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ABSTRACT

We consider the problem of identifying chemical plumes in hyperspectral imaging data, which is challenging
due to the diffusivity of plumes and the presence of excessive noise. We propose a robust nonnegative matrix
factorization (RNMF) method to segment hyperspectral images considering the low-rank structure of the noise-
free data and sparsity of the noise. Because the optimization objective is highly non-convex, nonnegative matrix
factorization is very sensitive to initialization. We address the issue by using the fast Nystrom method and
label propagation algorithm (LPA). Using the alternating direction method of multipliers (ADMM), RNMF
provides high quality clustering results effectively. Experimental results on real single frame and multiframe
hyperspectral data with chemical plumes show that the proposed approach is promising in terms of clustering
quality and detection accuracy.

Keywords: hyperspectral images, label propagation, non-negative matrix factorization, Nystrom extension,
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1. INTRODUCTION

Hyperspectral imaging has been an active field of research recently and has provided a variety of applications
including surveillance, astronomy, agriculture, and mineralogy. Airborne hyperspectral sensors capture a collec-
tion of spectral data with high wavelength resolution by utilizing the spectral radiance of different objects in a
given scene. In particular, the long wavelength infrared (LWIR) hyperspectral imaging, which typically covers
the spectral range from 7.8um to 12um, is widely used in defense and security to detect and identify chemical
plumes present in the atmosphere. In industry production, gases are inevitably generated as part of the manu-
facturing process or as products themselves. The mass production of these chemicals can pose a risk in the rare
occasion that safety precautions fail to prevent leaks. Likewise, mass production of gases as chemical weapons in
terrorist states also poses a threat. As such, it is critically important to design an efficient and accurate method
of detecting plumes from the background, which can be treated as a data clustering problem.

There are numerous data clustering and object detection algorithms for dealing with high-dimensional data.
Given a set of data points by,...,b, € R™ (n > m), the goal is to partition the entire data set into k clusters
S1,...,Sk according to a certain characteristic, e.g., the distance to the centroid of each cluster. The classical
k-means method considers the problem

k
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where z; is the centroid of the ith cluster S;. Let B = [by,...,b,] € R™*™ be the matrix whose columns are
the data points, X = [z1,..., 2] € R™** be the collection of all cluster centroids, and Y € R¥*” be the cluster

indicator matrix, that is Y;; = 1 if data point b; belongs to cluster S; and 0 otherwise. Note that since each
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data point belong to a single cluster, Y obviously satisfies that Zle Y;; = 1 or equivalently Y71y = 1, where
1y € R¥ is a vector with all ones. Using these notations, the problem (1) can be recast as

: B—-XY|? )
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where ||-|| » represents the Frobenius norm of a matrix. Then the k-means method solves the above model by
alternating the cluster assignment and centroid update iteratively. Although it is simple to implement, it suffers
from the non-uniqueness of solution due to the non-convex nature of the objective function with respect to
(X,Y). If the given data is noisy which causes oscillations in the distance, it is likely to generate inaccurate
clustering result. To improve the k-means method, a large amount of variants are proposed, including moving
k-means,! which modifies the k-means method to avoid inactive centroids, and fuzzy k-means clustering,? where
each data point has a fuzzy degree in [0, 1] of belonging to each cluster. However, if the given data is polluted
by excessive noise or outliers, these methods become less robust and less efficient for large-scale data.

There is another category of data classification methods which treat the high-dimensional data as a graph G
with vertices by, . .., b, and attempt to partition the graph into k clusters. The similarity (or weighted adjacency)
matrix W € R™*" of the graph G is defined by

Wi; = e’d(bi’bj)2/02

which encodes how similar the data point b; is from the data point b;. Here d(b;, b;) is usually one of the following
two distance metrics:

e Euclidean distance: d(b;,b;) = [|b; — bj||;

e Cosine similarity:® d(b;,b;) =1 — m.

Spectral clustering algorithms (e.g. the normalized cut algorithm*) are among the most popular graph parti-
tioning algorithms. They proceed by computing then post-processing the eigenvectors corresponding to the k
smallest eigenvalues of the graph Laplacian matrix L = W — D. Here D is the degree matrix, that is the diagonal
matrix whose ith diagonal entry is the degree of vertex i. Normalized variant of the graph Laplacian, such as
the symmetric normalized Laplacian Lgyy, = I — D~Y2WD=1/2 and the random walk normalized Laplacian
L., =1 — D7 'W are also often considered. More details can be found in the tutorial on spectral methods for
graph partitioning.® Besides spectral methods, total variation based algorithms, such as Multiclass Total Vari-
ation algorithm (MTV),%7 have recently been demonstrated to provide high quality graph partitions. Finally,
in a semi-supervised context in which some vertices are a priori known to belong to some cluster (we will refer
to this vertices as being labeled), label propagation algorithms (LPA)® 1! provide a simple and efficient way to
obtain a partition by diffusing the labels along the graph.

Furthermore, large-scale data can be classified efficiently by using the nonnegative matrix factorization
(NMF).12 By relaxing the constraints in (2), NMF attempts to partition the data matrix B as a product of
two matrices X and Y both with nonnegative entries, i.e.,
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There are some popular algorithms to solve (3), e.g., alternating least squares,'® multiplicative update,'* and

the method!® based on the alternating direction method of multipliers (ADMM). Introduced initially as positive
matrix factorization'® and later developed,'? the NMF technique has been widely used and developed in a
broad variety of applications, such as text mining, document clustering, computer vision, signal processing and
many others. Some variants include symmetric NMF,'® which attempt to find a factorization W ~ YTY of
the similarity matrix of a graph, and NMF with various cost functions and regularizations!” in the objective
function. It has been shown that the symmetric NMF is equivalent to some variant of kernel k-means clustering
and spectral clustering.'® Similar to (2), the objective function in (3) is also not convex with respect to (X,Y),
and therefore NMF is highly sensitive to the initialization.



Combining the powers of graph-based methods and NMF, we propose a robust NMF (RNMF) method with
graph-based initialization in an attempt to classify the LWIR hyperspectral data polluted by excessive noise,
which can be characterized by a sparse matrix. We start with the Nystrém extension and LPA to obtain an initial
guess, and then apply the RNMF to the original data to obtain a more refined classification result. Some related
work using the same LWIR data includes simultaneous spectral analysis from multiple videos'® and TV-based
clustering methods.? '°

The paper is organized as follows. The graph based initialization method combining the Nystrém method
and LPA is presented in Section 2. Section 3 details the proposed RNMF model and the associated algorithm
by using ADMM. The experimental results on the real data are shown in Section 4. We finalize the paper with
concluding remarks in Section 5.

2. GRAPH BASED INITIALIZATION

In this section, we describe the graph-based initialization: at the first step we use the Nystrom method to extract
labels, then we propagate these labels along the graph using a random walk.

2.1 Label Extraction Using Nystrom Method

In general, the spectral clustering methods involve the computation of eigenvalues and eigenvectors of large
matrices and many distance calculations. To alleviate the computational burden, the spectral grouping based
on the Nystrém extension?’ was proposed to approximate the eigenpair (i.e., eigenvalue and its associated
eigenvector) of the similarity matrix by using few random samples. Recently, Nystrom method has been developed
for the hyperspectral data,'® and then was employed in more recent TV-based clustering.>'® Let W be the
similarity matrix of the data matrix B, which can be rearranged and partitioned as the following block-matrix
form

W= [Wu Wm] ‘

War Waa

Here Wy is the similarity matrix of the sample points, Wiy = W is the similarity matrix of the sample points
and the remaining points of the data set, and Wy is the similarity matrix of the remaining points. Suppose that
the eigendecomposition of Wiy is UAUT where U is unitary and A is diagonal. As a popular technique to solve
integral eigenvalue problems, the Nystrom extension yields

— = A — U
~ T ._ _
W ~UAU" :=W where U= [ngUA_l] .
By direct computation, we can see th@t Was is approximated by W21W1_11W12. Since the columns of U are not
orthogonal, we further orthogonalize U.

Now that we have the eigenvector approximations for spectral clustering, we can extract the labels from them
to initialize LPA. Each eigenvector can be reshaped to be a new image containing one or two specific features of
the original image. If a hyperspectral image has k features, we select the k eigenvectors starting from the second
one. Because we have no knowledge of what feature corresponds to an eigenvector, we threshold it to obtain a
binary image. In our thresholding scheme, we set all values less than zero to —1 and all values greater than zero
to 1. After visualizing the binary image, we are able to find the cluster corresponding to the desired feature.
Finally, the obtained [ labels are the [ indices corresponding to the [th largest or the /th smallest components of
the eigenvector representing that feature. The sampling scheme that we applied is detailed in Section 4.

2.2 Propagating Labels With a Random Walk

Following a common approach in semi-supervised learning,® !! we then use a random walk in order to propagate
the labels along the graph. Suppose that we have n, labels of class r, for r = 1,... k. Let F be the k x n
(normalized) indicator matrix of these labels:

Fri:
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1/n,, if b; has been labeled to belong to cluster r;
0, otherwise.



Note that the rows of F' are normalized to sum to one, so that they can be interpreted as probability distribution
on the vertices. We consider k£ random walkers on the graph, one for each class. The rth row of F is the initial
probability distribution of the rth random walker, that is this random walker start uniformly at random on one
of the label of class r. After v steps of random walk, the probability distribution of each random walker is given
by
F=M"F.

Here M = D~'W is the random-walk Laplacian used as the transition matrix, that is M;; is the probability to
go from vertex 7 to vertex j. Each unlabeled vertex is then associated to the class of the random walker who is
the most likely to visit it, that is

class of vertex i = argmax (M"F),,.
r=1,....k

The algorithm is summarized in Algorithm 1.

Algorithm 1 Label Propagation Algorithm

Input: similarity matrix W € RV*N degree matrix D € RV*N number of clusters k, initial label indicator
matrix F' € RFX?
for r=1to R do
F«+ F(D7'W)
end for
fori:=1tondo
¢; = argmax,_,
end for
return class assignment vector (¢1,...,¢y,)

k Fr,i
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3. PROPOSED ROBUST NONNEGATIVE MATRIX FACTORIZATION

Motivated by the ¢;-regularization in data analysis, e.g., Robust PCA,?! we model the noise in LWIR images as
sparse matrices. In fact, some denoising methods such as median filter,?? have experimentally shown to fail to
remove any significant outliers of the given data (see Section 4). Assume that the acquired data B is polluted
by noise, which is characterized as a sparse matrix S, i.e.,

B=L+S, L=XY, X, Y>O0.
Here L has low-rank structure characterizing the noise-free part of the data to be further factored out. Then we
consider the following low-rank nonnegative matrix factorization model

. P 2
i L+ AT + 5L = XY (4)

where || L]|, is the nuclear norm of L, i.e., the sum of all singular values of L. Similar to the relaxation technique,?!

we consider the nuclear norm based regularization instead of rank so that the objective function in (4) is convex
with respect to L. To solve the above optimization problem, we resort to ADMM which breaks the original bulky
problem into small pieces, each of which is easier to solve. To start with, we construct the following augmented
Lagrangian

L(L,S, X, YU V,DILE) = L], + AISI, + 5 12 = XY[5 + 2 IX - U+ T3
+ 2 NY VAT + DB = L= S+ Sl 40 (X) + e (¥) + 0 (U) +14.(V), (5)

where ¢4 is the indicator function defined by

0, U2>0;
1 (U) = {

oo, otherwise.



Then ADMM yields a sequence of subproblems for each iteration due to the separability of the objective function
in (4). To solve subproblems explicitly, we first recall some relevant operators in convex optimization. Given a
function f on R™*™ the proximal operator of f is defined by

. 1% 2
prox,, ;(z) = argmin {f(y) + 5 ly — JCHF} )
yeRan

By direct calculations, there are closed-form solutions for the following two classical types of optimization prob-
lems

argj‘nin IAlly + /2| A = Blf% = prox,, ., (B) == S1/,(B), (6)
argmin [ A, + p1/2[[4 = B[} = prox, . (B) i= Dayu(B). (7)
Here S is called soft-thresholding or shrinkage defined by
S1/u(B) = sign(B) © max{|B| - 1/p,0}

where sign(B) is the entrywise signum function, and © is entrywise multiplication. Additionally, the operator D
corresponds to the singular value thresholding (SVT)?? in matrix completion defined by

Dy/u(B) = U8, (E)VT  where B=USV".

To comply with the form in (7), the L-subproblem can be reformulated as

argmin {|[Z]|, + §|L ~ XY+ 5 |L+S ~ B~ 53}

)

In summary, the detailed description of the proposed algorithm is presented in Algorithm 2.

_pXY +3(B+E-5)
pP+3

L
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2

= argmin {|L|* +
L

In addition, to suppress noise more brutally, we could extend the proposed method by replacing the Frobenius
norm in (4) by the ¢;-norm of L — XY and then solve the modified model by ADMM. In that case, it involves
more auxiliary variables and subproblems while the improvement in performance is limited, and therefore it is
not useful in practice.

4. EXPERIMENTAL RESULTS

In this section, we conduct experiments on the selected frames from the two sets of LWIR hyperspectral data,
called aa-12 and aa-13, provided by the Applied Physics Laboratory at Johns Hopkins University. The goal
is to obtain four clusters, specifying atmosphere, mountain, foreground, and gas plume. The selection of the
number of clusters is out of the scope for this paper. Each frame of hyperspectral data has the dimension of
128 x 320 x 129, where the last dimension indicates the number of wavelengths. Each wavelength records a
particular frequency from 7,820 nm to 11,700 nm, spaced 30 nm apart. The testing data is acquired from three
LWIR spectrometers, each placed at a different location about two kilometers away from the release of a chemical
plume at an elevation of around 1300 feet. One hyperspectral data cube is captured every five seconds.

Because the quality of a hyperspectral image is heavily affected by massive amount of noise, it becomes chal-
lenging to obtain a clear classification. To eliminate significant outliers, we use median filter?? as a preprocessing
step of classification, but unfortunately, a large amount of noise is still present. In an efficient manner, the
proposed RNMF is able to suppress the noise while performing matrix factorization, which thereby yields more
accurate clustering results in the presence of excessive noise. The parameters we select for Algorithm 2 are based
on prior results.!®2% We set parameters as A\ = 1/y/n, v1 = m/k, y2 = 71 /k, v3 = mn/4|BT||1, and § = 1.0. It
also has been empirically proven that it is more likely to achieve good performance when p < 1.



Algorithm 2 Robust Nonnegative Matrix Factorization (RNMF)

Input: data matrix B, number of clusters k, Y°, maximal number of iterations N, tolerance €, parameters

Pv)\,Vla’Y%VS > 0) and 0 € (07 (\/5+ 1)/2)
Initialize U°, V0 L9 S° I'°, 220 as zero matrices.
for k =0to N do

LMY =Dy (i) (0 +73) T (pX Y +93(B + 55 - 5%)))
Sk‘-‘rl — SA/'YS(B _ Lk+l 4 Ek)
XM= P ((pL" (YR = T8 4+ nUR) (pY P (YT + D)™
chJrl —_ rP+((p(Xk+1)TXk:+1 + ’}/21)71(p(Xk+1)TLk+1 _ ,ank + 'YQVk))
UMt = Py (0 4+ X5
V= Py (ITF 4 YR
Fk-i—l — Fk + 9(Xk+1 _ Uk+1)
I+t — 171*¢ + 9(Yk+1 _ Vk+1)
yL = vk L (B — LFHL — ght
k+1 _ P k+1y k+1 2 78 k41 k41 k+112
e B e A T A
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U —r < ¢, then it stops.

It 7

end for
return X**! and Yk+1,

We use the result from LPA as the initial guess for Y in Algorithm 2. To initialize LPA, we require labels to
indicate which pixels are atmosphere, mountain, gas plume, or foreground. We use the label extraction method
as outlined in Section 2.1, where we sample 100 points, and choose the cosine similarity as distance metric
and ¢ = 1 in the Nystrom method for constructing the similarity matrix. We obtain labels for atmosphere,
mountain, and foreground by using a background image containing no gas plumes. Then we obtain the labels for
plumes by using a reference frame with the desired gas plume. In both data sets aa-12 and aa-13, we select the
second, the third, and the fifth eigenvectors of the similarity matrix because the second eigenvector corresponds
to both atmosphere and background, the third eigenvector corresponds to the mountain, and the fifth eigenvector
corresponds to the gas plume. The number of labels used for our experiments is 100 for each feature, so we have
a total of 400 labels per data set. They are used to initialize Algorithm 1. The similarity matrix W in Algorithm
1 is a sparse matrix corresponding to a weighted kNN graph constructed by using the kd-tree query algorithm
from the VLFeat Library with each vertex having 5 nearest neighbors with maximum comparison to 10 other
vertices.?®

4.1 Single Frame Analysis

We first perform the single frame analysis and test the proposed method on two specific frames of the hyperspec-
tral data, i.e., aa-12 frame 378 and aa-13 frame 726. Then we compare it with the fuzzy k-means with cosine
metric, NMF with random initialization, and NMF initialized by label propagation (LPA). Before carrying out
any clustering algorithm, we reshape the testing hyperspectral frame into a matrix of 129 x 40960. Because fuzzy
k-means and NMF are highly sensitive to noise, we preprocessed the data by applying the Robust PCA with
suggested parameters.2* Before running any NMF algorithms, including NMF and RNMF, we scale the input
data matrix B in (3) or (4) so that the Frobenius norm of B is 5.0 x 10° as suggested.!®> For RNMF, we choose
p = 0.01 in Algorithm 2. The results for each method are shown in Figures 1 and 2.

From the results, we can see that the proposed method performs best since it is able to identify the gas
plume successfully and distinguish clusters more accurately than the other methods for both aa-12 and aa-13.
RNMF produces better soft clustering results since each feature is identified in its own frame while the other
methods misidentify one feature as part of another. For example, NMF with random initialization identifies the



fuzzy k-means NMF LPA-Initialized LPA-Initialized
NMF Robust NMF

Figure 1: Comparison of performance for aa-12 frame 378. The images in row 1-4 are obtained by reshaping
each row of Y in Algorithm 2 to a matrix. The last row displays the hard clustering results for each method.
fuzzy k-means NMF LPA-Initialized LPA-Initialized
NMF Robust NMF

Figure 2: Comparison of performance for aa-13 frame 726. The images in row 1-4 are obtained by reshaping
each row of Y in Algorithm 2 to a matrix. The last row displays the hard clustering results for each method.



gas plume as part of the foreground in Figure 1 and as part of the mountain in Figure 2. Since LPA-Initialized
Robust NMF produces the best soft clustering results out of the four methods, it thereby produces the best hard
clustering result.

We compare the hard clustering performance of the proposed method with other hard clustering techniques
with results shown in Figure 3. Although AMSD?% is not a hard clustering technique since it does only binary
classification, we include its results as a baseline. Again, we can see that our result is clearer than the others.
Moving k-means with cosine metric fails to detect the gas plume from the mountain or atmosphere. Multiclass
total variation with Euclidean distance is able to segment the gas plume for aa-12, but it fails in aa-13. LPA, on
the other hand, succeeds to obtain four clusters in both aa-12 and aa-13, but each cluster still contains certain
amount of noise and the boundary of two clusters is also corrupted by noise.

aal2 aal3

AMSD

MkM

MTV

LPA

RNMF

Figure 3: Comparison of hard clustering results for aa-12 frame 378 and aa-13 frame 726.

4.2 Multiframe Analysis

In this subsection, we incorporate temporal information and apply the proposed method for multiframe analysis.
We examine two series of hyperspectral data each of which contains 20 frames, more specifically the data set



Figure 4: Proposed hard clustering results for aal2 frame 362-381.
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Figure 5: Proposed hard clustering results for aal3 frame 719-738.

aa-12 frames 362-380 and the data set aa-13 frames 719-738. Each raw data set is first reshaped to a matrix of
size 129 x 829200 by concatenating all single frames of size 129 x 40960. We set p = 103,107 ! in Algorithm 2
for aa-12 and aa-13, respectively, which achieve the best results in our experiments. In fact, we can see that the
gas plume is mixed with the mountain as p becomes smaller while it is mixed with the atmosphere as p becomes
larger. It is sufficient to run RNMF for 20 iterations for each data set. From the results shown in Figures 4 and
5, we can see that the proposed method has great potential in detecting gas plumes robustly and efficiently for
hyperspectral videos.



5. CONCLUSIONS

In this paper, we proposed the robust nonnegative matrix factorization method with graph-based initialization
to segment hyperspectral images and video sequences in a computationally efficient manner. To address the non-
convexity of the objective function, we apply the Nystrom method and LPA to obtain a reliable initial guess in a
extremely fast way. Taking into account the excessive noise present in the hyperspectral data, we decompose the
original data into a sparse matrix specifying the noise, and a low-rank matrix representing the noise-free part to
be further factored into two nonnegative matrices. The resultant label information is retrieved by using one factor
matrix. Numerical experiments on real LWIR hyperspectral data have shown that the proposed approach is able
to detect gas plumes from the noisy background more reliably than some state-of-the-art methods. Furthermore,
since the Nystrom method is based on random sampling which may fail to provide good initial guess sometimes,
fast unsupervised graph-based methods could be incorporated in our framework as future work.
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