact recovery guarantees are always based on worst case scenarios and
two methods having the same theoretical guarantees does not necessarily mean that
they show the same recovery properties in practice as we will see in the numerical
experiments section.

We introduced our algorithm as a greedy approximation to the aISS method,
which means that the solution of the GISSρ algorithm should ideally be somewhat
close to being an `1 minimizer. The following results allow an a-posteriori estimate

14 MICHAEL MOELLER AND XIAOQUN ZHANG

of how close the GISS1 solution is to be `1 minimizing. Later we will generalize
this result and show that the GISSρ solution is close to a weighted `1 minimizing
solution with weights in [1ρ , 1].

Theorem 3.2. Let û be an `1 minimizing solution of Au = f , and let u(tK) be the
solution of algorithm 6. We denote by

M = {i | ui(tK) 6= 0, sign(ui(t
K)) = −sign(pi(t

K))}

the set of indices i where the ui(t
K) is nonzero but has a different sign than pi(t

K).
Then the estimate

‖û‖1 ≥ ‖u(tK)‖1 − 2
∑
i∈M

(
|ui(tK)| − sign(ui(t

K))ûi
)

(3.16)

holds.

Proof. Based on the structure of the GISS algorithm we know that |pi(tK)| ≤ 1 for
indices i which are not in the support I of u(tK). Now let us define an element p̃
by

p̃i =

{
pi(t

K) if i /∈ I,
sign(ui(t

K)) else.
(3.17)

Obviously, p̃ ∈ ∂‖u(tK)‖1 such that we can conclude that

0 ≤ ‖û‖1 − ‖u(tK)‖1 − 〈p̃, û− u(tK)〉.(3.18)

Now the GISS1 algorithm produces a p(tK) ∈ range(AT), which means that

〈p(tK), û− u(tK)〉 = 〈q, Aû︸︷︷︸
=f

−Au(tK)︸ ︷︷ ︸
=f

〉 = 0.(3.19)

Hence we can add zero in Equation (3.18) to obtain

0 ≤ ‖û‖1 − ‖u(tK)‖1 − 〈p̃− p(tK), û− u(tK)〉.(3.20)

Let us look at the term 〈p̃−p(tK), û−u(tK)〉. By definition of p̃, this term vanishes
outside of the support I. On I we can divide the resulting sum in components where
p(tK) has the ‘wrong’ sign, i.e., i ∈M , and components where p(tK) has the ‘right’
sign, i.e., i ∈M c.

〈p̃− p(tK), û− u(tK)〉 =
∑
i∈I

(p̃− p(tK))i(û− u(tK))i,

=
∑
i∈M

(p̃− p(tK))i(û− u(tK))i

+
∑

i∈(I∩Mc)

(p̃− p(tK))i(û− u(tK))i,

=
∑
i∈M

(
sign

(
ui(t

K)
)

+ sign
(
ui(t

K)
))

(û− u(tK))i

+
∑

i∈(I∩Mc)

(
sign

(
ui(t

K)
)
− sign

(
ui(t

K)
))

(û− u(tK))i,

=
∑
i∈M

2
(
sign(ui(t

K))ûi − |ui(tK)|
)
.(3.21)

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 15

Inserting this part into (3.20) we obtain

‖û‖1 ≥ ‖u(tK)‖1 + 2
∑
i∈M

(
sign(ui(t

K))ûi − |ui(tK)|
)
.(3.22)

�

Note that Theorem 3.2 assumed û be an `1 minimizing solution of Au = f such
that the inequality ‖û‖1 ≤ ‖u(tK)‖1 is trivial.

The above theorem allows an easy conclusion for the GISS algorithm

Conclusion 3.3. If {i | u(tK)i 6= 0, sign(ui(t
K)) = −pi(tK)} = ∅, then the GISS

algorithm has determined an `1 minimizing solution.

It is remarkable that we obtain an extremely simple way to check if our greedy
method converged to the `1 minimizer.

The above criterion is interesting for three reasons: Firstly, it allows some the-
oretical analysis, namely stating that if criteria like the Null Space Property or
the RIP (cf. [29]) (or any other condition that ensures `1 minimization to recover
the sparsest solution) are met, the additional property of M = ∅ is an exact re-
covery criterion for the GISS algorithm. Secondly, it tells us if it might be worth
it (re-)running an `1 minimization algorithm on the problem. Thirdly, popular
state of the art `1 minimization algorithms such as the split Bregman (or Aug-
mented Lagrangian) method, the linearized Bregman method, or the aISS method,
are typically initialized with a starting subgradient p = 0, but still converge to an
`1 minimizing solution if one starts with an arbitrary subgradient p ∈ range(AT).
Since the latter is guaranteed by the GISS algorithm, one can use the GISS result
as a possible warm start for an `1 minimization algorithm. The latter of course
only makes sense if there are only a few elements in M such that one can hope for
p(tK) to be close to the true `1 subgradient.

In case of the GISSρ method with ρ > 1 the situation is more complicated, since
the values of |p(tK)| on the support are somewhere in between 1 and ρ, such that
even in the case where the signs of p(tK) are correct, we are not exactly determining
an `1 minimizer anymore. However, interestingly, we determine a solution which is
close to a weighted `1 norm, where the weights vary in between 1

ρ and 1.

Theorem 3.4. Let u(tK) be the solution of algorithm 7 and let I denote the support
of u(tK). Let û be the solution to the weighted `1 problem

min
u
J(u) such that Au = f,(3.23)

with the weighted `1 norm J(u) =
∑

1
ωi
|ui| and ωi = |pi(tK)| if i ∈ I and ωi = 1

if i /∈ I. We denote by M = {i ∈ I | sign(u(tK)i) = −sign(pi(t
K))} the set of

indices i where the u(tK)i is nonzero but has a different sign than pi(t
K). Then the

estimate

J(û) ≥ J(u(tK))− 2
∑
i∈M
|pi(tk)|(|ui(tK)| − sign(ui(t

K))ûi)(3.24)

holds.

Proof. The prove is very similar to the prove of Theorem 3.2 but will be given here
for the sake of completeness. The main change is that the subdifferential of the

16 MICHAEL MOELLER AND XIAOQUN ZHANG

weighted `1 norm J can now be characterized as

p̃ ∈ ∂J(u)⇔
{
p̃i = ωisign(ui) if ui 6= 0
|p̃i| ≤ ωi else

(3.25)

Again the GISSρ algorithm yields |pi(tK)| ≤ 1 for indices i /∈ I and we can define
an element p̃ by

p̃i =

{
pi(t

K) if i /∈ I,
sign(ui(t

K))|pi(tK)| else.
(3.26)

It is easy to see from Equation (3.25) that p̃ ∈ ∂J(u(tK)), and since p(tK) ∈
range(AT), we find

0 ≤ J(û)− J(u(tK))− 〈p̃− p(tk), û− u(tK)〉.(3.27)

Again, we can examine the term 〈p̃− p(tk), û− u(tK)〉 by dividing it into the sum
over the sets M and I ∩M c. Similar to the proof of Theorem 3.2 the sum over
I ∩M c vanishes and we obtain

〈p̃− p(tk), û− u(tK)〉 = 2
∑
i∈M
|pi(tk)|(sign(ui(t

K))ûi − |uKi |).(3.28)

Inserting (3.28) into (3.27) yields the assertion. �

Again, the correctness of the signs allows to state the convergence to a weighted
`1 minimizing solution.

Conclusion 3.5. If {i | u(tK)i 6= 0, sign(u(tK)i) = −sign(pi)(t
K)} = ∅, then the

GISSρ algorithm has determined a J(·) minimizing solution, with J as defined in
Theorem 3.4.

Since the weights 1
ωi

in the definition of J lie in [1ρ , 1], it is clear that the closer ρ is

to one, the closer GISSρ will be to the GISS1 and also to the `1 minimizing solution.
Also, notice that a weighted `1 norm is the same as minimizing an unweighted `1

norm with a sensing matrix A in which not all columns have the same norm.
It is interesting to see that if the condition of Conclusion 3.5 is met, there even

is a chance of the solution u(tK) of the GISSρ algorithm not only being a weighted
`1 minimizing solution, but also being an unweighted `1 minimizing solution.

Proposition 3.6. In the notation of Theorem 3.4, define

εi =

{
0 if i /∈ I

(ωi − 1)sign(u(tK)) i ∈ I(3.29)

Let the condition of Conclusion 3.5 be met. If, additionally, there exists a v with
vi = 0 for i ∈ I and |(p(tK) − v)i| ≤ 1 for i /∈ I, such that (ε + v) ∈ range(AT),
then u(tK) is an `1 minimizing solution.

Proof. Note that based on the assumtions of the above proposition, we can write

p(tK) = p1 + ε+ v(3.30)

for an element p1 which meets p1 ∈ ∂‖u(tk)‖1: For i ∈ I, vi = 0 and hence the
above simplifies to (p(tK))i = (p1)i + εi, which holds based on the definition of ε.
For i /∈ I, εi = 0 and hence the above simplifies to (p(tK))i − vi = (p1)i. Since
|(p(tK)− v)i| ≤ 1 we can ensure that |(p1)i| ≤ 1 for i /∈ I.

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 17

Since p(tK) ∈ range(AT) holds as the optimality condition of u(tK) being a J(·)
minimizing solution, we can conclude

p1 = p(tK)− (ε+ v) ∈ range(AT)(3.31)

which, together with p1 ∈ ∂‖u(tk)‖1, proves that u(tK) is also `1 minimizing.
�

Since the vector ε is known after the convergence of GISSρ, a weaker version of
the above proposition is very easy to check:

Conclusion 3.7. If additionally to the condition of Conclusion 3.5, the vector ε
defined by (3.29) meets ε ∈ range(AT), then the GISSρ algorithm has determined
an `1 minimizing solution to Au = f .

Despite the greedy steps of leaving out the constrained minimization as well
as stretching the time steps by ρ, we obtain an algorithm for which a possible
verification of having converged to an `1 minimizing solution is very simple.

4. Numerical results

Let us look at the numerical performances of each of the methods. Note that the
main contribution of this paper is the introduction of a new greedy sparse recovery
method which approximates `1 minimization closely and allows to a-posteriori de-
termine if the solution also is an `1 minimizing solution. The following numerical
experiment serves as an illustration of how GISSρ behaves, particularly in com-
parison to the related methods aISS, OMP and WOMP. We additionally include
HTP and CoSaMP in our comparison to have results of two state of the art greedy
methods which immediately have a larger support. It is encouraging to see that
GISSρ shows strong performances in comparison to the other greedy methods.

The numerical results section is organized as follows: First we describe one ex-
perimental setup with a particular type of sensing matrix and a particular way of
generating the data and analyze the results for this case in detail. We discuss differ-
ent ways of evaluating the results and comment on the differences of the methods
(such as HTP fixing the support size and trying to minimize the error opposed to
OMP increasing the support until the desired accuracy is reached). In a second
step, we vary the experimental setup, i.e. use different sensing matrices and differ-
ent ways to generate the data, to investigate to what extend the conclusions from
our first experiment seem to hold in general.

For our first experiments, we fix the number of rows of our sensing matrix A ∈
Rm×n to be m = 200. We vary the number of columns n as well as the sparsity s of
what we call source element ũ, which denotes the element we create our data with,
i.e., f = Aũ. A is generated as a random matrix with values drawn from a Gaussian
distribution. Afterwards the columns of A are normalized to have an `2 norm of
1. The source element ũ is generated by randomly selecting indices for the nonzero
entries, which are then randomly drawn from {+1, −1}. Note that this type of
experimental setup has been used before, for instance in [19]. For each setting,
i.e., for each combination of (n, s), we run our experiment 100 times to be more
independent of particular realizations of the random matrix and data generation.

We investigate the behavior of the aISS method, OMP, WOMP with a parameter
α = 0.8, CoSaMP with the (true) sparsity of ũ as the number of nonzero coefficients
s, HTP with ν = 1 and also with the sparsity of ũ as the number of nonzero

18 MICHAEL MOELLER AND XIAOQUN ZHANG

coefficients, GISS1 and GISS1.2. The comparison is somehow unfair since CoSaMP
and HTP have the advantage of being given the true sparsity level we wish to
reconstruct. For the solution u of each algorithm for each choice of (n, s) we record

(1) the average runtime,

(2) the average relative error to the source element ũ,
‖ũ−u‖22
‖ũ‖22

,

(3) the average sparsity |u|0,
(4) the average number of iterations the algorithm needed.

To illustrate the algorithms behavior we can plot the results in a diagram with axes
for varying n and s (resulting in a phase diagram). The average sparsity |u|0 of the
methods’ solution is shown in Figure 1.

The HTP result reflects the sparsity of the source element û exactly since the
true sparsity level was an input parameter. Since this is also the case for the
CoSaMP algorithm, we omitted the CoSaMP plot in Figure 1. Note that although
we cannot guarantee that the source element û always was the sparsest solution,
no algorithm ever found a solution with lower `0 norm. Comparing the algorithms,
we can see that the `1 minimizing solution determined by the aISS algorithm on
average gave the sparsest recovery results. While GISS and GISS1.2 do not perform
quite as well as the aISS method, they clearly outperform OMP and WOMP. Since
a precise comparison might be difficult in Figure 1, let us additionally show the
isocontours, at which the relative error in sparsity exceeds 10%, i.e., the isocontours

of |u|0−|û|0|û|0 > 0.1. Plotting the isocontours of the aISS method, OMP, WOMP,

GISS, and GISS1.2 in one diagramm allows an immediate comparison up to which
setting each method reconstructed sufficiently sparse solutions. The result is shown
in Figure 2.

It now becomes obvious that the aISS method recovers the sparsest solutions,
followed by GISS and GISS1.2. OMP and WOMP gave clearly weaker sparse re-
covery results. Among GISS and GISS1.2 we can see that the less greedy variant
was slightly more successful, although the difference is remarkably small. It is very
surprising that in our experiments WOMP actually succeeded more often in finding
sparse solutions than OMP.

Besides the sparsity, one could also consider looking at the relative error to the

source element, ‖u−û‖
2

‖û‖2 . Different from the `0 comparison above, the relative error

will show if in the cases where the algorithms result is not sparse, certain algorithms
succeeded in reconstructing some peaks of û exactly. Figure 3 shows the relative
error in the same type of plot as above - this time including the CoSaMP result

as well as a contour plot, showing the isocontours at which ‖u−û‖
2

‖û‖2 > 0.1 for each

method. Since this relative error can exceed values of 1 we pruned all values larger
than 1 to have all images on the same scale.

Clearly, the `1 minimization was the best method in terms of the relative er-
ror, too. We can see that the aISS method has very low relative errors even for
settings where the sparsity of the solution indicated that the method was unable
to reconstruct û. The greedy methods generally have a sharper transition between
the cases where the method succeeds and where it fails. We can see that GISS
inherits some of `1-like behavior of a smooth relative error transition whereas the
GISS1.2 version shows an almost a binary success-fail diagram. In the contour plot
we can see that the aISS approach has the highest success rate, very closely followed
by GISS. CoSaMP and GISS1.2 show comparable reconstruction performances and

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 19

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

aISS

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500
20

40

60

80

100

120

140

160

180

200

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

HTP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

5

10

15

20

25

30

35

40

45

50

55

60

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

OMP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500 20

40

60

80

100

120

140

160

180

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

GISS

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500
20

40

60

80

100

120

140

160

180

200

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

WOMP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500
20

40

60

80

100

120

140

160

180

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

GISS1.2

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500
20

40

60

80

100

120

140

160

180

200

Figure 1. Comparison of the average `0 norm of the solutions
of different sparse reconstruction algorithms. The sparsity of the
source element the data was created with as well as the number of
columns of the sensing matrix A are varied (x- and y-axis). The
sensing matrix A is a normalized random matrix. Each setting was
run 100 times and the average values are shown.

seem to do better than HTP. The OMP and WOMP methods behave very similarly
and seem to give clearly weaker reconstruction results.

Generally, GISS indeed seems to inherit some desirable properties from the `1

minimizing aISS flow. Furthermore it is encouraging to see that GISS outperforms

20 MICHAEL MOELLER AND XIAOQUN ZHANG

Figure 2. Isocontours at which the relative error in sparsity,
|u|0−|û|0
|û|0 exceeds 0.1.

HTP and CoSaMP and GISS1.2 is comparable to CoSaMP and better than HTP.
Although this is a particular test case (of a source element with values drawn
from {−1,+1}) it is remarkable that GISS and GISS1.2 reached these performance
results despite HTP and CoSaMP being given the correct sparsity level as an input
parameter. Furthermore, CoSaMP and HTP do not converge to a sparse solution
of Au = f . Since their support size is fixed, they try to minimize the objective
function ‖Au − f‖ for the given size of the support, while all five other methods
keep iterating until Au = f is solved exactly. To illustrate this problem, Figure
4 shows the errors ‖Au − f‖2 for the HTP and CoSaMP methods. Note that all
other methods always had a quadratic error of less than 10−9. It is interesting to
see in Figure 4 that for HTP the error is particularly high in the transition of the
settings where û can or cannot be recovered exactly while for CoSaMP the error
seems to increase with the ill-posedness. Generally, HTP resulted in lower errors
than CoSaMP.

After having analyzed the quality of the algorithms in terms of their ability to
reconstruct sparse solutions, let us look at the computational expenses of the algo-
rithms. For all greedy algorithms the most expensive steps are the multiplication
with AT as well as a solution of a least-squares problem. For aISS the least-squares
problem has to be solved subject to additional sign constraints. The size of the
optimization problems is first very low dimensional and then increasing for aISS,
OMP, WOMP, GISS and GISS1.2, while it is fixed at 3s for CoSaMP and at s for
HTP. Let us look at the number of iterations each algorithm needed to converge:
Figure 5 shows the average number of iterations in each setting.

We can see that the price the aISS algorithm pays for obtaining the sparsest
reconstruction is a significantly higher number of iterations. Note that the aISS
method needed up to 350 iterations, while the number of iterations OMP or GISS is

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 21

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

aISS

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

HTP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

OMP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

GISS

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

WOMP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

GISS1.2

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

CoSaMP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Comparison of the average relative error of the solution
of each algorithm to û. The sparsity of the source element û the
data was created with as well as the number of columns of the
sensing matrix A are varied (x- and y-axis). The sensing matrix
A is a normalized random matrix. Each setting was run 100 times
and the average values are shown.

22 MICHAEL MOELLER AND XIAOQUN ZHANG

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

CoSaMP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

0

1

2

3

4

5

6

7

8

9

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

HTP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

0

0.5

1

1.5

2

2.5

3

Figure 4. Error ‖Au− f‖2 for CoSaMP and HTP.

bounded by the rank of the sensing matrix (i.e. by 200 in our case). Furthermore,
the aISS iterations can be more expensive since a low dimensional sign constrained
least squares problem is solved. The number of iterations OMP and GISS need is
comparable and, since one index is allowed to enter the support at each iteration,
looks similar to the number of nonzero components shown in Figure 1. The number
of iterations needed by WOMP is significantly lower with at most 28 iterations.
Even lower is the number of iterations of the GISS1.2 algorithm, which needed at
most 21 iterations. Note that while the most underdetermined cases were most
expensive for the aISS method, they become rather cheap (in terms of iterations)
for WOMP.

The number of iterations HTP needed is significantly different from all other
methods. While the HTP-iteration image has a peak at 100 iterations, it most
often only shows 10-30 iterations. Interestingly, the most expensive cases for HTP
are reached for a moderate sparsity level û. As pointed out in [16], the HTP
algorithm does not have to converge but can show periodic behavior, which is why
we stop HTP after at most 500 iterations. Note that a reduction of the step size in
HTP can guarantee convergence. However, we found in our numerical experiments
that larger step sizes work better, despite the risk of eventually periodic behavior.
We expect that HTP might have been caught in such a periodic behavior several
times for the settings where the corresponding iteration-image has its peaks.

For the CoSaMP algorithm we also used a maximum number of 500 iterations
which however is reached for almost all difficult cases (of very underdetermined sys-
tems and not very sparse source elements). The number of iterations CoSaMP took
in our test cases almost seems to reflect the behavior of successful or unsuccessful
reconstruction.

Although the comparison in terms of the number of iterations is interesting,
it does not exactly reflect the computational expenses of each method, since, for
example, GISS and GISS1.2 have to find the next time step while OMP and WOMP
just rely on the correlation to the residual. We found the runtime images, when
displayed in the same fashion as the number of iterations above, to look rather
noisy, which is why we focus on comparing the average run times over all settings.
The results are shown in a bar chart in Figure 6.

Interestingly, CoSaMP was the most expensive method on average (0.87 seconds)
which makes sense considering that it often took 500 iterations and always solves

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 23

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

aISS

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500
50

100

150

200

250

300

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

HTP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500 10

20

30

40

50

60

70

80

90

100

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

OMP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500 20

40

60

80

100

120

140

160

180

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

GISS

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500
20

40

60

80

100

120

140

160

180

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

WOMP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500 5

10

15

20

25

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

GISS1.2

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500

2

4

6

8

10

12

14

16

18

20

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

CoSaMP

5 15 25 35 45 55

2900

2500

2100

1700

1300

900

500 50

100

150

200

250

300

350

400

450

500

Figure 5. Comparison of the number of iterations each algorithm
needed for convergence. The sparsity of the source element û the
data was created with as well as the number of columns of the
sensing matrix A are varied (x- and y-axis). The sensing matrix
A is a normalized random matrix. Each setting was run 100 times
and the average values are shown.

24 MICHAEL MOELLER AND XIAOQUN ZHANG

aISS OMP WOMP HTP GISS GISS 1.2 CoSaMP
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
vg

. r
un

tim
e

in
 s

Figure 6. Overall average runtimes of the algorithms.

the rather large 3s dimensional optimization problems. The aISS method was
slightly faster with about 0.76 seconds. Although the aISS algorithm needed fewer
iterations, some of the optimization problems were more computationally expensive
due to the sign constraint. Omitting the sign constraints (i.e. going from the aISS
to the GISS) we see that we get a speed up of more than a factor of two with an
average runtime of about 0.30 seconds. This, however, is an average over all test
cases: The speed up is smaller for sparse source elements ũ, while it is much higher
for the complicated cases (particularly in those, where all methods fail).

We can see that OMP (0.23 seconds) has a small speed advantage over GISS,
mostly since GISS requires the computation of a next timestep tk while OMP just
needs to compute AT rk. A huge speedup is reached with the WOMP, HTP, and
GISS1.2 methods, which for instance beat aISS by more than a factor of twenty.
WOMP and GISS1.2 (both 0.034 seconds) have comparable speed while HTP (0.025
seconds) is even slightly faster. However, considering that HTP had the true spar-
sity as an input, does not always converge to a solution to Au = f and gave worse
recovery rates in our test case, we can conclude that GISS1.2 seems to be a very
good choice combining accuracy and speed.

Of course the above conclusion is only based on the case of a matrix A with en-
tries drawn from a Gaussian distribution, normalized matrix columns and a source
element with entries draw from {−1,+1}. As a next step we conducted four more
experiments with different ways of generating the sensing matrix A and different
ways of creating the source elements. The types of sensing matrices used for the
following tests are random orthonormal matrices and partial discrete cosine matri-
ces (motivated e.g. by [34]), as well as standard matrices with values draw from a
Gaussian distribution (in our case with a non-zero mean) and sparse measurement
matrices (as for instance motivated by [27]). For the sake of brevity we only show
the contours at which the relative error of each method exceeds 10%, i.e. the con-

tour at which ‖u−û‖
2

‖û‖2 > 0.1 (similar to the lower right plot in Figure 3). The setups

for the four experiments were the following:

• We choose A to be the matrix corresponding to a discrete Cosine transform
and select the nonzero entries of the source element û by drawing from a
uniform sampling of [−0.5, 0.5]. The contours for the 10% relative error
threshold are shown in Figure 7.

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 25

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

5 10 15 20 25 30 35 40 45 50 55 60

500

900

1300

1700

2100

2500

2900
aISS
OMP
WOMP
HTP
GISS

GISS1.2

CoSaMP

GISS1.05

Figure 7. Contours of all methods at which the relative error to
the true solution exceeds 10%. The sensing matrix A was chosen to
be a discrete Fourier matrix and the nonzero entries of the source
element û are drawn from a uniform sampling of [−0.5, 0.5].

As we can see the results are very different from the results observed in
our previous experimental setup. Now OMP and WOMP yield the best
reconstruction quality based on the 10% relative error threshold. The `1

minimization results remain good and are still very well approximated by
the GISS algorithm. CoSaMP yields similar reconstruction quality and is
closely followed by the GISS1.05 relaxation. It is interesting to see that
the reconstruction accuracy suffers much more drastically when choosing
an even larger ρ for the GISSρ method: The GISS1.2 and HTP algorithms
show the worst reconstruction quality in this test.
• For the next experiment the sensing matrix A is generated from a Gaussian

distribution with mean 0.5 and variance 1, and the nonzero entries of the
source element û are again drawn from a uniform sampling of [−0.5, 0.5].
Figure 8 illustrates the results of this test case.

We can see that this change of the experimental setup yet changes the
results again. While the HTP algorithm changes from being the worst
method to being the best method, the CoSaMP algorithm, previously yield-
ing good results, now turns out to show the worst reconstruction accuracy.
Constantly good reconstruction quality is achieved by the `1 minimization
approach, which, once more, is well approximated by the GISS algorithm.
OMP yields results with an accuracy similar to `1 minimization. We can
see that choosing more greedy methods, i.e. relaxing OMP to WOMP or

26 MICHAEL MOELLER AND XIAOQUN ZHANG

GISS to GISSρ with ρ > 1, leads to a significant increase in reconstruction
error.

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

5 10 15 20 25 30 35 40 45 50 55 60

500

900

1300

1700

2100

2500

2900
aISS
OMP
WOMP
HTP
GISS

GISS1.2

CoSaMP

GISS1.05

Figure 8. Contours of all methods at which the relative error to
the true solution exceeds 10%. The entries in the sensing matrix A
are generated from a Gaussian distribution with mean 0.5 and the
nonzero entries of the source element û are drawn from a uniform
sampling of [−0.5, 0.5].

• In our third experiment, we generate A as a random matrix with orthonor-
mal rows (more precisely as the matrix with orthonormal rows arising from
a QR-decomposition of a matrix with values drawn from a standard Gauss-
ian distribution). The nonzero entries of the source element û are drawn
from a uniform sampling of [−1, 1]. The results in Figure 9 indicate yet
a very different behavior of algorithms. From matrices with more than
700 columns the CoSaMP algorithm is by far the best choice, significantly
outperforming even the `1 minimization approach. The latter shows the
second best reconstruction quality with the GISS algorithm replicating the
`1 minimization results almost exactly. Opposed to the previous two cases
one loses only very little when using GISSρ with ρ = 1.05 and even with
ρ = 1.2. OMP and WOMP show much less favorable behavior with the
interesting observation that WOMP succeeds more often than OMP in this
test. Completely contrary to the previous test case, HTP yields by far the
worst reconstruction results and fails in all but the simplest cases.
• In our last experiment we generated A to be sparse itself with only 10% of

the entries in A being nonzero and drawn from a Gaussian distribution, and
the nonzero entries of the source element û to also be drawn from a Gaussian
distribution. Figure 10 shows the corresponding contour plots. In this last

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 27

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

5 10 15 20 25 30 35 40 45 50 55 60

500

900

1300

1700

2100

2500

2900
aISS
OMP
WOMP
HTP
GISS

GISS1.2

CoSaMP

GISS1.05

Figure 9. Contours of all methods at which the relative error to
the true solution exceeds 10%. The matrix A has orthonormal rows
and the nonzero entries of the source element û are drawn from a
uniform sampling of [−1, 1].

experiment we can see the typical behavior of `1 minimization being among
the best methods, closely approximated by the GISS algorithm. CoSaMP
is very close to and in some cases even beating `1 minimization. Being more
greedy in the GISS algorithm in this case again costs quite a lot of accuracy.
OMP yields clearly worse results than CoSaMP, `1 minimization and the
GISS method, and for in this experiment we see the expected behavior
of WOMP succeeding less often. HTP did not meet the threshold of an
average relative error under 10% for any of the test cases and hence has to
be considered as the worst method for this kind of experiment, too.

In summary we can say that the type of sensing matrix and the type of nonzero
entries of the true sparse solution heavily influences the performance of the algo-
rithm. Particularly, HTP and CoSaMP can be among the best methods as well as
the worst methods depending on the particular setup. In all test and in comparison
to all methods, `1 minimization stably gave very good results and was always well
approximated by the GISS algorithm, such that we can say that we proposed a
method suitable for stable fast sparse reconstruction. It often compared favorable
to OMP in our experiments. Being more greedy and using GISSρ with ρ > 1 leads
to a significant increase in algorithm speed but can - depending on the experimental
setup - lead to significantly worse recovery properties such that the parameter ρ
has to be chosen carefully to balance the trade-off between accuracy and speed.

28 MICHAEL MOELLER AND XIAOQUN ZHANG

l0 norm of the source element

N
um

be
r

of
 c

ol
um

ns
 o

f A

5 10 15 20 25 30 35 40 45 50 55 60

500

900

1300

1700

2100

2500

2900
aISS
OMP
WOMP
GISS

GISS1.2

CoSaMP

GISS1.05

Figure 10. Contours of all methods at which the relative error
to the true solution exceeds 10%. The matrix A is sparse with
only 10% of its entries being nonzero and drawn from a Gaussian
distribution. The nonzero entries of the source element û were also
be drawn from a Gaussian distribution. The contour of HTP is not
shown in this plot since it did not reach the desired accuracy for
any of the test cases.

5. Conclusions

We proposed a new method, GISSρ, which is a greedy sparse recovery method
that approximates `1 minimization more closely than OMP and WOMP. We ana-
lyzed the algorithms convergence, showed that it yields exact reconstruction for a
given ERC condition, and derived very simple criteria to check if the GISSρ solu-
tion is an `1 minimizing solution. Our numerical experiments indicate that GISSρ

indeed inherits some desirable properties from the aISS flow and seems to outper-
form OMP in terms of the sparsity of the recovered solutions for ρ = 1. Choosing
a ρ > 1 can results in a significant speed up, leading to a method more than 20
times faster than the aISS algorithm, but has to be chose carefully to balance speed
and accuracy. We compared our method to OMP, WOMP, HTP, and CoSaMP in
five different numerical experiments and found that GISS always approximates the
results of `1 minimization closely, which we found to be very good and - equally
importantly - stable in comparison to the results of other greedy algorithms. Gen-
erally, we expect GISS and GISSρ to work particularly well in those instances where
`1 minimization works well.

In future research we will consider very high dimensional problems motivated
by sparsity related problems in image processing and compare the GISSρ results

FAST SPARSE RECONSTRUCTION: GREEDY INVERSE SCALE SPACE FLOWS 29

with classical `1 minimization. Furthermore, we will try to extend this inverse scale
space related recovery idea to other types of problems. The key to the success of the
GISS method was to obtain a dual variable p which ‘almost’ is an `1 subgradient
to the recovered solution. It will be worth investigating if this idea can be adapted
to other types of greedy recovery methods, maybe even for greedy approximations
of minimization problems involving regularizers different from the `1 norm.

References

1. I. Bayram and I.W. Selesnick, A subband adaptive iterative shrinkage/thresholding algorithm,
IEEE Trans. on Signal Processing 58 (2010), no. 3, 1131 –1143.

2. A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci 2 (2009), 183–202.

3. S. Becker, CoSaMP and OMP for sparse recovery. Matlab Central File Exchange, 08/01/11

(Updated 04/20/12).
4. T. Blumensath and M.E. Davies, Iterative hard thresholding for compressed sensing, Appl.

Comp. Harm. Anal 27 (2009), no. 3, 265–274.

5. M. Burger, G. Gilboa, S. Osher, and J. Xu, Nonlinear inverse scale space methods, Comm.
Math. Sci. 4 (2006), 179–212.

6. M. Burger, M. Moeller, M. Benning, and S. Osher, An adaptive inverse scale space method

for compressed sensing, Math. Comp. 82 (2013), 269–299.
7. J. Cai, S. Osher, and Z. Shen, Convergence of the linearized Bregman iteration for `1-norm

minimization, Math. Comp. 78 (2009), 2127–2136.

8. , Linearized Bregman iterations for compressed sensing, Math. Comp. 78 (2009), 1515–
1536.

9. E.J. Candes and T. Tao, Near-optimal signal recovery from random projections: universal
encoding strategies, IEEE Trans. Inform. Theory 52 (2004), 5406–5425.

10. , Decoding by linear programming, IEEE Trans. on Information Theory 51 (2005),

no. 12, 4203–4215.
11. W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction,

IEEE Trans. on Information Theory 55 (2009), no. 5, 2230 –2249.

12. D.L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006), 1289–1306.
13. D.L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal) dic-

tionaries via `1 minimization, Proc. Natl. Acad. Sci. USA 100 (2003), 2197–2202.

14. D.L. Donoho, A. Maleki, and A. Montanari, Message passing algorithms for compressed sens-
ing, Proceedings of the national academy of sciences 106 (2009), no. 45, 18914–18919.

15. E. Esser, Applications of Lagrangian-based alternating direction methods and connections to

split Bregman, Tech. report, 2009, UCLA CAM Report [09-31].
16. S. Foucart, Hard thresholding pursuit: an algorithm for compressive sensing, SIAM J. on

Numerical Analysis 49 (2011), no. 6, 2543–2563.
17. , Stability and robustness of weak orthogonal matching pursuits, Springer Proceedings

in Mathematics and Statistics, vol. 25, 2013, pp. 395–405.

18. E. T. Hale, W. Yin, and Y. Zhang, A fixed-point continuation method for `1-regularized
minimization with applications to compressed sensing, SIAM J. Optim. 19 (2008), no. 3,

1107–1130.

19. P. Jain, A. Tewari, and I.S. Dhillon, Orthogonal matching pursuit with replacement, Tech.
Report arXiv:1106.2774, 2011.

20. A. Maleki, Coherence analysis of iterative thresholding algorithms, Proceedings of the 47th

annual Allerton conference on Communication, control, and computing, IEEE Press, 2009,
pp. 236–243.

21. A. Maleki and D.L. Donoho, Optimally tuned iterative reconstruction algorithms for com-
pressed sensing, IEEE J. of Selected Topics in Sig. Processing 4 (2010), no. 2, 330–341.

22. S.G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans.

on Sig. Processing 12 (1993), 3397–3415.
23. M. Moeller and M. Burger, Multiscale methods for polyhedral regularizations, SIAM J. on

Optimization 23, no. 3, 1424–1456.

30 MICHAEL MOELLER AND XIAOQUN ZHANG

24. D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate

samples, Applied and Computational Harmonic Analysis 26 (2009), 301–321.

25. S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method for
total variation-based image restoration, SIAM Multiscale Model. Simul. 4 (2005), 460–489.

26. S. Osher, Y. Mao, B. Dong, and W. Yin, Fast linearized Bregman iteration for compressive

sensing and sparse denoising, Commun. Math. Sci. 8 (2010), 93–111.
27. F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, Recovering sparse signals using sparse

measurement matrices in compressed DNA microarrays, 2 (2008), 275 – 285.

28. Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition, Proceedings of the 27 th

Annual Asilomar Conference on Signals, Systems, and Computers, 1993, pp. 40–44.

29. H. Rauhut, Compressive sensing and structured random matrices, Theoretical Foundations
and Numerical Methods for Sparse Recovery (M. Fornasier, ed.), Radon Series Comp. Appl.

Math., vol. 9, deGruyter, 2010, pp. 1–92.
30. J.A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inform.

Theory 50 (2004), 2231–2242.

31. J.A. Tropp and A.C. Gilbert, Signal recovery from random measurements via orthogonal
matching pursuit, IEEE Trans. Inf. Theory 53 (2007), 4655–4666.

32. Joel A. Tropp, Algorithms for simultaneous sparse approximation: part II: Convex relaxation,

Signal Process. 86 (2006), no. 3, 589–602.
33. Y. Yang, M. Moeller, and S. Osher, A dual split Bregman method for fast `1 minimization,

Math. Comp. 82 (2013), 2061–2085.

34. Z. Yang, C. Zhang, J. Deng, and W. Lu, Orthonormal expansion `1-minimization algorithms
for compressed sensing, IEEE Trans. on Sig. Processing 59 (2011), no. 12, 6285–6290.

35. W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for `1-

minimization with applications to compressed sensing, SIAM J. Imaging Sci. 1 (2008), 143–
168.

36. X. Zhang, M. Burger, and S. Osher, A unified primal-dual algorithm framework based on

Bregman iteration, J. of Scientific Computing 46 (2011), no. 1.

Institue for Computational and Applied Mathematics, University of Münster, Ger-

many

Current address: Department of Mathematics, Technische Universität München, Boltzmannstrasse
3, 85748 Garching, Germany

E-mail address: m.moeller@gmx.net

Department of Mathematics, MOE-LSC and Institute of natural sciences, Shanghai

Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, P. R. China

E-mail address: xqzhang@sjtu.edu.cn

