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ABSTRACT. We consider a geometric approach to graph partitioning based on the graph
Beltrami energy, a discrete version of a functional that appears in classical minimal surface
problems. More specifically, the optimality criterion is given by the sum of the minimal
Beltrami energies of the partition components. Since the Beltrami energy interpolates be-
tween the Total Variation and Dirichlet energies, various results for optimal partitions for
these two energies can be recovered. We adapt primal-dual convex optimization meth-
ods to solve for the minimal Beltrami energy for each component of a given partition.
A rearrangement algorithm is proposed to find the graph partition to minimize a relaxed
version of the objective. The method is applied to several clustering problems on graphs
constructed from manifold discretizations, synthetic data, the MNIST handwritten digit
dataset, and image segmentation. The model has a semisupervised extension and provides
a natural representative for the clusters as well.

1. Introduction. Given a graph G = (V,E) with non-negative edge weights {wi j}(i, j)∈E ,
we consider the problem of “optimally” partitioning the vertex set, V , into k subsets. The
challenges to partitioning are that datasets are typically large-scale and high-dimensional,
common mathematical formulations of the problem lead to NP-hard problems, and the
criterion of optimality is application dependent. Here we propose a model for graph par-
titioning based on an extension of the Beltrami energy to graphs. To motivate this model,
we consider the following isoperimetric problems.

1.1. Motivating minimal surface problems. Plateau’s problem is to find a minimal sur-
face with a prescribed boundary condition [43]. That is, if Ω⊂ R2 is a bounded open sub-
set of the plane and f : ∂Ω→ R, Plateau’s problem is to find the parametric surface, u(x),
with minimal surface area that satisfies the prescribed boundary conditions u(x) = f (x) for
x ∈ ∂Ω. Physically, this solution can be interpreted as finding the soap film that covers a
closed wire, described by the set {(x, f (x)) : x ∈ ∂Ω} ⊂ R3. One approach to solving this
problem is to introduce the functional

J[u] =
∫

Ω

√
1+ |∇u|2 dx+α

∫
∂Ω
|u− f | dx,
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FIGURE 1. (left) A “pinched oval” domain, Ω. (center) The solution to
(1). (right) For the same domain, the solution to (3) with k = 2. On each
component of the optimal partitioning, Ω = tk

i=1Ωi, we plot the minimal
area surface u?i .

where α > 0, and minimize over functions of bounded variation,

min
u∈BV (Ω)

J[u].

The first term of J is the surface area of the surface (x,u(x)) while the second term pe-
nalizes where where u violates the boundary condition, but allows for a discontinuity at
the boundary. It can be shown that the infimum of this problem is attained and for convex
domains, some regularity results of the minimizer can be shown [25].

A related problem is to find the surface with minimal area that encloses a volume V
above the plane and is zero on the boundary, u(x) = 0 for x ∈ ∂Ω. This problem can be
similarly expressed as the optimization problem

S(Ω,V ) := min
u∈BV (Ω)

∫
Ω

√
1+ |∇u|2 dx+α

∫
∂Ω
|u| dx (1a)

such that
∫

Ω
|u(x)| dx =V and u≥ 0. (1b)

Again we can interpret this problem in terms of a soap film. We imagine a closed wire in
the shape of ∂Ω that lies flat on the Euclidean plane. The wire is covered in a film of soap
and a person slowly inflates (“blows on”) the soap film to form a bubble enclosing volume
V . The shape of the bubble is then described by the parametric surface (x,u(x)) ∈ R2+1.
Of course, if the person blows too much air at the soap film, then the soap film will “bubble
out” and no longer be a parametric surface of this form. At this value of V , the regularity of
the solution to (1) breaks down and there is a discontinuity at the boundary. We don’t dwell
on these issues here, as we will consider a discrete version of (1), where the questions of
well-posedness and regularity are much simpler. As an illustration, for V = 1 and a domain
Ω in the shape of a “pinched oval” (see Figure 1(left)), the optimal surface is plotted in
Figure 1(center). Details of this computation are discussed in Section 5.4.

We now informally consider a “foam” consisting of k interacting bubbles of equal vol-
ume that are confined to a domain Ω. If bubble i is contained in Ωi with Ω = tk

i=1Ωi,
satisfying Ωi∩Ω j = /0 for i 6= j, then we could solve (1) on each subdomain, Ωi to obtain
the shape of bubble i, say u?i (x) for x ∈Ωi. The total surface area of the foam is given by

k

∑
i=1

∫
Ωi

√
1+ |∇u?i (x)|2 dx. (2)

Of course, in this scenario the bubbles are also going to exert a force on one another to
try to reduce the overall surface tension. For example, if one of the Ωi is very small, then
bubble i will exert a force on its neighbors and the domain Ωi will enlarge as to decrease the
overall surface tension. To model this behavior, we consider minimizing the total surface
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area (2) over all k partitions of the domain Ω = tk
i=1Ωi such that u?i is the solution to (1)

on each subdomain, Ωi.
This motivates the following isoperimetric question: what k partition of the domain min-

imizes the sum of the minimal surface areas, (2)? That is, we seek to solve the optimization
problem,

P(Ω,V,k) := min
Ω=tiΩi

k

∑
i=1

S(Ωi,V ). (3)

Here, the minimum is taken over all disjoint k-partitions of Ω. For the pinched oval domain,
we plot the optimal partition for k = 2 in Figure 1(right). On each subdomain, Ω?

i , we also
plot the surface u?(x) which attains the minimum in the isoperimetric problem (1).

There are two interesting limits for (3).
1. In the limit that V → 0, the first term in the objective function in (1) is equivalent to

the Dirichlet energy. Optimal Dirchlet partitions have been considered in a variety
of papers [5, 6, 8, 9, 10, 28, 29, 40, 41]. One difference is the constraint; we con-
sider the L1 constraint and not the L2 constraint since it is convex and has a physical
interpretation in terms of the minimal surface problem.

2. For large V , the optimal solution is almost flat on each partition component and there
is a large discontinuity at the interfaces of the partition components. The problem
limits to the classical problem of finding a partition of k equal-volume components
for which the surface area of the interface between components is minimal [23, 26,
42, 50].

In this paper, we formulate graph analogues of (1) and (3) and show that these prob-
lems are well-posed. To solve the bi-level optimization problem efficiently, we propose a
primal-dual hybrid gradients method for the computation of the ground state of each par-
tition (inner problem) and a rearrangement algorithm to find the optimal partitions (outer
problem). We prove that the primal-dual hybrid gradients method is convergent and that the
iterations of the rearrangement algorithm do not increase the objective value. We apply the
proposed graph-partitioning method to a variety of example problems in graph partition-
ing coming from manifold discretizations, clustering and transductive learning, and image
segmentation.

1.2. Outline. In Section 2, we give a brief background on the use of the Beltrami energy in
image analysis and introduce terminology in order to formulate the graph analogues of (1)
and (3). In Section 3, we introduce the graph analogue of the Beltrami energy, formulate
a graph partitioning problem based on this energy, and give a rearrangement algorithm for
solving the outer problem. In Section 4, we show how the inner problem can be solved
using primal-dual optimization methods. In Sections 5 and 6, we apply these methods to a
variety of graph partitioning examples. Finally, we conclude in Section 7 with a discussion.

2. Background. In this section, we briefly review how the Beltrami framework has been
used previously for image analysis and introduce some graph terminology in preparation
for the introduction of the Beltrami graph functional.

2.1. Beltrami framework and minimal surfaces. The Beltrami framework was intro-
duced in the late 1990s for geometric image regularization. Adopting this geometric view-
point amounts to interpreting objects such as images, shapes, or vector fields as surfaces
embedded in some higher dimensional space [51]. The Beltrami framework associates the
spatial coordinates along with the features by defining a Monge surface, say X : (x,y) 7→
(x,y, I(x,y)) for a 2D scalar image. The Beltrami energy then measures the area of this
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surface and its minimization amounts to regularizing the image without losing important
edge details.

More formally, the Beltrami embedding associates the spatial coordinates with the fea-
tures. For a scalar function I : Ω→R, we define the diffeomorphism X : Ω⊂Rn→Ω×R,
by x 7→ (x, I(x)). The embedding space of the manifold M ⊂ Ω×R has coordinates
with dimensions of a different nature, namely spatial components versus feature compo-
nents. The relative scaling between these components is defined by a metric tensor hi j

that incorporates tuning of the aspect ratio, by a factor β, hi j := diag(1, . . . ,1,β2). A
metric tensor gµν associated with the original domain Ω is obtained through a pullback,
gµν := β2(∇I⊗∇I)+ Idn, where ⊗ denotes the outer (tensor) product and Idn is the n×n
identity matrix. The determinant of the metric tensor is g(I) := detgµν = 1+β2|∇I|2, and
can be seen as a generalized edge detector. Finally, the Beltrami energy integrates this edge
detector to compute the volume of the manifold M :

Jβ,Ω[I] :=
∫

Ω

√
g(I) =

∫
Ω

√
1+β2|∇I|2. (4)

The Beltrami energy is a measure of image regularity and generalizes to more complicated
(co)domains [32]. The Beltrami functional is superficially similar to the regularized TV
functional [46]. However, while regularized TV can be viewed as the mere smoothing of the
TV functional, e.g.,

∫
Ω |∇u| ≈ ε

∫
Ω
√

1+ ε−2|∇u|2 with ε� 1, for numerical purposes, the
ability of the Beltrami functional to interpolate between the TV and Dirichlet functionals
has proven beneficial in many instances [3, 16, 22, 31, 34, 36, 44, 45, 47, 51, 52, 54, 56].

For β = 1, Jβ,Ω[u] is the area of the Monge surface given by the graph (x,u(x)) ∈ Rd+1,
where x ∈ Ω ⊂ Rd . Consequently, properties of J1,Ω are central to the study of minimal
surfaces [19, 25].

2.2. A discrete calculus for graphs. In this section we recall several definitions of graph-
based differential operators, which we then need to generalize the Beltrami energy to
graphs.

Let G = (V,E,w) be an undirected weighted graph with vertex set V = {i}N
i=1, edge set

E = {(i, j)} for some i, j ∈ V , and non-negative edge-weights w : E → R. For notational
convenience, we extend w to V ×V by setting w(i, j) = 0 if (i, j) /∈ E.

2.2.1. Inner products and norms on graphs.

Definition 2.1. For functions f ,g : V → R, we define the L2 inner product,

〈 f ,g〉L2(V ) := ∑
i∈V

figi

and derived L2 norm, ‖ f‖2 := 〈 f , f 〉
1
2
L2(V )

=
√

∑i∈V f 2
i .

Definition 2.2. For skew-symmetric1 edge functions u,v : E → R, we define the L2 inner
product,

〈u,v〉L2(E) := ∑
(i, j)∈E

u(i, j)v(i, j)

and derived L2 norm ‖v‖L2(E) := 〈v,v〉
1
2
L2(E) =

√
∑(i, j)∈E v(i, j)2.

1A function u : E→ R is skew-symmetric if u(i, j) =−u( j, i).
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Definition 2.3 (Partial Lp(V ) norm). More generally, for f : V → R, we define the partial
Lp norm on a subset S⊆V ,

‖ f‖S,p :=

(
∑
i∈S
| fi|p

) 1
p

.

We recover L2(V ) for S =V and p = 2.

Definition 2.4 (Magnitude). We define the magnitude |v| ∈ L2(V ) of v ∈ L2(E),

|v|i :=
√

∑
j : (i, j)∈E

v(i, j)2, i ∈V.

2.2.2. Differential operators on graphs. We define the following operators on graphs,
which can be viewed as discrete differential operators.

Definition 2.5 (Graph gradient). For f : V → R, define the graph gradient to be the edge
vector, ∇w f : E→ R, with entries consisting of weighted vertex differences,

(∇w f )(i, j) :=
√

w(i, j)( fi− f j), (i, j) ∈ E.

Definition 2.6 (Graph divergence). For skew-symmetric v : E→R, the divergence divw v : V→
R is defined

(divw)i := ∑
j : (i, j)∈E

√
w(i, j)v(i, j), i ∈V.

It is easy to verify that the graph gradient and divergence are adjoint using the vertex
and edge L2 inner products,

〈∇w f ,v〉L2(E) := 〈 f ,divw v〉L2(V ) , f ∈ L2(V ), v ∈ L2(E). (5)

Definition 2.7 (Graph Laplacian). The graph Laplacian, ∆w : L2(V )→ L2(V ) is defined as
the composition of graph divergence and graph gradient,

(∆w f )i := (divw ◦∇w f )i = ∑
j : (i, j)∈E

wi j( fi− f j).

Definition 2.8 (Dirchlet Energy). The Dirichlet energy of f : V → R is defined

D[ f ] := ‖∇w f‖2
L2(E) = ∑

(i, j)∈E
|(∇w f )(i, j)|2 = 1

2 ∑
i∈V
|∇w f |2i .

Definition 2.9 (Total Variation). The isotropic total variation of f : V → R is defined

TV [ f ] := ∑
i∈V
|∇w f |i.

The anisotropic total variation of f : V → R is defined

TVa[ f ] := ∑
(i, j)∈E

|(∇w f )(i, j)|.

In this paper, we will use the isotropic total variation, not the anisotropic total variation.

3. Proposed geometric graph partitioning model. With the definitions of inner products
and differential operators on graphs from Section 2 in hand, we next define the Beltrami
energy on graphs.

In this section, we assume that G = (V,E,w) is a given weighted graph, where the
weights are determined by the application. These weights then propagate to the graph
objects defined in Section 2.
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3.1. Definition and properties of the graph Beltrami energy.

Definition 3.1. We define the graph Beltrami energy of u : V → R:

Jβ[u] :=∑
i∈V

√
1+β2|∇wu|2i (6)

=∑
i∈V

√
1+β2 ∑

j : (i, j)∈E
wi j(ui−u j)2.

Lemma 3.2. The graph Beltrami energy, Jβ, defined in (6), is a proper, closed, convex
function on L2(V ).

Proof. Let RN
+ = {x ∈ RN | xi ≥ 0}, and identify L2(V ) with RN . Then define

f : RN
+→ R, f (x) =

N

∑
i=1

√
1+β2x2

i .

The function f is non-decreasing and strictly convex on RN
+. Further, define

g : RN → RN , gi(u) =

√√√√ N

∑
j=1

wi j(ui−u j)2.

If we can show that gi for i= 1 . . .N, are convex functions, then Jβ is convex since Jβ = f ◦g.
To see that gi : RN → R is convex, we define

hi : RN
+→ R, hi(y) =

√√√√ N

∑
j=1

wi jy2
j .

This hi is non-decreasing and convex on RN
+. We then define γi : RN→RN , with (γi) j(x) =

|xi− x j|. Since (γi) j for j = 1, . . .N, are convex and g = h◦ γ, then g is convex.

Remark 1. For a graph which corresponds to a square lattice, the graph Beltrami energy
approximates the Beltrami energy as considered in Section 1. Namely, let Ω⊂ R2, V cor-
respond to the set of points in a square lattice, {xi,yi}i∈Z2 , which are a subset of Ω, and the
edge set, E, connect vertices with their four nearest neighbors with weight w(i, j) = 1

2 h−1,
where h is the lattice mesh size. Then, for β = 1, the graph Beltrami energy approximates
the surface area of the discretized parameterized surface (xi,yi,ui) where ui = u(xi,yi) for
some u ∈ H1(Ω).

Remark 2. We note that varying β allows interpolating between the graph Dirichlet energy
(β→ 0) and graph total variation (β→ ∞),

Jβ[u] ∼
{
|V |+β2 ·D[u] β→ 0
β ·TV [u] β→ ∞.

(7)

This graph-based definition makes the benefits of Beltrami regularization available for data
defined on graphs, and applies, e.g., to clustering or segmentation, with numerous applica-
tions in machine learning.
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3.2. Minimal Beltrami energy. Motivated by the minimal surface problems discussed in
the introduction (Section 1), we consider the following isoperimetric graph problem. Let
S ⊂ V be a vertex subset. On S, we consider the vertex function u?, which has unit L1(V )
norm, vanishes on the complement Sc := V \ S, and has minimal Beltrami energy, i.e.,
satisfies

J?β [S] := min Jβ[u] s.t. u : V → [0,1], ‖u‖V,1 = 1, and u|Sc = 0. (8)

Here Jβ is defined in (6).

Lemma 3.3. The set of vertex functions,

U := {u : V → R | u≥ 0, ‖u‖V,1 = 1}
U0 :=U ∩{u : u|Sc = 0}

are both closed convex.

Proof. The set U is simply the standard simplex and thus closed convex. U0 is closed
convex since it is the intersection of closed convex sets.

It now follows from Lemmata 3.2 and 3.3 that (8) is a convex optimization problem, so
there exists at least one solution.

Remark 3. Note that the substitution z = βu in (8), shows the equivalence to the problem

min J1[z] s.t. z : V → [0,β], ‖z‖V,1 = β, and u|Sc = 0.

The respective minimizers of these two problems are related by z? = βu?, while the optimal
values are not equal.

In terms of the graph (V,E,w) described in Remark 1, we interpret J?β [S] for β = 1 to be
the minimal surface area of the unit-mass distributed over the set S⊂V .

3.3. Minimal Beltrami energy graph partitioning. We now consider a vertex partition
of the graph, V = tk

`=1V`. To this vertex partition, we associate an energy, which is the
sum of the minimal Beltrami energies, ∑k

`=1 J?β [V`]. We then consider the Beltrami graph
partitioning problem,

min
V=t`V`

k

∑̀
=1

J?β [V`]. (9)

Remark 4. Since there are only a finite number of partitions, the minimum in (9) is attained
by some partition.

3.4. Boundary conditions relaxation. An interesting route of rendering (9) accessible to
efficient computational optimization has been proposed for the closely related Dirichlet en-
ergy graph partitioning problem in [6, 41]. The approach consists of relaxing the Dirichlet
boundary conditions of the inner minimization problem by replacing them with a penalty.

Indeed, the boundary conditions are equivalently obtained by imposing the partial Lq

norm of u to vanish on Sc:
u|Sc = 0 ⇔ ‖u‖q

Sc,q = 0. (10)
Instead of imposing this constraint strictly, one can penalize violations by including the
partial Lq norm in the optimization problem. Natural choices include q = 2 (quadratic
penalty) and q = 1 (absolute error).

The relaxed partitioning model then becomes:

min
V=t`V`

k

∑̀
=1

Jα,?
β [V`] (11)
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where the inner model (8) is relaxed to

Jα,?
β [S] := min

{
Jβ[u]+

α
q
‖u‖q

Sc,q

}
s.t. u : V → [0,1], ‖u‖V,1 = 1. (12)

Proposition 1. Fix β > 0 and S ⊂V . For any α > 0, the relaxed problem (12) is a convex
optimization problem and thus has a minimizer. As α → ∞, the minimum value of Jα

β
converges to the minimum value of Jβ,

lim
α→∞

Jα?
β [S] = J?β [S]. (13)

Also there exists a sequence of values αk with corresponding minimizers u?k of (12) such
that the u?k converge to a minimizer of (8).

Proof. The relaxed boundary condition term, α
q ‖u‖

q
Sc,q, is closed convex, Jβ is closed con-

vex (Lemma 3.2), and the constraint set U is convex (Lemma 3.3), so (12) is a convex
optimization problem.

We compute
d

dα
Jα?

β =
1
q
‖u?‖q

Sc,q ≥ 0,

where u?α is a minimizer for Jα
β . For any finite α, we have that Jα?

β [S]≤ J?β [S] since U0 ⊂U
and Jα

β ≡ Jβ on U0. Consequently lim
α→∞

Jα?
β [S] exists and satisfies lim

α→∞
Jα?

β [S]≤ J?β [S].

For the reverse inequality, we consider an increasing sequence {αk}k. Let {u?k}k be a
minimizer of Jα

β [S] with α = αk. There exists a ũ and a subsequence of {u?k}k (labled using
the same index) such that u?k → ũ. Passing to the limit we see that ‖ũ‖q

Sc,q = 0, so u ∈U0

(admissible for (8)). Thus we have that lim
α→∞

Jα?
β [S] = Jβ(ũ) ≥ J?β [S]. This holds for any

limit point of a sequence of minimizers.

3.5. Rearrangement algorithm for the bi-level optimization problem (11). With the
relaxation of the boundary condition in place, the bi-level optimization problem can be
solved by a rearrangement algorithm extended from [41].

1. Given partitions V = t`V`, compute a minimizer u?` for satisfying (12) with S = V`

for each `= 1, . . . ,k. (This is the inner problem for (11).)
2. Given minimizers u?` , reassign partitions by the “winner takes all” rule,

Vk 3 v ⇐⇒ k = argmax
`
{u?`(v)}.

This two-step iterative algorithm is also reminiscent of the structure of popular clustering
algorithms like k-means [35] and expectation-maximization (E-M) for Gaussian mixture
models [17]. This iterative algorithm also shares many attributes with diffusion generated
motion by mean curvature [20, 24, 37, 38, 39, 55].

Proposition 2. The iterations of the rearrangement algorithm do not increase the objective
function in (11).

Proof. Lett`V` andt`V+
` denote the old and updated vertex partitions, respectively, and u`

and u+` the corresponding minimizers of the inner problem (12). The old objective satisfies

∑̀Jβ[u`]+
α
q
‖u`‖q

V`,q
≥ ∑̀Jβ[u`]+

α
q
‖u`‖q

V+
` ,q
≥ ∑̀Jβ[u

+
` ]+

α
q
‖u+` ‖

q
V+
` ,q

, (14)

which is the value of the updated objective. The first inequality holds by construction of
the algorithm and the second inequality holds by the optimality of u+` in (12).
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In practice, we observe that the rearrangement algorithm converges in a small number
of iterations.

4. Primal-dual methods for solution of the inner problem. The computation of the min-
imizers u?` satisfying (12) with S =V` for each `= 1, . . . ,k is the computational bottleneck
of the proposed optimization scheme in Section 3.5. Thus, it is important to make this
step as efficient as possible. By Proposition 1 these inner problems are convex. There is
a huge corpus of algorithms that apply to these convex optimization problems. Recently,
primal-dual splitting algorithms have gained particular attraction [19], most notably so in
the context of TV and L1-type problems in imaging, e.g., [11, 21, 59, 60]. Zosso and Bustin
have applied the theory to the particular case of the Beltrami functional [51], used as an
interesting regularizer in imaging problems that interpolates between the classical H1 and
TV regularizers [62].

In Subsections 4.1 we show how the inner problem (12) can be formulated as a saddle
point problem. In Subsection 4.2 we summarize a general family of algorithms which we
adapt to our problem in Subsection 4.3-4.5. In Subsection 4.6 we present a semi-supervised
extension to our algorithm.

4.1. Saddle point formulation. We recall the definition of the convex conjugate (a.k.a.
Legendre-Fenchel transform) of a function:

Definition 4.1 (Legendre-Fenchel transform). The convex conjugate of a function f is the
function f ∗ defined by

f ∗(s) = sup
x∈Rn

{
〈s,x〉− f (x)

}
, s ∈ Rn. (15)

The convex conjugate of a closed convex function is again a closed convex function.
Also, the biconjugate, f ∗∗ := ( f ∗)∗, is the largest closed convex function with f ∗∗ ≤ f . As
a result, f = f ∗∗ iff f is closed convex (Fenchel-Moreau Theorem).

As the following Theorem shows, convex problems of a certain form can be rewritten
as a primal-dual problem using the Legendre-Fenchel transform. This saddle point formu-
lation of the problem will be exploited by the numerical methods employed here.

Theorem 4.2. Let F : W → R be a closed and convex functional on the set W, G : X → R
a closed and convex functional, and K : X →W be a continuous linear operator. Then we
have the following equivalence:

min
x∈X

{
F(Kx)+G(x)

}
︸ ︷︷ ︸

Primal

= min
x∈X

max
φ∈W ∗

{
〈Kx,φ〉−F∗(φ)+G(x)

}
︸ ︷︷ ︸

Primal−Dual

(16)

where x and φ are the primal and dual variables, respectively, F∗ is the convex conjugate
of F, and W ∗ is the dual space of W.

For a proof of Theorem 4.2, see [19, p. 178]. Comparing (12) with the primal-dual
model in Theorem 4.2, we make the following identifications:

F(Ku) = ∑
i∈V

√
1+β2|∇wu|2i and G(u) =

α
q
‖u‖q

Sc,q .

In particular, we thus define

K : X →W, u 7→ ∇wu and F : W → R, x 7→ ∑
i∈V

√
1+β2|x|2i ,



10 D. ZOSSO AND B. OSTING

with the reflexive spaces X = U and W = L2(E). The Legendre-Fenchel transform F∗ of
the function F is found as:

F∗ : W ∗→ R, φ 7→ −∑
i∈V

√
1−|φ|2i /β2, (17)

where W ∗ = L2(E)∩
{

φ : |φ|2i ≤ β2
}

, which is closed convex. In Lemma 3.2 it was shown
that F is convex. Thus, using Theorem 4.2, we now get the equivalent primal-dual problem:

min
u∈U

max
φ∈W ∗

{
〈∇wu,φ〉L2(E)+ ∑

i∈V

√
1−|φ|2i /β2 +

α
q
‖u‖q

Sc,q

}
. (18)

Further, using the adjoint relation (5) of the graph differential operators, (18) can be rewrit-
ten:

min
u∈U

max
φ∈W ∗

{
〈u,divw φ〉L2(V )+ ∑

i∈V

√
1−|φ|2i /β2 +

α
q
‖u‖q

Sc,q

}
. (19)

Thus, by Theorem 4.2, (19) and (12) are equivalent.

4.2. Alternating direction minimization. Having established the general primal-dual sad-
dle point problem (16), the saddle-point can now be found iteratively, for example by the
backward-backward splitting algorithm by Chambolle and Pock [11]. This algorithm has
also been classified as a modified primal-dual hybrid gradient method (PDHGM) in [21].
The iterative steps are:

φn+1 = argmin
φ∈W ∗

{−〈Kx̄n,φ〉+F∗(φ)+
1

2r1
‖φn−φ‖2

2} (20a)

xn+1 = argmin
x∈V

{〈x,K∗φn+1〉+G(x)+
1

2r2
‖xn− x‖2

2} (20b)

x̄n+1 = xn+1 +θ(xn+1− xn). (20c)

The first two steps are the proximal update of the dual and primal variable, respectively. The
third, extra-gradient step is an overrelaxation of the primal update in order to overcome the
stepsize shortening typical of first order methods. Relaxation parameter θ = 0 corresponds
to the Arrow-Hurwitz algorithm, whereas faster convergence can be achieved for θ = 1
[11]. In general, O(1/N) convergence, where N is the number of iterations, has been
shown for fixed r1, r2, such that

r1r2‖K‖2 ≤ 1, (21)

where ‖K‖ is the operator norm/induced norm of the linear operator K, or equivalently
‖K‖2 = ‖K∗K‖ is the induced norm of the composition K∗K.

It should be mentioned that the above PDHG-algorithm was preceded by TV-minimization
by Zhu and Chan [59, 60], which solves the minimization steps only approximately, through
an explicit step of gradient ascent/descent followed by projection onto the convex sets W ∗

and V , respectively, and without the extra-gradient step:

φn+1 = PW ∗
(
φn + r1

(
Kxn−∂φF∗(φn)

))
(22a)

xn+1 = PV
(
xn + r2

(
K∗φn+1−∂xG(xn)

))
(22b)

where PS(·) = argmins∈S ‖s−·‖2
2 denotes Euclidean projection on the closed convex set S.

This is an instance of Arrow-Hurwicz-Uzawa algorithm [1]. Our algorithm will combine
Chambolle and Pock’s implicit minimization steps with Zhu and Chan’s projections onto
convex sets.
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4.3. Primal-dual hybrid gradients for the inner problem. The saddle-point problem of
the inner optimization is given in (18). We adapt the general primal-dual hybrid gradients
algorithm in (20) to (18) as follows:

φn+1 = argmin
φ∈W ∗

{
−〈∇wūn,φ〉L2(E)−∑

i∈V

√
1−|φ|2i /β2 +

1
2r1
‖φn−φ‖2

2

}
(23a)

un+1 = argmin
u∈U

{
〈u,divw φn+1〉L2(V )+

α
q
‖u‖q

Sc,q +
1

2r2
‖un−u‖2

2

}
(23b)

ūn+1 = un+1 +θ(un+1−un) (23c)

We identify in our case K = ∇w, and more importantly K∗K = ∆w. The general O(1/N)
convergence guarantee (21) of [11] applies if

r1r2 ≤ ρ(∆w)
−1, (24)

where ρ(∆w) denotes the spectral radius of the graph Laplacian.
In the following subsections, we show how the respective minimization sub-problems

(23a) and (23b) can be solved efficiently.

4.4. Dual variable update. We first address the update of the dual variable φ. The mini-
mization problem of the dual variable update (23a) can be rewritten as

φn+1 = argmin
φ∈W ∗

−〈∇wūn,φ〉L2(E)−∑
i∈V

1−|φ|2i /β2√
1−|φ|2i /β2

+
1

2r1
‖φn−φ‖2

2

 . (25)

We propose to solve this in an iteratively reweighted least squares (IRLS) approach as
follows. We observe that the objective in (25) without the square-root in the denominator is
quadratic in φ. We fix the current estimate of φ in the square-root to obtain a weighted least
squares problem, this weight is then updated, and the process is repeated until convergence:

ψ0 = φn (26a)

ψt+1 = argmin
ψ∈W ∗

−〈∇wūn,ψ〉L2(E)−∑
i∈V

β2−|ψ|2i
β
√

β2−|ψt |2i
+

1
2r1
‖φn−ψ‖2

2

 (26b)

φn+1 = lim
t→∞

ψt (26c)

Our focus is on the solution of the fixed-point minimization step (26b).

Lemma 4.3. For small enough r1, the solution to (26b) is given by

ψt+1(i, j) =
εt

i
εt

i +2r1/β
[φn(i, j)+ r1(∇wūn)(i, j)] , ∀(i, j) ∈ E, (27)

where εt
i :=

√
β2−|ψt |2i .

Proof. The solution to the unconstrained optimization problem

argmin
ψ∈L2(V )

{
−〈∇wūn,ψ〉L2(E)−∑

i∈V

β2−|ψ|2i
βεt

i
+

1
2r1
‖φn−ψ‖2

2

}
. (28)

is given by (27). It remains to show that, for sufficiently small r1, ψt+1 ∈W ∗ and is there-
fore the solution of the constrained problem (26b) as well. In (27), for each i, the coefficient
in front of the square brackets is less than 1. A geometric illustration of the contraction is
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given in Figure 2(a). A sufficient condition for ψt+1 ∈W ∗ is φn + r1(∇wūn) ∈W ∗, or
equivalently:

|φn + r1(∇wūn)|i ≤ β, ∀i ∈V. (29)
We compute for each i ∈V :

|φn + r1(∇wūn)|2i ≤ |φn|2i + r2
1|∇wūn|2i (30a)

= |φn|2i + r2
1 ∑

j,(i, j)∈E
w(i, j)(ūn

i − ūn
j)

2 (30b)

≤ |φn|2i + r2
1 ∑

j,(i, j)∈E
w(i, j) (30c)

≤ |φn|2i + r2
1 max

o∈V
∑

j,(o, j)∈E
w(o, j). (30d)

Since φn ∈W ∗, for

r1 ≤
√

β2−maxi |φn|2i
maxi di

,

where di = ∑ j,(i, j)∈E w(i, j) is the degree of vertex i in the graph, the condition is met.

Lemma 4.4. If r1 > 0.08 ·β2, the iterative scheme (26) converges to a fixed point in W ∗.

Proof. Using Lemma 4.3 and denoting α(i, j) := φn(i, j)+ r1(∇wūn)(i, j), for (i, j) ∈ E,
the iterates in (26) can be written

ψt+1(i, j) =
εt

i
εt

i +2r1/β
α(i, j).

We then have that

εt+1
i =

√
β2−|ψt+1|2i =

√
β2−

(
εt

i
εt

i +2r1/β

)2

|α|2i .

Thus, in the iterative scheme (26) there are no dependencies between the vertices. We claim
that the mappings

x 7→ fi(x) :=

√
β2−

(
x

x+2r1/β

)2

|α|2i
for every i ∈V are contraction mappings on the interval [0,β] and hence by the contraction
mapping theorem, each has a unique fixed point in [0,β]. To show that fi is a contraction
mapping, we compute

| f ′i (x)|=
|α|2i x2r1/β
(x+2r1/β)3

1√
β2−

(
x

x+2r1/β

)2
|α|2i
≤ |α|

2
i 2r1

(2r1/β)3
1√

β2−
(

β
β+2r1/β

)2
|α|2i

.

From (29), we have that |α|i ≤ β and thus

| f ′i (x)| ≤
β22r1

(2r1/β)3
1√

β2−
(

β
β+2r1/β

)2
β2

=
β2

2r1

 ξ
(1+ξ)3

1√
1−
(

ξ
1+ξ

)2

≡ β2

2r1
g(ξ)

where ξ = βx
2r1

. A plot of the function g(ξ) reveals that it is bounded by 0.16 for all ξ≥ 0.

We have that | f ′i (x)| ≤ 0.08 β2

r1
< 1 for every x, implying that f is a contraction mapping.
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φ1

φ2

|φ|2 = β2

φn φn + r1∇ūn

φn+1

W ∗
u1

u2

1

1

0

a
a+

PU (a)
b

b+

PU (b)

c

c+

PU (c)
d

d+

PU (d)

e

e+PU (e)

(a) (b)

FIGURE 2. Geometric illustration of dual and primal variable updates.
(a) The dual variable update step involves the current estimate φn and
a contribution from the primal gradient. The sum φn + r1∇wūn is then
shortened towards the origin; the resulting point is guaranteed to be in
W ∗ when the intermediate φn + r1∇wūn is in W ∗. In this case, the dual
variable update does not involve any projection. (b) The projection of the
primal variable update on the probability simplex U is achieved in two
steps. First, the variable is shifted along the main diagonal such that its
smallest component has value 0 (u→ u+). Then, this non-negative u+

is projected on to the simplex by uniform distribution of the mass deficit
(if |u+|V,1 < 1), or appropriately shrunk (soft-thresholding) if the current
mass exceeds 1. The points a–e represent different cases. See Sections
4.4 and 4.5.3.

In practice we take the value of r1 to be much smaller than the sufficient condition given
in Lemma 4.4 and have not encountered any convergence issues.

4.5. Primal variable update. We now turn our attention to the minimization problem
(23b), associated with the proximal update of the primal variable u. There are two cases
to be considered, corresponding to the two choices q = 2 and q = 1 of the penalty term
of the relaxed Dirichlet boundary condition. As will be shown shortly, both problems
admit a simple closed form solution u?q, for the unconstrained problem with u ∈ L2(V ). To
approximate the optimal solution within U , we then project u?q onto U ,

un+1 = PU (u?), (31)

which is a reasonable approach for practical purposes, given the convexity of the involved
functionals and the set U . Indeed, this mimics the projected gradient steps in the primal
update of the Arrow-Hurwitz-Uzawa algorithm (22b), modulo the backward update used
here instead of explicit, forward gradient descent. We first have to find the respective u?q.

4.5.1. Primal variable update for q = 2. Let us consider the relaxed problem u ∈ L2(V ):

un+1 = argmin
u∈L2(V )

{
〈u,divw φn+1〉L2(V )+

α
2
‖u‖2

Sc,2 +
1

2r2
‖un−u‖2

2

}
(32)
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The minimization problem is quadratic and admits the following closed form solution:

(u?2)i =
un

i − r2(divw φn+1)i

1+αr2(1−χi)
,

where χ is the characteristic function of the current partitioning, and the update can be
computed by simple vertex-wise operations.

4.5.2. Primal variable update for q = 1. Let us in turn consider the relaxed problem u ∈
L2(V ) of the q = 1 based problem:

un+1 = argmin
u∈L2(V )

{
〈u,divw φ〉L2(V )+α‖u‖Sc,1 +

1
2r2
‖un−u‖2

2

}
. (33)

We first note that an equivalent minimization problem is given by

u?1 = argmin
u

{
αr2‖u‖Sc,1 +

1
2
‖u− (un− r2 divw φn+1)‖2

2

}
, (34)

which is an L1-type problem solved by shrinkage:

(u?1)i = shrink(un
i − r2(divw φn+1)i,αr2(1−χi)), (35)

where the soft-thresholding operator is defined as

shrink(z,τ) :=


z+ τ z <−τ,
0 |z| ≤ τ,
z− τ z > τ.

(36)

Again, we see that all operations are simple and acting vertex-wise.

4.5.3. Probability simplex projection. Here, PU : L2(V ) → U denotes projection on the
probability simplex:

PU (u) := argmin
v
‖v−u‖2

2 s.t. ‖v‖V,1 = 1 and ∀i ∈V : vi ≥ 0 (37)

To avoid special considerations regarding negative components, we first uniformly shift the
function u so that it is non-negative at each vertex:

u+ := u−min
i∈V

(ui).

Such a translation happens along a direction orthogonal to the probability simplex, and the
projection is thereby not altered. The actual projection algorithm then practically distin-
guishes between two cases, depending on the L1-norm of the non-negative u+ ∈ L2(V ): If
‖u+‖V,1 > 1, then PU (u) is obtained by an appropriate soft-thresholding of u+ [18]. On the
other hand, if ‖u+‖V,1 ≤ 1, then the projection is obtained by distributing the lacking mass
over all vertices, uniformly:

(PU (u))i =

{
shrink((u+)i,λ) if ‖u+‖V,1 > 1,

(u+)i +
1−‖u+‖V,1
|V | if ‖u+‖V,1 ≤ 1,

i ∈V, (38)

where |V | denotes the number of vertices in V . Different cases of this projection are illus-
trated for a 2-dimensional u in Figure 2 (b). An efficient strategy for finding the appropriate
thresholding parameter λ is given in [18].
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4.6. Semi-supervised extension. The proposed partitioning algorithm lends itself to a
straightforward semi-supervised extension. Indeed, in Section 3.5 we defined the rearrange-
ment algorithm as the outer step of the bi-level optimization scheme: Given the k minimiz-
ing u?` , ` = 1, . . . ,k, each vertex is reassigned by the “winner takes all” rule. It is easy to
modify this rearrangement step to keep fixed the given assignments of a subset of vertices.
The motivation for such a semi-supervised extension is twofold:

First, the semi-supervised extension allows to integrate prior knowledge in to the parti-
tioning problem. In the context of data clustering, this is known as transductive learning,
where the dataset to be clustered consists of both labeled and unlabeled points.

Second, when a graph is a discretization of a manifold with boundary, it is desirable to
enforce extra conditions on some “boundary vertices”, e.g., Dirichlet boundary conditions.
A Dirichlet boundary condition can be weakly enforced on a set of vertices using the same
method; this is explained with an example in Section 5.4.

5. Experiments I: graphs from discretized manifolds. In this first experimental section,
we focus on the partitioning of graphs which are discretizations of manifolds. We consider
several examples that have been previously studied and explore a few new problems. These
graphs are local in the sense that vertices are adjacent only to their nearest neighbors.
These graphs are particularly valuable examples because they are easy to visualize and the
existence of analytical solutions in some cases provides instructional insight into the nature
of the proposed method. Graphs which are not discretizations of manifolds are considered
in Section 6.

The proposed experiments gradually increase in complexity. We start by partitioning a
small graph representing a discretized line segment. We then increase the problem dimen-
sion and partition the discretization of a square domain with both Neumann and periodic
boundary conditions. We then partition barbell and ring-like subdomains of the square
graph using Dirichlet boundary conditions, to illustrate the use of the semi-supervised ex-
tension. Finally, we bi-partition a discretization of the cube with periodic boundary condi-
tions. In each case, along with the locally optimal partition t`V` and a composite of ground
states, max` u`, we also report the value of the objective function minus the value N · k,

o :=
k

∑̀
=1

Jα,?
β [V`]−N · k =

k

∑̀
=1

∑
i∈V

(√
1+β2|∇wu?` |2i −1

)
+

α
q
‖u?`‖q

V c
` ,q

.

In this section and in Section 6, we present results based on a Matlab implementation
of the algorithms described in Sections 3 and 4. All computations were done on a 16-core
2.90 GHz Intelr Xeonr desktop computer with 128 GB of RAM.

5.1. Line graph. We start by constructing a line graph—the discretization of a line segment—
with 20 vertices. We fix the parameter β = 1 and consider the bi-partition k = 2. A partition
t`V` is randomly initialized and our partitioning algorithm is applied for different values of
α and q, respectively. The evolution of the partitions and their minimizing u` is illustrated
in Figure 3. These results suggest that the parameter q, which is the norm which penalizes
the violation of the Dirichlet boundary condition, does not heavily affect the minimal parti-
tion, while the parameter α, which is the coefficient of the penalization, plays an important
role: too large an α effectively pins the minimizing u` in local minima, while too small an
α doesn’t enforce the desired boundary conditions. In this simple example, the iterative
algorithm converges in only 5 outer iterations.
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q = 1 α = 0.1 α = 0.01 α = 0.001 α = 0.0001

−→
Iterations

−→

q = 2 α = 5 α = 0.5 α = 0.05 α = 0.005

−→
Iterations

−→

FIGURE 3. Partitioning a line segment, for different α and q. In each
column, the topmost subplot shows the initial (random) partition (colored
circles) and the corresponding optimal ui. From one row to the next, the
partition is rearranged according to §3.5, and new eigenfunctions ui are
shown. For large α, the partition remains stuck in a local minima. For
α too small, the ui become too flat. Results for q = 1 and q = 2 are
qualitatively similar. See §5.1.
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k = 3 k = 5

o = 7.8061 ·10−7 o = 3.9625 ·10−6 4.0147 ·10−6

k = 7

o = 9.2171 ·10−6 9.3031 ·10−6 9.3037 ·10−6 9.3124 ·10−6

FIGURE 4. Locally optimal partitions (top) and the associated ground
state composites (bottom) for the square lattice graph for various values
of k. Here β = 2, q = 1 for all k and α = 5 ·10−7 for k = 3, and α = 10−6

for k = 5,7. See §5.2.

5.2. Square lattice graph. We consider a square domain with free boundary conditions.
To this end we construct a 120×120 square grid and a graph where each (non-boundary)
vertex is connected to its four nearest neighbors; vertices at the edge are connected to their
three nearest neighbors, and the four corner vertices are connected to their two nearest
neighbors. Edge weights w are taken to be constant. For this graph, the optimal partitions
are non-trivial. In Figure 4, we show some (locally) optimal partitions for k ∈ {3,5,7},
computed with our algorithm. We use constant β = 4 and q = 1 for all k, while the param-
eter α increases with the number of partitions.

These results can be compared to the numerical experiments conducted in [4, 27] for
optimal spectral partitions (limβ→ 0). Interestingly, we find that the partitions obtained
for finite β are very similar to the optimal spectral partitions. Namely, for k = 3, there
appears to be a continuous family of 3-partitions with all components meeting at a triple-
junction with similar values of energy. The partition for k = 5 with smallest energy is
similar to a spectral partition in [27]. Some of the obtained partitions also bear striking
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k = 4 9 16 25
α = 10−6 2 ·10−6 8 ·10−6 1.25 ·10−5

o = 7.6507 ·10−6 3.5149 ·10−5 2.4890 ·10−4 5.7569 ·10−4

FIGURE 5. Locally optimal partitions of a torus graph (top) and the as-
sociated ground states (bottom). In all cases, β = 4 and q = 1. See §5.3.

resemblance to steady-state configurations of Renyi-entropy minimizing space partitioning
processes [14, Fig. 5].

5.3. Torus graph (square lattice graph with periodic boundary conditions). We con-
sider the 110× 127 torus graph, obtained from a truncated square lattice by identifying
opposing “boundary vertices”. The aspect ratio 2 :

√
3 is chosen such that regular hexagons

can potentially tile the manifold with correct periodicity. The edge weights, w, are taken
to be constant. We initialize the partition with a Voronoi tessellation for randomly chosen
generators. In Figure 5, we plot the k = 4, 9, 16, and 25 partitions computed for constant
β = 4 and q = 1, while the parameter α increases with the number of partitions.

To illustrate the periodicity of the minimizers, we also show a tiling of the obtained
partitions in Figure 6. Indeed, for k ∈ (2N)2, the two-periodic square partitioning problem
admits a tiling of regular hexagons and our numerical experiments suggest that this is the
optimal partition for the Beltrami energy. It has been proven that the hexagonal tiling
minimizes perimeter subject to a fixed volume constraint [26]. It has also been conjectured
that the optimal partitions for the Dirichlet objective function are hexagonal [10]; see also
[6, 41] for numerical support of this conjecture.

5.4. Discretizations of a barbell and annulus. After having considered domain partition-
ing with free and periodic boundary conditions, we now make use of the semi-supervised
extension to partition subdomains of the square with Dirichlet boundary conditions. To this
end, we again construct a square grid with edge weights as in Section 5.2. In addition, we
assign the label 0 /∈ 1, . . . ,k to vertices outside the intended domain, and keep these labels
unchanged during the rearrangement step.

As a first example, we look at the “pinched oval” or “barbell” domain as illustrated in
Figure 1. We compute locally optimal partitions for k = 3, 4 and 5. Representative local
minimizers are shown in Figure 7.
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FIGURE 6. Lattice partitioning as tilings of torus partitions, based on
k = 4, 16. For k ∈ (2N)2, the two-periodic (torus) partition problem
mimics the two-dimensional lattice problem. See §5.3.

Our second example is a punctured disk: an annulus with varying size hole. Depend-
ing on the relative size of the hole, the optimal partitions differ significantly, as shown in
Figure 8, for k = 8. For a relatively large hole radius r = 0.5 (half the disk radius), the
eight locally optimal partitions are simply radially distributed on the ring. For very small
puncture r = 0.05, on the other hand, we find a less symmetric partition. As a matter of
fact, for small hole size and too small α, a single partition can “surround” the puncture. The
most interesting locally optimal partitions are obtained for intermediate hole sizes around
r = 0.1 and r = 0.2, with non-trivial symmetrical patterns emerging.

5.5. Periodic volume partitioning. We consider partitions of a triply-periodic volume.
We recall the triply-periodic minimal surface found by Hermann Schwarz [49] referred
to as the P-surface (“primitive”) and approximated implicitly by the zero level-set of the
function

(x,y,z) 7→ cos(x)+ cos(y)+ cos(z). (39)

This minimal surface bi-partitions the volume into two equally-sized components such that
the interface is triply periodic and necessarily has zero mean curvature.

We consider the 26× 26× 26 torus graph, corresponding to the three-dimensional ex-
tension of the two-dimensional torus graph previously considered in Section 5.3. The edge
weights, w, are taken to be constant. Starting from a randomly initialized partition, our
algorithm typically converges to one of two local optima, shown in Figure 9: a planar bi-
section of the cube, or a surface very similar to the P-surface. The P-surface minimum has
smaller objective function value than the planar bisection. For comparison, we also plot the
zero level-set of the function in (39), which very well approximates the P-surface.

This result is interesting because the P-surface is a stationary point for an optimization
problem which only agrees with our proposed partitioning model in the TV limit (β→ ∞);
see (7). The fact that our computations suggest that this surface is also optimal for finite
values of β suggests that the P-surface is a minimizer of a larger class of optimization
problems.

6. Experiments II: Data graphs. We now turn our attention to the clustering of data-sets
via the partitioning of associated weighted (non-lattice) graphs.
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k = 3

o = 3.1659 ·10−6 3.2262 ·10−6 3.3935 ·10−6 3.4256 ·10−6

k = 4

o = 1.5513 ·10−5 1.5590 ·10−5 1.5651 ·10−5 1.5655 ·10−5

k = 5

o = 1.7612 ·10−5 1.7651 ·10−5 1.7695 ·10−5 1.7716 ·10−5

FIGURE 7. Minimizing partitions (top) and a composite of ground state
functions (bottom) of a discretized “barbell” domain with Dirichlet
boundary conditions. First row: k = 3, α = 0.02, q = 2, β = 2. Middle
row: k = 4, α = 2 ·10−6, q = 1, β = 2. Bottom row: k = 5, α = 2 ·10−6,
q = 1, β = 1. See §5.4.
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r = 0.5 r = 0.05

o = 4.1411 ·10−5 o = 3.3607 ·10−5 3.4139 ·10−5

r = 0.1

o = 3.4374 ·10−5 3.4378 ·10−5 3.4444 ·10−5 3.4766 ·10−5

r = 0.2

o = 3.5254 ·10−5 3.5358 ·10−5 3.5404 ·10−5 3.5535 ·10−5

FIGURE 8. Minimizing partitions (top) and a composite of ground state
functions (bottom) of a discretized annulus domain with Dirichlet bound-
ary conditions and varying inner radius r. Here k = 8, α= 3 ·10−6, q= 1,
and β = 1. See §5.4.
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o = 2.4957 ·10−6 o = 2.3099 ·10−6 o = 2.3018 ·10−6

FIGURE 9. Partitions of a 26 × 26 × 26 discreteization of a triply-
periodic three-dimensional volume. Here k = 2, α = 10−6, q = 1, and
β = 1. (left) Interface (green) and one of the ground states, u, (heat map)
of a planar bisection. (center) Interface and one of the ground states,
u, of a “P-surface-like” partition, before and after re-centering for visu-
alization. (right) The zero level-set of cos(x)+ cos(y)+ cos(z), which
very well approximates the P-surface. See §5.5.

FIGURE 10. Optimal partitions for the five moons problem. Here q = 2,
β = 2, α = 0.1, and a 99.6 % purity is attained. See §6.1.

6.1. Five moons. We begin by considering the five moons partitioning problem, a collec-
tion of points in the shape of five moons. We assign edge weights using a Gaussian kernel,
w(i, j) = e−d2(xi,x j)/σ2

, where d(·, ·) is Euclidean distance and σ = 1. In Figure 10, we give
a scatter plot of the points where colors represent the labels assigned to each point by the
algorithm. The method attains a 99.6% purity value.

6.2. MNIST handwritten digits. The MNIST handwritten digit dataset consists of 70,000
28×28 greyscale images of handwritten digits 0 to 9. As input we used the similarity ma-
trix for the MNIST dataset obtained from the website of Z. Yang [57, 58]. We symmetrize
this matrix via W̃i j = max{Wi j,Wji}.

First, we perform naive clustering with our proposed algorithm. The purity obtained,
as defined in [57], differs a lot between individual runs, and we show the best result (in
terms of purity) over several dozen runs without supervision. In each case, the algorithm
converges in approximately 20 iterations. For parameters q = 1, β = 2, α = 10−5, the best
observed purity (without supervision) is 96.23% which is comparable to the performance
of state-of-the-art clustering algorithms.
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Figure 11 is a graphical display of the quality of the output. The first row shows the
blurry averaged images within each cluster, while the second row indicates the represen-
tative images for each cluster (where each ground state achieves its maximum). In this
particular run, the representative image of the ‘3’ cluster is actually an ‘8’, indicative of
the strong ambiguity between these classes in terms of graph separation. The second best
representative of this class (where the ground state is second largest), is truly a ‘3’ and
shown as 3bis. To further illustrate the diversity of handwriting samples, for each cluster
we show the misclassified image with largest ground state value along with its true label.
Visual inspection shows that the misclassification is “intuitively explainable”.

In Table 1, we display the confusion matrix for the obtained clusters, both in absolute
and relative numbers. The columns represent the ground truth labels and the rows represent
the labels assigned by the proposed algorithm. Each column represents the distribution of
the true labels across our partitions. Again the confusion matrix highlights the difficulties
in the classification seen above.

In addition to the unsupervised clustering, we perform instances of transductive learning
by making use of the semi-supervised algorithm extension (§4.6) and the true labels for a
small portion of the digit images. We apply the rearrangement algorithm to the MNIST
dataset, using n = 20 random initializations and an increasing percentage of labelled data
points. See Figure 12 for a scatter plot of attained purity and objective function, and Table 2
for numerical values. For each percentage of labels, we report the lowest, average, and
highest purity, and the lowest, average, and highest objective function value, as well as the
purity of the lowest objective function partition (which would be the reasonable best guess).
The objective function value for the ground truth labels is 1.8913 · 10−4. We observe that
in the unsupervised case, state-of-the-art purity can be achieved, but overall the results are
very diverse. As soon as a few true labels are provided, the spread is dramatically reduced
and average purity greatly improved. We note that low objective function value does not
necessarily signify high purity. In particular, the ground truth labels have higher objective
function value than any of the 2.5, 5, or 10% semi-supervised results.

6.3. Image Segmentation. We finally consider the formulation of image segmentation as
a graph partitioning problem. Automatic analysis of images often requires the identifica-
tion of coherent regions of interest via efficient and robust algorithms, a task called image
segmentation. Due to the non-locally repetitive nature of the patterns in natural images,
correlations between pairs of pixels extend well beyond just neighboring pixels. Therefore,
graphs are a natural representation: we identify pixels of the image with vertices V , while
edges E model the correlations between any pairs of pixels. Thereby, image segmentation
effectively becomes a graph partitioning task of the graph G = (V,E).

Region-based image segmentation looks for homogeneity (read: least intensity variance)
within the partitions. The canonical region-based image segmentation model is the Chan-
Vese model (CV), [12], which strives for region homogeneity while keeping the region’s
interface short:

JCV[µ1,µ2,φ] =
∫

Ω
(µ1− I)2H(φ)+

∫
Ω
(µ2− I)2(1−H(φ))+β

∫
Ω
|∇H(φ)|, (40)

where µi denotes the mean feature of each region, the levelset function φ : Ω→R is positive
in object regions, negative in background regions, zero on the object boundaries, and H is
the Heaviside function. The last, total variation term is the co-area-formula equivalent
of the boundary length, and its coefficient β balances the data-fidelity versus boundary
regularity.
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0 1 2 3 4 5 6 7 8 9

0 6841 1 38 3 3 22 25 2 21 19
1 5 7812 56 19 49 4 17 88 73 23
2 6 22 6692 44 3 3 1 22 20 7
3 1 6 18 6845 1 137 0 1 138 92
4 1 9 6 2 6510 6 5 20 29 57
5 9 0 7 88 1 6019 41 2 188 11
6 28 4 12 4 25 69 6785 0 27 4
7 4 12 121 52 12 8 0 7040 16 150
8 4 2 34 52 4 11 2 4 6248 24
9 4 9 6 32 216 34 0 114 65 6571

Σ 6903 7877 6990 7141 6824 6313 6876 7293 6825 6958

0 1 2 3 4 5 6 7 8 9

0 99.10 0.01 0.54 0.04 0.04 0.35 0.36 0.03 0.31 0.27
1 0.07 99.17 0.80 0.27 0.72 0.06 0.25 1.21 1.07 0.33
2 0.09 0.28 95.74 0.62 0.04 0.05 0.01 0.30 0.29 0.10
3 0.01 0.08 0.26 95.85 0.01 2.17 0.00 0.01 2.02 1.32
4 0.01 0.11 0.09 0.03 95.40 0.10 0.07 0.27 0.42 0.82
5 0.13 0.00 0.10 1.23 0.01 95.34 0.60 0.03 2.75 0.16
6 0.41 0.05 0.17 0.06 0.37 1.09 98.68 0.00 0.40 0.06
7 0.06 0.15 1.73 0.73 0.18 0.13 0.00 96.53 0.23 2.16
8 0.06 0.03 0.49 0.73 0.06 0.17 0.03 0.05 91.55 0.34
9 0.06 0.11 0.09 0.45 3.17 0.54 0.00 1.56 0.95 94.44

Σ 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

TABLE 1. MNIST confusion matrix. The columns represent the ground
truth labels and the rows represent the labels assigned by the proposed
algorithm. Each column sums to the number of digits in each classe/one
and represents the distribution of the true labels across our partitions. We
see that the algorithm does generally well, but exhibits some confusion
among the digits (3,5,8), (4,9) and (2,7). See §6.2.

purity [%] objective function [10−4]

fixed labels min. avg. max. min. avg. max. guess

0 % 64.31 84.32 95.84 1.6260 1.8833 1.9992 78.16
1 % 78.66 88.74 96.24 1.6577 1.8823 1.9331 87.64

2.5 % 95.88 96.21 96.32 1.8873 1.8883 1.8897 96.28
5 % 96.37 96.41 96.47 1.8874 1.8878 1.8884 96.42

10 % 96.61 96.64 96.70 1.8870 1.8878 1.8884 96.66

GT: 100 % 100.00 1.8913 n/a
TABLE 2. Purity and objective function for MNIST data set, with n = 20
runs per fraction of fixed labels. q = 1, β = 2, α = 10−5. The guess-
column shows the purity of the run with least objective function value.
See §6.2.
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0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 3bis

5 6 3 8 8 0 9 2 2 2

FIGURE 11. MNIST handwritten digits; each image is 28× 28 pixels.
(top) The cluster means. (middle) Results of best fully unsupervised
clustering: q = 1, β = 2, α = 10−5, purity= 96.23%. Representative
images for each of the k = 10 clusters (where ui is maximized). The
representative image for the ‘3’ cluster is actually an ‘8’; the best true
‘3’ is shown at the far right. See §6.2. (bottom) Examples of confused
images, wrongly assigned to a cluster (true label given below).

1.6 1.7 1.8 1.9 2

·10−4

0.6

0.7

0.8

0.9

1

objfun

pu
ri

ty

1.884 1.886 1.888 1.89 1.892

·10−4

0.955

0.96

0.965

objfun

pu
ri

ty

FIGURE 12. MNIST purity versus objective function o, for q = 1, β = 2,
α = 10−5. (left) Purity and objective function value for 20 separate runs
for each different fraction of semisupervised vertex labels: ×= 0%, ◦=
1%, � = 2.5%, � = 5%, 4 = 10%. (right) Detail of gray box region.
Vertical dashed line indicates objective function of ground truth partition.
See §6.2.

A simple graph partitioning model corresponding to such region-based image segmenta-
tion (including the multiphase case k > 2) can be obtained through extension of the square-
lattice graph by strengthening the weight between spatially distant but feature-wise similar
pixels:

wi j :=

{ p
ε+λ‖I( j)−I(i)‖2 +(1− p), if j ∈ N(i)

p
ε+λ‖I( j)−I(i)‖2 , otherwise

∀i, j ∈V, (41)

where N(i) denotes the 4-connected von Neumann neighborhood of pixel i, I(i) ∈ Rd de-
notes the value of pixel i, ‖I( j)− I(i)‖2 is the squared L2-distance of the pixels in feature
space, and p∈ (0,1) balances the relative weight of the region-homogeneity term vs versus



26 D. ZOSSO AND B. OSTING

(a) Input (b) Color distribution (c) Partition

(d) Ground states u`

FIGURE 13. Region-based image segmentation as a graph partitioning
problem: (a) 318× 212 RGB input image. (b) Scatterplot of the pixel
distribution in color space. The green (4) and gray (◦) background form
small, dense clusters, while the cows black and brown shades are much
wider spread (�). (c)–(d) Image segmentation results using graph parti-
tioning parameters k = 3, α = 0.1, β = 1, q = 2. See §6.3

the boundary length regularization stemming from the lattice graph. The optimal partition
aligns flat regions of u with homogeneous regions in the image, and gradients of u with
gradients in I. A fully connected graph is not practicable and we uniformly subsample the
non-local connectivities at a very low rate.

As an example we consider segmenting the 318×212 RGB input image, I : V → [0,1]3,
shown in Figure 13(a). From this image, we construct a graph using (41) with parameters
p = 10−4, ε = 0.01, and λ = 15. The long range connections are sub-sampled at about
80 edges per pixel. In Figure 13(b), we give a scatterplot of the pixel distribution in color
space. We apply the graph partitioning algorithm with parameters k = 3, α = 0.1, β = 1,
and q = 2. The resulting segmented image is shown in Figure 13(c) and the associated
ground states are shown in Figure 13(d).

The color-based image segmentation problem shown here is, of course, more efficiently
solved with state-of-the-art segmentation models. However, it is easy to see how the cur-
rent graph construction (41) can be generalized to more interesting feature distances (e.g.,
patch-based or using other texture descriptors) that greatly extend beyond the Chan-Vese
model. Also, by non-uniformly sub-sampling the long-range connectivities, we can ren-
der the region-based segmentation more local and can thus seamlessly deal with images
affected by bias, for example as in [7, 33, 61].

7. Discussion and further directions. In this paper we introduced a novel non-convex
graph partitioning objective based on the sum of the minimal discrete Beltrami energies
of the partition components. This objective is a discrete analogue of an energy that ap-
pears in classical minimal surface problems. We adapt primal-dual convex optimization
methods to solve for the minimal Beltrami energy for each component of a given partition
and a rearrangement algorithm is proposed to find locally optimal graph partitions. The
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methods are illustrated for a variety of example graph partitioning problems in Sections 5
and 6. Similar to partitions obtained from minimizing the Dirichlet energy sum of parti-
tion components [41], the objective proposed here naturally provides confidences for label
assignments and consequently produces a representative for each cluster.

We view the Beltrami energy considered here as an interesting generalization and in-
terpolation between the Total Variation and Dirichlet energies that have previously been
used for graph partitioning (see (7)). In fact, we observe in computational experiments
that several of the optimal partitions obtained are insensitive to the interpolation parameter
β; our experiments support the hypothesis that certain partitions are optimal for a class of
objective functions. This phenomena has recently been studied for certain point-set con-
figurations on a sphere which minimize a class of energies which generalize the inverse
squared energy appearing in Thompson’s problem [13]. Configurations that minimize such
classes of energies are referred to as “universally optimal”. It wouldn’t be surprising if cer-
tain partitions were also minimizers for a class of objective functions including the Beltrami
energy.

It is interesting to observe that many of the manifold partitions in Figures 4–8 feature
120◦ triple junctions, even in cases where a 90◦ quadruple junction would be more sym-
metrical; see, e.g., k = 4 in Figure 7. This behavior is well known in crystal grain growth
[30] and has typically been associated with stable configurations of interface motion by
mean curvature [38, 39, 48]. This observation further strengthens the intuition that the
bi-level rearrangement algorithm employed in this work very closely relates to the MBO
scheme and motion by mean-curvature stemming from diffusion-threshold dynamics more
generally.

The proposed computational methods for solving the bi-level optimization problem (11)
are based on primal-dual optimization methods for the inner problem and a rearrangement
algorithm for the outer problem. We view this application as an interesting demonstration
of the power and flexibility of primal-dual methods for solving a broad class of convex op-
timization problems. However, in the present application, the inner problem is the compu-
tational bottleneck and it seems doubtful that algorithmic advances will make partitioning
methods requiring the (approximate) solution of such non-local energies competitive with
more local strategies [2, 55]. However, it is plausible that many local heuristics for parti-
tioning can be viewed as approximations of partitions which minimize a non-local energy,
such as the one studied here.

Many interesting research directions remain. One obvious direction would be to formu-
late the analogous partitioning problem in the continuum. Proving the existence and study-
ing properties of optimal partitions of surfaces is likely to be challenging. The rearrange-
ment algorithm proposed in Section 3.5 has the same structure as expectation-maximization
(EM) algorithms. Making this connection more concrete, i.e., defining the correct proba-
bility distribution, is a very interesting direction of pursuit. Finally, there is an in intriguing
relationship between the Dirichlet partitioning problem and an antagonistically-interacting
random walker Model [14, 15, 40, 41]. It would be of interest if there was a connection
between a non-linear diffusion process, such as the one studied in [53], with the Beltrami
partitioning problem.

Acknowledgments. The authors would like to gratefully acknowledge valuable conver-
sations with Stan Osher, Luminita Vese, Jing An, Chris D. White, and Mengqi (Mandy)
Xia.
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