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ABSTRACT
We present a principled spectral approach to the well-studied
constrained clustering problem. It reduces clustering to a
generalized eigenvalue problem on Laplacians. The method
works in nearly-linear time and provides concrete guaran-
tees for the quality of the clusters, at least for the case of
2-way partitioning. In practice this translates to a very fast
implementation that consistently outperforms existing spec-
tral approaches. We support this claim with experiments on
various data sets: our approach recovers correct clusters in
examples where previous methods fail, and handles data sets
with millions of data points - two orders of magnitude larger
than before.

1. INTRODUCTION
Clustering with constraints is indisputably a problem of

central importance in the data mining community. The ex-
tensive literature reports a plethora of approaches and meth-
ods, including spectral methods that explore various exten-
sions of the foundational ‘unconstrained’ spectral method by
Shi and Malik [24], and Ng et al. [21].

While our present work falls in the general class of spectral
methods, it enjoys a number of key distinctive features that
set it apart from previous works:

a. The method is a natural generalization, rather than
a mere extension, of the foundational spectral method. It
supersedes it by encompassing it as a special case of con-
strained clustering. The solution is derived from a geomet-
ric embedding that results from a spectral relaxation of an
optimization problem, exactly in the spirit of [24, 21].

b. The method is in fact a generalization of a revised form
of the foundational methods, which explicitly incorporates
recent theoretical progress by Lee et. al [17]. To the best
of our knowledge, the particular embedding that is analyzed
in [17] has never been used before in practical settings. Our
experiments indicate that it contributes significantly to the
quality of our results, and performs better when compared
to previously studied variants [29, 20].
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c. The method is fast by design. Casting the problem as a
generalized eigenvalue problem on graph Laplacians enables
the use of the recently discovered fast linear system solvers
for Laplacians [12]. This yields a nearly-linear time method
capable of dealing with much larger data sets.

d. The method comes with a theoretical guarantee for
the quality of 2-way constrained partitioning, with respect
to the underlying discrete optimization problem. The guar-
antee is a generalization of the classical Cheeger inequality
which provides a guarantee for the unconstrained 2-way par-
titioning. Similar to [24, 21], our work poses a number of
theoretical questions. Concretely, the quality of our results
suggests the existence of generalizations of ‘higher order’
Cheeger inequalities shown in [17].

Roadmap. We begin with the problem definition in Sec-
tion 1.1, where we also introduce and justify a key design
decision, which is to merge a subset of the constraints with
the input graph. In Section 1.2, we proceed to a high-level
schematic overview of our approach. We also include a
discussion of related work that is not intended to be com-
prehensive but rather to delineate the key differences of our
approach. Here, we also make what we believe is an impor-
tant point. Most of the works from the present literature
constitute extensions of the ‘base’ methods in [24, 21]. In
certain cases, this base can now be entirely replaced by our
method, potentially yielding further improvements, which is
why we expect that our method will motivate further re-
search. Section 2 describes the components of our method
in detail: the discrete optimization problem, its spectral re-
laxation, the geometric embedding and the final clustering,
along with a review of the algorithms that enable near-linear
time computation. We also prove that the classical ‘un-
constrained’ spectral clustering is indeed a special case of
our framework. Section 3 provides theoretical justifica-
tion for our method. In particular, we describe the concrete
bound on the quality of the 2-way partition provided by our
method. Our work raises some interesting theoretical ques-
tions about its expected performance in the general k-way
case. We include the related conjecture in Section 3. In
Section 4 we report on a comprehensive set of experiments
that have been carried out on diverse data sets to validate
our proposed approach. We conclude in Section 5 with possi-
ble directions for future work. Finally, the appendix section
provides more details related to the numerical computation
aspects of the Laplacian solver.



1.1 Problem Definition
The constrained clustering problem is specified by three

weighted graphs:

1. The data graph GD which, contains a given number of
k clusters that we seek to find. Formally, the graph is a
triplet GD = (V,ED, wD), with the edge weights wD being
positive real numbers indicating the level of ‘affinity’ of their
endpoints.

2. The knowledge graphs GML and GCL. The two graphs
are formally triplets GML = (V,EML, wML) and GCL =
(V,ECL, wCL). Each edge in GML indicates that its two
endpoints should be in the same cluster, and each edge in
GCL indicates that its two endpoints should be in different
clusters. The weight of an edge indicates the level of belief
placed in the corresponding constraint.

We emphasize that prior knowledge does not have to be
exact or even self-consistent, and thus the constraints should
not be viewed as ‘hard’ ones. However, to conform with prior
literature, we will use the existing terminology of ‘must link’
(ML) and ‘cannot link’ (CL) constraints to which GML and
GCL owe their notation respectively.

In the constrained clustering problem the goal is to find
k disjoint clusters in the data graph. Intuitively, the clus-
ters should result from cutting a small number of edges in
the data graph, while simultaneously respecting as much as
possible the constraints in the knowledge graphs. Within
this framework, one can define various objective functions
that attempt to quantify the general goal. None of these
functions is a priori the ‘right’ one, and many of them are
arguably natural. An important consideration in picking
an objective function is of course the hardness of comput-
ing satisfactory approximate solutions. Indeed, our choice
of functions will be made with an eye towards nearly-linear
time computations, an essential constraint in the analysis of
very large data.

A design decision: data as ML constraints. One may
argue that the data graph is an implicit encoding of ML
constraints. Indeed, pairwise affinities between nodes can be
viewed as ‘local declarations’ that these two nodes should be
connected rather than disconnected in a clustering. There-
fore, the prior knowledge graph GML can be viewed as a
second set of ML constraints, perhaps associated with a dif-
ferent relative level of confidence α. This motivates us to
define an extended data graph as

G̃D[α] = (V,ED ∪ EML, wD + α ∗ wML).

The parameter α may be subject to exploration. Different
values of α can produce different clusterings that can be eval-
uated with an independent criterion that can be problem-
dependent. In practice, our computations will be very light-
weighted, allowing experimentation with varying values of α.
In our experiments we consistently take α to be a constant;
the results are not sensitive to varying it.

1.2 Spectral Clustering: An Overview
The classical work in [24, 21] casts the k-way partitioning

as a discrete optimization problem, which, by its definition,
attempts to capture certain properties that a ‘nice’ cluster is
expected to have. The optimization problem is defined solely
in terms of the data graph, and its spectral relaxation gives
rise to the generalized eigenvalue problem Lx = λDx where
L is the Laplacian matrix (def. in Sec. 2.1) of the input

graph, and D is its diagonal. As a next step, k eigenvectors
are computed, and after a post-processing step, the nodes
of the graph get embedded in the Euclidean space, where
the popular k-means algorithm is finally applied to obtain a
partition.

Figure 1: The base spectral method [24, 21].

The algorithmic flow is depicted in Figure 1.2, which takes
the non-standard view of the diagonal matrix D as an en-
coding of implicit CL constraints. We will justify this in
Section 2.4.

Early works on spectral constrained clustering modified
the flow in Figure 1.2 only by changing the Laplacian L in
order to incorporate the constraints [9, 15, 19]. As we dis-
cussed above, this modification is also part of our approach,
but only for the ML constraints.

A different approach is taken in [18], which, as shown in
Figure 1.2, modifies the flow after the embedding. This ap-
proach is agnostic to the input embedding. In principle, it
can be applied onto any embedding including the one re-
turned by our method.

Figure 2: Adjusting the embedding.

A number of other works [33, 5, 10, 31, 30] use the ML and
CL constraints to super-impose algebraic constraints onto
the spectral relaxation, as shown Figure 1.2.These additional
constraints usually give rise to much harder constrained op-
timization problems. These are solved with algorithms that
often skip the embedding component of the algorithmic flow,
and have no theoretical guarantees on their runtime. Even
the empirical time is certainly not nearly-linear as mani-
fested by the limited data size in the reported experiments,
or sometimes by the lack of actual runtime reports.

Figure 3: Imposing algebraic constraints.

Adding algebraic constraints can be viewed as a disguised
way to re-define the discrete optimization problem. There
have also been more explicit attempts to defining a modified
discrete optimization problem that incorporates more nat-
urally the constraints [9, 32, 7, 4, 33, 23]. However, none
of them deals with both CL constrains and general k-way
partitioning.



The work in this article represents a conceptually simple
generalization of the original work in [24, 21], and for com-
parison we show the algorithmic flow in Figure 1.2.

Figure 4: A schematic overview of our approach.

As we discussed above, the ML constraints are merged into
the data Laplacian matrix L. The CL constraints (which op-
tionally can include the implicit constraints from Figure 1.2)
are now explicitly encoded into a second Laplacian H. We
then setup a natural discrete optimization problem involv-
ing the constraints, and relax it to a generalized eigenvalue
problem Lx = λHx. We will carefully describe each of the
components in our algorithm, in the next Section.

We wish to close this introductory Section with three
somewhat more technical remarks:

R1. The embedding component is of special importance in
our approach. Since the introduction of spectral clustering
there has been some level of confusion as to whether the
eigenvectors of the random walk matrix D−1L or those of
the normalized Laplacian D−1/2LD−1/2 should be used, and
how. This ‘confusion’ has propagated in various forms into
the subsequent literature. Recent work by Lee et al. [17] has
settled these questions with the analysis of a slightly revised
embedding. In our work, we carefully generalize the embed-
ding proposed in [17] using an insight that we derive from
another recent work [13]. We have found that using [17] for
the underlying ‘unconstrained’ embedding does yield better
results, implying that there is potential for improvement
in previous works that use the older embeddings.

R2. The work by Wang et al. [30] comes close to our ap-
proach in that it reduces the problem into a generalized
eigenvalue problem Lx = λQx, where Q encodes both ML
and CL constraints. However Q is not always positive defi-
nite, and as a result, the problem does not admit a fast al-
gorithm. Conceivably, one can modify the approach in [30]
and directly force Q to be positive definite, in particular
a signed Laplacian. However the algebraic behavior of the
signed Laplacian is markedly different and it does not lead
to embeddings with good behavior: our experiments have
been very disappointing in this direction, in particular for
k > 2.

R3. A number of algorithms in the literature (e.g. [10, 23])
are iterative, where each iteration provides a slightly better
solution to the discrete optimization problem. Naturally, it-
erative algorithms are expected to be somewhat slower (even
when convergence is fast). Our algorithm is a ‘one-shot’ ap-
proximation algorithm: it provides a solution which hope-
fully is a good approximation to the optimal one. However,
it can itself be iterated, for example by adapting the spec-
tral rounding approach [26]. Apart from speed reasons, we
deliberately do not discuss iterations because our goal is
to describe a simple ‘base’ approach that can be adjusted,
modified or amended by subsequent works.

2. METHOD AND ALGORITHMS
We discuss the components of our methods, following the

outline in Figure 1.2. We begin with the definition and a
key property of Laplacians.

2.1 Graph Laplacians.
Let G = (V,E,w) be a graph with positive weights. The

Laplacian LG ofG is defined by LG(i, j) = −wij and LG(i, i) =∑
j 6=i wij . The graph Laplacian satisfies the following basic

identity for all vectors x:

xTLGx =
∑
i,j

wij(xi − xj)2.

Given a cluster C ∈ G we define a cluster indicator vector
by xC(i) = 1 if i ∈ C and xC(i) = 0 otherwise. We have:

xTCLGxC = (weight of edges crossing from C to C̄) (1)

2.2 The Discrete Optimization Problem
To render our discussion slightly more intuitive, let us as-

sume that the graphs are unweighted. Consider the partition
problem in which we seek to split the node set V into S and
V − S with the goal of solving the following minimization
problem.

φ = minS
# edges cut in G̃D

# of satisfied CL constraints
. (2)

This is a reasonable objective function for a 2-way cut, be-
cause it favors satisfying many CL constraints while vio-
lating few ML constraints (‘data’ and input constraints, as
discussed in Section 1.1). This asymmetry in the treatment
of CL and ML constraints is what enables casting the opti-
mization problems in terms of Laplacians. Concretely, if we
let xC denote the indicator vector for C ⊆ V , we have:

φ = minC

xTCLG̃D
xC

xTCLGCLxC
. (3)

The above problem can in principle be generalized to k-
way cuts. However, when it comes to partitioning into more
clusters it leaves something to be desired. Specifically, it
favors the extraction of clusters that are good on average,
as it pays no attention to individual clusters. With this in
mind, we define an individual measure of goodness for
each cluster Ci among k clusters:

φi(G̃D, GCL) =
# edges leaving Ci in G̃D[α]

# satisfied CL constraints incident to Ci
.

(4)
where a constraint is said to be incident to Ci if at least one
of its endpoints is in Ci. It can be seen that this number of
satisfied constraints is equal to the number of edges leaving
Ci in GCL We would like then to find clusters C1, . . . , Ck

that solve the following problem:

Φk = min max
i
φi. (5)

While insisting on the worst cluster being good, this defi-
nition is flexible in a key way: the clusters do not have to
constitute a partitioning of the set of nodes, i.e. their union
does not have to be V . Therefore the definition naturally
allows and can accommodate for noise or outliers in the data
or prior knowledge.



Again, this can be captured in terms of Laplacians: letting
Ci denote the indicator vector for cluster i, we have

φi(G̃D, GCL) =
xTCi

LG̃D
xCi

xTCi
LGCLxCi

.

Therefore, solving the minimization problem posed in equa-
tion 5 amounts to finding k vectors in {0, 1}n with disjoint
support.

2.3 Spectral Relaxation
In the sequel we will simplify our notation and use G and

H to denote G̃D and GCL respectively. We have shown in
equation 3 that given two graphs G and H we have:

φ(G,H) = min
x∈{0,1}n

xTLGx

xTLHx
.

A natural step towards approximately solving the problem
is to relax it over the reals and find a real vector x which
minimizes the following:

λ(LG, LH) = min
x∈Rn

xTLGx

xTLHx
.

Note that H does not have to be connected. Since we’re
looking for a minimum of this ratio, the optimization func-
tion automatically avoids vectors that are in the null space
of LH . That means that no restriction needs to be placed on
x so that the problem is well defined, other than it can’t be
the constant vector, assuming without loss of generality that
G is connected. It is well understood that the solution vector
to this problem is the first non-trivial generalized eigenvec-
tor of the problem

LGx = λLHx (6)

and λ(LG, LH) is the corresponding eigenvalue.

Relaxing the k-way problem. Recall the k-clustering
problem we defined in equation 5 and that in order to solve
it, it suffices to find k vectors in {0, 1}n of disjoint sup-
port. Imagine that an n × k matrix X with these vectors
as columns is given. Each row of that matrix can be viewed
as a point in Rk, and since coordinates of these vectors cor-
respond to graph nodes, each node is mapped into the k-
dimensional Euclidean space. Observe that nodes that be-
long in the same cluster are actually mapped to the same
point in Rk. Of course it is hard to compute X, but we can
hopefully compute an approximation to it by relaxing the
problem over the real vectors. In the relaxed problem, dis-
jointness loosely translates to some type of orthogonality
and so the goal becomes to find k orthogonal vectors such
that the ratios (xTLGx/x

TLHx) are as small as possible.
With the appropriate notion of orthogonality the problem is
equivalent to computing the k first non-trivial eigenvectors
of the problem LGx = λLHx. These vectors can be used
to embed the nodes into Rk and intuitively the nodes that
should be in the same cluster are mapped to nearby points.
Then we can use a distance-based separation algorithm like
kmeans to recover the clusters. This is precisely the idea
underlying the original works in [24, 21], with the only dif-
ference being in the fact that the diagonal matrix D is used
in place of LH .

2.4 A special case:
‘Unconstrained’ Spectral Clustering

We claim that the classical spectral relaxation for uncon-
strained spectral clustering is a special case in our general-
ized framework.

Before we proceed to a more formal statement and the
proof, let us introduce some notation. Given the graph G,
let di =

∑
j 6=i wij be the weighted degree of vertex i. Let D

be the diagonal matrix with Dii = di.

Proposition 2.1. Given a connected graph G, there is
a graph K such that the generalized eigenvalue problems
LGx = λDx and LGx = λLKx have identical non-trivial
eigenvectors (and eigenvalues).

Proof. Finding the non-trivial generalized eigenvectors
for the problem LGx = λDx can be reduced (via a simple
manipulation and similarity transformation) to finding the
non-trivial eigenvectors y of the normalized Laplacian

D−1/2LGD
−1/2y = λy,

and then setting y = D1/2x.
Because LG is a Laplacian, its null space is the constant

vector. Therefore, we get that the null space of the nor-

malized Laplacian is the vector whose ith coordinate is d
1/2
i .

The non-trivial eigenvectors y, i.e. the ones that correspond
to the non-zero eigenvalue, are orthogonal to the null space

of the matrix. So, we have
∑

i d
1/2
i yi = 0, which directly

implies that
∑

i dixi = 0, or more succinctly dTx = 0.
We define K as a complete graph K = (V,E,wK) with

weights given by wij = didj/
∑

i di. It can be verified that

LK = D − ddT∑
i di

.

But then, using dTx = 0 for all vectors x we have

LKx = Dx− d(dTx)∑
i di

= Dx.

That is, under the constraint dTx = 0, the two eigenvalue
problems are identical.

Moreover, the discrete optimization problem underlying
the selection of K as a graph of CL constraints has an opti-
mal value which is within a small constant from the optimal
of the classical NCut function.

To see this, for a set S ⊆ V , let us denote V (S) =
∑

i∈S di.
For two disjoint sets S1 ⊆ V and S2 ⊆ V we denote by
cut(S1, S2) the total weight of edges whose endpoints lie in
S1 and S2. It is not difficult to show that

φ(G,K) = min
S

cut(S, S̄)vol(V )

vol(S)vol(S̄)
.

and

NCut(S, S̄)/4 ≤ φ(G,K) ≤ NCut(S, S̄),

where

Ncut(S, S̄) =
cut(S, S̄)

vol(S)
+
cut(S, S̄)

vol(S̄)
.

2.5 The embedding
Let X be the n×k matrix of the first k generalized eigen-

vectors for LGx = λLHx. The embedding is shown in Fig-
ure 5.



Input: X,LH , d
Output: embedding U ∈ Rn×k, l ∈ Rn×1

1: u← 1n

2: for i = 1 : k do
3: x = X:,i

4: x = x− (xT d/uT d)u
5: x = x/

√
xTLHx

6: Ui,: = x
7: end for
8: for j = 1 : n do
9: lj = ||Uj,:||2

10: Uj,: = Uj,:/lj
11: end for

Figure 5: Embedding Computation (based on [17])

We wish to discuss some intuition behind the embed-
ding. Without step 4 and with LH replaced with the diag-
onal D, the embedding is exactly the one recently proposed
and analyzed in [17]. It is a variant (actually a combina-
tion) of the embeddings considered in [24, 21, 29], but the
first known to produce clusters with theoretical guarantees
that we discuss in Section 3.2. The generalized eigenvalue
problem Lx = λDx can be viewed as a simple eigenvalue
problem over a space endowed with the D-inner product:
〈x, y〉D = xTDy. Step 5 normalizes the eigenvectors to a

unit D-norm, i.e. xTDx = 1. Given this normalization, it
is shown in [17] that the rows of U at step 7 (vectors in k-
dimensional space) are expected to concentrate in k different
directions. This justifies Steps 8-10 that normalize these row
vectors onto the k-dimensional sphere, in order to concen-
trate them in a spatial sense. Then a geometric partitioning
algorithm can be applied.

From a technical point of view, working with LH instead
of D makes almost no difference. LH is a positive definite
matrix. It can be rank-deficient, but the eigenvectors avoid
the null space of LH , by definition. Thus the geometric in-
tuition about U remains the same if we syntactically replace
D by LH . Of course, there is a subtlety: LG and LH share
the constant vector in their null spaces. This means that if
x is an eigenvector, then for all c the vector x+ c1n is also
an eigenvector with the same eigenvalue. Among all such
possible eigenvectors we pick one representative: in Step 4
we pick c such that x+c1n is orthogonal to d. The intuition
for this is derived from [13]; this choice is what makes pos-
sible the analysis of a theoretical guarantee for a 2-way cut.
The choice of d (the vector of weighted degrees in G), also
reflects mathematical evidence that the quality of the em-
bedding actually depends only on properties of graph G, not
both G and H. We will further discuss this in Section 3.3.

2.6 Clustering
Given the embedding matrix embedding U , the clustering

algorithm invokes kmeans(U), which returns a k-partitioning.
The partitioning can be refined optionally into a k-clustering
by performing a so-called Cheeger sweep [3] among the nodes
of each component, independently for each component. To
perform the Cheeger sweep, the nodes should be sorted ac-
cording to the values of the corresponding coordinates in
the vector l returned by the embedding algorithm given in 5.
We won’t use this option in our experiments. For the special
case when k = 2, we only need to find the second eigenvec-

tor, sort it and then perform a Cheeger sweep.

2.7 Computing Eigenvectors
The computation of the k generalized eigenvectors for

LGx = λLHx is the most time-consuming part of the entire
process. It takes up to O(km log2m) time, where m is the
number of edges in G and H. Empirically, the running time
is O(km logm). Algorithms for computing eigenvectors of
Laplacians are well-understood. They depend crucially on
fast linear system solvers for Laplacians [11, 14]. We discuss
some details in the Appendix section.

3. THEORETICAL JUSTIFICATION
AND OPEN QUESTIONS

3.1 A generalized Cheeger inequality
Spectral partitioning methods were developed on the basis

of what is known as the Cheeger inequality [3]. Specifically,
if y is any vector such that yT d = 0 then we have

yTLGy

yTDy
≥ (φ(G))2

2
. (7)

This means that the sparsest cut in the graph cannot be
larger than the square root of the ratio of quadratic in the
left-hand side. The proof is actually constructive, as it finds
a cut at least as good as the guarantee, by using the so-called
Cheeger sweep: if Si ⊆ V is the set of nodes corresponding
to the i smallest entries of y, then there is some i such that

λ(LG, LK) ≤ cutG(Si, S̄i)

cutK(Si, S̄i)
≤ 2

√
yTLGy

yTDy
.

Recall that λ(LG, LK) denotes the smallest non-trivial eigen-
value of LGx = λLKx. One would like the right-hand side
of the above inequality to be as small as possible, which
in general can be achieved by computing an ‘approximate’
eigenvector, i.e. a vector y which minimizes this ratio within
a constant of 2.

But is something similar possible for arbitrary pairs of
graphsG andH? It was recently shown that a generalization
of it is possible [13]: one can use any vector y such that
yT d = 0 to find (via a Cheeger sweep) a set S satisfying

λ(LG, LK) ≤ cutG(S, S̄)

cutH(S, S̄)
≤ 4

yTLGy

yTLHy
· 1

φ(G,K)
. (8)

This generalized Cheeger inequality shows that in the 2-
way case our algorithm returns a cut which can be at most
φ(G,K) away from the optimal cut.

3.2 Higher-order Cheeger inequalities
The applied success of spectral clustering [24, 21] led to a

conjecture for the existence of Cheeger-like inequalities in-
volving the higher eigenvalues of Lx = λDx. The conjecture
was settled in the positive in the relatively recent work of
Lee et. al [17]. Specifically it was shown that from the
embedding of the generalized eigenvectors, one can recover
k clusters C1, . . . , Ck, such that for all i:

λk(LG, D) ≤ φi(G,K) ≤ g(k)
√
λk(LG, D)

where k is the kth eigenvalue of LGx = λDx, and g(k) is
a small function of k; since in our case k will be a small
constant the reader can think of g(k) as a constant. We



conjecture that a graph-dependent, high-order generalized
analogue of 8 exists and that it is possible to compute clus-
ters satisfying:

φi(G,H) ≤ g′(k)
λk(LG, LH)

Φk(G,K)
,

for some small function g′(k). We believe that our experi-
ments provide supporting evidence. The fact that the graph-
dependent Cheeger inequalities in [16] have higher order ana-
logues (for the pair (G,K)) constitutes additional mathe-
matical evidence.

3.3 Graph dependent Cheeger inequalities
Inequality 8 is interesting in an additional subtle way:

the approximation quality depends only on G. There have
been recent results that provide graph-dependent Cheeger
inequalities [16] for the pair of graphs (G,K). These show
that the standard Cheeger inequality is pessimistic for
large classes of natural graphs (e.g. graphs with a small
number of small eigenvalues) and thus partially explain its
practical success. Inequality 8 can be viewed as the ba-
sic graph-dependent Cheeger inequality for the generalized
problem. It is actually possible to derive other variants of
it, similar to the ones claimed in 8 but this is beyond the
scope of this article.

A number of recent works (e.g. [1, 2]) observe that the
output of plain spectral clustering improves when the input
graph/matrix is perturbed. We speculate that this is also
a by-product of our design decision to merge the ML con-
straints with the input graph. In particular, ML constraints
often connect vertices that are not close in the data graph.
This in effect alters the graph significantly, in a spectral
sense, without however dramatically changing its cluster-
ing (since ML constraints represent the same ‘ground truth’
where data comes from). This can potentially create situa-
tions where the Cheeger inequality is indeed pessimistic and
the spectral relaxation provides outputs much better than
expected in the general case.

4. EXPERIMENTS
In this section, we sample some of our experimental re-

sults. We compare our method (which we denote by Fast-
GE) mostly against the state-of-the-art constrained spectral
clustering algorithm (denoted by CSP) proposed in [30],
which has been already shown to outperform other approaches
for constrained spectral clustering. For very small data sets
we can replace the iterative methods in our code by exact
algorithms and actually gain in speed. We report the run-
ning time of this exact version under the name GE. We also
include a few comparisons with the classical (unconstrained)
spectral algorithm by Shi and Malik [24].

We run our experiments on an inexpensive mobile 2.4 GHz
Intel Core i7 processor with 8 GB 1600 MHz DDR3 memory.
We wish to emphasize that the reported running times are
only indicative of what is possible, as our code is far from
optimized. With appropriate optimizations we expect a 2-3x
speed-up. The algorithms are also highly parallelizable.

4.1 Synthetic Data Sets
The adjacency graphs underlying the three synthetic data

sets we consider are constructed as follows. We say that a
graph G is generated from the ensemble NoisyKnn(n, kg, lg)
with parameters n, kg and lg if G of size n is the union of

two (non-necessarily disjoint) graphs H1 and H2 each on the
same set of n vertices G = H1∪H2, where H1 is a k-nearest-
neighbor (knn) graph with each node connected to its kg
nearest neighbors, and H2 is an Erdős-Rényi graph where

each edge appears independently with probability
lg
n

. One
may interpret the parameter lg as the noise level in the data,
since the larger lg the more random edges are wired across
the different clusters, thus rendering the problem more diffi-
cult to solve. In other words, the planted clusters are harder
to detect when there is a large amount of noise in the data,
obscuring the separation of the clusters.

Since in the above synthetic data sets, the ground truth
partition is available, we measure the accuracy of the meth-
ods by the popular Rand Index [22]. The Rand Index in-
dicates how well the resulting partition matches the ground
truth partition; a value closer to 1 indicates an almost per-
fect recovery, while a value closer to 0 indicates an almost
random assignment of the nodes into clusters. We also re-
mark that the labeled nodes, that result in the aforemen-
tioned must-link and cannot-link constraints, are chosen uni-
formly at random from the set of n nodes.
Four Moons. As a first synthetic data set, we consider the
Four-Moon example where the underlying graph G is gen-
erated from the ensembles NoisyKnn(n = 500, kg = 30, lg =
3) (Figure 6) and NoisyKnn(n = 1500, kg = 30, lg = 15
(Figure 7). As illustrated by Figures 6 (a) and 7 (a), we
point out that the accuracy of the CSP method diminishes
significantly on this data set with k = 4 clusters compared
to the case k = 2 (for which we omit the experiments due to
space considerations). Furthermore, for the noisier ensemble
NoisyKnn(n = 1500, kg = 30, lg = 15), the CSP method is
unable to return any meaningful results, as shown by Figure
7(c). Note that GE and CSP are faster than Fast-GE for
smaller graph with n = 500 nodes, but significantly slower
on the larger graph of size n = 1500.
PACM. Our second synthetic example is the PACM graph,
formed by a cloud of n = 426 points in the shape of let-
ters {P,A,C,M}, whose topology renders the segmentation
particularly challenging. We again consider two ensembles
NoisyKnn(n = 436, kg = 30, lg = 3) and NoisyKnn(n =
436, kg = 30, lg = 15), and point out that the latter one
is a very noisy example since, on average, each node has
half of its incident edges randomly wired throughout the
graph while the remaining edges connect to nodes in its own
cluster. Our approach returns superior results when com-
pared to the CSP method, except for a few instances from
the second ensemble, when the number of constrains is at
least 250, thus accounting for more than 60% of the vertices.
However, in most practical applications, the number of con-
straints available to the user is usually much smaller than
60%. We point out that for the larger and noisier graph,
when the number of constrains is less then 250, we produce
significantly more accurate results.

4.2 Real Data
In terms of real data, we consider two very different ap-

plications. Our first application is to segmentation of real
images, where the underlying grid graph is given by the
affinity matrix of the image, computed using the RBF ker-
nel, based on the grayscale values of the [8]. The second data
set comes from the social networks literature, and represents
friendship Facebook networks in American colleges.
Santorini. In Figure 10 we test our proposed method on



10 25 50 75 100 125 150 175 200 225 250 275 300 325 350
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Constraints

R
a
n
d
 I
n
d
e
x

 

 

CSP−kmeans

GE−kmeans

FAST−GE−kmeans

(a) Accuracy

10 25 50 75 100 125 150 175 200 225 250 275 300 325 350
0

2

4

6

8

10

12

14

16

Number of Constraints

R
u
n
n
in

g
 T

im
e

 

 

CSP

GE

FAST−GE

(b) Running times

−10 0 10 20 30 40 50

−6

−4

−2

0

2

4

6

8

10

(c) CSP, C = 75
−10 0 10 20 30 40 50

−6

−4

−2

0

2

4

6

8

10

(d) FAST-GE, C = 75

Figure 6: Accuracy and running times for the Four-
Moons data set, with n = 500 nodes, and an un-
derlying graph is given by the model NoisyKnn(k =
30, l = 3), as we vary the number of constraints. We
average the results over 100 experiments.
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Figure 7: Accuracy and running times for the Four-
Moons data set, with n = 1500 nodes, and an un-
derlying graph given by the model NoisyKnn(k =
30, l = 15), as we vary the number of constraints. We
average the results over 100 experiments.
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Figure 8: Accuracy (a) and running times (b) for
the PACM data set, with G given by the ensemble
NoisyKnn(n = 426, k = 30, l = 3), for different num-
ber of constraints. We average the results over 10
experiments. Segmentation for a random instance
produced by CSP (c) and FAST-GE (d).
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Figure 9: Accuracy and running times for the
PACM data set, where G is given by the ensem-
ble NoisyKnn(n = 426, k = 30, l = 15), as we vary the
number of constraints. We average the results over
10 experiments.



the very large Santorini image, of size 628 × 419, with a
total of over a quarter million pixels. The difficulty of the
segmentation is amplified one one hand by the rather large
number of clusters, and on the other hand by the less clear
boundaries between some of the pairs of clusters. Although
the image is somewhat difficult to reconstruct, our approach
successfully recovers the main regions, with few errors, in
just 130 seconds. Computing clusterings in data of this
size is infeasible for CSP.
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Figure 10: Santorini

Patras. Figure 11 shows the segmentation of an image with
over 44K pixels and 5 clusters, which our method is able to
detect satisfactorily, in under 35 seconds. In Figure 13 we
consider a sub-image of the one used in Figure 11 consisting
of only 1886 pixels, in order to be able to compare with CSP
and plain unconstrained spectral clustering. CSP takes 139
seconds to perform the computation, while both Fast-GE
and unconstrained clustering compute a partition in around
1 second. The outcome of both CSP and the unconstrained
clustering algorithms are clearly not satisfactory.
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Figure 11: Patras

Soccer. Finally, in Figure 12 we consider one last Soccer
image, with over 1.1 million pixels for which we compute the
resulting partitioning into k = 5 clusters, using the Fast-
GE method, in under 12 minutes. Note that while k-
means clustering hinders some of the details in the image,
the individual eigenvectors are able to capture more granular
details, such as the soccer ball for example.

4.3 Friendship Networks
The authors of [27, 28] study the structure of Facebook

friendship networks at one hundred American colleges and
universities at a single point in time (2005) and investigate
the community structure at each institution, as well as the

impact and correlation of various self-identified user char-
acteristics (such as residence, class year, major, and high
school) with the identified network communities.

While at many institutions, the community structures
are organized almost exclusively according to class year, as
pointed out in [27], California Institute of Technology (Cal-
tech) is well-known to be organized almost exclusively ac-
cording to its undergraduate House system (dormitory resi-
dence), which is very well reflected in the identified commu-
nities. To this end, it is a natural assumption to consider
the dormitory affiliation as the ground truth clustering, and
aim to recover this underlying structure from the available
friendship graph and any available constraints. We add con-
straints to the clustering problem by sampling uniformly at
random nodes in the graph, and the resulting pairwise con-
straints are generated depending on whether the two nodes
belong to the same cluster or no. In order for us to be able
to compare to the computationally expensive CSP method,
we consider several small-sized schools, in particular Cal-
tech (with n = 590 nodes, average degree d̄ = 43, and k = 8
clusters), Simmons College (n = 850, d̄ = 36, k = 10) and
Haverford College (n = 1025, d̄ = 72, k = 15).

5. FUTURE WORK
There are several ways our work can be improved or ex-

tended: (i) Higher quality results may be obtainable via
more sophisticated ways of placing and weighting constraints.
(ii) Apart from various optimizations which can speed-up
our current implementation at least by a 2x factor, it may
be in fact possible to implement a multi-level algorithm for
finding the eigenvectors in order to eliminate the logn factor
induced by their computation; in practice this could result
in a 10x speed up for the larger data sets in our experiments.
(iii) Figure 12 reported indicates that eigenvectors can po-
tentially provide more information. Designing algorithms
that can exploit this information is an interesting problem.
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Appendix
Computing eigenvectors
We compute approximations to the first k eigenvectors via
a simple inverse power method [6], i.e. the power method
applied to the ‘inverse’ matrix A−1 = L+

GLH . Specifically,
the algorithms maintains a matrix of current approximate
eigenvectors Y . Each iteration computes Y ′ = A−1Y and
then re-assigns to Y an LH -orthonormal basis for Y ′ (ap-
plying Gram-Schmidt on the columns of Y ′).This iteration
converges in O(logn) iterations to sufficiently good approxi-
mations of the largest eigenvectors of L+

GLH . These are iden-
tical to the first k non-trivial eigenvectors of LGx = λLHx.
There are iterative methods that are somewhat faster in
practice, but we prefer this simple approach because of its
provable properties. The power method converges to the
largest eigenvectors, and in principle we could obtain them
by applying to the matrix (I − A). The fact that we work
with the inverse matrix A−1 is crucial for fast convergence
(see [25] for an intuition).

Solving Laplacian Linear Systems
Multiplications with L+

G in the routine computing eigen-
vectors are actually implemented as linear system solves.
That’s because y = L+

Gx is the solution to LGy = x. Recall
that LG is a Laplacian. There are now very fast Laplacian
solvers that run in O(m logm) time where m is the number
of non-zeros in A [11]. In practice we use the CMG linear sys-
tem solver which empirically runs in O(m) time for sparse
graphs [14]1. These fast solvers are iterative; they return
approximate solutions that can be made arbitrarily good
with a sufficient number of iterations. However it is well
understood [25], that in order to compute sufficiently good
approximations to the eigenvectors, the linear systems need
only be solved to a fixed constant accuracy. Thus and a
constant number of solver iterations suffices for each linear
system solve.

1The solver can be obtained from:
http://www.cs.cmu.edu/~jkoutis/cmg.html
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Figure 12: Segmentation and heatmaps of the top
four eigenvectors, for the Soccer image with over
1.1 million pixels, using our proposed FAST-GE
method, in under 12 minutes.
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Figure 13: A comparison of unconstrained spectral
clustering (row 1), CSP (row 2) and FAST-GE (row
3) for a sub-image of the Patras image, with three
clusters. The right column overlays the boundary
on the actual image.
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(a) Caltech Errors; n =
590, d̄ = 43, k = 8
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(c) Simmons Errors; n =
850, d̄ = 36, k = 10
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(e) Haverford Errors; n =
1025, d̄ = 72, k = 15
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Figure 14: Facebook networks


