
Parallelization of a Color-Entropy Preprocessed

Chan-Vese Model for Face Contour Detection on

Multi-core CPU and GPU

Xiaohua Shia,c, Fredrick Parkb, Lina Wanga, Jack Xinc,∗, Yingyong Qic

aState Key Laboratory of Software Development Environment, School of Computer
Science and Engineering, Beihang University, Beijing, China

bDepartment of Mathematics, Whittier College, CA 90601, USA
cDepartment of Mathematics, University of California, Irvine, CA 92697-3875, USA

Abstract

Face tracking is an important computer vision technology that has been
widely adopted in many areas, from cell phone applications to industry
robots. In this paper, we introduce a novel way to parallelize a face con-
tour detecting application based on the color-entropy preprocessed Chan-
Vese model utilizing a total variation G-norm. This particular application
is a complicated and unsupervised computational method requiring a large
amount of calculations. Several core parts therein are difficult to parallelize
due to heavily correlated data processing among iterations and pixels.

We develop a novel approach to parallelize the data-dependent core parts
and significantly improve the runtime performance of the model computation.
We implement the parallelized program on OpenCL for both multi-core CPU
and GPU. For 640 ∗ 480 input images, the parallelized program on a NVidia
GTX970 GPU, a NVidia GTX660 GPU, and an AMD FX8530 8-core CPU
is on average 18.6, 12.0 and 4.40 times faster than its single-thread C version
on the AMD FX8530 CPU, respectively. Some parallelized routines have
much higher performance improvement compared to the whole program. For
instance, on the NVidia GTX970 GPU, the parallelized entropy filter routine
is on average 74.0 times faster than its single-thread C version on the AMD

∗Tel.: +1-949-8245309; fax: +1-949-8247993.
URL: xhshi@buaa.edu.cn (Xiaohua Shi), fepark@whittier.edu (Fredrick Park),

binglina.wang@163.com (Lina Wang), jxin@math.uci.edu (Jack Xin), yqi@uci.edu
(Yingyong Qi)

Preprint submitted to Parallel Computing May 22, 2015

FX8530 8-core CPU. We discuss the parallelization methodologies in detail,
including the scalability, thread models, as well as synchronization methods
for both multi-core CPU and GPU.

Keywords:
Face detection, Color-entropy preprocessing, Chan-Vese segmentation
model, Parallelization

1. Introduction

Face detection is a fundamental computer vision task where the goal is
to determine if there are any faces in a given image, and if so, return the
image location and associated pixels corresponding to the face. This par-
ticular problem has been one of the most studied topics in computer vision.
Despite being a relatively easy problem for humans, it is exceedingly difficult
for computers to detect faces due to variations in scale, pose, location, orien-
tation, facial expression, illumination, and occlusions. Face detection can be
thought of as the first step in a tracking application which is and of itself an
important problem in computer vision. Technology stemming from the face
tracking problem has many practical uses and has been widely adopted in
areas varying from cell phone applications all the way to industry robots. Dif-
ferent methodologies have been applied to this technology and the approaches
come from many disciplines. For example, OpenCV uses Haar feature-based
cascade classifiers for object detection to track human front faces, with the
support of a proper amount of training data [30], while another recent face
tracking method by Xiang and De la Torre [42] uses a supervised descent
method (Newton’s) for minimizing a non-linear least squares function. We
refer the reader to [20, 23, 27, 36, 40, 46, 47] and references therein for some
work on both face detection and tracking.

We develop an unsupervised method for face contour detection by com-
bining skin color, entropy filtering, multi-scale sampling, and the Chan-Vese
segmentation model with total variation G-Norm (CVG model) [3, 11, 12].
The main idea with this approach is to utilize feature information to guide
the final face segmentation step in an accurate manner. The color-entropy
preprocessed Chan-Vese model with G-norm method that we utilize for this
tracking application will be called the CEPCVG program throughout the
remainder of this paper. Comparing with other existing approaches, our
method not only detects frontal faces, but also detects side and multiple faces.

2

A major motivation is the development of an accelerated variational princi-
ple based method. Existing methods in the literature either lack systematic
principled treatment or robustness and speeds towards real time application
of face segmentation. Our method accomplished both. The tracking preci-
sion and speed only depend on the computational capability of hardware and
software platforms and hence, with the fast improvement of computer archi-
tectures, our method can analogously improve in its performance as well.
The primary emphasis of this paper is on the parallelization of the CEPCVG
program. In particular, the CV and CVG models are of great importance in
image processing and computer vision where both models are widely used.
A parallelization of these models will be an essential contribution to the
literature.

In order to effectively utilize the current multi-core CPU and GPU mi-
cro architectures, we must foremost have a parallelized program, because all
the aforementioned methods are naturally designed and implemented in a
single-thread methodology, including ours. Researchers have been studying
the parallelization of different face tracking applications, by both hardware
and software means. For instance, Theocharides et al. [39] presented a scal-
able parallel architecture which performs face detection using the AdaBoost
algorithm. Farrugua et al. [19] presented a parallel architecture for fast
and robust face detection implemented on FPGA hardware. Jin et al. [26]
introduced a FPGA-based parallel hardware architecture for real-time face
detection as well.

In some other similar object or feature detecting applications, researchers
have tried to parallelize them as well. For instance, Yan et al. [43] im-
plemented a parallelized OpenCL program for Speeded-Up Robust Feature
(SURF) algorithm on GPUs and CPUs. Chen. et al. [16] introduced a way
to design and implement an adaptive pipeline parallel scheme (AD-PIPE) for
both Scale-invariant feature transform (SIFT) and SURF to alleviate these
limitations on multi-core CPUs.

Although much work has been done on parallelizing different face tracking
applications, we still cannot directly inherit means from them because the
CVG model we utilize is completely different than anything used in these
previous works. In general, the CEPCVG program, as described in Section 2,
is a complicated application that combines many different image processing
methods. The core part of the program, i.e. the CVG segmentation routine
using a Primal Dual Hybrid Gradient (PDHG) Method, has data dependency
between iterations and pixels; therefore, it is difficult to parallelize on any

3

parallel platform.
In this paper, we study how to parallelize the CEPCVG program on

OpenCL [31], which is an open royalty-free standard for general purpose
parallel programming across CPUs, GPUs and other processors. We paral-
lelized hotspots that dominate the execution time instead of every code line
in the program, to get the trade-off of productivity and efficiency. We use a
novel approach to parallelize the CVG segmentation routine. For 640 ∗ 480
input images, the parallelized program on a NVidia GTX970 GPU, a NVidia
GTX660 GPU and an AMD FX8530 8-core CPU is on average 18.6, 12.0
and 4.40 times faster than its single-thread C version on the AMD FX8530
CPU, respectively. Some parallelized routines have much higher performance
improvement when comparing to the whole program. For instance, on the
NVidia GTX970 GPU, the parallelized entropy filter routine is on average
74.0 times faster than its single-thread C version on the AMD FX8530 8-core
CPU. The parallelized routines of the whole program on NVidia GTX970
GPU, NVidia GTX660 GPU and AMD FX8530 8-core CPU are on average
34.4, 15.48 and 4.85 times faster than the corresponding routines of the sin-
gle thread C version on the AMD FX8530 CPU, respectively. We discuss
the parallelization methodologies in detail, including the scalability, thread
models, as well as synchronization methods for both multi-core CPU and
GPU.

The rest of this paper is organized as follows. Section 2 introduces the
mathematical formulae of the CEPCVG program, as well as the correspond-
ing pseudo code. Section 3 presents how to parallelize the CEPCVG program
in detail. Section 4 demonstrates performance data of the parallelized pro-
gram on multi-core CPU and GPU. Section 5 concludes this paper.

2. Color-Entropy Preprocessed CVG (CEPCVG) Program

The CEPCVG program is a face tracking application integrating skin
color thresholding, entropy-filtering and convexified image segmentation. It
consists of 5 major steps: 1) illumination equalization using combined retinex
and Gray World method, 2) skin region mask construction combining three
thresholding methods on skin color, 3) entropy filter edge detector, 4) chin
identification method, and 5) CVG segmentation using the PDHG method.

4

2.1. Illumination Equalization using Combined Retinex and Gray World

Color balancing is an important preprocessing step for digital facial im-
ages to achieve color constancy under different illuminations. Two popular
approaches for efficient time applications are 1) the gray world assumption
and 2) retinex theory. For the gray world assumption, one seeks to sim-
ply equalize the mean of the red, green, and blue channels respectively in
the RGB color space. On the other hand, the retinex theory of visual color
constancy states that the perceived white is tied to maximum cone signals
[29]. In [28], Lam showed that by using a combination of the gray world as-
sumption and retinex, one obtains visually accurate results in regard to color
constancy. The method is both computationally efficient and automatic.
Given our end goal of efficient time face tracking, we utilize this combined
method in the CEPCVG program.

First, we extract the R, G, and B channels from the input color image
f . Second, we solve for R and B channels in the combined method. For
instance, for the R channel, we solve formulae below:

[∑∑
R2

∑∑
R

max(R2) max(R)

] [
µ
ν

]
=

[∑∑
G

max(G)

]
(1)

[
µ
ν

]
=

[∑∑
R2

∑∑
R

max(R2) max(R)

]−1 [∑∑
G

max(G)

]
(2)

Rcb = µR2 + νR (3)

For B channel, we use similar formulae above. At last, we get the final
illumination adjusted color image fcb:

fcb = [Rcb, G,Bcb]. (4)

2.2. Skin Region Mask Construction Combining Three Threshold Methods

The main idea here is to utilize color intensity based thresholding in three
different color spaces to form an indicator function of skin regions. The skin
indicators from each of the three thresholding methods on the color spaces
are then fused by a median filter to form a single skin indicator function. For

5

more details on skin detection based on color spaces we refer the reader to
the two surveys [41, 35].

For HSV skin color thresholding we utilize the approach by Atharifard et
al. in [1] where it was noted experimentally that the H component of skin
color is ideally concentrated between 0-0.09 and 0.9-1 value-wise. Thus, to
obtain an indicator region for skin tones in the H channel, one simply obtains
the image via the logical operation:

Ht = [(H > 0)And(H < 0.09)]Or [(H > 0.9)And(H < 1)] . (5)

Here, Ht stands for H thresholded.
For detecting skin color in YCbCr color space, we utilize the approach

by Chai et al. [7, 33, 34] and the approach by Atharifard et al. in [1]. The
authors found that any skin pixel values satisfies the following relationship
in the YCbCr color space as follows:

Cbt = (77 < Cb < 127) (6)

Crt = (133 < Cr < 177) (7)

where Cb and Cr denote the chrominance blue and chrominance red channels
respectively, Cbt and Crt stand for them thresholded respectively.

We utilize the RGB color thresholding scheme devised by Ghimire and Lee
[20] where the thresholding parameters have been determined by statistics
on skin colors in RGB space. The operation yielding an indicator mask for
skin tone pixels for this scheme follows as:

fmrgb = [R > 95 And G > 40 And B > 20 And

max{R,G,B} −min{R,G < B} > 15 And |R−G| > 15 (8)

And R > G And R > B].

We simply take the median of all three skin tone indicator masks from
each color space to form a single indicator. The mask is then binarized by a
secondary thresholding step. Given the skin tone indicator masks from the
previous steps above: Cbt, Crt, fmrgb, Ht, the indicator is simply:

Fm = median(Cbt, Crt, fmrgb, Ht) (9)

Ft = (Fm >= 0.5). (10)

The final indicator mask is a single channel binary image Ft where pixel
values of 1 denote those of skin.

6

At last, we create skin pixel indicator masks in 2D and 3D to be used later
when constructing the entropy filter edge detector and initial face indicator
region for the CVG model.

2.3. Entropy Filter Edge Detector

For the segmentation process, more accurate results can be obtained if an
edge detector or skin tone indicator function is used. This will allow active
contours to stop near boundaries on the face under the segmentation process
given that we will be using an edge detector weighted length minimization
term for evolving a curve. We utilize an entropy edge/skin-region indicator
function. It has been shown in [38] that entropy is high in regions of an image
that contains structural components like edges, textures, and features. The
skin tone indicator mask fm is multiplied to the gray-scale version of the
given image fg to incorporate skin information into the gray-scale image:

fgm = fm ∗ fg. (11)

The entropy filter is then applied to this image and we keep the upper
40% by thresholding. Thus, the facial regions (in particular, edges and fea-
tures) will have values of 0 while non-facial regions will have values of 1. In
particular, we found that by using the entropy filter in this manner has a
tendancy to amplify edges and skin tone features in the image.

To compute the entropy of a gray scale image, let Vmax be the maximum
gray-scale value in a given image patch containing N total pixels. Denote
by ni the i–th histogram count and let hi = ni/N the normalized histogram
count. We then define the image patch entropy as the following:

E = −
Vmax∑
i=0

hi log(hi). (12)

2.4. Chin Identification Method

Chin identification is a difficult problem in computer vision. In general,
due to variations in skin tone, facial hair, etc. it is difficult to robustly
identify the exact location of a chin in a facial image. We utilize a simple
method that maps an image to the YIQ color space and then in the in-phase
channel I, we isolate the face based on a bounding box of the entropy facial
region detector found in the previous step. We then sum all values in the
x-direction which yields a 1-D signal. High points in the signal correspond

7

to parts of the face, while low points correspond to regions where skin tone
is not as uniform, e.g. eyes, mouth, chin. In order to avoid the cutoff at
the top of the face, we search starting from the midpoint on in the signal
(corresponding to lower half of the face). The lowest trough in the 1-D signal
will correspond to the chin.

First, we extract the in-phase channel I (YIQ space) from the RGB ver-
sion of our image. A median filter is applied to remove any noise.

In the next step, we construct a bounding box to the entropy edge or
skin-tone region indicator. This will narrow our search region for the chin
contour. We then sum the intensity values in the x-direction (horizontal) to
create a 1-D signal.

In the last step, we cut the signal in half and only view the lower half
corresponding to the lower half of the face to better isolate candidate chin
locations. Once this is done, we choose the lowest candidate trough which will
be the chin location. Finally, we cut off the entropy edge detector function
below this chin location. This forms a more accurate indicator for the face.

2.5. CVG Segmentation using PDHG Method

For the segmentation step in our proposed method, we utilize the CVG
model by Bresson et al. [3]. This particular model has many advantages
over standard image segmentation models in that it combines an edge based
approach with a region based one. Thus, it is robust to noise but at the
same time can accurately capture edges in an image. Moreover, the model
is convex and can be minimized quickly by the recent primal dual hybrid
algorithms. Given an initial image f defined on a domain D containing
a region to be segmented that we denote by Σ, the CVG model seeks to
minimize the following energy:

min
0≤u≤1

∫
D

g(|∇f |)|∇u|+ λ

∫
D

{
(c1 − f(x))2 − (c2 − f(x))2

}︸ ︷︷ ︸
r1(x,c1,c2)

u(x)dx. (13)

One then sets Σ = {x : u(x) ≥ 1/2} which represents the segmented region.
The above optimization problem (13) can be viewed as searching for the best
approximation in the L2 sense to a given image f(x) by a function taking
only 2 values. The values are denoted by c1 and c2 taken on the regions
Σ and D \ Σ the unknowns, respectively. In this application, we set c1 =
0.65 and c2 = 0.05 fixed throughout all experiments. The c1 = 0.65 value
matches grayscale skin tone average values after such skin tones are extracted

8

from the color images via the skin indicator mask seen in section 2.2. The
value c2 = 0.05 matches the black background outside skin tone regions after
extraction. The term

∫
D
g(|∇f |)|∇u| denotes an edge weighted perimeter

of the region Σ and enforces regularity on the boundary that separates the
regions where the two values c1 and c2 are taken. The function g = g(|∇f |)
is an edge detector function on the initial image that takes small values near
edges and values approaching 1 away from edges. The parameter λ controls
the balance between data fitting and length regularization of the boundary
between segmented regions and we set it to a fixed value 0.1 throughout
all experiments. For more information regarding the Chan-Vese model and
related convex relaxation techniques for its minimization, we refer the reader
to [12, 11].

The above CVG model (13) has the following equivalent unconstrained
split formulation:

min
u,v

{
Er

1(u, v, c1, c2, λ, α) =

∫
D

g(|∇f |)|∇u| +

1

2θ

∫
D

(u− v)2dx+ λ

∫
D

r1(x, c1, c2)v dx+ α

∫
D

ν(v)dx
}

(14)

where ν(ξ) = max{0, 2|ξ − 1
2
| − 1} is an exact penalty provided that the

constant α is chosen large enough compared to λ. The penalty term is a way
to remove the constraints on u and place them into the functional while the
splitting term ensures that u ≈ v. The splitting allows for a fast minimization
method via shrinkage. The splitting parameter θ is fixed to be 0.1 throughout
all experiments for a good balance between accuracy and speed. We refer
the reader to [3] for more details on this optimization. This modified energy
Er

1 can be minimized by minimizing the subproblems:

1. v being fixed, we search for u as a solution of:

min
u

{∫
D

g(|∇f |)|∇u|+ 1

2θ

∫
D

(u− v)2dx

}
, (15)

2. u being fixed, we search for v as a solution of:

min
v

{
1

2θ

∫
D

(u− v)2dx+

∫
D

r1(x, c1, c2)v dx+ α

∫
D

ν(v)dx

}
. (16)

9

The solution to (16) is given by a simple shrinkage scheme:

v = min
{
max

{
u(x)− θλr1(x, c1, c2), 0

}
, 1

}
. (17)

The solution to (15) is obtained by a primal-dual hybrid gradient (PDHG)
method by Zhu and Chan [48] which we focus on now. For more information
on the PDHG method and variants thereof, we refer the reader to [10]

The minimization problem in (15) reduces to the Total-Variation-G (TVG)
min-max problem:

min
u

max
p⃗∈X

{∫
D

gu(−divp⃗) + 1

2θ

∫
D

(u− v)2dx︸ ︷︷ ︸
Φ(u,p⃗)

}
(18)

which becomes:

min
u

max
p⃗∈X

Φ(u, p⃗) (19)

where X = {p⃗ : |p⃗ | ≤ 1}. We will optimize (19) in the following two step
manner below.

Step 1. Dual Step
Fix u = uk and apply one step of projected gradient ascent to the max
problem:

max
p⃗∈X

Φ(uk, p⃗). (20)

The projected gradient ascent for the maximization (20) is simply:

p⃗ k+1 = PX(p⃗
k + τk∇uk) (21)

where the projection is obtained by the following operation:

PX(p⃗) =
p⃗

max{∥p⃗ ∥, 1}
. (22)

Gradient ascent is an optimization procedure used to find a max of the
functional (20) and the projection is used to ensure that the candidate
maxima p⃗ satisfy |p⃗ | ≤ 1 at each step of the iteration process.

10

Step 2. Primal Step
Fix p⃗ = p⃗ k+1 and apply one step of gradient descent method to the
minimization problem:

min
u

Φ(u, p⃗ k+1). (23)

The gradient descent associated to the minimization (23) is given by:

uk+1 = uk(1− θk) + θk(v − θg(−divp⃗ k+1)). (24)

Gradient descent is an analogous optimization procedure to the ascent
one used earlier but to find minima of functionals. Since the original
optimization problem (19) is a min-max type, the main idea in the
primal-dual hybrid approach is to alternate between minimization and
maximization in order to obtain an optimal solution. Recent provable
fast convergence of the primal dual scheme can be found in [10]. We
set both the gradient descent and ascent time-steps θk and τk to value
1/8 throughout all experiments.

11

The final PDHG algorithm is then:

Algorithm PDHG

Step 0. Initialization. Pick u0 and p⃗ 0 ∈ X set k ← 0 .

Step 1. Choose step size τk and θk.

Step 2. Updating.

p⃗ k+1 = PX(p⃗
k + τk∇uk) (25)

uk+1 = (1− θk)u
k + θk(v − θg(−divp⃗ k+1)) (26)

Step 3. Terminate if stopping criterion is satisfied; oth-
erwise set k ← k + 1 and return to step 1.

2.6. Pseudo Code of CEPCVG Program

Observed in Fig. 1 is the pseudo code for the CEPCVG program. We
break down and describe the functions in the pseudo code and the equations
they correspond to.

The function extract RGB channel() under Step1 extract R, G , and
B channels from the input image. Functions solve R() and solve B() solve
for the illumination equalization parameters µ and ν for R and B chan-
nels, respectively, as equation(2) introduced in Section 2.1. The function
cal rcb bcb() calculates the equalized red and blue channels Rcb and Bcb as
seen in equation (3) respectively. The function get illumination() corre-
sponds to equation(4), the final equalized color image.

The functionHSV Y CbCr RGB colorspace threshold() under Step2 cor-
responds to equations (5), (6), (7), and (8). The function
fusing skin tone threshold() corresponds to equations (9) and (10). The
function mask for CV G() corresponds to the last procedure that creates
skin pixel indicator masks in 2D and 3D to be used later. The last func-
tion grayscale() that has not been explicitly introduced in Section 2.2 will
generate a gray-scale image for the input image f for later uses.

The function prepare entropy() under Step3 corresponds to equation (11)
and entropy filter() corresponds to equation (12), the entropy filter.

The function prepare median filter() under Step4 corresponds to pro-
cesses before median filter as described in Section 2.4. After applying a me-
dian filter on fgemp, Step4 detects the chin location by calling the function

12

chin identification().
The function imresize() will be called 3 times in Step5 to down sample

previously calculated images with different formats. The function CV G main()
corresponds to the PDHG algorithm for minimizing the CVG model as
described in Section 2.5. In particular, the function corresponds to equa-
tions (21), (22), and (24) which is summarized by Algorithm (2.5). Helper
functions prepare Fbr imresize() and prepare CV G main() will be called
within this step to prepare proper arguments for next routines.

Fig. 2 demonstrates the results of the CEPCVG program for 9 randomly
selected input images from the CMU Multi-PIE face database [17], including
front face images, 45 and 90 degree side face images, etc. We draw contours
for pixels larger than 0.5 in the final output matrix u.

3. Parallelizing CEPCVG Program

Fig. 3 demonstrates the average runtime hotspots of the CEPCVG single-
thread C program on an AMD FX8530 CPU for 640*480 face images in Fig. 2,
corresponding to functions in Fig. 1. We can find that the top 3 functions, i.e.
entropy filter(), imresize()(called 3 times), and CV G main(), dominate
about 94% of the total execution time. Our parallelization mainly focuses on
these hotspots. In Fig. 3, illumination equalization represents all functions
under Step1 as shown in Fig. 1. Some functions, like prepare CV G main(),
prepare Fr imresize(), etc., do not appear in the figure, because they oc-
cupy too little execution time, e.g. less than 1%. In this section, we will
introduce how to parallelize these hotspots on multi-core CPU and GPU in
detail. We use OpenCL to parallelize the program, to get a good portability
on different micro architectures.

3.1. CVG Main Routine

The CVG main routine, i.e. function CV G main() in Fig. 1, is the core
part of the whole program, although it is the second top hotspot on CPU,
as shown in Fig. 3. It performs a CVG segmentation using PDHG method
and occupies about 29% of the total execution time. The flowchart of its
single-thread C implementation is presented in Fig. 4(a).

Unlike other functions that will be introduced in Section 3.2 and 3.3,
the outermost loop of CV G main() represents the number of mathematical
iterations, e.g. 2500, instead of pixels. Every iteration takes outputs of
previous one as its inputs, i.e. u, p1, and p2, etc. Within each iteration, we

13

//Step1: Illumination Equalization using Combined Retinex and Gray World Method

[R, G, B] = extract_RGB_channel(f)

[uR,vR] = solve_R(R, f) ;

[uB,vB] = solve_B(B, f) ;

[Rcb,Bcb] = cal_rcb_bcb(R, B, uR, vR, uB, vB) ;

fcb = get_illumination(f, Rcb, Bcb) ;

//Step2: Skin Region Mask Construction Combining Three Threshold Methods

[Ht, Cbt, Crt] = HSV_YCbCr_RGB_colorspace_threshold(fcb)

ft = fusing_skin_tone_threshold(Ht, Cbt, Crt, R,G,B);

fm = mask_for_CVG(ft) ;

fg = grayscale(f) ;

//Step3: Entropy Filter Edge Detector

fgm = prepare_entropy(fg, fm) ;

fge = entropy_filter(fgm) ;

//Step4: Chin Identification Method

fgemp = prepare_median_filter(fge) ;

fgemm = median_filter(fgemp) ;

fgem = chin_identification(fgemm) ;

//Step5: CVG Segmentation using PDHG Method

D = 6 ; //constant, down-sampling scale

Fmr = imresize(fmask, D) ;

Fb = prepare_Fbr_imresize(f, fmask, fgem) ;

Fbr = imresize(Fb, D) ;

Fgemr = imresize(fgem, D) ;

[Fmr, fr] = prepare_CVG_main(Fmr, Fbr) ;

u = CVG_main(Fmr, fr) ;

Figure 1: Pseudo code of the CEPCVG program.

14

Figure 2: Face images with CEPCVG contours.

illumina�on_equali

za�on

1%

HSV_YCbCr_RGB_c

olorspace

2%

fusing_skin_tone

2%

entropy_filter

43%

median_filter

1%

imresize * 3

22%

CVG_main

29%

Hotspots of CVG C Program

Figure 3: Hotspots of the CEPCVG single-thread C program on an AMD FX8530 CPU.

15

u = Fmr
v [0~W*H-1] = 0

p1 = p2 = v

k = 0

k < 2500

i = 0

i < W * H

v[i++] = solve_v(u[i], fr[i])

ux = forward_x(u)
uy = forward_y(u)

i = 0

i < W * H

dual_project(&p1[i], &p2[i],
ux[i], uy[i])

i = i+ 1

ux = backward_x(p1)

uy = backward_y(p2)

i = 0

i < W * H

u[i++] = update_u(u[i], v[i],

ux[i], uy[i])

return(u)

k = k + 1

u = Fmr
v [0~W*H-1] = 0

p1 = p2 = v

k = 0

k < 2500

i = 0

i < W * H

v[i] = solve_v(u[i], fr[i])

index_l = indirect_idx[i+1]

index_r = indirect_idx[i]

ux[i] = u[index_l]-u[index_r]

index_l = indirect_idx_y[i]
uy[i] = u[index_l]-u[index_r]

i = 0

i < W * H

dual_project(&p1[i], &p2[i],

ux[i], uy[i])

i = i+ 1

index_l = indirect_idx[i]
index_r = indirect_idx[i]-1

ux[i] = p1[index_l]-p1[index_r]

index_l = indirect_idx_y[i]-W

index_r = indirect_idx[i]-W

uy[i] = p2[index_l]-p2[index_r]

u[i++] = update_u(u[i], v[i],

ux[i], uy[i])

return(u)

k = k + 1

u = Fmr

v [0~W*H-1] = 0

p1 = p2 = v
k = 0

start W*H threads

k < 2500

i= get_curr_thread_id()

v[i] = solve_v(u[i], fr[i])

index_l = indirect_idx[i+1]

index_r = indirect_idx[i]

ux[i] = u[index_l]-u[index_r]

index_l = indirect_idx_y[i]

uy[i] = u[index_l]-u[index_r]

dual_project(&p1[i], &p2[i],

ux[i], uy[i])

Global_Synchronization()

index_l = indirect_idx[i]

index_r = indirect_idx[i]-1

ux[i] = p1[index_l]-p1[index_r]
index_l = indirect_idx_y[i]-W

index_r = indirect_idx[i]-W

uy[i] = p2[index_l]-p2[index_r]

u[i] = update_u(u[i], v[i],
ux[i], uy[i])

Global_Synchronization()

k = k + 1

return(u)

end loop

k < 2500

i= get_curr_thread_id()

v[i] = solve_v(u[i], fr[i])

index_l = indirect_idx[i+1]

index_r = indirect_idx[i]

ux[i] = u[index_l]-u[index_r]

index_l = indirect_idx_y[i]

uy[i] = u[index_l]-u[index_r]

dual_project(&p1[i], &p2[i],

ux[i], uy[i])

Global_Synchronization()

index_l = indirect_idx[i]

index_r = indirect_idx[i]-1

ux[i] = p1[index_l]-p1[index_r]
index_l = indirect_idx_y[i]-W

index_r = indirect_idx[i]-W

uy[i] = p2[index_l]-p2[index_r]

u[i] = update_u(u[i], v[i],
ux[i], uy[i])

Global_Synchronization()

k = k + 1

end loop

(a) C version (b) Restructured C version (c) OpenCL version

Figure 4: Flowcharts of function CV G main().

16

first calculate a helper matrix v from existing u and input image fr. Variable
u has the same initial values as the other input image Fmr. Variables W
and H stand for the width and height of input images, respectively. Second,
we use two helper matrices, ux and uy, to save forward differences of u in
both X and Y directions. Third, the two helper matrices will be used to
calculate the dual step projection saved in p1 and p2, following the method
Step1.DualStep introduced in Section 2.5. p1 and p2 have zero initial values
and will be updated during each main iteration. Then, we calculate backward
differences of p1 and p2 in X and Y directions, and also save results in ux and
uy, respectively. At last, we update u with its current values, as well as v,
ux, and uy, following the method Step2.P rimalStep introduced in Section
2.5.

Fig. 5 demonstrates how to calculate forward and backward differences
in X and Y directions for a 2D image. For every function, it calculates
differences in two steps. For instance, forward x() first calculates the differ-
ence between the current pixel and its next pixel in row order(X direction)
for all pixels excluding four 2-pixel borders, like in Fig. 5(a), and then up-
dates four 2-pixel borders by copying inner rows or columns to outer ones,
like in Fig. 5(b). For other functions, i.e. forward y(), backward x(), and
backward y(), they perform the same steps and calculations as forward x()
except the difference calculations presented in Fig. 5(c), (d), and (e), corre-
sponding to the gray part in Fig. 5(a).

From Fig. 4(a) and Fig. 5, we can find that the original CVG main routine
is hard to be parallelized on a data-parallel platform. The reasons are, first,
unlike the entropy filter function introduced in Section 3.2, the outermost it-
erations of CV G main() can not be partitioned to different threads, because
every iteration depends on the results of previous ones. Second, the forward
and backward difference routines make the final results of each pixel depen-
dent on others. That means, we can not swap the outermost and inner loops
to calculate every pixel iteratively and independently. At last, the forward
and backward difference routines include many memory operations, and they
have totally different structures comparing with other parts of CV G main()
and are hard to be parallelized as well.

In order to fully parallelize the CVG main routine, we need to restruc-
ture the innermost loop body to be parallelization-friend. Fig. 6 presents
how to restructure the forward and backward difference routines for a 2D in-
put image. For every forward or backward routine, we remove memory copy
operations by using pre-calculated indirect index matrices mapping to input

17

M = Height 4

N = Width - 4

i = 0

i < M

j = 0

j < N

dx[2+i,2+j] = u[2+i,3+j] -
u[2+i, 2+j]

j = j + 1

i = i +1

return(dx)

M = Height 4

N = Width - 4

dx[2~M+1,0] = dx[2~M+1,3]
dx[2~M+1,1] = dx[2~M+1,2]

dx[2~M+1,N+2] = dx[2~M+1,N+1]
dx[2~M+1,N+3] = dx[2~M+1,N]

dx[0,0~N+3] = dx[3,0~N+3]

dx[1,0~N+3] = dx[2,0~N+3]

dx[M+2,0~N+3] = dx[M+1,0~N+3]

dx[M+3,0~N+3] = dx[M,0~N+3]

return(dx)

(a) forward_x: step 1 (b) step 2

dx[2+i,2+j] = u[3+i,2+j] -

u[2+i, 2+j]
j = j + 1

(c) forward_y: step 1

dx[2+i,2+j] = u[2+i,2+j] -

u[2+i, 1+j]

j = j + 1

(d) backward_x: step 1

dx[2+i,2+j] = u[2+i,2+j] -
u[1+i, 2+j]

j = j + 1

(e) backward_y: step 1

Figure 5: Calculating forward and backward differences in X and Y directions.

images. The point is, when we update borders of an input image by using
methods presented in Fig. 5(b), we do not copy the calculated inner border
pixels to outer border ones but re-calculate the latter ones by using indirect
indexes of the corresponding inner border pixels to get the same results as
copying. Although we have to pay extra overheads for the redundant calcu-
lations, we removed memory copy operations and successfully restructured
the forward and backward difference routines like other parts of the main
iteration.

Fig. 6(a) demonstrates the restructured function forward x(), corre-
sponding to the whole procedures as shown in Fig. 5(a) and (b). The restruc-
tured forward x() goes through the whole input image, instead of the inner
part without borders as shown in Fig. 5(a), and calculates differences by us-
ing an indirect matrix indirect idx, as shown in Fig. 6(e) for a 84∗110 image.
For other restructured difference routines, i.e. forward y(), backward x(),
and backward y(), they perform the similar process like Fig. 6(a), except the
difference calculations presented in Fig. 6(b), (c), and (d), corresponding to
the gray chart in Fig. 6(a).

The indirect index matrices can be calculated out off-line, and only de-
pend on the size of an input image. For instance, Fig. 6(e) demonstrates the

18

i = 0

i < Height * Width

index_l = indirect_idx[i+1]

index_r = indirect_idx[i]

dx[i++] = u[index_l]-u[index_r]

return(dx)

(a) forward_x

index_l = indirect_idx_y[i]

index_r = indirect_idx[i]

dx[i++] = u[index_l]-u[index_r]

(b) forward_y

index_l = indirect_idx[i]
index_r = indirect_idx[i]-1

dx[i++] = u[index_l]-u[index_r]

(c) backward_x

index_l = indirect_idx_y[i]-Width

index_r = indirect_idx[i]-Width

dx[i++] = u[index_l]-u[index_r]

(d) backward_y

255 254 254 255 … 332 333 333 332

171 170 170 171 … 248 249 249 248

171 170 170 171 … 248 249 249 248

255 254 254 255 … 332 333 333 332

339 338 338 339 … 416 417 417 416

… … … … … … … … …

8823 8822 8822 8823 … 8900 8901 8901 8900

8907 8906 8906 8907 … 8984 8985 8985 8984

8991 8990 8990 8991 … 9068 9069 9069 9068

8991 8990 8990 8991 … 9068 9069 9069 9068

8907 8906 8906 8907 … 8984 8985 8985 8984

(e)Indirect index matrix for an 84*110 image

Figure 6: Restructured forward and backward difference routines and an indirect index
matrix sample for a 84 ∗ 110 input image.

indirect index matrix used by forward x() and backward x() for an 84∗ 110
input image, i.e. indirect idx in the figure. The first element of the ma-
trix, i.e. indirect idx[0, 0], equals to indirect idx[3, 3] that has a linear index
value 255 = 3 ∗ 84 + 3, corresponding to the copy operation as shown in
Fig. 5(b). Likewise, indexes of all other pixels on borders can be calculated
like the first one. For pixels in the inner part of the image, their indexes are
not changed. For instance, for a pixel with index [4, 3], its linear index value
equals to 339 = 4 ∗ 84 + 3. Functions forward x() and backward x() use
only one index matrix like Fig. 6(e), while forward y() and backward y()
use one more index matrix indirect idx y that can be calculated out off-line
just like indirect idx in a similar way.

Fig. 4(b) demonstrates the restructured CVG main routine, by using the
restructured forward and backward difference routines presented in Fig. 6.
The restructured C version inlines the four difference routines, as the gray
charts shown in Fig. 4(b). After inlining, the original three inner loops have
been reduced to two, with the same loop bound, i.e. the pixel number of the
input image.

It is much easier to parallelize the restructured CVG main routine than
the original C implementation. Fig. 4(c) shows the parallelized OpenCL
version based on the restructured function. We assign every pixel of the
input image to a thread and calculate its iterations simultaneously. Because
of data dependency, we have to place two global synchronizations at the

19

if(lid == 0) {

repeat128(t1/=t2; t2%=t1;)

}

else if(lid == 1) {

repeat128(t1/=t2; t2%=t1;)

}

...

else if(lid == 31) {

repeat128(t1/=t2; t2%=t1;)

}

Figure 7: Sample code of thread-dependent conditional branches.

positions where the restructured function finishes the two inner loops, as the
gray charts shown in Fig. 4(c). We implemented the global synchronization
function by using the atomic add function atomic inc() provided by OpenCL
runtime. In theory, the overheads of synchronizations could be negligible if
all threads arrive at their synchronization points concurrently, however, the
synchronization overheads could be significantly higher due to asynchronous
arrivals and lock operations.

Although we must perform a global lock for every thread running on
CPU, GPU can take advantage of its existing lightweight branch synchro-
nization mechanism to perform a partial global lock for every workgroup
instead of thread, because GPU executes OpenCL applications in a Single-
Instruction Multi-Threading (SIMT) model that could also be regarded as an
implicit Single-Instruction Multi-Data (SIMD) model. For SIMT architec-
tures, one instruction is fetched for a warp of sequential threads and executed
on the SIMD units, thus diverging control flow with thread-dependent condi-
tional branches in the kernel usually results in low performance because the
branches are executed sequentially [44]. Fig. 7 demonstrates a typical branch
synchronization code on GPU, in which the variable lid stands for the unique
local work-item ID within a specific workgroup. All threads within the same
workgroup will wait at the end of the branch for others, until they finish all
branches in the figure.

Fig. 8 demonstrates the pseudo code of the partial global lock for GPU,
by using its branch synchronization mechanism. For all threads within the
same workgroup, we only perform a global lock for the first one, while other

20

lid = get_local_id() ;

if(is_the_first_thread_within_workgroup(lid)){

lock() ;

}

barrier(CLK_GLOBAL_MEM_FENCE); //global memory fence

barrier(CLK_LOCAL_MEM_FENCE); //local memory fence

Figure 8: A partial global lock for GPU.

threads will automatically wait at the end of the if block for the locked
one. Then we will perform two optional memory fences for both global and
local memories for data consistency. This partial global lock has the same
function as a full global lock without the if condition on GPU, with much
fewer lock operations. It significantly improves the runtime performance of
CV G main(), as shown in Section 4.

3.2. Entropy Filter

The entropy filter function, entropy filter(), is the topmost hotspot of
the single-thread CEPCVG program on the AMD FX8530 CPU. It occupies
about 43% of the total execution time, as shown in Fig. 3. It returns an
array fge, where each output pixel contains the entropy value of its 15-by-15
neighborhood around the corresponding pixel in the input image fgm. For
pixels on the borders of fgm, it uses symmetric padding, in which the values
of padding pixels are a mirror reflection of the border pixels in fgm. The
input image fgm can have any dimension, while only 2-D dimension is used
by our program.

Fig. 9(a) presents the flowchart of the single-thread C function. It first
pads the input image fgm with a larger border and saves results in fgmp.
Then, it goes through every pixel to calculate the histogram for the gray-
scale intensity image fgm by using 256 bins. At last, it calculates the entropy
value for every input pixel based on the histogram results.

We parallelized the whole function except the padding routine, which
mainly performs memory copy operations and only takes a few milliseconds
on CPU. Although the function goes through the 15-by-15 neighborhood
of every pixel when calculating its entropy value, the calculating results of
every pixel are totally independent of the results of any other. That means,
we can simply assign every pixel to an OpenCL thread to perform the same

21

fgmp = pad(fgm)

i = 0

p[0~255] = 0

j = 0

k = curr_nb_idx(i,j++)

m = ceil(fgmp[k])

p[m] += 1.0

fge[i++] = entropy(p)

i<width*height

j < 15*15

Y

Y

return(fge)N

N

fgmp = pad(fgm)

p[0~255] = 0

j = 0

k = curr_nb_idx(i,j++)

m = ceil(fgmp[k])

p[m] += 1.0

fge[i] = entropy(p)

j < 15*15

Y

N

start width*height

threads

i= get_curr_thread_id()

return(fge)

p[0~255] = 0

j = 0

k = curr_nb_idx(i,j++)

m = ceil(fgmp[k])

p[m] += 1.0

fge[i] = entropy(p)

j < 15*15

Y

N

i= get_curr_thread_id()

(a) C version (b) OpenCL version

Figure 9: Flowcharts of function entropy filter().

22

calculations simultaneously, without any synchronization, like Fig. 3(b).
In the parallelized program, the global workgroup size of the OpenCL

kernel may have the same value as the input image fgm. For instance, for a
640 ∗ 480 input image, the global workgroup size could be (640, 480) as well.
For multi-core CPU, we use the default local workgroup size provided by the
OpenCL runtime, while it is more complicated for GPU. For fully utilizing
GPU cores, the local workgroup size should not be less than the number of
Computing Unit(CU) and the workgroup number should be a multiple of
the number of Processing Element(PE). For instance, NVidia GTX660 GPU
has 5 PEs and each PE has 192 CUs. With a fixed global workgroup size
(640, 480), the best local workgroup size for the GPU could be (60, 16). That
means, (640∗480)/(60∗16) = 320 workgroups will fairly share the 5 PEs, and
60∗16 = 960 threads within every workgroup will run on 192 CUs within each
PE. Different thread models, i.e. global and local workgroup sizes, may lead
to different runtime performance on CPU and GPU. Section 4 will introduce
more in terms of the scalability and thread models of the parallelized version.

3.3. Resizing Image

The CEPCVG C program uses an important helper function, imresize(),
to down-sample an input image. The function is called three times during
the execution, and occupies about 22% of the total execution time, see Fig. 3.
Fig. 10(a) demonstrates the flowchart of its single-thread C implementation.
First, the function applies a 2D windowed anti-aliasing filter on the input
image by using a constant Gaussian kernel related to the filter window size.
Then, it interpolates the filtered input image in the Y direction. At last, it
interpolates the filtered input image in X direction and outputs the down-
sampled image. In the figure, variables W and H stand for the width and
height of the input image, respectively.

Although some open-source libraries, like OpenCV, provide GPU solu-
tions for resizing images, their performance and functionality do not fully
meet our demand. We have to implement our own approach to parallelize
the routine. Section 4 will compare the performance of our approach with
OpenCV’s GPU solutions.

Because the X direction interpolation uses the outputs of the Y direction
interpolation, while the latter one uses the outputs of the anti-aliasing filter,
and all their input images have different sizes, we use 3 different OpenCL ker-
nels to parallelize the whole routine, like Fig. 10(b). Similar to the function
entropy filter(), the 2D windowed anti-aliasing filter performs calculations

23

on every pixel independently of the results of any other. In the same way,
we can assign every pixel to an OpenCL thread to perform the calculations
simultaneously, without any synchronization, like Fig. 10(b). We have the
similar concerns on thread models of this kernel for GPU and CPU, like the
entropy filter function as well.

The Y direction interpolation down-samples the filtered input image in
Y direction with the down-sampling scale. For instance, it down-samples a
640 ∗ 480 image to 640 ∗ 80 with a down-sampling scale value D = 6. The
corresponding OpenCL kernel triggers H/D = 80 threads to perform the
down-sampling calculations for every 640-pixel row simultaneously.

The X direction interpolation down-samples the output image of the Y
direction interpolation with the same down-sampling scale. For instance, it
down-samples a 640 ∗ 80 input image to 106 ∗ 80 with a down-sampling scale
value 6. The corresponding OpenCL kernel triggers W/D = 106 threads to
perform the down-sampling calculations for every 80-pixel column simulta-
neously.

3.4. Parallelization of Other Routines

Besides the top three hotspots, some other single-thread C routines can be
parallelized as well, although they could not improve the overall performance
so significantly as the former ones. These routines could be divided into two
categories, one is “pixel-independent”, like the aforementioned entropy fil-
ter routine, one is “vectorizable”, according to their program structure fea-
tures. The pixel-independent category includes functions median filter(),
HSV Y CbCr RGB colorspace threshold(), and grayscale(), etc. The vec-
torizable category includes function cal rcb bcb(), etc.

• Pixel-independent functions

Function median filter() performs median filtering for an input 2D
image. It outputs an image with the same size as the input one. Each
output pixel contains the median value in the M-by-N neighborhood
around the corresponding pixel in the input image, with padded zero
borders. When filtering binary input images, we use a simplified algo-
rithm to calculate the median of the M-by-N neighborhood around the
corresponding pixel in a linear way, instead of sorting the neighborhood
first, like Fig. 11(a). For any M ∗N binary values, their median is 1.0 if
their sum is larger than M ∗N/2, or 0.5 if their sum equals to M ∗N/2,
or 0 if their sum is less than M ∗N/2, when M ∗N is even. When M ∗N

24

imgp = pad(img)

i = 0

D = down_scale

i < W * H

imgp[i++] =
anti_aliasing_filter_Gaus

sian(imgp[i])

tmpim[0~(W*H)/D-1] = 0

i = 0

i< H/D

j = 0

j < W

tmpim[i+j*(H/D)] =
interpolate_X(imgp, i++,

j++)

outim[0~(W*H)/(D*D)-1] = 0

i = 0

i< W/D

j = 0

j < H/D

outim[j+(H/D)*i] =

interpolate_Y(tmpim,

i++, j++)

return(outim)

imgp = pad(img)

i = 0

D = down_scale

1st kernel: start W * H

threads

i= get_curr_thread_id()

imgp[i] =

anti_aliasing_filter_Gaus
sian(imgp[i])

end of 1st kernel

i= get_curr_thread_id()

imgp[i] =

anti_aliasing_filter_Gaus
sian(imgp[i])

tmpim[0~(W*H)/D-1] = 0

2nd kernel: start H/D

threads

i= get_curr_thread_id()

j = 0

i= get_curr_thread_id()

j = 0

j < W

tmpim[i+j*(H/D)] =

interpolate_X(imgp, i,

j++)

end of 2nd kernel

j < W

tmpim[i+j*(H/D)] =

interpolate_X(imgp, i,

j++)

end loop end loop

outim[0~(W*H)/(D*D)-1] = 0

3rd kernel: start W/D

threads

i= get_curr_thread_id()
j = 0

j < H/D

outim[j+(H/D)*i] =

interpolate_Y(tmpim, i,

j++)

end loop

end of 3rd kernel

return(outim)

i= get_curr_thread_id()
j = 0

j < H/D

outim[j+(H/D)*i] =

interpolate_Y(tmpim, i,

j++)

end loop

(a) C version (b) OpenCL version

Figure 10: Flowcharts of function imresize().

25

ub = pad(u, M, N)

i = 0

i < Height *Width

sum = sum_nb(ub,i,M,N)

sum > (M*N)/2

med = 1.0

sum == (M*N)/2

med = 0.5 med = 0.0

out_u[i++] = med

return(out_u)

(a) C version

ub = pad(u, M, N)

start Height*Width

threads

sum = sum_nb(ub,i,M,N)

i= get_curr_thread_id()

med =

cal_med(sum,M*N)

out_u[i] = med

return(out_u)

sum = sum_nb(ub,i,M,N)

i= get_curr_thread_id()

med =

cal_med(sum,M*N)

out_u[i] = med

(b) OpenCL version

Figure 11: Simplified median filter algorithm for 2D binary images and its parallelized
implementation. Note: cal med() in (b) is equivalent to the gray charts in (a).

is odd, their median is 1.0 if their sum is not less than (M ∗N + 1)/2,
or 0 in other cases. We can find that every pixel calculates its median
value in the M-by-N neighborhood independently from each other, so
we can assign every pixel to different thread and calculate all of them
simultaneously, like Fig. 11(b). So we call them “pixel-independent”.

Like image resizing routine, although some open-source libraries, like
OpenCV, provide GPU solutions for median filter, their performance
and functionality do not fully meet our demand. We have to implement
our own approach to parallelize the routine. Section 4 will compare the
performance of our approach with OpenCV’s GPU solutions.

Likewise, HSV Y CbCr RGB colorspace threshold() and grayscale()
calculate every input pixel independently as well. We use the similar
way to parallelize them also, just like median filter() or others.

• Vectorizable functions

GPU provides powerful vector instructions that have much higher per-
formance comparing with non-vector ones [44]. However, unlike the
ideal cases introduced in micro benchmarks, many CEPCVG routines
are not suitable, or not sensitive, for vectorization. For instance, we

26

tried to use vector operations in the entropy filter function. However,
we did not get any obvious performance improvement by them.

In the whole CEPCVG program, one of the most suitable case for
vectorization is function cal rcb bcb(), as shown in Fig. 1. The cor-
responding equation(3) is a typical vector calculation formula, so we
can use vectors to calculate Rcb and Bcb instead of single elements. Its
parallelization is quite simple, just by assigning different elements or
vectors to different threads. We use vectors with different sizes, from
2 to 8 elements, to evaluate the runtime performance, since different
vector sizes may have different overheads. Section 4 will demonstrate
the runtime performance with 2,4, or 8-byte vectors in detail.

4. Performance Evaluation

We evaluated the runtime performance of the single-thread CEPCVG
C program on an AMD FX8530 8-core 4.0G CPU, with 4G main memory.
The parallelized OpenCL version ran on the same AMD FX8530 CPU, a
NVidia GTX970 GPU with 4G on-board GPU memory, as well as a NVidia
GTX660 GPU with 2G on-board GPU memory. The OpenCL platforms are
AMD APP SDK V2.7 and NVidia’s OpenCL v1.1 plus CUDA 4.2.9, for the
AMD CPU and NVidia CPUs, respectively. The compiler is GCC4.6.2 and
the OS is Ubuntu12.04(Linux ubuntu 2.6.38-13-generic). When we evaluate
the runtime performance for the whole CEPCVG program or routines below,
including the CVG main iteration, the entropy filter, the median filter, etc.,
we count all necessary overheads including I/O between GPUs and CPU via
PCI-E bus. For instance, when we evaluate the runtime performance of the
OpenCL kernel of entropy filter, we count the time before the input buffers
are transferred from the host to the device and after the output buffers are
transferred from the device to the host. In general, when we parallelize the
CEPCVG algorithm based on the single-thread C program, we do not change
any computational complexity of the original C code. We also evaluated the
outputs of the parallelized program with the original C program for all input
images we used. They are all exactly the same, with acceptable floating point
errors produced by different micro architectures, e.g. X86 CPUs and NVidia
GPUs.

Fig. 12 demonstrates the runtime performance of the single-thread C
and OpenCL CEPCVG programs for 9 640 ∗ 480 input images shown in
Fig. 2, on AMD FX8530 8-core CPU, NVidia GTX970 and GTX660 GPUs,

27

0

500

1000

1500

2000

2500

3000

m
s

Execu on Time of CVG Program

Single-thread C OpenCL on AMD FX8530

OpenCL on GTX660 OpenCL on GTX970

Figure 12: Total execution time of the single-thread C and OpenCL programs for 640∗480
input images on AMD FX8530 8-core CPU, NVidia GTX970 and GTX660 GPUs.

respectively. For the whole program, the OpenCL version speeds up 18.6,
12.04 and 4.40 times on average, on NVidia GPUs and the AMD multi-core
CPU, comparing with the single-thread C version on the same AMD CPU,
respectively.

Because there is little published in the literature in terms of how to par-
allelize a face segmentation program by using CVG model on GPU, we com-
pared the performance of our CEPCVG program with the parallelized face
detection example based on Haar feature-based cascade classifiers for ob-
ject detection of OpenCV 2.4.10, which is implemented on OpenCL as well.
Fig. 13 shows the face detection results for same images in Fig. 2 by OpenCV.
We can find that the OpenCV program only detects the rough range of a
face instead of the precise contour, and can not handle most side faces, like
023 01 01 130 05.png, 049 01 01 080 05.png and 034 01 01 120 02.png, etc.

Fig. 14 demonstrates the speed-up ratios by the face detection program of
OpenCV and the CEPCVG program on NVidia GTX970 GPU, comparing
with corresponding single-thread C programs on AMD FX8530 8-core CPU,
for 9 input images in Fig. 2. The average speed-up ratio is about 15.13 times
by the parallelized OpenCV program, while it is about 18.60 times by the
parallelized CEPCVG program.

Fig. 15 demonstrates the runtime performance of the single-thread and
OpenCL versions of CV G main() for 9 640 ∗ 480 input images, on AMD
FX8530 8-core CPU, NVidia GTX970 and GTX660 GPUs, respectively. On
NVidia GPUs and the AMD multi-core CPU, the parallelized OpenCL func-

28

Figure 13: Face detection results by OpenCV.

0

5

10

15

20

25

F1 F2 F3 F4 F5 F6 F7 F8 F9 Average

Speed-up Ra!os by OpenCV and CEPCVG

OpenCV on GTX970 CEPCVG on GTX970

Figure 14: Speed-up ratios by the face detection program of OpenCV and the CEPCVG
program on NVidia GTX970 GPU, comparing with corresponding single-thread C pro-
grams on AMD FX8530 8-core CPU.

29

0

100

200

300

400

500

600

700

800

F1 F2 F3 F4 F5 F6 F7 F8 F9 Average

m
s

Execu on Time of CVG Main Itera on

Single-thread C OpenCL on AMD FX8530 OpenCL on GTX660, full lock

OpenCL on GTX660, par!al lock OpenCL on GTX970, full lock OpenCL on GTX970, par!al lock

Figure 15: Execution time of the single-thread and OpenCL CV G main() functions for
640 ∗ 480 input images on AMD FX8530 8-core CPU , NVidia GTX970 and GTX660
GPUs.

tion CV G main() is on average 28.1, 12.18 and 5.22 times faster than the
single-thread C version on the AMD CPU, respectively. As introduced in
Section 2, we can use the partial global lock on GPUs to perform synchroniza-
tions. This optimization significantly improves the performance on GTX970
and GTX660 GPUs, about 3.16 and 2.33 times, respectively, as shown in
Fig. 15. However, this optimization does not work on CPUs, because the
branch synchronization mechanism does not exist on this kind of micro ar-
chitectures [44].

Similar to other functions, we use a 2-dimension global worksize Width ∗
Height and 2-dimension local worksize ((Width/N) ∗ (Height/M)) to run
the OpenCL kernel on NVidia GPUs, while the local worksize should be not
less than 192 and N ∗M not less than 20, to fully utilize GTX970’s 13 PEs
and 1664 CUs (128 CUs per PE), and GTX660’s 5 PEs and 960 CUs (192
CUs per PE). For the AMD FX8530 8-core CPU, we use a 1-dimension global
worksize 32 and local worksize 4 to fully utilize its 8 cores. On CPU, one
thread may handles multiple pixels in a similar way as shown in Fig. 4(c),
with two more inner loops corresponding to the pixel number before the two
global synchronizations.

Fig. 16 presents the scalability of CV G main() for the input image F1 in
Fig. 2 on AMD FX8530 8-core CPU and NVidia GTX660 GPU, respectively.
The “Linear Time” lines present the linear time values by dividing the initial
time of one thread or one group by workgroup numbers, which are equal

30

0

100

200

300

400

500

600

700

800

900

1000

1/1 2/1 4/1 8/1 16/2 32/4

m
s.

Global Worksize/Local Worksize

Scalability of CVG Main Rou!ne on AMD

FX8530 CPU

AMD FX8530 8-core CPU Linear Time

0

100

200

300

400

500

600

700

800

m
s.

Global Worksize/Local Worksize

Scalability of CVG Main Rou!ne on

NVidia GTX660 GPU

Nvidia GTX660 GPU Linear Time

Figure 16: Scalability of CV G main() for the input image 001 02 01 051 05.png on AMD
FX8530 8-core CPU and NVidia GTX660 GPU.

to global worksizes divided by local worksizes. Because we down-sample the
input 640∗480 image by a factor 6, as shown in Fig. 1, the input image size of
CV G main() is 110 ∗ 84 with 2-pixel borders. For the AMD 8-core CPU, we
choose different global/local worksizes, like 1/1, 2/1, 16/2, 32/4, to increase
the workgroup number from 1 to 8. The OpenCL version achieves linear
time improvement when the workgroup number is 2, and is slower than the
linear time line when the workgroup number increases to 4 and 8. However,
the gap between the real execution time and the ideal linear time does not
raise, as shown in Fig. 16. That means, with more CPU cores, the runtime
performance of CV G main() could still increase.

For the NVidia GTX660 GPU, we increase the workgroup number from 1
to 5, corresponding to its 5 PEs. The OpenCL version achieves higher perfor-
mance improvement than linear time and keeps this trend with the increment
of the workgroup number. That means, first, with more GPU cores, the run-
time performance of CV G main() could still increase. Second, when running
with only 1 workgroup, the OpenCL version might encounter some bottle-
necks of computing resources, e.g. synchronization, memory bandwidth, etc.,
and achieve lower performance than the ideal case.

In fact, Fig. 15 proves the scalability of CV G main() when we ran the
some OpenCL routine on a more powerful GPU than GTX660. According to
NVidia’s official evaluation results [18], GTX970 is on average about 2 times
faster than GTX 660 for many workloads. For CV G main(), as Fig. 16
shown, GTX970 is on average 2.2 times faster than GTX660.

31

0

200

400

600

800

1000

1200

1400

F1 F2 F3 F4 F5 F6 F7 F8 F9 Average

m
s

Execu on Time of Entropy Filter

Single-thread C OpenCL on AMD FX8530 OpenCL on GTX660 OpenCL on GTX970

Figure 17: Execution time of the single-thread and OpenCL entropy filter() functions
for 640 ∗ 480 input images on AMD FX8530 8-core CPU, NVidia GTX970 and GTX660
GPUs.

Fig. 17 demonstrates the runtime performance of the single-thread and
OpenCL versions of entropy filter() for 9 640 ∗ 480 input images, on AMD
FX8530 8-core CPU, NVidia GTX970 and GTX660 GPUs, respectively. The
parallelized OpenCL function entropy filter() is 74.03, 37.59 and 3.72 times
faster on average, on NVidia’s GPUs and the AMD multi-core CPU, com-
paring with the single-thread C version on the AMD CPU, respectively. We
use a 2-dimension global worksize (640∗480) and 2-dimension local worksize
(16 ∗ 60) to run the OpenCL kernel on NVidia GPUs, to fully utilize their
PEs and CUs, for a 640 ∗ 480 input image. For the AMD FX8530 8-core
CPU, we use the same global and local worksizes as GPUs.

Fig. 18 demonstrates the scalability of entropy filter() on AMD FX8530
8-core CPU and NVidia GTX660 GPU, respectively. For the AMD 8-core
CPU, like CV G main(), we choose different global/local worksizes, like 1/1,
2/1, 16/2, 32/4, to increase the workgroup number from 1 to 8. For the
NVidia GTX660 GPU, we increase the workgroup number from 1 to 5, cor-
responding to its 5 PEs. The linear time lines illustrate the ideal time im-
provement regarding the increment of workgroup numbers. We can find the
OpenCL version almost overlaps the linear time lines on both AMD CPU
and NVidia GPU. That means, with more CPU or GPU cores, the runtime
performance of entropy filter() could still increase.

Fig. 17 proves the scalability of entropy filter() when we ran the some
OpenCL routine on a more powerful GPU than GTX660. As what aforemen-

32

0

200

400

600

800

1000

1200

1400

1600

1800

2000

m
s.

Global Workszie/Local Worksize

Scalability of Entropy Filter on AMD

FX8530 8-core CPU

AMD FX8530 8-core CPU Linear Time

0

50

100

150

200

250

300

350

400

450

m
s.

Global Worksize/Local Worksize

Scalability of Entropy Filter on NVidia

GTX660 GPU

Nvidia GTX660 GPU

Linear Time

Figure 18: Scalability of entropy filter() for the input image 001 02 01 051 05.png on
AMD FX8530 8-core CPU and NVidia GTX660 GPU.

tioned, GTX970 is on average about 2 times faster than GTX660 for many
workloads. For entropy filter(), as Fig. 16 shown, GTX970 is on average
1.97 times faster than GTX660.

Fig. 19 demonstrates the runtime performance of the single-thread and
OpenCL versions of imresize() for 9 640∗480 input images, on AMD FX8530
8-core CPU, NVidia GTX970 and GTX660 GPUs, respectively. The par-
allelized OpenCL function imresize() is on average 24.17, 13.74 and 11.72
times faster on NVidia GPUs and the AMD multi-core CPU, comparing with
the single-thread C version on the same AMD CPU, respectively. Fig. 19 also
shows the performance of the OpenCL resize() function of OpenCV 2.4.10
by using the same input data. The average execution time of resize() is
about 24.8 milliseconds on GTX970, while it is about 7.6 milliseconds by our
approach.

The functions has 3 kernels, as described in Section 3.3, however, the first
kernel occupies more than 99% of its total execution time on both CPU and
GPU. We use the same thread configurations as entropy filter() for the first
kernel on the AMD multi-core CPU and NVidia GPUs. For the second and
third kernels, we use Height/D and Width/D as the global worksizes, in
which D is the down-sampling scale, for CPU and GPUs. The local worksize
will be chosen by the OpenCL platform automatically for both processors.

It is interesting that the speed-up number of the OpenCL version of
imresize() on the AMD 8-core CPU is even higher than its core number 8,
as shown in Fig. 19. The main reason is, the extra I/O between main mem-
ory and GPU on-board memory could introduce extra overheads while the

33

0

20

40

60

80

100

120

140

160

180

200

F1 F2 F3 F4 F5 F6 F7 F8 F9 Average

m
s

Execu on Time of Image Resizing
Single-thread C OpenCL on AMD FX8530

OpenCL on GTX660 OpenCL on GTX970

resize() of OpenCV on GTX970

Figure 19: Execution time of the single-thread and OpenCL imresize() functions for
640 ∗ 480 input images on AMD FX8530 8-core CPU , NVidia GTX970 and GTX660
GPUs, as well as the OpenCL resize() function of OpenCV on GTX970.

computing loads are relatively low. Further more, the parallelized OpenCL
function could have much better cache behaviour comparing with its single-
thread version, and speed the performance up even higher than the core
number.

Fig. 20 demonstrates the runtime performance of the single-thread and
OpenCL versions of median filter() for 9 640 ∗ 480 input images, on AMD
FX8530 8-core CPU, NVidia GTX970 and GTX660 GPUs, respectively. The
parallelized OpenCL function median filter() is on average 4.13, 3.10 and
4.29 times faster on NVidia GPUs and the AMD multi-core CPU, compar-
ing with the single-thread C version on the same AMD CPU, respectively.
Fig. 19 also shows the performance of the OpenCL medianFilter() function
of OpenCV 2.4.10 by using the same input data. The average execution time
of medianFilter() is about 25.9 milliseconds on GTX970, while it is about
7.7 milliseconds by our approach.

It is interesting that the OpenCL kernel runs faster on the AMD 8-core
CPU than NVidia GPUs. The main reason is, the extra I/O between the
main memory and GPU on-board memory could introduce obvious overheads
while the computing loads are relatively low. Similar to previous routines,
we use a 2-dimension global worksize Width ∗Height and 2-dimension local
worksize ((Width/N) ∗ (Height/M)) to run the OpenCL kernel on NVidia
GPUs, to fully utilize their PEs and CUs. For the AMD FX8530 8-core
CPU, we use the same global worksize as the GPU, while the local worksize

34

0

5

10

15

20

25

30

35

F1 F2 F3 F4 F5 F6 F7 F8 F9 Average

m
s

Execu on Time of Median Filter

Single-thread C OpenCL on AMD FX8530

OpenCL on GTX660 OpenCL on GTX970

medianFilter() of OpenCV on GTX970

Figure 20: Execution time of the single-thread and OpenCL median filter() functions
for 640 ∗ 480 input images on AMD FX8530 8-core CPU, NVidia GTX970 and GTX660
GPUs, as well as the OpenCL medianFilter() function of OpenCV on GTX970.

is automatically chosen by the OpenCL platform.
We discussed some vectorizable functions in Section 3.4. Although these

functions do not obviously improve the whole program, the vectorization is
still an important optimization on multi-core CPU and GPU. Fig. 21 demon-
strates the runtime performance of the OpenCL kernel cal rcb bcb() with
different vector sizes on AMD FX8530 8-core CPU, NVidia GTX970 and
GTX660 GPUs, respectively. When we choose uchar4 as the vector size,
the OpenCL kernel is 4.43, 3.63 and 2.93 times faster than its un-vectorized
version, on AMD FX8530 8-core CPU, NVidia GTX970 and GTX660 GPUs,
respectively.

Fig. 22 presents the average execution time of parallelized and un-parallelized
routines for 640 ∗ 480 input images on AMD FX8530 8-core CPU, NVidia
GTX970 and GTX660 GPUs. About 96.24% of the original single-thread C
program has been parallelized in terms of execution time. The parallelized
routines occupy about 89.27%, 80.36% and 67.82% of the total execution time
on AMD FX8530 8-core CPU, NVidia GTX660 and GTX970 GPUs, respec-
tively. The parallelized routines of the whole program on NVidia GTX970
GPU, GTX660 GPU and AMD FX8530 8-core CPU are on average 34.4,
15.48 and 4.85 times faster than the corresponding routines of the single
thread C implementation on the AMD FX8530 CPU, respectively. The exe-
cution time of un-parallelized parts may vary after parallelization, due to the
change in I/O and memory access behaviors. After parallelization, hotspots

35

4.741

5.751

1.070

1.744

0.156 0.092 0.053 0.057

0.087 0.046 0.024 0.025
0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

5.500

6.000

un-vectorized uchar2 uchar4 uchar8

m
s

Execu on Time of OpenCL Kernel cal_rcb_bcb

AMD FX8530 8-core CPU NVidia GTX660 GPU NVidia GTX970 GPU

Figure 21: Execution time of OpenCL kernel cal rcb bcb() for the input images
001 02 01 051 05.png with different vector sizes on AMD FX8530 8-core CPU, NVidia
GTX970 and GTX660 GPUs.

2462.00

560.11

204.56 132.33

70.00

67.33

50.00
62.80

Single-thread AMD FX8530 8-core CPU NVidia GTX660 GPU NVidia GTX970 GPU

Execu�on Time of Parallelized and Un-

parallelized Rou�nes (ms)

Parallelized Rou!nes Un-parallelized Rou!nes

Figure 22: Average execution time of parallelized and un-parallelized routines for 640∗480
input images on AMD FX8530 8-core CPU, NVidia GTX970 and GTX660 GPUs.

36

HSV_YCbCr_RGB_col

orspace

4%

grayscale +

mask_for_CVG

2%

fusing_skin_tone

10%

entropy_filter

51%

median_filter

1%

imresize * 3

9%

prepare_entropy +

prepare_median_filt

er +

chin_iden"fica"on

1%

CVG_main

25%

Hotspots on AMD 8-core CPU

illumina"on_equaliz

a"on

4% HSV_YCbCr_RGB_co

lorspace

5%

fusing_skin_tone

12%

entropy_filter

11%

median_filter

6%

imresize * 3

8%

prepare_entropy +

prepare_median_fil

ter +

chin_iden"fica"on

8%

CVG_main

20%

Hotspots on GTX970

Figure 23: Hotspots for 640 ∗ 480 input images on AMD FX8530 8-core CPU and NVidia
GTX970 GPU, after parallelization.

may change on the multi-core CPU and GPUs, as shown in Fig. 23. For in-
stance, the top hotspot on AMD FX8530 CPU now is entropy filter() while
it is CV G main() on NVidia GTX970 GPU. That means, if we want to op-
timize the OpenCL program further, different parallelization efforts may be
paid for different micro architectures, even for the same program.

5. Conclusions and Future Work

In this paper, we introduced methodologies to parallelize a face contour
detecting application based on the Chan-Vese model using the total varia-
tion G Norm, which is a complicated computational application from applied
mathematics that does not depend on any training data. We discuss how
to parallelize one of the core routines, i.e. CV G main(), which has data
dependency between iterations and pixels and is thus difficult to be paral-
lelized, as well as other hotspots like an entropy filter function and an image
resizing function to name few. We demonstrate the performance data of the
parallelized program on multi-core CPU and GPUs in detail. This is a key
contribution given the wide scope and use of the Chan-Vese model in the
literature.

When parallelizing such a practical and complicated application, we can
not achieve the best performance by simply parallelizing a single algorithm.
As what was aforementioned, some trivial helper or I/O functions may dom-
inate the total execution time after parallelizing existing hotspots, and more
engineering efforts might be paid for the remaining work here. Furthermore,
in the core routine CV G main(), another way to deal with the data de-

37

pendency between iterations and pixels would be the use of a parallelized
spectral method of which the authors are currently pursuing. Lastly, SIMD
instructions and approximate processing could be applied to the parallelized
implementation on multi-core CPUs, to improve the scalability and vector-
ization optimizations.

6. Acknowledgements

This work was partially supported by a Qualcomm Research Gift to UC
Irvine, US NSF grant DMS-1222507, National Natural Science Foundation
of China grants No.61272166, and the State Key Laboratory of Software
Development Environment of China No.SKLSDE-2014ZX-10.

7. References

[1] A. Atharifard and S. Ghofrani, “Robust Component-based Face De-
tection Using Color Feature.” Proceedings of the World Congress on
Engineering 2011, Vol 2, WCE 2011, July 6 - 8, 2011, London, U.K.

[2] X. Bresson and T. Chan, “Active Contours Based on Chambolle’s Mean
Curvature Motion,” IEEE Int. Conf. Image Process. (ICIP ’07), vol. I,
pp. 33-36, 2007, doi:10.1109/ICIP.2007.4378884.

[3] X. Bresson, S, Esedoglu, P. Vanderheynst, J.P. Thiran and S. Os-
her, “Fast Global Minimization of the Active Contour/Snake Model,”
J. Math. Imaging and Vision, vol. 28, pp. 151-167, Jun. 2007,
doi:10.1007/s10851-007-0002-0.

[4] X. Cai, R. H. Chan, T. Zeng, “A Two-Stage Image Segmentation
Method Using a Convex Variant of the Mumford-Shah Model and
Thresholding,” SIAM Journal on Imaging Sciences, 2013, vol. 6:1, pp.
368-390.

[5] J. Carter, “Dual methods for total variation–based image restoration,”
Ph.D. disseration, Dept. Math., UCLA, LA, CA, 2001.

[6] C. Caselles, R. Kimmel, and G. Sapiro, “Geodesic Active Contours,”
International Journal of Computer Vision, vol. 22(1), pp. 61-79, 1997.

38

[7] D. Chai, K. N. Ngan, “Face segmentation using skin color map in video-
phone applications,” IEEE Transactions CAS for Video Technology, vol.
9, no. 4, pp. 551-564, 1999.

[8] A. Chambolle, “An Algorithm for Total Variation Minimization and
Applications,” J. Math. Imag. and Vision, vol. 20, pp. 89-97, 2004,
doi:10.1023/B:JMIV.0000011321.19549.88.

[9] A. Chambolle, R.A. De Vore, N.T. Lee and B.J. Lucier, “Nonlinear
Wavelet Image Processing: Variational Problems, Compression, and
Noise Removal through Wavelet Shrinkage,” IEEE Trans. Image Pro-
cess., vol. 7, pp. 319-335, 1998, doi:10.1109/83.661182.

[10] A. Chambolle and T. Pock, “A First-Order Primal-Dual Algorithm for
Convex Problems with Applications to Imaging”, J. Math. Imag. and
Vision, vol. 20, no. 1, pp. 120-145, 2011, doi:10.1007/s10851-010-0251-1.

[11] T.F. Chan, S. Esedoglu and M. Nikolova, “Algorithms for Find-
ing Global Minimizers of Image Segmentation and Denoising
Models,” SIAM J. Appl. Math., vol. 66, pp. 1632-1648, 2006,
doi:10.1137/040615286.

[12] T.F. Chan and L.A. Vese, “Active Contours Without Edges,” IEEE
Trans. on Image Processing, VOL. 10, No. 2, Feb. 2001.

[13] T.F. Chan, G. Golub and P. Mulet, “A Nonlinear Primal-Dual Method
for Total Variation-Based Image Restoration,” SIAM J. Sci. Comput.,
vol. 20, pp. 1964-1977, 1999, doi:10.1137/S1064827596299767.

[14] T.F. Chan and S. Esedoglu, “Aspects of Total Variation Regularized
L1 Function Approximation,” SIAM J. Appl. Math., vol. 65, no. 5, pp.
1817-1837, 2005, doi:10.1137/040604297.

[15] J. S. Chang, E. Y. Kim, and H. J. Kim, “Facial boundary detection
with an active contour model,” Pattern Recognition Letters 28 (2007),
pp. 67-75.

[16] P. Chen, D.L. Yang, W.H. Zhang, Y. Li, B.Y. Zang, H.B. Chen, “Adap-
tive Pipeline Parallelism for Image Feature Extraction Algorithms,” Par-
allel Processing (ICPP), 2012 41st International Conference on, pp. 299-
308, Sept. 2012.

39

[17] The CMUMulti-PIE Face Database, at URL: http://www.multipie.org/

[18] NVidia Geforce GTX970 performance evaluation results, at
URL: http://www.geforce.cn/hardware/desktop-gpus/geforce-gtx-
970/performance

[19] Farrugia N, Mamalet F, Roux S, et al. “Fast and robust face detection
on a parallel optimized architecture implemented on FPGA[J]”. Circuits
and Systems for Video Technology, IEEE Transactions on, 2009, 19(4):
597-602.

[20] D. Ghimire and J. Lee, “A Robust Face Detection Method Based on
Skin Color and Edges.” J. Inf. Process Syst, Vol. 9, No.1, March 2013,
http://dx.doi.org/10.3745/JIPS.2013.9.1.141.

[21] T. Goldstein, X. Bresson and S. Osher, “Geometric Applications of
the Split Bregman Method: Segmentation and Surface Reconstruction,”
CAM, LA, CA, Rep. 09-06, 2009.

[22] T. Goldstein and S. Osher, “The Split Bregman Method for L1-
Regularized Problems,” SIAM J. Imag. Sci., vol. 2, pp. 323-343, 2009,
doi:10.1137/080725891.

[23] R. Gupta and A. K. Saxena, “Survey of Advanced Face Detection Tech-
niques in Image Processing,” Int. J. of Computer Science and Manage-
ment Research, vol 1:2, September 2012.

[24] R. Hunt, “The Reproduction of Colour.” 6th edition, Wiley, 2004.

[25] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Mod-
els,” International Journal of Computer Vision, pp. 321-331, 1987.

[26] Jin S, Kim D, Nguyen T T, et al. “An FPGA-based parallel hard-
ware architecture for real-time face detection using a face certainty
map[C]//Application-specific Systems, Architectures and Processors”,
2009. ASAP 2009. 20th IEEE International Conference on. IEEE, 2009:
61-66.

[27] M. Kim, S. Kumar, V. Pavlovic, and Rowley, “Face Tracking and Recog-
nition with Visual Constraints in Real-World Videos,” CVPR, June
2008.

40

[28] E.Y. Lam, “Combining gray world and retinex theory for automatic
white balance in digital photography,” DOI:10.1109/ISCE.2005.1502356
ISBN: 0-7803-8920-4. In proceedings of: Consumer Electronics, 2005.
(ISCE 2005). Proceedings of the Ninth International Symposium on.
07/2005.

[29] E. Land and J. McCann,“Lightness and Retinex theory,” Journal of the
Optical Society of America, vol. 61, no. 1, pp. 1-11, 1971.

[30] OpenCV Cascade Classification, at URL:
http://docs.opencv.org/modules/objdetect/doc/cascade classification.html

[31] OpenCL official site, at URL: http://www.khronos.org/opencl/

[32] S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, “An Iterative
Regularization Method for Total Variation-Based Image Restoration,”
SIAM Multiscale Modeling & Simulation, vol. 4, pp. 460-489, 2005,
doi:10.1137/040605412.

[33] S. L. Phung, A. Bouzerdoum, and D. Chai, “A novel skin color model
in YCbCr color space and its application to human face detection,” In
IEEE International Image Processing, no. 1, pp. 289-292, 2002.

[34] S. L. Phung, A. Bouzerdoum, and D. Chai, “Skin Segmentation Using
Color Pixel Classification: Analysis and Comparison,” IEEE Transac-
tion on Pattern Analysis and Machine Intelligence, vol. 27, no.1, pp.148-
154, 2005.

[35] C. Prema and D. Manimegalai, “Survey on Skin Tone Detection using
Color Spaces,” International Journal of Applied Information Systems
(IJAIS), ISSN : 2249-0868 Foundation of Computer Science FCS, New
York, USA, Volume 2, No.2, May 2012.

[36] S. Rivera and A. Martinez, “Learning Deformable Shape Manifolds,”
Pattern Recognition, vol. 45:4, pgs. 1792-1801, April 2012.

[37] L.I. Rudin, S. Osher and E. Fatemi, “Nonlinear Total Variation Based
Noise Removal Algorithms,” Physica D, vol. 60, pp. 259-268, Nov. 1992,
doi:10.1016/0167-2789(92)90242-F.

41

[38] Y. Sun and J. Xin, “Content Adaptive Image Matching by Color-
Entropy Segmentation and Inpainting,” the 14th International Confer-
ence on Computer Analysis of Images and Patterns, Pedro Real et al
(Eds.), CAIP 2011, LNCS 6855, pp. 471-478, 2011, Springer-Verlag.

[39] T. Theocharides, N. Vijaykrishnan and M. J. Irwin, “A Parallel Archi-
tecture for Hardware Face Detection,” in Proceedings of ISVLSI 2006,
6: 452.

[40] S. Tripathi, V. Sharma, and S. Sharma, “Face Detection using Com-
bined Skin Color Detector and Template Matching Method,” Int. J. of
Computer Apps. vol. 26:7, July 2011.

[41] V. Vezhnevets, V. Sazonov, and A. Andreeva, “A Survey on Pixel-Based
Skin Color Detection Techniques.” In Proceedings, GRAPHICON, 2003,
pp. 85–92.

[42] X. Xiong, F. Torre, Supervised descent method and its applications
to face alignment, IEEE Conference on Computer Vision and Pattern
Recognition, pp. 533–539, 2013.

[43] W.L. Yan, X.H. Shi, X. Yan and L.N. Wang, “Computing OpenSURF on
OpenCL and General Purpose GPU,” International Journal of Advanced
Robotic Systems, vol. 10, pp. 375-386, 2013, doi: 10.5772/57057

[44] X. Yan, X.H. Shi, L.N. Wang, H.Y. Yang, “An OpenCL Micro-
Benchmark Suite for GPUs and CPUs,” The Journal of Supercomput-
ing, doi:10.1007/s11227-014-1112-2, 2014

[45] C. Zach, T. Pock and H. Bischof, “A Globally Optimal Algo-
rithm for Robust TV-L1 Range Image Integration,” Proc. 11th IEEE
Int. Conf. Comput. Vision (ICCV ’07), vol. 1, pp. 1-8, Oct. 2007,
doi:10.1109/ICCV.2007.4408983.

[46] C. Zhang and Z. Zhang, “A survey of Recent Advances in Face De-
tection,” Microsoft Research Technical Report MSR-TR-2010-66, June
2010.

[47] X. Zhu and D. Ramanan, “Face Detection, Pose Estimation, and Land-
mark Localization in the Wild,” CVPR, Providence RI, June 2012.

42

[48] M. Zhu and T.F. Chan, “An Efficient Primal-Dual Hybrid Gradient
Algorithm for Total Variation Image Restoration,” CAM, LA, CA, Rep.
08-34, 2008.

43

