
A multiscale computation for highly oscillatory dynamical systems

using EMD-type methods

Seong Jun Kim and Haomin Zhou∗

May 25, 2015

Abstract

In this paper, we propose a numerical method, that combines the heterogeneous multiscale
method (HMM) and the empirical mode decomposition (EMD) type of filtering techniques,
to compute the slow dynamics in a multiscale system. The main idea is that we apply the
Adaptive Local Iterative Filtering (ALIF) algorithm, an EMD-like nonlinear signal analysis
strategy which decomposes a signal into several intrinsic mode functions (IMFs), to extract
essential information, and then use it in the HMM framework to compute the coarse scale
behavior without fully resolving the fine scale solutions. Our numerical examples demonstrated
that the new method has a number of advantages over the existing ones. 1) The effective rate of
change for the slow dynamics is calculated as the result of the local solution decomposition by
ALIF, and an effective ordinary differential equation (ODE) is obtained on-the-fly by analyzing
the trend of IMFs. 2) ALIF can find hidden intermediate time scales, with possible non-integer
exponents, and the method can treat multiple (> 2) time scale systems hierarchically. 3) The
time-frequency analysis in ALIF allows us to identify some frequency related slow variables,
such as the relative phase. This is especially useful for the systems where the slow variables are
not explicitly known.

1 Introduction

In many areas of engineering and science, we sometimes face the dilemma: we are interested in
the macroscale behavior of a multiscale system, but the available empirical macroscale models
are inadequate to calculate the targeted behavior for various reasons. A common one is that
information regarding how the microscale dynamics influence the macroscale behavior is lacking.
On the other hand, we cannot really rely on the microscopic models because they are far from being
practical, either computationally or analytically. In this paper, we tackle this matter by merging two
strategies, the heterogeneous multiscale method (HMM) [17] and the empirical mode decomposition
(EMD) [28] for nonlinear signal analysis, so that it combines the efficiency of macroscale models
and the accuracy of microscale models for problems modeled by an ordinary differential equation
(ODE).

In the HMM framework, it is often assumed that the form of the macroscale model is roughly
known, but some of its details related to the microscale model are missing. The missing information
can be supplied by solving a microscale model. To reduce the computational cost, the microscale
model is solved locally over the time intervals just large enough for the required accuracy for the
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macroscale model. The time intervals for the microscale model are well separated in the physical
space, and they do not have any direct communications among them, except via the macroscale
solver.

Since its proposal more than ten years ago, the HMM for highly oscillatory ODEs has been
studied intensively with many applications [2, 3, 4, 5, 6, 7, 18, 38]. It typically tackles the com-
putational difficulty by utilizing an important consequence of scale separation. If the influence of
the fast scale on the slower scale dynamics can be obtained by performing short time simulations,
it is possible to obtain a numerical complexity that is much smaller than direct simulations of the
given systems. This feature exploits special structures of highly oscillatory problems. In the enve-
lope methods [36], fast oscillations are sampled cleverly in order to extrapolate in a much larger
time step. Similar techniques are also used in stochastic differential equations [40]. See also a
parallel-in-time (parareal) version of multiscale algorithm in [9].

While the HMM approach is attractive, there are still challenges due to its “multi-grid” type of
coupling, namely at each macro time step, the solver acquires the necessary information by resolving
microscale models. The first lies in the way of extracting approximations to the needed data from
the microscale simulations. Even though a method using high order accurate kernels is discussed
in [18], it is most useful for the fast dynamics that have specific structure such as one-dimensional
periodicity. The second is that the time scales each model aims at have to be “predetermined”.
For example, if the time scale of the microscale model is either unknown or chosen incorrectly, one
may not expect the resulting HMM to produce reliable results. The third is the need of an explicit
form of slow variables. The existing HMM algorithms use a set of slow variables for computing
the macroscale behavior of a highly oscillatory dynamical system. To achieve this, the set of slow
variables must be either analytically derived, or the corresponding polynomials must be numerically
determined a priori.

To overcome such difficulties in HMM, we propose a new method that combines the HMM with
an EMD-type method, called the Adaptive Local Iterative Filtering (ALIF) algorithm [14]. EMD,
first proposed by Huang and collaborators in [28], is a signal analysis strategy complementary to
the classical Fourier and wavelet based method. It aims at decomposing a signal into several com-
ponents called intrinsic mode functions (IMFs). Each IMF is an oscillatory function, similar to
an amplitude-modulation (AM) and phase-modulation (PM) function, admitting better instanta-
neous frequencies. In the last two decades, EMD has been used in many applications, especially
to problems involving nonlinear and non-stationary signals [27, 44]. In recent years, an ensemble
EMD method (EEMD) was proposed to improve the stability of original EMD method [43]. Op-
timization framework has been introduced [23, 24], and adaptive wavelet techniques, such as the
syncrosqueezed wavelets, have been developed too [15, 20]. A review of the related works can be
found in [29]. Among various versions for EMD, ALIF uses an iterative filtering strategy with an
adaptive and data driven filter lengths to extract IMFs.

In this paper, we integrate ALIF into the framework of HMM. Our main idea is to use ALIF to
identify existing time scales in the system, and then design different solvers for them. We also use
ALIF to pass information between scales. Although, HMM and ALIF are originally designed for
completely different purposes. we find that their merging leads to additional benefits. Firstly, our
new algorithm can identify fast and intermediate time scales, by performing ALIF hierarchically,
from the fine scale to coarse scale. It can capture hidden intermediate scales and/or scales with
non-integer exponents. Secondly, the trend component, the last IMF obtained in ALIF, provides
the effective rate of change for the slow variables. It is used to supply the missing information in the
macroscale model, and construct the effective equation on-the-fly while solving the problem forward
in time. Lastly, for multiscale problems in which the slow variables are not explicitly known, or
not available, ALIF allows us to construct some slow variables, such as the relative phase, so as
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to carry out the large scale computations without a macroscale model. Those added advantages
of our method overcome many challenges faced by the existing methods. We shall use numerical
examples to illustrate those features. To the best of our knowledge, this study is the first reported
one on using HMM and EMD in an integrated manner.

To be self-contained, we provide a short review of HMM and ALIF in the next section. We
describe the detailed strategy merging them in Section 3. The resulting algorithm and many
numerical examples are presented in Sections 4 and 5 respectively. Finally, we make a short
conclusion in Section 6.

2 Brief reviews of HMM and ALIF

We begin with brief reviews of HMM and ALIF which are two essential ingredients for our method.
We also use this opportunity to introduce notations used throughout the paper.

2.1 The HMM framework

Let us consider a multiscale problem given by the following differential equation

d

dt
u = f(u, ε), (2.1)

with initial condition u(0) = u0 ∈ D0 ⊂ Rd and ε a small parameter. Here u is the solution at
the fine scale, which is often called a microscale variable in literature. We assume that (2.1) has a
unique bounded solution in [0, T ], which is the time interval of interest and also referred as the O(1)
time scale in the literature due to the independence of ε. Usually, equation (2.1) is considered as a
stiff problem that requires to use a small time step, often at the finest scale such as O(εk), k > 0,
to compute the solution correctly if the conventional numerical solvers are employed. This implies
that the computational complexity over the interested time interval is at least of the order O(ε−k).
This is inefficient, especially when one is only interested in a set of slowly changing quantities ξ that
can be derived from u. For example, ξ could be the averaged kinetic energy of a particle system u.

When only two time scales are involved, such as the fine scale O(ε), in (2.1), a quantity ξ is
commonly referred to as a slow variable if itself and its derivative dξ/dt are bounded for 0 < ε ≤ ε0.
For example, in a system containing x1(t) = cos(t) and x2(t) = cos(t/ε), x1(t) is regarded as slow,
and x2(t) is fast.

When additional time scales are involved, however, this bounded derivative characterization is
not sufficient anymore. There may exist variables whose derivatives are not bounded for 0 < ε ≤ ε0
but they are still regarded as slow variables. For example, consider a system which contains x1(t)
and x2(t) as given before, and x3(t) = cos(t)+ ε0.5 cos(t/ε) with dx3/dt = O(ε−0.5). There exists an
intermediate O(ε0.5) scale. In this case, we regard x3(t) as slow because |x3(t) − cos(t)| = O(ε0.5)
which is slow compared to the fast variable x2(t). More examples can be found in [2, 7]. This
motivates us to give the following definition for slow variables if multiple (> 2) time scales are
presented. For simplicity, we will focus only on three time scales O(εk), O(εq) and O(1) with k ≥ 1
and 0 < q < k. More scales can be considered in a similar manner.

Definition 1. A smooth function a(t) is said to be slow if there exists a smooth function b(t) such
that |db/dt| 5 C and |a(t) − b(t)| ≤ Cεq for some constant C independent of ε with 0 < ε ≤ ε0 in
t ∈ [0, T ]. Moreover, a smooth function ξ(u) : D0 → R is called a slow variable with respect to u(t)
if ξ(t) = ξ ◦ u(t) is slow.
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In many problems, there exists a diffeomorphism Ψ : u→ (ξ(u), φ(u)), which explicitly separates
the time scales of (2.1), such that the dynamics satisfies an ODE of the form{

d
dtξ = g0(ξ, φ, ε), ξ(0) = ξ0,
d
dtφ = ε−kg1(ξ, φ, ε) + g2(ξ, φ, ε), φ(0) = φ0,

(2.2)

where the slow variables ξ ∈ Rd−n and the fast variables φ ∈ Rn. It is assumed that the fast
variables are ergodic with respect to an ”invariant” manifold which slowly changes along with the
slow variables, and this is often referred as the ergodicity assumption in the literature. For highly
oscillatory dynamical systems, such an manifold is diffeomorphic to an n-torus.

The objective of HMM is to construct and compute the macroscale model for the slow variables ξ.
The HMM assumes the macroscale model

d

dt
ξ = F (ξ,Du), (2.3)

where Du is the data that supplies the necessary information passing from the microscale (2.1) to
the macroscale (2.3) models. If the mathematical expression of F is explicitly known and the data
Du can be easily obtained, then one can solve (2.3). Unfortunately, this is not the case in many
situations, especially the types of multiscale problems that we are interested in. Therefore, the
main task is how to approximate the unknown F by processing Du from localized simulations of
(2.1).

One of the tools widely used by the existing multiscale methods is the theory of averaging
[10, 11, 33, 37]. Under the scale separation and the ergodicity assumptions, and with sufficiently
smooth right hand side, ξ(t) converges, in the limit of ε→ 0, to the solution of an averaged/effective
equation given by

d

dt
ξ̄ = G(ξ̄), ξ̄(0) = ξ0 (2.4)

where

G(ξ̄) =

ˆ
g0(ξ̄, φ)µξ̄(dφ).

Moreover, the approximation is of order ε in the supremum norm, i.e.

sup
t∈[0,T ]

∣∣ξ(t)− ξ̄(t)∣∣ ≤ Cεp, (2.5)

where C > 0 is a constant that typically depends on T but is independent of ε, and p > 0 depends on
the property for φ to fill an invariant manifold that is diffeomorphic to an n-torus. Accordingly, we
choose the effective ODE (2.4) as the macroscale model (2.3) because the solutions of the systems
remain close for the time interval [0, T ] of interest. Moreover, (2.4) can be integrated with a larger
step size than the one required for (2.1). However, a difficulty still exists because (2.4) may not be
explicitly available.

The HMM framework tackles the difficulty by coupling macro and micro solvers in which the
effective force G is estimated by solving the microscale system (2.1). The schematic scratch for
the general method is illustrated in Figure 1 for a two scale scenario. The upper axis sketches
the time marching to compute ξ̄ by an ODE solver for (2.4) with time step H, the macroscale
time step. When one evaluates the right hand side G(ξ̄), the necessary information, such as Du, is
acquired from the microscale solution u on a local time interval of length η, and u is solved by a
different ODE solver with time step h depicted on the lower axis. We use Q to denote the operator
extracting information Du on the coarse scale from u. On the other hand, when one computes the
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Figure 1: A typical structure of the HMM. This structure is suitable for two scale systems.

local solution u of (2.1), an initial value must be provided. This can be done by reconstructing the
fine scale solution from the slow variable ξ̄ and some conditions that couple the macro and micro
scale models. We denote this procedure by R. Essential questions including the choice of R and
Q that transfer the information between different scales and the construction of a well-defined F
are widely considered in the related work [3].

The known drawback of the existing HMMs for highly oscillatory ODEs is that some of them
only work under restrictive assumptions: 1) efficient and accurate data processing is achievable only
if the fast dynamics is ergodic with respect to a one-dimensional torus with fixed ξ, 2) time scales
are well-separated in terms of integer powers of ε and explicitly given, and 3) the slow variables
must be explicitly identified before the computation takes place. The purpose of this paper is to
introduce new tactics for the HMM which relaxes those restrictions.

2.2 ALIF for signal decomposition

EMD aims at decomposing a signal into a sum of finitely many IMFs [28, 41, 42, 43]. Huang’s EMD
algorithm has an iterative structure, called the sifting process, which can be described as follows:
Let L be an operator to obtain the moving (local) average of a signal f(t) and S be an operator
capturing the fluctuation part, defined by S(f)(t) = f(t)−L(f)(t). Then the first IMF is given by

I1(t) = lim
n→∞

Sn(f)(t)

where Sn(f) = S ◦ · · · ◦ S(f), meaning S is applied to the signal recursively for n times. The limit
is reached in the sense that applying S does not change the outcome any more, and I1(t) is the
first IMF. The subsequent IMFs are obtained one after another by

Ik(t) = lim
n→∞

Sn(f(t)− I1(t)− ...− Ik−1(t))

The process stops when the reminder r(t) = f(t)− I1(t)− ...− Im(t), also called trend, has at most
one local maximum or one local minimum. Then, the decomposition of f(t) is expressed by

f(t) =

m∑
k=1

Ik(t) + r(t).

In the original EMD paper [28], each IMF Ik(t) is designed to satisfies two properties: (1)
the numbers of extrema and zero crossings must either equal or differ at most by one; (2) a local
average, such as the one obtained by averaging the upper and lower envelopes in Huang’s original
EMD method, needs to be (near) zero at any point.

5



In literature, various methods have been proposed to compute the moving average L(f)(t). In
particular, we adopt the ALIF procedure proposed in [14], in which the moving average is calculated
by convolutions with low pass filters with adaptive filter lengths, i.e.

L(f)(t) =

ˆ l(t)

−l(t)
f(t+ s)w(t, s)ds,

where w(t, s) is a low pass filter and l(t) the filter length changed adaptively depending on the
signal itself. We refer to [14] for the details of the selections of w(x, t), l(x) and implementations of
ALIF. We want to mention that we choose ALIF in our implementation because of its simplicity
and stability. The proposed method of combining HMM and EMD may work as well for other
EMD algorithms, e.g., [23, 25, 26].

3 Merging HMM and ALIF

In the following sections, we propose that by combining the HMM with ALIF, it is possible to
design a new multiscale method which can tackle several challenges that the existing multiscale
algorithms cannot handle.

3.1 The main ideas

The purpose of using ALIF is to supply the needed data Du in the macroscale system of the HMM.
A signal is calculated by solving the microscale model locally, and the trend function resulted from
ALIF captures the effective rate of change of slow variables. Indeed, we decompose a short time
solution of the slow variable ξ(t) into the IMFs Ik(t), and the trend which is identified as ξ̄(t). That
is,

ξ(t) =

m∑
k=1

Ik(t) + ξ̄(t). (3.1)

The behavior of the slowest time scale is encoded in ξ̄(t), and a group of IMFs correspond to the
behaviors of the fast time scales. Figure 2 shows an example of a signal involving three time scales
decomposed into the IMFs by ALIF.
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Figure 2: A signal from the trajectory of a multiscale dynamics. The resulting three IMFs show the fast,

intermediate, and slow time scale behaviors, respectively.

The advantage of using a time-frequency analysis in the computation of highly oscillatory dy-
namical systems is three fold. Firstly, the effective rate of change for the slow dynamics is calculated
as the result of the local solution decomposition by ALIF, and an effective ODE is obtained on-the-
fly by analyzing the trend of a signal; Secondly, ALIF can find hidden intermediate time scale. This
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motivates us to design a numerical method which applies the two-scale algorithms hierarchically to
multiple (> 2) timescale systems. In [2, 7], the time scales of the system are assumed to be O(ε2),
O(ε), and O(1). This will be generalized into the system whose multiscale features are not specified
as integer powers of ε, e.g., in nearly resonant coupled harmonic oscillators [32, 34]. Indeed, we
assume that the time scales are of O(ε), O(εq), and O(1) with 0 < q < 1. The unknown q is approx-
imated by performing a signal decomposition of the slow trajectory with different ε’s. Lastly, the
time-frequency analysis allows us to identify the frequency-related slow variables, e.g., the relative
phase. In [4], a numerical method of determining slow variables was developed. Such method can
determine the slow variables which are only represented by polynomials. Other approaches to find
slow variables include, e.g., [12, 13]. We propose a method to identify the slow variables originated
from the resonance in frequencies.

3.2 Numerical averaging method using the ALIF

The ALIF is directly applied to the averaging theory for (2.2) whose solutions possess slow variables
or observables as well as fast oscillations with multi-frequencies that are almost rationally resonant.
The main purpose of numerical averaging is to approximate the effective ODE (2.4) and make the
macroscale model explicitly available. Our generalization is along the lines of the so called averaging
over multiple angles in the case of ε-dependent variable frequencies. For the relatively simple case
of an 1-torus, a circle, averaging can be accelerated using convolution with respect to specially
constructed one-dimensional averaging kernels [2, 3, 4, 5, 6, 7, 18, 38]. However, generalizations
to higher dimensional n-torus, n ≥ 2, is not trivial due to new challenges in the construction and
implementation of the numerical averaging. In contrast, the numerical averaging strategy presented
in this section is seamless in the sense that it does not require knowing the dimension of the torus.

To study the slow behavior of solutions, we first solve the microscale system for short time
[t − η, t + η] using suitable initial data and plug the trajectories of slow variables into the ALIF.
Here we assume that the slow variables are available using the algorithm in [4] for the convenience
of presentation. This assumption will be relaxed in the next subsection. Using the ALIF, the slow
variables is decomposed into as (3.1),

ξ(t) =
m∑
k=1

Ik(t) + ξ̄(t). (3.2)

The trend ξ̄(t) shows the averaged-out effective trajectory of the slow variable. Therefore, the time
derivative of ξ̄ in (2.4) is approximated by

G(ξ̄(t)) ≈ ξ̄(t+ η̄)− ξ̄(t− η̄)

2η̄
(3.3)

where η̄ is strictly less than η.
We remark that in (3.3) sampling the ξ̄(t) not in both endpoints but η̄ amount inside is typically

due to the endpoint effect in the decomposition. As an EMD-like method, there also exists a problem
of endpoint effect in the ALIF which makes the result of decomposition sensitive to the end points.
Thus, our treatment to avoid the endpoint effect is sampling the trend at the interior points which
are automatically suggested by the algorithm.

In the next section, we will focus on the resulting IMFs.
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3.3 Identification of the intermediate time scale

We introduce a method to identify the hidden intermediate time scale in highly oscillatory dy-
namical systems. This technique is necessary, for example, in the appropriate averaging procedure
depending on the type of near-resonances present and the time scale of interest [8, 11]. The wrong
averaging method may yield an incorrect approximation for the highly oscillatory terms in the
averaged equation and thus the wrong effective dynamics.

We assume that the system (2.1) exhibits three time scalesO(ε), O(εq) andO(1) where 0 < q < 1
is unknown and that both the ε and εq scales are oscillatory. For fixed t, and η � ε, multiple sets
of local simulations for short time [t − η, t + η] with different ε’s εl = M−lε0, l = 0, 1, · · · , L, are
implemented. We then plug the trajectories of slow variables into the ALIF and look at how the
frequencies of each IMF vary with respect to different ε’s. The key point is that since the number
of extrema and the number of zero crossings in the IMFs must either equal or differ at most by one,
variations in the frequency of IMFs must be reflected in the different number of extrema. Denote
the number of the extrema in the IMF by

#(Ii; l) = nminmax
s∈[t−η,t+η]

{Ii(ξ(s); l)}

where nminmax is the number of extrema. If the oscillation takes in O(εq) time scale, then the
period is given by the length of the time interval divided by #(Ii; l),

2η

#(Ii; l)
.

With the different l1 < l2, we thus have

M q(l2−l1) =
#(Ii; l2)

#(Ii; l1)
,

and the approximation for the intermediate time scale is

q =
1

l2 − l1
logM

#(Ii; l2)

#(Ii; l1)
.

In Sections 5.2 and 5.3, we apply above method to identify the hidden intermediate time scale due
to the resonance in two coupled harmonic oscillators.

The discussion on identifying the intermediate time scales motivates a numerical method which
applies the previous two-scale HMM algorithms [1, 3, 4, 5, 6, 18] hierarchically to multiple timescale
systems. In Section 4, we introduce the HMM to evaluate the effective rate of change of ξ(t).

3.4 Identification of the hidden slow variables

A common goal of multiscale methods is to accurately compute all slow variables. To achieve
this goal, some multiscale methods require to identify a complete set of slow variables a priori. A
difficulty lies in the fact that the system may have hidden slow variables. In some literature, this
issue is caused by a presence of resonance [3, 18, 19, 39]. In this section, we propose a method to
identify a set of frequency related slow variables which are not trivial as the amplitude related slow
variables.

Consider a system of ODEs of the form

d

dt
u = ε−1A(ε)u+ f(u, t), (3.4)
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where u ∈ Rd, and A is a real, diagonalizable d× d matrix whose eigenvalues are non-zero and are
pure imaginary. We assume that (3.4) is a corresponding first order linear system of r second order
ODEs, so d = 2r. The following lemma considers the slow variables in the oscillators.

Lemma 1. There exists a neighborhood U of u and a diffeomorphism

Φ : u 7→ (Ξ,Φ, φ) ∈ Rr × Rr−1 × S1,

such that Ξ = (Ξ1,Ξ2, · · · ,Ξr) ∈ Rr and Φ = (Φ1,Φ2, · · · ,Φr−1) ∈ Rr−1 are slow variables with
respect to (3.4).

Proof. See [4] for the proof.

A typical way for mapping the dynamics into 2r − 1 slow variables and a single fast variables
in S1 is

Ξk = x2
2k−1 + x2

2k, k = 1, · · · , r,
Φk = arg(x2k−1 + ix2k)− ck arg(x2k+1 + ix2k+2), k = 1, · · · , r − 1. (3.5)

In this change of coordinates, phase related slow variables Φk(t; ck) are nontrivial due to the un-
known phase ratio ck, and our goal is to identify these slow variables using the time-frequency
analysis.

The main idea is from the fact that the more inaccurate the ratio of two phases is, the more
extrema in the IMFs are generated if we decompose a 2π-modulo of Φk. The desired ck is then
sought by minimizing the number of extrema and the phase difference. Consequently, the following
two-stage minimization strategy is proposed. We first solve

min
ck∈R
{|nminmax {I1(Φk(t; ck))}|} (3.6)

where Φk(t; ck) is a short time solution of (3.4) over [t0−η, t0 +η] and I1(Φk(t; ck)) is the first IMF
obtained by applying the ALIF to Φk(t). If the minimization of (3.6) is achieved with ck = c∗, we
solve the following minimization problem with c∗ as the initial condition.

min
ck∈R

{
|max {I1(Φk(t; ck))} −min {I1(Φk(t; ck))}|2

}
. (3.7)

We propose to solve the above two-stage minimization problem by letting

E1 = |nminmax {I1(Φk(t; ck))}| , E2 = |max {I1(Φk(t; ck))} −min {I1(Φk(t; ck))}|2 .

Then the best ck is to minimize the functional E1 and then E2. Since ck lies in one-dimensional
space, the search direction, denoted by p, is either +1 or −1 in the following algorithm.

Algorithm of identifying phase related slow variables

1. Minimization of (3.6).

(a) Set initial c
(0)
k , the search direction p(0), and the step length h(0).

(b) Iterate c
(i)
k = c

(i−1)
k − h(i−1)p(i−1) until E1 = 0 is reached. The sign of p(i) and the size

of h(i) are adaptively changed toward the direction of decreasing E1.

(c) Denote the solution by c
(0)
k = c∗, and the last iteration by N .
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2. Minimization of (3.7).

(a) Set c
(N)
k = c∗ and the step length h(N).

(b) Iterate c
(i)
k = c

(i−1)
k − h(i−1)∇E2(ci−1

k ), i ≥ N + 1, until a fixed point is reached. The
size of h(i) is adaptively changed toward the direction of decreasing E2.

3. Repeat for k = 1, · · · , r − 1.

In Step 1, the nminmax function is inappropriate for using a steepest descent method because it is
not differentiable for all values. Detailed reviews and further references on the better optimization
techniques can be found in the active field of “line search algorithms” in [35].

Two scenarios in the usage of above algorithm will be considered: (i) when two time scales
are involved in (3.4), the dynamics of the given system is decomposed into a set of slow variables,
including the variables found by above method and a single fast oscillating mode defined on a
circle. With these slow variables, a two scale multiscale algorithm can be applied, and (ii) when
three scales are involved, the intermediate time scales are identified by the method in Section 3.3.
Accordingly, a multiscale algorithm requires to resolve the variables evolving on the intermediate
time scale. We thus focus on the identification of these variables. It turns out that the value of
phase ratio ck depends on ε, and we will construct the variables on the intermediate time scale by
modifying the form of Φk. See Section 5 for the practical applications of the algorithm.

4 The multiple scale algorithm

Once the intermediate time scale is identified, the relevant multiscale algorithm is constructed as
a family of multilevel solvers which resolve the different time scales and efficiently computes the
effective behavior of the slow time scale. The main difference from multiple time scale algorithms
in [2, 7] is that our algorithm determines time scales and decides which time scale is resolved by
each solver.

It is also worth pointing out that although our method approximate the effective ODE by
averaging out the fast oscillations in the dynamics and this is very similar to the algorithms reported
in [2, 3, 4, 5, 6, 7, 18], we do not discard the fast oscillations like the other methods do. Instead,
the fast oscillations are retained and analyzed in order to obtain the additional information on
the dynamics. We emphasize that the computational cost of our algorithm remains as effective as
other two-scale algorithms whose complexity is sub linear to ε−1, although our algorithm considers
multiple time scales.

The multiscale method to be constructed should evaluate the effective rate of change of the
slow variables ξ(t). For simplicity of presentation, we only consider the systems with three time
scales. The hierarchical structure for three scale systems is illustrated in Figure 3. The downward
pointing arrows depict the determination of an initial condition for a lower, fast scale from data
in an upper tier working on a slower time scale. The upward pointing arrows from 2nd tier to
1st tier and 1st tier to 0th tier relate the evaluation of averages with respect to O(ε) and O(εq),
respectively. Below we detail the equations solved in each tier. We denote ηi and hi the range of
integration and the step size used in the i-th tier, respectively.

The 0th tier numerically approximates the O(1) time scale behavior by integrating the effective
ODE (2.4),

d

dt
ξ̄ = G(ξ̄), ξ̄(0) = ξ0 (4.1)

10



1st tier

0th tier

2nd tier

Figure 3: An illustration of a three scale algorithms.

in t ∈ [0, η0] = [0, T ]. To achieve this, we resolve fast O(εq) and O(ε) time behaviors in the
lower tiers. Two approaches for numerically averaging the fast oscillations are considered. The
first is to use the ALIF as presented in Section 3.2 which does not require the knowledge of the
manifold of fast variables. The second is to apply the averaging kernels as presented in the various
HMM literatures. This method yields more accurate averaging for the system if the fast variable is
ergodic with respect to a circle for fixed slow variables. The numerical experiment to compare the
ALIF with the recent HMM using a Poincaré map [1] is presented in Section 5.1. In the following,
we present an algorithm which applies both the ALIF and the Poincaré map in the averaging
procedures.

The 1st tier numerically approximates the effective ODE for the O(εq) time scale. Indeed,
the computation of ξ(t) with t ∈ [tn − η1, tn + η1] is achieved by the Poincaré 1st order method
(Forward Euler for the εq time scale and ODE45 2nd tier solver with linear polynomial interpo-
lation for the effective path). We compute γm+1 from γm at tn,m = nh0 + mh1, m = −η1/h1 +
1, · · · ,−1, 0, 1, · · · , η1/h1 − 1,

γm+1 = γm + h1F1
HMM (γm, tn,m), (4.2)

where F1
HMM is defined in the 2nd tier, and the initial value at t = tn,0 is an approximation of u(t)

at tn = nh0 obtained from the 0th tier.
The 2nd tier numerically approximates the given ODE at the initial time tn,m in a time segment

t ∈ [tn,m − η2, tn,m + η2] and evaluates F1
HMM . With a chosen Cq kernel K(t) supported on [0, η2]

with p moments, we approximate the effective path using linear interpolation as follows:

1. Solve
d

dt
ũ = ε−1f1(ũ) +Kη2(t− t∗)f0(ũ; ε), ũ(t∗) = γ∗0 (4.3)

for t ∈ [t∗, t∗+ η2]. The initial condition γ∗0 is an approximation of u(t) at tn,m obtained from
the 1st tier. Denote the solution at t = t∗ + η2 by ũ(η2; γ∗0).

2. Solve
d

dt
z = ε−1f1(z) (4.4)

with z(t∗ + η2) = ũ(η2; γ∗0) for t ∈ [t∗, t∗ + η2]. Denote the solution at t = t∗ by γ∗1 .

3. Evaluate F1
HMM :

F1
HMM (γ∗0 , t

∗) :=
γ∗1 − γ∗0
η2

. (4.5)

We refer the readers to [1] for further details in the Poincaré map technique. Our basic algorithm
is summarized below. This algorithm consists of Forward Euler in 0th tier, Forward Euler in 1st
tier and ODE45 in 2nd tier as well as the averaging procedure in 1st tier using the ALIF and in
2nd tier using the linear interpolation for the effective path (Poincaré map). Thus, we shall call
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our algorithm ALIF-BF HMM FE-FE-ODE45 for brevity.

ALIF-BF HMM FE-FE-ODE45

1. (Forward Euler 0th tier solver) un+1 = un +Hδu0 where δu0 is the least squares solution to
the linear system

δu0 · ∇ξ =
〈
ξ′
〉
.

Approximate 〈ξ′〉 by G(ξ̄(t)) of (3.3). The input ξ(t) for the ALIF is obtained from Step 2.

2. (Forward Euler 1st tier solver) Computation of ξ(t) over t ∈ [tn − η1, tn + η1].

(a) Compute (4.2) using the Poincaré 1st order method.

(b) Evaluate the slow variable ξ(t) := ξ ◦ γm.

3. (ODE45 2nd tier solver) Evaluation of F1
HMM in Step 2(a) using ODE45 method over t ∈

[tn,m − η2, tn,m + η2].

4. Repeat.

The next two remarks are concerned with some issues about the extensions: The above algorithm
is easily generalized to the second order Midpoint rule or Verlet BF HMM using the similar strategy
proposed in [1], and any two-scale method can be combined with the ALIF following our approach.
For example, one can combine the ALIF with FLAVORS [39] or impulse method [21].

In our setup for the multiscale problems, we consider a regime: 0 ≤ t ≤ T , ε→ 0, η0 = T ∼ O(1),
η1 ∼ O(εq), η2 ∼ O(ε), h0 = H ∼ O(1), h1 ∼ O(εq), and h2 ∼ O(ε), assuming that ξ̄(t) has the
first derivative bounded uniformly and independent of ε. In this regime, the proposed method
utilizes the slow varying property and generates accurate approximation of ξ(u(t)) with an O(1)
complexity as ε→ 0.

5 Numerical examples

In this section, four numerical examples are presented to illustrate the features achieved by the
proposed algorithm.

5.1 Stellar orbits in a galaxy

In this example, our goal is to identify the hidden slow variables, and approximate an effective ODE
for the slow variables by extracting the trend of the IMFs using the ALIF. The following system is
taken from the theory of stellar orbits in a galaxy [30, 31]:{

d2

dτ2
r1 + a2r1 = εr2

2,
d2

dτ2
r2 + b2r2 = 2εr1r2.

With the change of variables [x1, v1, x2, v2]T = [r1,
d
dτ r1/a, r2,

d
dτ r2/b]

T and after a rescaling of time,
t = ετ , the system can be written in the following form

d

dt


x1

v1

x2

v2

 = ε−1


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0



x1

v1

x2

v2

+


0

x2
2/a
0

2x1x2/b

 (5.1)
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where the initial condition at t = 0 is given by [1, 0, 1, 1/2]T . In [4], when a = 2 and b = 1,
resonance of oscillatory modes take effect in the lower order term. We try to identify the slow
variables ξi :R4 → R, i = 1, 2, 3, evolving on the O(1) time scale. Two slow variables are related to
the square of the amplitude of the two harmonic oscillators,

ξ1 = x2
1 + v2

1, ξ2 = x2
2 + v2

2. (5.2)

There exists an additional slow variable which is a phase related variable and is assumed to be in
the form of

ξ3 = arg(x1 + iv1)− c arg(x2 + iv2). (5.3)

The algorithm for the identification of slow variables in Section 3.4 approximates the constant
c = 2.0002 which is independent of ε. Figure 4 shows c(i) plotted with respect to the iterations in
the identification of ξ3.

20 40 60 80 100
0

1

2

3

4

5

Figure 4: The trajectory of c(i) plotted with respect to the iterations in the algorithm in Section 3.4.

In Figure 5, we present a result computed by our two scale method and compare it with a multiscale
integrator using a Poincaré map [1]. Figure 5a shows the ALIF HMM Mid-ODE45 (Midpoint rule
in 0th tier and ODE45 in 1st tier with averaging procedure using the ALIF) result computed with
the parameters tabulated in Table 1. Figure 5b is computed by BF HMM Mid-ODE45 (Midpoint
rule in 0th tier and ODE45 in 1st tier with quadratic polynomial interpolation in Poincaré) with
the same parameters, and C3 kernel with p = 1 is used for the filtered equation.

Table 1: (Section 5.1) Parameters for HMM with the ALIF in the averaging.

ε T H η1 h1 Micro solver RelTol Macro solver Averaging method

10−4 14 0.25 30ε ε/20 ODE45 1e-4 Midpoint ALIF
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(a) ALIF-HMM Mid-ODE45 (b) BF HMM Mid-ODE45

Figure 5: (Section 5.1) The dynamics of the slow variables ξ1, ξ2 and ξ3 in (5.1).

Both methods are based on the numerical averaging strategy. The system (5.1) has the slow
coordinate (ξ1, ξ2, ξ3) which is a vector of three functionally independent slow variables, and thus
one fast variable is ergodic with respect to a circle. As presented in Figure 5, the BF HMM generates
more accurate approximation in this example. This is because a Poincaré map is specialized for
the system where the fast oscillation in O(ε) time scale is on a circle. The ALIF, however, can be
applied in the general system where the fast dynamics are ergodic with respect to a n-torus, but
generates less accurate approximations for the one dimensional case.

5.2 Harmonic oscillators I

In this example, we first identify the hidden intermediate time scale using the ALIF as described in
Section 3.3, and then design a corresponding multiscale method compute the slow variables. The
fast oscillations will be averaged out by the ALIF via sampling a trend. We compare the result
with a two scale HMM which does not identify the intermediate time scale.

Consider the following system describing two coupled harmonic oscillators whose hidden fast
dynamics is ergodic on 2-torus, T2.

d
dtx1 = −2πε−1x2 − x3

1x
2
2(x2

1 + x2
2)−3,

d
dtx2 = 2πε−1x1 − y2(x2

1 + x2
2)(y2

1 + y2
2)−1 − x3

2x
2
1(x2

1 + x2
2)−3,

d
dty1 = −2πλε−1y2 + y1x

2
2(y2

1 + y2
2)−1,

d
dty2 = 2πλε−1y1 + x2 + y4x

2
2(y2

1 + y2
2)−1,

(5.4)

with irrational λ depending on ε and initial conditions [x1, x2, y1, y2]T = [1, 0, 2, 0]T . Due to the
presence of λ, the near resonance between two phases happens, so the dynamics of (5.4) involves
a nontrivial intermediate time scale. To see how resonances occur, we replace (x1, x2) and (y1, y2)
by the polar coordinates (r1, θ1) and (r2, θ2) respectively. We then get θ̇ = h(θ) where θ ∈ T2:{

d
dtθ1 = 1

ε −
r1

2πr2
cos 2πθ1 sin 2πθ2,

d
dtθ2 = λ

ε + r1
r2

sin 2πθ1 cos 2πθ2.
(5.5)

The ε dependent variable frequency λ is irrational so that the fast variable is ergodic with respect
to an invariant manifold which is diffeomorphic to T2. We stress that (5.5) is only used in order to
demonstrate the relation between frequencies. This is not used in the numerical approximation.
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Figure 6: The resulting IMFs of the slow variables I1 and I2 at t = 0.

The system (5.4) admits two hidden slow variables on the ε0 scale which are the squares of the
amplitude of the harmonic oscillators,

I1 = x2
1 + x2

2, I2 = y2
1 + y2

2.

We perform localized simulations of I1 and I2 over short times, and apply the ALIF to decompose
these local solutions into the components. Figure 6 shows the IMFs obtained using the ALIF. The
second component reveals the oscillation in the intermediate time scale.

Using the method described in Section 3.3, Table 2 shows the results of identifying the inter-
mediate time scale. We denote q̃ by the approximated time scale obtained by our algorithm.

l # of extreme points Resulting q̃

0 28

1 20 0.5146

2 14 0.4854

3 10 0.5146

(a) ε0 = 8 · 10−3, η = 50ε, M = 2, exact q = 1/2

l # of extreme points Resulting q̃

0 64

1 52 0.7004

2 40 0.6215

3 32 0.6781

(b) ε0 = 8 · 10−3, η = 50ε, M = 2, exact q = 2/3

Table 2: Identification of the intermediate time scale using the ALIF applied to (5.4).

We assume the form of the other slow variable as

ξ3 = arg(x1 + iy1)− c arg(x2 + iy2). (5.6)

Then, the algorithm for the identification of the slow variables in Section 3.4 approximates the
constant c = (1 + ε1−q̃)−1 ≈ 1 − ε1−q̃. By Definition 1, we have that dξ3/dt = dθ1/dt − (1 −
ε1−q̃)dθ2/dt = O(1) with θ1 = arg(x1 + iy1) and θ2 = arg(x2 + iy2). Therefore, the alternative 1:1
relative phase,

θ = arg(x1 + iy1)− arg(x2 + iy2) (5.7)

evolves in the intermediate O(εq̃) time scale. To sum up, we find two variables I1, I2 evolving in
the slow time scale and θ evolving in the intermediate time scale. θ together with the variable in
the finest time scale are on a 2-dimensional torus.

In Figure 7, we present a result computed by our 3-tire multiscale solver and compare it with
the result computed by the two scale method [4]. Figure 7a shows the ALIF-ALIF Mid-Mid-ODE45
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(Midpoint Rule in 0th & 1st tiers and ODE45 in 2nd tier as well as the averaging procedure in 1st
& 2nd tier using the ALIF) result computed with the parameters in Table 3. In Figure 7b, we show
the result computed by the two scale HMM with η = 20ε, h = ε/150 and the exponential kernel
[5]. It is evident that the later fails to capture the slow variables accurately.

Table 3: (Section 5.2) Parameters for the 3-tier HMM. λ = 1 + 1+
√

5
2 ε1/3.

ε = 10−4 ηi hi Averaging method ODE Scheme

0th tier 3 1/3 - Midpoint

1st tier 3εq/5 εq/100 ALIF Midpoint

2nd tier ε/5 ε/150 ALIF ODE45

(a) ALIF-ALIF Mid-Mid-ODE45 (b) HMM Mid-ODE45

Figure 7: (Section 5.2) The dynamics of (5.4) on the ε0 time scale. Subfigure (b) two scale HMM
fails to approximate the slow variables.

5.3 Harmonic oscillators II

Consider the following system describing two coupled harmonic oscillators in resonance [7].
d
dtx1 = −ε−1y1 + ε−1/2y2

2 − 3x1x
2
2,

d
dty1 = ε−1x1 + y1/2,
d
dtx2 = −

(
ε−1 + ε−1/2

)
y2 − x2,

d
dty2 =

(
ε−1 + ε−1/2

)
x2 − y2 + 2x2

1y2.

(5.8)

All four state variables oscillate with a period which is of the order of ε. Hence, x1, y1, x2 and y2

evolve on the ε time scale. Initial conditions are [x1, y1, x2, y2]T=[0, 1, 0, 1]T .
As previous examples, two slow variables corresponding the oscillatory energies are

I1 = x2
1 + y2

1, I2 = x2
2 + y2

2.

We assume the form of the other slow variable as

ξ3 = arg(x1 + iy1)− c arg(x2 + iy2). (5.9)
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Then, the algorithm for the identification of the time scale and slow variables in Section 3.3-3.4
approximate the constant c = (1 + ε0.502)−1. Therefore, the 1:1 relative phase θ

θ = arg(x1 + iy1)− arg(x2 + iy2) (5.10)

is evolving in the intermediate O(ε0.502) time scale. The time evolution of I1 and I2 on the slow
O(1) time scale is depicted in Figure 8. In addition, the figure shows the results of the 3-tier HMM
integrator described in Section 4. Simulation parameters are detailed in Table 4.

Table 4: (Section 5.3) Parameters for the 3-tier HMM.

ε = 10−4 ηi hi Averaging method ODE scheme

0th tier 5 1/2 - Midpoint

1st tier 10εq εq/5 ALIF Midpoint

2nd tier 35ε ε/10 ALIF ODE45

Figure 8: (Section 5.3) The dynamics of (5.8) on the ε0 time scale. ε = 10−4. Plus signs are results
of a 3-tier HMM.

5.4 The Fermi-Pasta-Ulam problem

The Fermi-Pasta-Ulam (FPU) problem is a challenging model in statistical mechanics which exhibits
highly unexpected multiple scale (>2) behaviors [22]. We consider a long time simulation of 2k+ 1
springs connected with alternating soft k+ 1 nonlinear and stiff k linear springs, and both ends are
soft ones and fixed. The equation of motion is derived from the following Hamiltonian:

H(p, q) =
1

2

2k∑
i=1

p2
i +

1

4
ε−2

k∑
i=1

(q2i − q2i−1)2 +
k∑
i=1

(q2i+1 − q2i)
4. (5.11)

Using the change of variables given in [4], we have the following equations
d
dtyi = ui,
d
dtxi = ε−1vi,
d
dtui = −(yi − εxi − yi−1 − εxi−1)3 + (yi+1 − εxi+1 − yi − εxi)3,
d
dtvi = −ε−1xi + (yi − εxi − yi−1 − εxi−1)3 + (yi+1 − εxi+1 − yi − εxi)3.

(5.12)
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Both fixed ends yield y0 = x0 = yk+1 = xk+1 = 0. The system admits 2k−1 slow variables evolving
on the O(ε−1) time scale. They are total energies of the stiff springs given by

Ii = x2
i + v2

i , i = 1, 2, · · · , k (5.13)

where Ii :R4k → R, and the relative phases between the different stiff springs, φi = x1xi + v1vi,
i = 1, · · · , k−1. On the other hand, all the degrees of freedom which are related to the soft springs:
yi and ui, i = 1, · · · , k evolve on the O(1) time scale. These variables thus lie on a 2k dimensional
manifold for fixed slow variables.

Several numerical methods have been reported as being applied to the FPU problem. However,
the existing results are mainly based upon the two-scale method [4, 39] and the corresponding
computational cost is O(ε−1). Therefore, it is meaningful to break through the need of O(ε−1) steps
in the two-scale algorithm and to devise a multiple-scale algorithm so that the longer time scale
O(ε−1) behavior can be approximated in a truly multiscale fashion. Unfortunately, the classical
HMM using an 1D averaging kernel cannot be generally extended to the ε−1 time scale due to the
dynamics embedded on the multi-dimensional torus. To this end, we use the ALIF to resolve the
oscillations in the intermediate time scale. i.e., averaging over 2k-torus will be achieved by the
ALIF.

We rescale the time so that the slowest time of interest is independent of ε. Accordingly, the
three time scales O(ε2), O(ε) and O(1) will be considered. When we resolve O(ε2) time scale
behavior in the 2nd tier, a Poincaré map technique is used because the dynamics in this time
scale is equivalent to a rotation on a circle and thus more effective than the ALIF. A pair of the
perturbed-unperturbed equations is picked as

Perturbed equation:
d
dtyi = ε−1ui,
d
dtxi = ε−2vi,
d
dtui = −ε−1(yi − εxi − yi−1 − εxi−1)3 + ε−1(yi+1 − εxi+1 − yi − εxi)3,
d
dtvi = −ε−2xi + ε−1(yi − εxi − yi−1 − εxi−1)3 + ε−1(yi+1 − εxi+1 − yi − εxi)3,

(5.14)

Unperturbed equation: 
d
dtyi = 0,
d
dtxi = ε−2vi,
d
dtui = 0,
d
dtvi = −ε−2xi.

(5.15)
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(c) Dynamics of φ(t) and the IMFs

Figure 9: IMFs of the slow variables on the interval [−η1, η1]. IMFs show the oscillations in the
intermediate ε time scale, and the last component shows the trend in ε0 time scale.

In the 1st tier, we resolve the O(ε) time behavior using the ALIF. Figure 9 shows the decom-
positions of I1, I2 and φ in the 1st tier. Note that the fastest oscillations in O(ε2) scale are already
resolved in the 2nd tier by a Poincaré map technique. Figure 10 illustrates the energy exchange
of the stiff springs over T = 10 with k = 2 and ε = 5 · 10−3. We compare the results computed
by the ALIF-BF HMM Verlet-Verlet-ODE45 (Verlet in 0th & 1st tiers and ODE45 in 2nd tier as
well as the averaging procedure in 1st tier using the ALIF and in 2nd tier using the quadratic
interpolation in Poincaré) with those by an exponential integrator with Deuflhard’s filter functions
[22] with the stepsize h = ε/20000, which we used as a reference solution. The initial conditions are
[y1, x1, u1, v1, y2, x2, u2, v2]T = [1, 1, 0, 1.2, 1, 1, 1, 0]T . Our result is computed with the parameters
given in Table 5, and a C1 kernel with p = 1 is used for the filtered equation that corresponds to
(5.14).
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Table 5: (Section 5.4) ALIF-BF HMM parameters for Figure 10.

ε = 10−3 ηi hi Averaging method ODE scheme

0th tier 10 1/4 - Verlet

1st tier 20ε ε/10 ALIF Verlet

2nd tier 15ε2 ε2/20 Poincaré map ODE45 (Reltol=10−7)

Figure 10: (Section 5.4) The solid lines correspond to the direct numerical simulation solution with
an exponential integrator. Crosses correspond to the results of the proposed method.

6 Conclusion

In this paper, we proposed a new numerical method that combines the HMM and the ALIF on
the purpose of computing slowly changing quantities. Compared to other multiscale schemes, this
HMM and ALIF combination has several advantages compared to other multiscale schemes.

• The proposed algorithm offers a convenient method to calculate the effective rate of change
for the slow dynamics as the result of the local solution decomposition. An effective ODE is
obtained on-the-fly using the trend function.

• By analyzing the IMFs, the proposed algorithm can find hidden intermediate time scale and
suggest a multiscale method which treats multiple (>2) time scale systems hierarchically.

• In some applications, the proposed algorithm allows us to identify hidden slow variables. This
is especially useful for the systems where the slow variables are not explicitly known.

It is also important to study the errors of our proposed schemes which generally consist of

Error = EH + Eh + EHMM + EALIF ,

where EH is the error of the macroscopic model (2.3), Eh is the errors from solving (2.1), EHMM

contains the errors in the the multiscale model, including the passing of information through R and
Q, and EALIF is the error from the decomposition using the ALIF. However, the accuracy of the
decomposition using ALIF is not fully established yet. This is one of the future research directions
we plan to take, so we postpone the rigorous error analysis for later.
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