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Efficient Deconvolution and Super-Resolution
Methods in Microwave Imagery

Igor Yanovsky, Bjorn H. Lambrigtsen, Alan B. Tanner and Luminita A. Vese

Abstract—In this paper, we develop efficient deconvolution and
super-resolution methodologies and apply these techniques to
reduce image blurring and distortion inherent in an aperture syn-
thesis system. Such a system produces ringing at sharp edges and
other transitions in the observed field. The conventional approach
to suppressing sidelobes is to apply linear apodization, which has
the undesirable side effect of degrading spatial resolution. We
have developed an efficient total variation minimization technique
based on Split Bregman deconvolution that reduces image ringing
while sharpening the image and preserving information content.
The model was generalized to include upsampling of deconvolved
images to a higher resolution grid. Furthermore, a proposed
multiframe super-resolution method is presented that is robust
to image noise and noise in the point spread function and
leads to additional improvements in spatial resolution. Our
super-resolution methodologies are based on current research
in sparse optimization and compressed sensing, which lead
to unprecedented efficiencies for solving image reconstruction
problems.

Index Terms—Aperture synthesis system, inverse problems,
microwave imaging, remote sensing, sparse optimization, spatial
resolution, super-resolution.

I. INTRODUCTION

HURRICANES and other physically deforming weather
phenomena will soon be continuously imaged using geo-

stationary microwave sensors, which are designed to penetrate
through thick clouds to see the structure of a storm. Such
images may represent distribution of temperature, water vapor,
and cloud liquid water and are valuable for evaluating the
storm’s internal processes and its strength. The Geostationary
Synthetic Thinned Aperture Radiometer (GeoSTAR) is a mi-
crowave spectrometer aperture synthesis system that has been
under development at JPL since 1998 [1] and will be used to
capture hurricane imagery. The instrument concept consists of
an array of individual microwave receivers arranged in a Y-
pattern in a plane facing the Earth. Each receiver has a small
feedhorn antenna, which views the entire Earth disc, and the
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received signal is processed on-board to determine the cross-
correlation between pairs of receivers. The cross-correlations,
called visibilities, are equivalent to coefficients of a complex
2-dimensional Fourier series that represents the radiometric
image of the Earth disc. The visibilities are measured between
all receiver pairs simultaneously and accumulated on-board
for a period of a few seconds before being downlinked to
the ground for further processing. There, the visibility images
are converted to radiometric images, essentially through an
inverse Fourier transform (Fig. 1). GeoSTAR will acquire earth
imagery continuously, but will require a full 15 minutes to
achieve its full radiometric sensitivity (NEDT) of 0.3 Kelvin.
Imagery will also be available with higher time resolution of
1 minute, but with a degraded NEDT of 1.2 Kelvin.

A characteristic of an aperture synthesis system is that
the point spread function (PSF) is a 2-dimensional sinc-like
function, showing positive and negative excursions (Fig. 2),
that produces ringing at sharp edges and other transitions in
the observed field. The conventional approach to suppressing
sidelobes is to apply linear apodization, which has the unde-
sirable side effect of degrading spatial resolution [2].

In order to reduce image ringing while sharpening the
image and preserving information content, we take a differ-
ent approach by formally solving the deconvolution inverse
problem. Since the convolution problem in the presence of
noise is highly ill-posed, regularization is applied to achieve
stability while preserving a priori properties of the solution.
We formulate the restoration problem within the variational
framework, using the total variation regularization [3]. Total
variation (TV) of an image measures the sum of the ab-
solute values of its gradient and increases in the presence
of the ringing artifact caused by sidelobes. By minimizing
the TV of an image using the numerical techniques detailed
below, our process reduces not only the ringing within the
image, but is shown to significantly reduce the brightness
temperature errors in the overall image. To render these
processes efficiently, our methodologies are based on current
research in sparse optimization and compressed sensing. We
perform the total variation based deconvolution within the Split
Bregman optimization framework to achieve a factor of five
hundred computational time improvement over already robust
total-variation gradient descent based techniques. Additionally,
proposed upsampling, as well as a multiframe super-resolution
method that is robust to image noise and noise in the point
spread function, lead to additional improvements in spatial
resolution.
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Fig. 1. Sparse array (upper left) and u-v sampling pattern (upper right), as
implemented in the GeoSTAR prototype. Typical visibility magnitudes in the
uv-plane (lower-right) correspond to the radiometric image (lower-left). Red,
blue, and black colors of the u-v samples correspond to pairings of elements
from arms 1-2, 2-3, and 3-1, respectively.

II. NOTATION

We first introduce notations that will be used throughout
this paper. For an image u ∈ Rn×n, the value of u at a pixel
(i, j), with 0 ≤ i, j ≤ n, is denoted as uij . The norms are
defined as:

||u||1 =
∑

(i,j)∈Ω

|uij |, ||u||2 =

√ ∑
(i,j)∈Ω

|uij |2.

The gradient of u is denoted as ∇u and its value at pixel
(i, j) as ∇uij , with ∇uij ∈ R2. For a vector-valued quantity
dij = ((d1)ij , (d2)ij) ∈ R2, for example d = ∇u, the norms
are defined as

||d||1 =
∑

(i,j)∈Ω

||dij ||2, ||d||2 =

√ ∑
(i,j)∈Ω

||dij ||22,

where ||dij ||2 =
√

(d1)2
ij + (d2)2

ij . Unless specified
otherwise, || · || = || · ||2 in the remainder of this paper.

The following signal-to-noise ratio (SNR) and root mean
square error (RMSE) were employed as quantitative measures:

SNR = 10 log10

(
σ2
u0
· n2

||u0 − u||2

)
, (1)

RMSE =

√√√√ 1

n2

∑
(i,j)∈Ω

|u0 ij − uij |2, (2)

where n2 is the total number of pixels in the image, u0

represents the original clean image, σ2
u0

is the variance of
u0, and u represents the image of interest.

Fig. 2. The GeoSTAR point spread function (PSF). A characteristic of an
aperture synthesis system is that the PSF is a 2-dimensional sinc-like function,
showing positive and negative excursions, that produces ringing at sharp edges
and other transitions in the observed field.

III. BACKGROUND

The degradation model of an image u0 we consider is

f = Hu0 + κ, (3)

where H is an operator characterizing blurring and subsam-
pling, κ is additive noise, and f is an observed image. In
case of an aperture synthesis system, H contains a sinc-like
convolution operation which introduces sidelobes in the ob-
servation. The conventional approach to suppressing sidelobes
is to apply linear apodization. However, this approach has the
undesirable side effect of degrading spatial resolution [2].

Another approach of suppressing interferometric side-
lobes is to construct a variational formulation for image
reconstruction and solve an inverse problem. Since problem
(3) is highly ill-posed, regularization should be applied within
a variational framework in order to achieve stability while
preserving a priori properties of the solution.

Variational methods play a very important role in image
analysis since they allow for accurate and dense estimation
of the solution to an ill-posed problem. Variational techniques
are based on the minimization of a functional that consists of
a similarity term F (Hu−f) that preserves certain features in
the data, and a regularization term R(u) that regularizes the
non-unique solution by an additional smoothness assumption.
The general minimization problem for reconstructing u, which
is an approximation of u0, can be written as:

min
u
{R(u) + F (Hu− f)} . (4)

Several regularization terms have been presented in the liter-
ature, including [4]–[7]. Also, new image restoration models,
based on non-local image information, have been developed
[8]–[12], which have proved successful in medical imaging
and computational photography applications. In particular,
[13] introduced the nonlocal means filter for image denoising,
and in [8], [9], [14], the authors formulated a variational
framework by proposing nonlocal regularizing functionals. In
[15], [16], the authors proposed an approach that uses the
Mumford-Shah model [17] and nonlocal image information.
However, such approaches are very computationally expensive.

We formulate the restoration problem within the variational
framework, using the total variation regularization. The L1-
regularized type norm ||u||TV measures the total variation
(TV) of a signal, and is defined as

||u||TV =

∫
|∇u|.



YANOVSKY et al.: EFFICIENT DECONVOLUTION AND SUPER-RESOLUTION METHODS IN MICROWAVE IMAGERY 3

Fig. 3. Original 150GHz microwave 400x400 pixel image of the simulated
hurricane Rita and its zoomed in region are shown. The units on color bar are
in Kelvin. The spatial resolution of the model used to produce the simulation
is 1.9 km.

The discrete total variation is given as

||u||TV = ||∇u||1 =
∑

(i,j)∈Ω

||∇uij ||. (5)

The TV norm was originally proposed for image denoising
and deblurring [3], [18] and had since been used to solve a
variety of image reconstruction problems. The effectiveness of
the TV norm stems from its ability to preserve edges in an
image.

In [19], [20], the authors proposed fast operator-splitting
and alternating minimization methods for solving TV-L2 de-
convolution problems. Also, the Split Bregman algorithm for
denoising images was proposed in [21]. In their paper, the
authors show that the Bregman iteration can be used to solve
rapidly and accurately a wide variety of constrained optimiza-
tion problems. These formulations are related to problems that
arise frequently in compressed sensing, where function u is
reconstructed from a small subset of its Fourier coefficients
[22]–[24]. Inspired by these methodologies, we minimize the
deconvolution and super resolution problems within the Split
Bregman minimization framework.

IV. FAST SPLIT BREGMAN DECONVOLUTION

A deconvolution process reverses the effects of a blurring
sensor point spread function (PSF) on observed data in the
presence of noise. It is also an important step in multiframe
super-resolution.

Let u0 ∈ Rn×n be an original unknown image, K be a
convolution operator that represents the point spread function,
and κ ∈ Rn×n be additive noise. A blurred, distorted, and
noisy observation f satisfies the model

f = K ∗ u0 + κ. (6)

The convolution model (6) is a specific case of (3). The
restoration problem is formulated within the variational frame-
work, with the total variation (5) as a regularization. Given
a single observation f , we solve the inverse problem. The
minimization problem for TV-L2 deconvolution can be written
as

min
u
||u||TV +

µ

2
||K ∗ u− f ||22, (7)

(a) 157 GHz (b) 166 GHz

(c) 176 GHz (d) 180 GHz

Fig. 4. Original four microwave channels (157, 166, 176, and 180 GHz)
of the simulated hurricane Rita image. These four channels correspond to
the AMSU-B water vapor sounding channels, which are placed progressively
closer to the 183 GHz water vapor resonance frequency to provide a range
of penetration depths. These channels are later combined with temperature
profiles to resolve the vertical distribution of water vapor in the atmosphere.
The 150GHz channel is shown in Figure 3. The units on color bar are in
Kelvin.

where u is a reconstruction and µ > 0 is a weight on the L2

norm of the residual of (6). The value of µ can be calculated
automatically via Bregman iteration [25], [26].

In order to minimize (7), an additional variable d is intro-
duced to transfer ∇u out of non-differentiable terms at each
pixel, and ||d−∇u||2 is penalized. Hence, the Split Bregman
formulation of the problem (7) is

min
u,d

||d||1 +
λ

2
||d−∇u− b||2 +

µ

2
||K ∗ u− f ||2. (8)

Here, λ is a nonnegative parameter, and variable b is chosen
through Bregman iteration [25], [26]:

b ← b + (∇u− d).

For a fixed u, the minimization problem for d is

d∗ = arg min
d

{
||d||1 +

λ

2
||d−∇u− b||2

}
,

which can be explicitly solved for d, at each pixel, by using
a generalized shrinkage formula [27], [28]:

d = max
{
||∇u+ b|| − 1

λ
, 0
} ∇u+ b

||∇u+ b||
.

For a fixed d, the minimization problem (8) is quadratic in u:

u∗ = arg min
u

{
||d−∇u− b||2 +

µ

λ
||K ∗ u− f ||2

}
,

and has the optimality condition:

µK̃ ∗K ∗ u− λ4u = µK̃ ∗ f − λ∇ · (d− b), (9)
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(a) Blurry and noisy (b) Original Error. (c) Reconstruction (d) Final Error.
150GHz image SNR = 5.98, RMSE = 20.46K SNR = 8.77, RMSE = 14.85K

Fig. 5. Split Bregman deconvolution of a simulated 150 GHz hurricane image. (a) Original image from Figure 3 is convolved with the GeoSTAR kernel
from Figure 2. (b) Error between clean image and blurry image. (c) Deconvolution result. (d) Error between clean image and deconvolution result.

(a) Apodization result (b) Error. SNR = 4.78,
RMSE = 23.50K

Fig. 6. (a) Result obtained after applying the conventional linear apodization
method on image of Figure 5(a). (b) Corresponding error is shown. Linear
apodization method raises the errors relative to Figure 5(b).

where K̃(x) = K(−x). Similar to [19], we solve (9) using
the fast Fourier transform:

u = F−1

F
(
µK̃ ∗ f − λ∇ · (d− b)

)
F
(
µK̃ ∗K − λ4

)
 .

We tested the method on simulated microwave 150, 157,
166, 176, and 180 GHz channel images of the 2005 Atlantic
hurricane Rita, shown in Figures 3 and 4. For comparison,
GeoSTAR operates at some of the same frequencies of the

Advanced Microwave Sounding Unit - B (AMSU-B) tem-
perature and humidity sounders near 55 GHz and 180 GHz,
respectively. The images are 400 by 400 pixels and were
derived from cloud resolving numerical weather prediction
model (WRF) [29] simulations. The resolution of a pixel is 1.9
km. We used the 101 by 101 GeoSTAR point spread function
K, which has a full width at half maximum of 27.6 km and
is shown in Figure 2, to blur the images.

Figure 5(a) shows the 150 GHz image of Figure 3 de-
graded with the GeoSTAR blur. The result in Figure 5(c)
is obtained using the efficient Split Bregman deconvolution
model. Figures 5(b,d) show the original error and error after
reconstruction as well as give signal-to-noise ratio (SNR)
and root mean square (RMS) error values (see (1) and (2)).
These error measures are relative to the original image in
Figure 3. In Figures 5(a,b) we see how the GeoSTAR PSF
renders an image which tends to “ring” spatially to produce an
unnatural appearance. In Figure 5(c), the proposed technique
has produced an image which not only appears to match the
true image, but in Figure 5(d) truly reduces image errors
compared to Figure 5(b). Such error reductions are not realized
by apodization (see Figure 6), which in fact raises the errors
relative to Figure 5(b) [2].

Figure 7 shows reconstruction results for other (157, 166,
176, and 180 GHz) channels. Table I shows SNR ratios and
Table II shows RMS errors for each of the five channels before
and after reconstruction. These error measures are relative to
the original images in Figures 3 and 4.

We also assessed computational efficiency of the fast fourier
transform-based Split Bregman deconvolution method. Alter-
natively, a standard way of minimizing energy functional (7) is
to use the gradient descent method. We found that solving the
deconvolution problem using the fast Split Bregman method is
over five hundred times faster than using the gradient descent
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157 GHz 166 GHz 176 GHz 180 GHz

(a) Blurry and noisy images

(b) Reconstruction

Fig. 7. Split Bregman deconvolution of simulated hurricane images. The four columns represent different microwave channels, with higher frequencies,
representing upper atmosphere, being highly saturated. (a) Original images from Figure 4 are convolved with GeoSTAR kernel from Figure 2. (b) Deconvolution
results. Results for the 150GHz channel are shown in Figure 5. SNR and RMSE values for blurry and reconstructed images are listed in Tables I and II,
respectively.

TABLE I
SIGNAL-TO-NOISE RATIOS OF BLURRY AND RECONSTRUCTED IMAGES

SHOWN IN FIGURES 5 AND 7

Channels Blurry image Reconstructed image

150 GHz 5.98 8.77

157 GHz 6.29 9.09

166 GHz 6.84 10.82

176 GHz 7.26 11.91

180 GHz 6.47 11.22

TABLE II
ROOT MEAN SQUARE ERRORS (IN KELVIN) IN BLURRY AND

RECONSTRUCTED IMAGES SHOWN IN FIGURES 5 AND 7

Channels Blurry image Reconstructed image

150 GHz 20.46 14.85

157 GHz 15.37 11.14

166 GHz 10.49 6.63

176 GHz 8.23 4.82

180 GHz 5.19 3.01

method.

V. SIMULTANEOUS DECONVOLUTION AND UPSAMPLING
VIA SPLIT BREGMAN METHOD

In addition to the effects of noise and point spread function,
microwave images are inherently of low spatial resolution
compared with optical sensors with similar receiving apertures.
The pixel size for the Advanced Microwave Sounding Unit
(AMSU) microwave sensors ranges from 15 km (AMSU-B)

to 50 km (AMSU-A) per pixel at nadir. Thus, for example, a
3000 by 3000 km scene can be represented on a 200x200 grid
(for AMSU-B) to as coarse as a 60x60 grid (for AMSU-A).
This limits scientific analysis of reconstructed data products.
Our objective is to simultaneously (i) increase the effective
resolution of the observed image, upsampling the resolution by
a factor of at least 2 in each dimension, (ii) reduce the effects
of noise, and (iii) preserve the edges and other features in
the image. Hence, in the case of AMSU-B measurements, our
goal is to recover a deblurred and denoised representation of a
scene on a 400x400 grid (7.5 km resolution) from a blurry and
noisy representation on a 200x200 grid. A conceptual diagram
of the simultaneous deconvolution and upsampling process is
shown in Figure 8.

We first describe the forward imaging model, which con-
volves, adds noise to, and downsamples the physical scene as
it is being captured by the sensor. The downsampling process
is defined by the downsampling operator. Such an operator is
a transformation from a fine (high-resolution) grid to a coarse
(low-resolution) grid. We denote the downsampling matrix as
D ∈ Rn×p with p = n/k, where k is the downsampling
(or upsampling) factor. The larger the downsampling factor
k is, the coarser the resulting grid would be. We assume
that a physical scene u0, when being captured, is convolved
with an antenna kernel K, corrupted with noise κ, and then
downsampled with an operator D, arriving at the observation
f ∈ Rp×p:

f = DT (K ∗ u0 + κ)D. (10)

In order to enhance the effective spatial resolution, we solve
the inverse problem. The minimization problem for simulta-
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Fig. 8. Conceptual diagram of deconvolution and upsampling process. Deconvolution process, described in Section IV, reverses effects of a blurring sensor
point spread function (PSF) on observed data in the presence of noise, reconstructing an image on the same grid as the blurry image. Upsampling process
upsamples the blurry image to a finer grid, without performing deconvolution. In simultaneous deconvolution and upsampling, described in Section V, both
steps are performed at the same time.

neous deconvolution and upsampling can be written as

min
u
||∇u||1 +

µ

2
||f −DT (K ∗ u)D||2, (11)

where µ is a nonnegative parameter.
In [15], [16], the authors proposed to solve (10) using the

Mumford-Shah model [17] and nonlocal image information.
However, such an approach is very computationally expensive.
In this paper, we minimize the simultaneous deconvolution
and upsampling problem (11), within the Split Bregman mini-
mization framework. We consider the following minimization
problem, which is based on a half-quadratic approximation of
(11) as

min
u,d

||d||1 +
λ

2
||d−∇u−b||2+

µ

2
||f−DT (K∗u)D||2. (12)

Equations for b and d are the same as in Section IV and are
therefore omitted. For a fixed d, the minimization problem
(12) is quadratic in u:

u∗ = arg min
u

λ

2
||d−∇u−b||2 +

µ

2
||f −DT (K ∗ u)D||2.

Its optimality condition is given as:

4u−∇·(d−b)+
µ

λ
K̃∗
(
D
(
f−DT (K∗u)D

)
DT
)

= 0, (13)

where K̃(x, y) = K(−x,−y). Unlike equation (9), equation
(13) can not be solved using the fast Fourier Transform due
to the presence of operator D. Instead, we parametrize the
descent direction by an artificial time t and solve the Euler-
Lagrange equation in u(t) using the gradient descent method:

∂u

∂t
= 4u−∇· (d−b) +

µ

λ
K̃ ∗

(
D
(
f −DT (K ∗u)D

)
DT
)
.

We tested the Split-Bregman-based simultaneous deconvo-
lution and upsampling method on the 400 × 400 AMSU-
B 150 GHz channel image shown in Figure 3. In order to
generate test cases, this image has been blurred with the
GeoSTAR point spread function, degraded by Gaussian noise,
and downsampled to different resolutions. The downsampling
factors were chosen to be k = 2, 3, 4, 8, 16, which correspond

TABLE III
SIGNAL-TO-NOISE RATIOS OF DOWNSAMPLED BLURRY AS WELL AS
RECONSTRUCTED 150 GHZ IMAGES SHOWN IN FIGURES 9 AND 10

Downsampling Downsampled blurry Reconstructed image
factor image

k = 1 5.98 8.77

k = 2 5.94 7.74

k = 3 5.87 7.32

k = 4 5.46 7.06

k = 8 4.98 6.33

k = 16 3.93 4.59

to downsampling the 400×400 image to 200×200, 134×134,
100×100, 50×50, 25×25 images, respectively (see Figure 9).

After the test cases were generated, the simultaneous de-
convolution and upsampling method was used to reconstruct
the images back to the original 400 × 400 grid, as shown in
Figure 10. Figure 11 shows errors before and after reconstruc-
tions. Table III shows the signal-to-noise ratios and Table IV
shows RMS errors of the downsampled and blurry as well as
reconstructed images. The first column in each of these tables
specifies the factors that were used to downsample images to
coarser grids before the reconstruction was performed. The
results show that even though the images were significantly
corrupted and defined on a coarser grids, the reconstructions
look reasonable for k less than or equal to 8. However, for
k = 16, where each pixel is upsampled to 162 pixels, the
benefit of the reconstruction, as shown by SNR and RMS error
values, is not as significant.

VI. MULTIFRAME SUPER-RESOLUTION

Multiframe super-resolution reconstruction produces a high-
resolution image from a sequence of blurry and noisy low-
resolution images. We assume we are given Q noisy and
blurry observations fk, where k = 1, . . . , Q. If the point
spread function K contains noise sk, the convolution model
describing the relation between the unknown image u0 and
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(a) 200x200 image (k = 2) (b) 134x134 image (k = 3) (c) 100x100 image (k = 4) (d) 50x50 image (k = 8)

Fig. 9. Image (150 GHz channel) from Figure 3 has been blurred with GeoSTAR kernel from Figure 2, degraded by Gaussian noise, and downsampled to
different resolutions. Full size images are shown on the first row, and zoomed in region of each image is shown in the second row.

(a) Upsampling: k = 2 (b) Upsampling: k = 3 (c) Upsampling: k = 4 (d) Upsampling: k = 8

Fig. 10. Simultaneous Deconvolution and Upsampling results for images of Figure 9. All reconstructed images are 400x400. Upsampling factor is given by
k. Full size images are shown on the first row, and zoomed in region of each image is shown in the second row. SNR and RMSE values for downsampled
blurry images of Figure 9 and reconstructed images shown in this figure are listed in Tables III and IV, respectively.

each of the observations fk can be expressed as

fk = (K + sk) ∗ u0 + κk,

where κk is image noise. The PSF noise sk may be due
to contribution from the time-varying thermal misalignment
and constant alignment errors, among other error sources. A
conceptual diagram of multiframe super-resolution process,
which involves PSF degraded with different noise functions
for each frame, is shown in Figure 12.

Availability of oversampled observations provides for data
redundancy and can be used to decrease the effects of image
noise and a noisy point spread function. The minimization

problem for multiframe super-resolution we consider is

min
u
||u||TV + µ

Q∑
k=1

ωk||K ∗ u− fk||22, (14)

where we choose the weighting constants ωk using the total
variation (TV) averaging [30]:

ωk =
||fk||TV∑
q ||fq||TV

,

with
∑

q ωq = 1. The similarity term in (14) does not involve
sk ∗ u term; however, the averaging process reduces the
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(a) Upsampling: k = 2 (b) Upsampling: k = 3 (c) Upsampling: k = 4 (d) Upsampling: k = 8

Fig. 11. First row shows errors in blurred, degraded by noise, and downsampled images from Figure 9. Second row shows errors in reconstructed images
from Figure 10.

TABLE IV
ROOT MEAN SQUARE ERRORS (IN KELVIN) IN DOWNSAMPLED BLURRY AS

WELL AS RECONSTRUCTED 150 GHZ IMAGES SHOWN IN FIGURES 9
AND 10

Downsampling Downsampled blurry Reconstructed image
factor image

k = 1 20.46 14.85

k = 2 20.56 16.72

k = 3 20.72 17.53

k = 4 21.72 18.07

k = 8 22.97 19.65

k = 16 25.91 24.02

effective noise in a point spread function, as was shown in
[31], [32]. We can re-write the minimization problem (14) as

min
u
||u||TV + µ||K ∗ u− f̄ ||22, (15)

where f̄ =
∑

k ωkfk is the weighted TV mean of the
observations fk. The signal-to-noise ratio for an average image
f̄ will be larger than that for each fk. In [30], the authors
rigorously analyzed the advantages of using multiple degraded
images for reconstruction. It was shown that while high spatial
frequencies of fk are contaminated by noise, the averaging
process, such as TV averaging, reduces the amplitude of high
frequencies in f̄ . Hence, the minimization problem (15) allows
us to recover a wider range of frequencies of u0 as the
number of images increases. We apply fast Split Bregman
deconvolution to (15) as was described in the previous section.

Figures 13 and 14 show the multiframe super-resolution
results. Figure 13(a,b) shows a noisy GeoSTAR PSF corrupted
with 10% visibility error. The clean image is consecutively
blurred with the noisy PSF of this characteristic and is also
corrupted with additive image noise of variance σ2 = 5K to
produce a multiframe image sequence. The average signal-to-

Fig. 12. Conceptual diagram of multiframe super-resolution process. A
depiction of a physical scene, when captured, is convolved by the PSF K,
degraded by a different noise function sk , to arrive at the observation fk . The
super-resolution algorithm reconstructs image u from multiple observations.

noise ratio of an image in the corrupted sequence is 5.93, and
the average RMS error is 20.57. One of the corrupted images
in a sequence is displayed in Figure 13(c). Super-resolution
reconstruction results are shown in Figure 14 for cases when
3, 5, 10, and 20 frames are used. Table V shows signal-to-noise
ratios and Table VI shows RMS errors of the reconstructed im-
ages. As expected, the quality of the reconstruction increases
with the number of images in a sequence. Note that these
errors – of 20 Kelvin for a single frame in Table VI – represent
an extreme case for the purpose of illustration. The image
noise requirement for the GeoSTAR instrument is 0.3 Kelvin
RMS image error for each 15 minute image. The system
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TABLE V
SIGNAL-TO-NOISE RATIOS OF 150 GHZ IMAGE AFTER MULTIFRAME

RECONSTRUCTION AS SHOWN FIGURES 14. FOR INITIAL FRAMES, AS IN
FIGURE 13, SNRS ARE 5.93.

Number of frames Reconstructed image

3 7.41

5 7.96

10 8.40

20 8.58

TABLE VI
ROOT MEAN SQUARE ERRORS (IN KELVIN) IN 150 GHZ IMAGE AFTER

MULTIFRAME RECONSTRUCTION AS SHOWN IN FIGURE 14. FOR INITIAL
FRAMES, AS IN FIGURE 13, RMS ERRORS ARE 20.57.

Number of frames Reconstructed image

3 17.36

5 16.29

10 15.49

20 15.17

will be capable of observing shorter time intervals with the
expectation that noise performance will degrade approximately
by the inverse square root of observation time – but would
never rise as high as 20 Kelvin (which would imply an
observation interval of 0.2 seconds – which is much faster
than any requirement).

VII. CONCLUSION AND FUTURE WORK

We developed efficient deconvolution and super-resolution
methodologies and applied these techniques to reduce im-
age blurring and distortion inherent in an aperture synthesis
system. Unlike the conventional linear apodization approach,
our process reduces not only the ringing within the image,
but also significantly reduces the errors in the overall image.
The deconvolution model was generalized to include the
upsampling of images to a higher resolution grid. Furthermore,
we developed an efficient multiframe super-resolution method
which is robust to image noise and noise in the point spread
function and leads to additional improvements in the spatial
resolution.

There are several paths for future research. The most obvi-
ous one is to extend our methodology to multispectral frame-
work, as we expect that combining multiple channels in the
minimization procedures, rather than performing channel-by-
channel minimization, would reduce errors in reconstruction.
We also plan to enhance temporal resolution by accounting for
physical deformation in consecutive frames while the scene is
being captured. Ongoing and future work will also involve
a broader study of performing simultaneous upsampling and
deconvolution on real data. Finally, we plan to combine
multiframe, multispectral, and simultaneous upsampling and
deconvolution into a single computational framework.
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