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Imagery with Nonlocal Total Variation and

Primal-Dual Hybrid Gradient Algorithm
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Da Kuang, Andrea L. Bertozzi, Stanley Osher, and Dominique Zosso

Abstract—We propose a graph-based nonlocal total variation
method (NLTV) for unsupervised classification of hyperspectral
images (HSI). The variation problem is solved by the primal-
dual hybrid gradient (PDHG) algorithm. By squaring the labeling
function and using a stable simplex clustering routine, we can
implement an unsupervised clustering method with random
initialization. Finally, we speed up the calculation using a k-
d tree and approximate nearest neighbor search algorithm for
calculation of the weight matrix for distances between pixel
signatures. The effectiveness of this proposed algorithm is il-
lustrated on both synthetic and real-world HSI, and numerical
results show that our algorithm outperform other standard
unsupervised clustering methods such as spherical K-means,
nonnegative matrix factorization (NMF), and the graph-based
Merriman-Bence-Osher (MBO) scheme.

Index Terms—Hyperspectral images (HSI), nonlocal total vari-
ation (NLTV), primal-dual hybrid gradient (PDHG) algorithm,
unsupervised classification, stable simplex clustering

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) is an important do-
main in the field of remote sensing with numerous

applications in agriculture, environmental science, mineralogy,
medical imaging, and surveillance [1]. Hyperspectral sensors
capture information of intensity of reflection at different wave-
lengths, from the infrared to ultraviolet. They typically take
measurements approximately 10-30nm apart, and as many as
200 sample layers for a single image. Thus each pixel has
a unique spectral signature. These spectral signatures can be
used to differentiate objects that cannot be distinguished based
on visible spectra, for example: invisible gas plumes, oil or
chemical spills over water, or healthy from unhealthy crops.
Hence an important task in HSI analysis is to classify the
pixels in the image.

There are two types of methods in HSI classification:
unmixing methods and clustering methods. Unmixing methods
attempt to extract the information of the constitutive materials
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(the endmembers) and the abundance map, which can be
further used to create a segmentation of the image [2]–[5].
Clustering methods do not extract endmembers; instead, they
return the spectral signatures of the centroids of the clusters.
These centroids are merely the mean of the signatures of all
the pixels of the cluster, and do not necessarily represent the
true signatures of the original materials. However, when we
assume that most of the pixels are dominated mostly by one
endmember, i.e. in the absence of partial volume effects, which
is usually the case for high-resolution HSI, these two types of
methods are expected to give very similar results [5]. Our
nonlocal total variation (NLTV) method for HSI classification
in this paper is a clustering method.

Much work has been carried out in the literature in both
the unmixing and the clustering categories. HSI unmixing
models can be characterized as linear or nonlinear. In a linear
mixing model (LMM), each pixel is approximated by a linear
combination of the endmembers. When the linear coefficients
are constrained to be nonnegative, it is equivalent to non-
negative matrix factorization (NMF), and good unsupervised
clustering results have been achieved in [3]–[5] using either
NMF or hierarchical rank-2 NMF (H2NMF). Despite the
simplicity of LMM, the linear mixing assumption has been
shown to be physically inaccurate [6]. Researchers are start-
ing to expand aggressively into the much more complicated
nonlinear unmixing realm [7], where nonlinear effects such as
atmospheric scattering are explicitly modeled. However, most
of the work that has been done for nonlinear unmixing so
far is supervised in the sense that a prior knowledge of the
endmember signatures is required [2]. Discriminative machine
learning methods such as support vector machine (SVM) [8]–
[10] and relevance vector machine (RVM) [11]–[13] based
approaches have also been applied to hyperspectral images,
generating pixel classes without modeling the endmembers,
but they are also supervised methods since a training set is
needed to learn the classifiers.

On the contrary, graph-based clustering methods implicitly
model the nonlinear mixing effects between the endmembers.
This type of methods does not take the original spectral signa-
tures as input, but is built upon a weight matrix that encodes
the similarity between the pixels, which is typically a sparse
matrix constructed using the distances between the spectral
signatures. Graph cuts problems for graph segmentation have
been well studied in the literature [14]–[17]. In 2012, Bertozzi
and Flenner proposed a diffuse interface model on graphs
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with applications to classification of high dimensional data
[18]. This idea has been combined with Merriman-Bence-
Osher (MBO) scheme [19] and applied to multi-class graph
segmentation [20], [21] and HSI classification [22], [23]. The
method in [18] minimizes a graph version of the Ginzburg-
Landau (GL) functional, which consists of the Dirichlet energy
of the labeling function and a double well potential, and uses
Nyström extension to speed up the calculation of the eigen-
vectors for inverting the graph Laplacian. This graph-based
method performed excellently compared to other algorithms
in the detection of chemical plumes in hyperspectral video
sequences, which is a difficult problem because of the diffusive
nature of the gas [22], [23]. However, the GL functional is
non-convex due to its double-well term, which may cause
the algorithm to get stuck in local minima. This issue can
be circumvented by running the algorithm multiple times with
different initial conditions and hand-picking the best result.

The two methods proposed in this paper are totally unsuper-
vised graph-based clustering techniques. Instead of minimizing
the GL functional, which has been proved to converge to the
total variation (TV) semi-norm, we propose to minimize the
NLTV semi-norm of the labeling functions directly:

E1(u) =

k∑
l=1

‖∇wul‖L1 +

k∑
l=1

∫
ul(x)fl(x)dx, (1)

where ∇w is the nonlocal gradient, u = (u1, u2, . . . , uk) is
the labeling function mapping the image into the unit simplex,
and fl is the error function with respect to the l-th centroid.
The L1 regularized problem above is a convex optimization
problem and can be solved by the primal-dual hybrid gradient
(PDHG) algorithm, which avoids the need to invert the graph
Laplacian. We also introduce the novel idea of the quadratic
model by squaring the labeling function u in the fidelity term:

E2(u) =

k∑
l=1

‖∇wul‖L1 +

k∑
l=1

∫
u2
l (x)fl(x)dx. (2)

This new energy ensures that anomalies converge to their
own clusters and makes random endmember initialization
possible in our algorithm. Our direct usage of the NLTV semi-
norm makes our clustering methods more accurate than other
methods when evaluated quantitatively on HSI with ground-
truth labels, and our quadratic model for random initialization
with stable simplex clustering is a completely new addition to
the field of hyperspectral image classification.

This paper is organized as follows: in Section II background
is provided on total variation, nonlocal operators, and the
primal-dual hybrid gradient algorithm. In Section III we in-
troduce our work: first we apply PDHG to the linear NLTV
model, then we apply PDHG to our new innovation of the
quadratic NLTV model. We also introduce a stable simplex
clustering scheme, which allows the algorithm to converge
in fewer iterations. Section IV outlines a computer science
technique for speeding up the calculation of the weight matrix,
namely, the formation of a k-d tree then the application of
an approximate nearest neighbor search, which vastly reduces
the number of pixels that need to be compared. Section V
presents our results. We run our algorithm on both synthetic

and real-world datasets such as Urban, San Diego Airport, and
Chemical Plume, and Section VI presents our conclusions.

II. TOTAL VARIATION AND PRIMAL-DUAL HYBRID
GRADIENT ALGORITHM

A. Total Variation and Nonlocal Operators

Total variation (TV) method was introduced by Rudin et al
in 1992 [24] and has been applied to various image processing
tasks, such as image denoising, deconvolution, inpainting, and
segmentation [25]. Its advantage is that one can preserve the
edges in the image when minimizing ‖∇u‖L1 (TV semi-
norm). The total variation model is:

min
u
E(u) = ‖∇u‖L1 +

λ

2
S(u). (3)

The parameter λ can be adjusted to give higher priority to the
TV-regularizing term, or the data fidelity term S(u).

Despite its huge success in image processing, the total
variation method is still a local method. More specifically,
when the gradient of a pixel is being calculated, this is
done using its immediate adjacent pixels. It is known that
local image processing techniques fail to produce satisfactory
results when the image has repetitive structures, or intrinsically
related objects in the image are not spatially connected. To
address this problem, Buades et al proposed a nonlocal mean
method based on patch distances for image denoising [26].
Gilboa and Osher [27] later formalized a systematic framework
for nonlocal image processing. Nonlocal image processing
produces much better results because theoretically any pixel in
the image can interact with any other, which better preserves
texture and fine detail.

In HSI classification, clusters can have elements that are not
spatially connected. Thus to use total variation as a segmenting
technique, it is necessary to develop a nonlocal method of
calculating the gradient. We provide a review of nonlocal
operators for readers unfamiliar with the prior work in the
rest of this section. Note that in our utilization, the model
is continuous and the weights are not necessarily symmetric
[28].

Let Ω be a region in Rn, and u : Ω→ R be a real function.
We define the nonlocal derivative:

∂u

∂y
(x) :=

u(y)− u(x)

d(x, y)
, for all x, y ∈ Ω,

where d is a positive distance between x and y. With the
following nonlocal weight defined as (4), we can rewrite the
nonlocal derivative as (5).

w(x, y) = d−2(x, y), (4)

∂u

∂y
(x) =

√
w(x, y)(u(y)− u(x)). (5)

With this nonlocal derivative, we can define the nonlocal
gradient ∇wu for u ∈ L2(Ω) as a function from Ω to
L2(Ω); we therefore use the notation ∇wu ∈ L2(Ω, L2(Ω)).
Then ∇wu ∈ L2(Ω, L2(Ω)) is the collection of all partial
derivatives:

∇wu(x)(y) =
∂u

∂y
(x) =

√
w(x, y)(u(y)− u(x)).
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We use the standard L2 inner product on Hilbert spaces L2(Ω)
and L2(Ω, L2(Ω)). More specifically, for u1, u2 ∈ L2(Ω) and
v1, v2 ∈ L2(Ω, L2(Ω))

〈u1, u2〉 :=

∫
Ω

u1(x)u2(x)dx,

〈v1, v2〉 :=

∫
Ω

∫
Ω

v1(x)(y)v2(x)(y)dydx.

With the above definition of inner products and nonlocal gra-
dient, the nonlocal divergence divw is defined as the negative
adjoint of the nonlocal gradient:

divwv(x) :=

∫
Ω

√
w(x, y)v(x)(y)−

√
w(y, x)v(y)(x)dy.

At last, we can define a standard L1 and L∞ norm on the
space L2(Ω, L2(Ω)):

‖v‖L1 :=

∫
Ω

‖v(x)‖L2dx =

∫
Ω

∣∣∣∣∫
Ω

|v(x)(y)|2 dy
∣∣∣∣ 12 dx,

‖v‖L∞ := sup
x
‖v(x)‖L2 .

B. Primal-Dual Hybrid Gradient Algorithm
A lot of energy functionals involving NLTV semi-norms in

image processing are convex, and there is a huge collection of
convex optimization techniques that can be applied to such
problems. First-order primal-dual algorithms have recently
been successfully used in image processing with L1 type
regularizers [29]–[32]. We introduce the framework here to
contextualize our extension to nonlocal model for hyperspec-
tral imagery.

Let X and Y be two finite-dimensional real vector spaces.
Let F and G be proper convex lower semi-continuous func-
tions F : Y → [0,∞), G : X → [0,∞), and F ∗ the convex
conjugate of F , and K : X → Y a continuous linear operator
with the operator norm,

‖K‖ = sup{‖Kx‖ : x ∈ X, ‖x‖ ≤ 1}.

For the total variation energy functional (3), we can define the
gradient ∇ as K, ‖ · ‖L1 as F , and the fidelity term λ

2S(u)
as G. Then minimizing (3) is equivalent to minimizing the
primal problem:

min
x∈X
{F (Kx) +G(x)}. (6)

Then the primal-dual formulation of (6) is the saddle-point
problem:

min
x∈X

max
y∈Y
{〈Kx, y〉 − F ∗(y) +G(x)}. (7)

The saddle-point problem is then solved using the iterations
of Algorithm 1 in [29].

In Algorithm 1, (I + λ∂f)−1(x) is the proximal operator
of f , which is defined as:

(I + λ∂f)−1(x) = proxλf (x) = arg min
y
f(y) +

1

2λ
‖y− x‖22.

It has been shown in [29] that O(1/N) (where N is the number
of iterations) convergence can be achieved as long as σ, τ
satisfy

στ‖K‖2 ≤ 1.

Algorithm 1 Primal-Dual Hybrid Gradient (PDHG) Algorithm
1: Initialization: Choose τ, σ > 0, θ ∈ [0, 1], (x0, y0) ∈
X × Y , and set x̄0 = x0

2: while not converge do
3: yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)
4: xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)
5: x̄n+1 = xn+1 + θ(xn+1 − xn)
6: n = n+ 1
7: end while

III. TWO NLTV MODELS FOR UNSUPERVISED
CLASSIFICATION OF HSI

In this section, we propose two NLTV models for unsu-
pervised classification of HSI. The linear model runs faster in
each iteration, but it requires an accurate centroid initialization.
The quadratic model runs slower in each iteration, but it
makes random initialization of the centroids possible. And the
quadratic model converges faster if the initialization is not very
accurate.

A. Linear Model

We extend the idea from [29] to formulate a linear model
for classification on HSI. The linear model seeks to minimize
the following energy

E1(u) = ‖∇wu‖L1 + 〈u, f〉

=

k∑
l=1

‖∇wul‖L1 +

k∑
l=1

∫
ul(x)fl(x)dx, (8)

where Kk = {(x1, x2, . . . , xk)|
∑k
i=1 xi = 1, xi ≥ 0} is

the unit simplex in Rk, u = (u1, u2, . . . , uk) : Ω → Kk is
the labeling function, k is the number of clusters, ∇wu =
(∇wu1, . . . ,∇wuk) such that ‖∇wu‖L1 =

∑k
l=1 ‖∇wul‖L1 ,

and fl(x) is the error function defined as

fl(x) =
λ

2
|g(x)− cl|2µ , (9)

where g(x) is the spectral signature at pixel x and cl is the
spectral signature of the l-th centroid, which is either picked
randomly from the HSI or generated by any fast unsuper-
vised centroid extraction algorithm (e.g. H2NMF, spherical
K-means.) The distance in the above definition of fl(x) is a
linear combination of cosine distance and Euclidean distance:

|g(x)− cl|µ = 1− 〈g(x), cl〉
‖g(x)‖2‖cl‖2

+ µ‖g(x)− cl‖2, µ ≥ 0.

In HSI processing, the cosine distance is generally used be-
cause it is more robust in the face of atmospheric interference
and topographical features [33]. The reason why we also
use the Euclidean distance is that sometimes different classes
have very similar spectral angles, but vastly different spectral
amplitudes (e.g. “dirt” and “road” in the Urban dataset, which
is illustrated in Section V.) We call this the linear model since
the power of the labeling function ul in (8) is 1. Now we
discuss how to discretize (8) for numerical implementation.
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1) Weight Matrix: First, we address the creation of a weight
matrix measuring similarities between spectral signatures. Fol-
lowing the idea from [27], we define the patch distance as:

dσ(x, y) =

∫
Ω

Gσ(t) |g(x+ t)− g(y + t)|2 dt,

where Gσ is a Gaussian of standard deviation σ. The Patch
distance in RGB image processing addresses the situations
when the image is repetitive in space. Then we discretize and
binarize the weights in the following way: we take a patch and
a search window around every pixel i, and compute the patch
distance (dσ)i,j to all the points within the search window and
select the m closest ones. For the m closest pixels, the wi,j
are set to be 1, while all the other weights are set to be 0.
In our experiments, we have used 3 × 3 and 1 × 1 patches,
and 21× 21 search windows, and m is set to be 10. There is
one more thing to mention about the patch size: unlike RGB
image processing, the patch size for HSI does not have to
be very large, and 3 × 3 patches, or in some extreme cases
1× 1 patches, can generate similar results to that of 11× 11
patches. The reason is that while low dimensional RGB images
require spatial context to identify pixels, high dimensional
hyperspectral images already encode enough information for
each pixel in the spectral dimension. Of course, a larger patch
size that is consistent with the spatial resolution of the HSI
will still be preferable when significant noise is present.

2) The Labeling Function and the Nonlocal Operators:
We discretize the labeling function u and nonlocal operators
∇w in the following way: u = (u1, u2, . . . , uk) is discretized
as a matrix of size r × k, where r is the number of pixels in
the hyperspectral image, and (ul)j is the l-th labeling function
at j-th pixel; (∇wul)i,j=

√
wi,j((ul)j − (ul)i) is the nonlocal

gradient of ul; (divwv)i =
∑
j

√
wi,jvi,j −

√
wj,ivj,i is the

divergence of v at i-th pixel; and the discrete L1 and L∞

norm of ∇wul are defined as:

‖∇wul‖L1 =
∑
i

(
∑
j

(∇wul)2
i,j)

1
2 ,

‖∇wul‖L∞ = max
i

(
∑
j

(∇wul)2
i,j)

1
2 .

Next, we will use similar idea from [29] to derive an
algorithm for minimizing the energy E1 in (8). By adding an
indicator function δU , minimizing E1 is equivalent to solving
the following primal problem:

min
u
‖∇wu‖L1 + 〈u, f〉+ δU (u), (10)

where U = {u = (u1, u2, . . . , uk) ∈ Rr×k :
∑k
l=1(ul)i =

1,∀i = 1, . . . , r, (ul)i ≥ 0}, and δU is the indicator function
on U . More specifically:

δU (u) =

{
0 if u ∈ U,
∞ otherwise.

The primal-dual saddle-point formulation of (10) is:

min
u=(ul)kl=1

max
p=(pl)kl=1

〈∇wu, p〉+ 〈u, f〉+ δU (u)− δP (p), (11)

where δP is the convex conjugate of ‖ · ‖L1 , and the set P =
{p ∈ R(r×r)×k : ‖pl‖∞ ≤ 1}.

Algorithm 2 Primal-Dual Iterations for Linear Model
1: while not converge do
2: pn+1 = projP (pn + σ∇wūn)
3: un+1 = projU (un + τdivwpn+1 − τf)
4: ūn+1 = un+1 + θ(un+1 − un)
5: n = n+ 1
6: end while

We can then use the PDHG algorithm (see Algorithm 2)
to solve the above saddle point problem (11). We specify
the two orthogonal projections in Algorithm 2: let p̃ =
projP (p), where p = (pl)

k
l=1 ∈ R(r×r)×k. Then for every

i ∈ {1, 2, . . . , r} and every l ∈ {1, 2, . . . , k}, the i-th row
of p̃l is the projection of the i-th row of pl on to the
unit ball in Rr. Similarly, if ũ = projU (u), then for every
i ∈ {1, 2, . . . , r}, ((ũ1)i, (ũ2)i, . . . , (ũk)i) is the projection of
((u1)i, (u2)i, . . . , (uk)i) onto the unit simplex Kk in Rk. And
from [34], we know at most k steps are needed to project an
arbitrary vector in Rk onto Kk.

Notice that no matrix inversion is involved in the above
primal-dual iteration, as opposed to general graph Laplacian
methods. The most expensive part in the computation comes
from sparse matrix multiplications, which is still very cheap
due to the fact that only 10 nonzero elements are kept in each
row of the nonlocal weight matrix.

Next, we address centroid updates and stopping criteria
for our linear model. The concept of centroid updates in the
linear model is not a new one; in fact, the standard K-means
algorithm consists of two steps: first, it assigns each point to
a cluster whose mean yields the least within-cluster sum of
squares, then it re-calculates the means from the centroids,
and terminates when assignments no longer change [35].
Especially for data-based methods, re-calculating the centroid
is essential for making the algorithm less sensitive to initial
conditions and more likely to find the “true” clusters.

After every few steps of primal-dual iterations (we used five
steps in our experiments), the output u will be thresholded
to uhard. More specifically, for every i ∈ {1, 2, . . . , r}, we
pick the largest element among ((u1)i, (u2)i, · · · , (uk)i) and
set it to 1, while leaving the others at 0, and we say the i-th
pixel belongs to that particular cluster. Then we update the l-th
centroid by taking the mean of all the pixels in that cluster. We
repeat the process until the difference between two consecutive
uhard drops below a certain threshold. The pseudocode for our
linear model on HSI is listed in Algorithm 3.

Before ending the discussion of our proposed linear model,
we would like to point out its connection to the piecewise con-
stant Mumford-Shah model for multi-class graph segmentation
[36]. Assume that the domain Ω of the HSI is segmented by a
contour Φ into k disjoint regions, Ω = ∪kl=1Ωl. The piecewise
constant Mumford-Shah energy is defined as:

EMS(Φ, {cl}kl=1) = |Φ|+ λ

k∑
l=1

∫
Ωl

|g(x)− cl|2 dx, (12)

where |Φ| is the length of the contour. To illustrate the
connection between (8) and (12), let us first look at the “local”
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Algorithm 3 Linear Model
1: Initialization of centroids: Choose (cl)

k
l=1 (randomized

or generated by fast unsupervised centroid extraction
algorithm).

2: Initialization of parameters: Choose τ, σ > 0 satisfying
στ‖∇w‖2 ≤ 1, θ = 1

3: Initial iterate: Set u0 ∈ Rr×k and p0 ∈ R(r×r)×k

randomly, set ū0 = u0, uhard = threshold(u0)
4: while not converge do
5: N steps of primal-dual iterations for linear model
6: uhard = threshold(u)
7: update (cl)

k
l=1

8: end while

version of (8), which essentially replaces the NLTV regularizer
‖∇wul‖L1 with its local conterpart :

Eloc
1 (u) =

k∑
l=1

‖∇ul‖L1 +
k∑
l=1

∫
ul(x)fl(x)dx. (13)

Assume that the labeling function ul is the characteristic func-
tion of Ωl. Then

∫
ul(x)fl(x)dx is equal to

∫
Ωl
|g(x)− cl|2 dx

up to a multiplicative constant. Moreover, the total variation
of a characteristic function of a region equals the length of
its boundary, and hence |Φ| =

∑k
l=1 ‖∇ul‖L1 . So the linear

model (8) can be viewed as a nonlocal convex-relaxed version
of Mumford-Shah model. We would also like to point out
that the linear energy (8) has been studied in previous work
[22]. But in their work, the authors used a graph-based MBO
method to minimize (8) instead of the PDHG algorithm, and
the difference of the numerical performances can be seen in
Section V.

B. Quadratic Model

1) Intuition: Our proposed linear model performs very
well when the centroids are initialized by accurate centroid
extraction algorithms. As we will show in Section V, the
linear model can have a significant boost to the accuracy
of other algorithms if the centroid extraction algorithm is
accurate, without sacrificing speed. However, if endmembers
are not extracted accurately, or if random pixel initialization
is used, the segmenting results are no longer accurate, and
the algorithm takes far more iterations to converge to a stable
classification.

To reduce the times of centroid updates and merge similar
clusters automatically and simultaneously, we propose the
following quadratic model:

E2(u) =

k∑
l=1

‖∇wul‖L1 +

k∑
l=1

∫
u2
l (x)fl(x)dx. (14)

Similarly to before, u = (u1, u2, . . . , uk) : Ω → Kk is the
labeling function, k is the number of clusters, Kk is the unit
simplex in Rk, and fl(x) is the error function defined in (9).

Note that the only difference between (8) and (14) is that
the power of the labeling function ul here is 2. The intuition
for this is as follows:

Fig. 1. “Pushing” mechanism of the quadratic model. The horizontal line
represents the unit simplex in R2. Signatures from cluster A1 are colored
blue, and signatures from cluster A2 are colored brown. The vertical dashed
bar is generated by a stable simplex clustering method, and it thresholds the
points on the simplex into two categories.

Consider for simplicity we have a hyperspectral image with
a ground truth of only two clusters, A1 and A2. Suppose our
randomized initial centroids are chosen such that c1 ≈ c2 ∈
A1; or, that the two random initial pixels are of very similar
spectral signatures and belong to the same ground truth cluster.

Let x be a pixel from A2. Then 0 � |g(x)− c1|2 ≈
|g(x)− c2|2. When we apply (8), the fidelity term 〈u, f〉 does
not change when u(x) moves on the simplex in R2, and thus
pixels of A2 will be scattered randomly on the simplex. After
thresholding, an approximately equal number of pixels from
cluster A2 will belong to clusters C1 and C2, so the new
centroids c̃1 and c̃2 that are the mean of the spectral signatures
of the current clusters will once again be approximately equal.

This situation changes dramatically when we minimize (14).
Observe that the fidelity term is minimized for a pixel x ∈ A2

when u1 ≈ u2 ≈ 1
2 . Therefore, the pixels of cluster A2 will

be “pushed” toward the center of the simplex. With a stable
simplex clustering method (explained in Section III-B4), we
divide the clusters such that all of these pixels in the center
belong to either C1 or C2; without loss of generality suppose
they belong to C2. Then the updated centroid c̃1 is essentially
c1, while the updated centroid c̃2 is a linear combination of the
spectral signature of members belonging to A1 and A2, and
thus quite different from the original c2. After a few iterations
of primal-dual algorithm, pixels from A1 will be clustered in
C1, and pixels from A2 will be pushed to C2. Therefore, we
will finish the clustering in just two steps. See Fig.1 for a
graphical illustration.

The quadratic model not only reduces the number of it-
erations needed to find the “true” clustering because of its
anomaly distinction, but it allows for random initialization as
well, making it a more robust technique.

2) primal-dual Iterations for the Quadratic Model: We use
the PDHG algorithm to minimize the energy E2 in (14). As
in the linear model, we get an unconstrained primal problem
by adding an indicator function δU :

min
u
‖∇wu‖L1 +

k∑
l=1

∫
u2
l (x)fl(x)dx+ δU (u), (15)

where U = {u = (u1, u2, . . . , uk) ∈ Rr×k :
∑k
l=1(ul)i =

1,∀i = 1, . . . , r, (ul)i ≥ 0}. The primal-dual formulation of
the above problem is:

min
u=(ul)kl=1

max
p=(pl)kl=1

〈∇wu, p〉+

k∑
l=1

∫
u2
l (x)fl(x)dx

+ δU (u)− δP (p), (16)
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Algorithm 4 Primal-Dual Iterations for the Quadratic Model
1: while not converge do
2: pn+1 = projP (pn + σ∇wūn)
3: Update un+1 as in (18)
4: ūn+1 = un+1 + θ(un+1 − un)
5: n = n+ 1
6: end while

where again δP is the convex conjugate of ‖ · ‖L1 , and the set
P = {p ∈ R(r×r)×k : ‖pl‖∞ ≤ 1}. To solve the saddle point
problem (16), we alternate the directions and optimize p and
u sequentially. Assume that we have already obtained the n-th
iterates un, ūn and pn.

First we solve the optimization problem with respect to p
when ūn is fixed. More specifically,

pn+1 = arg max
p
〈∇wūn, p〉 − δP (p)− 1

2σ
‖p− pn‖2.

This problem is essentially the same as that in the linear model,
and pn+1 is updated as,

pn+1 = projP (pn + σ∇wūn). (17)

Next, we alternate the direction and update u while fixing
pn+1:

un+1 = arg min
u
〈∇wu, pn+1〉+〈u, f�u〉+δU (u)+

1

2τ
‖u−un‖2,

where f � u denotes the pointwise product between f and
u. We define a linear operator A : Rr×k → Rr×k such that
1
2Au = f � u, then A is a positive semidefinite diagonal
matrix of size rk × rk. Taking the subgradient of the above
optimization problem, we have:

0 ∈ −τdivwpn+1 + τAun+1 + τ∂δU (un+1) + (un+1 − un),

0 ∈ (I + τA)un+1 + τ∂δU (un+1)− (un + τdivwpn+1).

Or equivalently,

un+1 = arg min
u
δU (u) +

1

2
‖B 1

2u−B− 1
2Y ‖2, (18)

where B = (I + τA) and Y = (un + τdivwpn+1). It is worth
mentioning that the matrix B is diagonal and positive definite,
and hence it is easy to compute the inverse and square root
of B. Problem (18) is like a preconditioned projection on to a
unit simplex Kk, and we will discuss how to solve it exactly
in at most k steps in the next section.

Combining (17) and (18), we have the primal-dual iterations
(Algorithm 4) for our quadratic model.

3) Preconditioned Projection onto the Unit Simplex: Now
we address how to solve problem (18). It is easy to see that
the rows of u in (18) are decoupled, and we only need to know
how to solve the following problem:

min
u∈Rk

δU (u) +
1

2
‖Au− y‖2, (19)

where A is positive definite diagonal matrix of size k × k,
U = Kk is the unit simplex in Rk, and y ∈ Rk. Our method
to solve the problem above is a direct generalization of [34].

Taking the subgradient, we have:

0 ∈ ∂δU (u) +A(Au− y)

=⇒ A(y −Au) ∈ ∂δU (u)

=⇒ Au ∈ A∂δ∗U (A(y −Au))

=⇒ Au ∈ ∂(δ∗U ◦A)(y −Au)

=⇒ y −Au = proxδ∗U◦A(y)

=⇒ y −Au = arg min
z
{δ∗U (Az) +

1

2
‖z − y‖2}

=⇒ u = A−1(y − arg min
z
{δ∗U (Az) +

1

2
‖z − y‖2}).

Therefore we must compute arg minz{δ∗U (Az) + 1
2‖z− y‖

2}.
If A = diag(a1, a2, . . . , ak), then:

arg min
z
{δ∗U (Az) +

1

2
‖z − y‖2}

= arg min
z
{max

1≤l≤k
{alzl}+

1

2
‖z − y‖2}. (20)

It is not hard to prove the following theorem, which shows
that it suffices to solve the problem:

min
t

min
z
{t+

1

2
‖z − y‖2, zl ≤

t

al
}. (21)

Theorem 1: If t∗ is a solution of (21), then zt
∗

:=
arg minz{t∗+ 1

2‖z−y‖
2, s.t. zl ≤ t∗

al
} satisfies maxl{zt

∗

l al} =

t∗, and zt
∗

is a solution of (20).

For any given t, if zt is the solution of the inner minimiza-
tion of (21):

zt := arg min
z
{t+

1

2
‖z − y‖2, s.t. zl ≤

t

al
}, (22)

then zt can be solved exactly:

(zt)l = min

(
yl,

t

al

)
. (23)

For any given y = (y1, y2, . . . , yk) ∈ Rk, we sort the
components of a and y in the ascending order a(1)y(1) ≤
a(2)y(2) ≤ . . . ≤ a(k)y(k). Let:

f(t) = min
z
{t+ 1

2
‖z−y‖2, zl ≤

t

al
} = t+

1

2
‖zt−y‖2, (24)

then:

f(t) =



t+
1

2

k∑
l=1

∣∣∣∣y(l) −
t

a(l)

∣∣∣∣2 t ≤ a(1)y(1)

t+
1

2

k∑
l=i

∣∣∣∣y(l) −
t

a(l)

∣∣∣∣2 a(i−1)y(i−1) ≤ t ≤ a(i)y(i)

t t ≥ a(k)y(k).

In [34], it is shown that f is a piecewise quadratic function
and f ∈ C1(R). The derivative f ′ of f is:

f ′(t) =



1 +

k∑
l=1

1

a(l)

(
t

a(l)
− y(l)

)
t ∈ I1 = (−∞, a(1)y(1)]

1 +

k∑
l=i

1

a(l)

(
t

a(l)
− y(l)

)
t ∈ Ii, 2 ≤ i ≤ k

1 t ∈ Ik+1 = [a(k)y(k),∞),
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δ

Fig. 2. Stable simplex clustering. Every grid point δ on the simplex generates
a simplex clustering. We want to choose a δ such that there are very few data
points falling into the “Y-shaped region”.

where Ii = [a(i−1)y(i−1), a(i)y(i)], for all 2 ≤ i ≤ k.
Therefore, the solution t∗ of (21) satisfies f ′(t∗) = 0, and it is
the unique ti among {t1, t2, . . . , tk} that falls into the corre-
sponding interval Ii, where ti = (

∑k
l=i

y(l)
a(l) −1)/(

∑k
l=i

1
a2
(l)

).
So t∗ can be found in at most k steps. By Theorem 1, we know
the solution z∗ of (20) is z∗ = zt

∗
, i.e. (z∗)l = min (yl,

t∗

al
).

Therefore, the solution u∗ of (19) is u∗ = A−1(y − z∗).
4) Stable Simplex Clustering: As we have mentioned in

the previous section, our quadratic model pushes anomalies
into the middle of the unit simplex. Therefore it would
be ill-conceived to simply classify the pixels based on
the largest component of the labeling function u(x) =
(u1(x), u2(x), . . . , uk(x)). Instead, we need a stable simplex
clustering method.

The concept behind stable simplex clustering is to choose
a division that puts all the data points in the “middle” into
a single cluster. Fig. 1 demonstrates this in the simple two-
cluster case. Also refer to section III-B1 for explanation of the
“pushing” process.

Our idea to accomplish this goal comes from [5]. Mathe-
matically speaking, we first create a grid on a k-dimensional
simplex, where k is the number of clusters, and each grid point
δ generates a simplex clustering. Then we find δ to minimize
the energy g(δ):

g(δ) = − log(

k∏
l=1

Fl(δ)) + η exp(G(δ)), (25)

where Fl(δ) is the percentage of data points in cluster l, and
G(δ) is the percentage of data points on the edges near the
division, i.e. the “Y-shaped region” in Figure 2. The first term
in g(δ) rewards keeping clusters approximately the same size,
ensuring no skewed data from clusters far too small. And the
second term rewards sparsity of points in the intermediate
region. We choose the constant η large enough such that
stability has a bigger weight in the energy.

The quadratic model combined with stable simplex clus-
tering (see Algorithm 5) produced remarkable results; Figure
3 demonstrates how this detected the chemical plumes in a

Fig. 3. Quadratic model and stable simplex clustering on the plume dataset.
The chemical plume (brown) is perfectly detected in 12 iterations.

Algorithm 5 Qinear Model with Stable Simplex Clustering
1: Initialization of centroids: Choose (cl)

k
l=1 (randomized

or generated by fast unsupervised centroid extraction
algorithm).

2: Initialization of parameters: Choose τ, σ > 0 satisfying
στ‖∇w‖2 ≤ 1, θ = 1

3: Initial iterate: Set u0 ∈ Rr×k and p0 ∈ R(r×r)×k

randomly, set ū0 = u0,
4: while not converge do
5: N steps of primal-dual iterations for quadratic model
6: uhard = threshold(u) with stable simplex clustering
7: update (cl)

k
l=1

8: end while

frame with background centroids pre-calculated and random
initialization for the final centroid. Notice that no plume is
detected in the first iteration. But by the twelfth iteration, the
gas plume is nearly perfectly segmented.

Finally, we present the results of the linear model and the
quadratic model on the Urban dataset with identical random
pixel initialization in Figure 4. The stopping criteria for the
number of iterations was visual confirmation of all six clusters
appearing. The linear model took about 50 iterations and 273
seconds to converge, and the quadratic model took 4 iterations
and 75 seconds to converge.

IV. ANN SCHEME FOR WEIGHT MATRIX CALCULATION

One of the largest time-sinks in our algorithm was the cal-
culation of the sparse weight matrix. Using the straightforward
local window approach described in Section III-A, for the
Urban dataset on a Linux machine with Intel core i5, 3.3hz
with 2GB of DDR3 ram, it took 111 seconds to compute
the weight matrix. Speeding up this calculation would thus
improve the usability of our algorithm.

When building the weight matrix, we determine the m
nearest neighbors of a pixel by calculating the distances from
all the pixels in a w × w local window (m = 10 and w = 21
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Quadratic, Iteration=1 Quadratic, Iteration=2 Quadratic, Iteration=3 Quadratic, Iteration=4

Linear, Iteration=1 Linear, Iteration=16 Linear, Iteration=32 Linear, Iteration=50

Fig. 4. Linear vs Quadratic Model on Urban dataset with the same centroid initialization. To produce essentially identical results, the Linear model (first
row) took 50 iterations of centroid updates, and the Quadratic model (second row) took just 4 iterations.

in our experiments). In light of this, using an approximate
nearest neighbor (ANN) search algorithm can be far faster
than calculating the distance between all the pixels. We use
a k-d tree approach as well as an ANN search algorithm to
reduce the run-time.

A k-d tree, or k-dimensional tree, is a binary tree that re-
cursively partitions a k-dimensional space [37] (k corresponds
to the number of bands sampled in our case). The tree is
organized as follows: the root node corresponds to the entire
space, and each node in the tree corresponds to a partition in
space. At each non-leaf node, we choose a dimension and
a hyperplane perpendicular to that dimension’s axis which
divides the partition into two sub-partitions. Data points on
one side of the hyperplane belong to the left sub-tree, and
data points on the other side belong to the right sub-tree.
Modern algorithms to build a balanced k-d tree generally at
worst converge in O(kn log n) time, where k is the number
of dimensions and n is the number of points [38].

The space partitioning scheme offered by the k-d tree
significantly reduces the time cost of nearest neighbor search.
Let us consider the case of 1-nearest-neighbor search for
simplicity. Intuitively, given a query data point q, if we
have found a candidate data point x that lies on one side
of a hyperplane corresponding to a non-leaf node, and the
hypersphere centered at q with radius ‖q − x‖2 does not
intersect with the hyperplane, then all the data points lying
on the other side of the hyperplane can be excluded from
consideration. This way, branches can be eliminated from the
search space quickly. This algorithm converges in O(log n)
time [37]. We employ a randomized and approximate version

of this algorithm [39] implemented in the open source VLFeat
package http://www.vlfeat.org. We terminate the al-
gorithm by placing an upper bound (say, 256) on the number
of distance comparisons. It takes only 6 seconds to compute
the sparse weight matrix for Urban dataset using ANN scheme
as opposed to 111 seconds using the local search window.

The benefit of the ANN scheme is two-fold:

1) We compute the distances and similarity values only af-
ter the m (approximate) nearest neighbors are identified.
Thus the cost of computing distances becomes O(mnd)
(excluding the cost of building and querying the k-
d tree), as opposed to O(w2nd) in the local window
approach.

2) Without the presence of local windows, the ANN
scheme enables a “global search”, that is, any pixel in
the entire image could be a candidate of the m nearest
neighbors.

Overall, this approximate way of nearest neighbor search
and weight computation contributes to significantly reducing
the run time of computing the weight matrix.

V. NUMERICAL RESULTS

A. Comparison Methods

We ran the following unsupervised algorithms on both
synthetic and real-world hyperspectral datasets:

1) (Spherical) K-means: built in MatLab Code.
2) NMF: Non-negative Matrix Factorization, proposed in

[40].
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3) H2NMF: Hierarchical Non-negative Matrix Factoriza-
tion, proposed in [5].

4) MBO: Graph Merriman-Bence-Osher scheme, proposed
in [23]. The code runs 10 times on each dataset, and the
best results is chosen.

5) NLTV: Nonlocal Total Variation, Cosine-Euclidean dis-
tance, Quadratic Model with random pixel initialization.

6) NLTV, H2NMF/Kmeans init: Nonlocal Total Variation,
Cosine-Euclidean distance, with endmembers/centroids
extracted from H2NMF/Kmeans. Linear Model unless
otherwise specified as NLTV-2.

All experiments were run on Intel core i5, 3.3hz with 2GB
of DDR3 ram.

B. Synthetic Dataset

We first test our algorithm on a synthetic dataset and com-
pare it to other classical unsupervised classification methods.
In the synthetic HSI, the five endmembers were randomly
extracted from a real scene with 162 bands in ranges 400-
2500 nm, and the 40000 abundance vectors were generated
as a sum of Gaussian fields, with constraints so as to respect
the abundance-nonnegative-constraint (ANC) and abundance-
sum-to-one-constraint (ASC). The dataset was generated using
a Generalized Bilinear Mixing Model (GBM):

y =

p∑
i=1

aiei +

p−1∑
i=1

p∑
j=i+1

γijaiajei � ej + n, (26)

where γij are chosen uniformly and randomly in the interval
[0, 1], n is the Gaussian noise, with an SNR of 30 dB, and
ai satisfies: ai ≥ 0 (ANC), and

∑p
i=1 ai = 1 (ASC). The

classification results are shown in Table I and Fig. 5. As we
can see, both our NLTV algorithms (linear model with accurate
initialization K-means, and quadratic model with less accurate
initialization H2NMF) have much better overall accuracy than
all of the other methods, although they take a longer time to
converge. There are two things to mention. First, from Table
I we can notice that the NLTV linear model can boost the
accuracy of K-means from 90.98% to 97.44%, but the linear
model does not perform well with the less accurate H2NMF
initialization; however, the NLTV quadratic model can fix
this problem (raising the accuracy from 72.02% to 99.03%).
Second, we observe in our numerical experiments that the
NLTV quadratic model is not extremely robust with respect
to completely random initialization of the centroids. But this
can be remedied by using a somewhat accurate initialization
(such as H2NMF in this dataset), or if we use the initializing
procedure like that in “K-means++” [41]. After all, NLTV
performs with very high accuracy on this synthetic dataset
with comparable speed to other unsupervised methods.

C. Urban DataSet

The first real-world dataset we examined was the Urban
dataset from HYperspectral Digital Imagery Collection Exper-
iment (HYDICE), which has 307 x 307 pixels and contains
162 clean spectral bands. This dataset has the advantage of
only having six classes of material: road, dirt, house, metal,

TABLE I
COMPARISON OF NUMERICAL RESULTS ON SYNTHETIC DATASET

Algorithm Run-Time Accuracy
K-means 2s 90.98%

NMF 9s 80.99%

H2NMF 2s 72.02%

MBO 21s 84.49%

NLTV-2 H2NMF init 51s 99.03%

NLTV Kmeans init 42s 97.44%

TABLE II
COMPARISON OF NUMERICAL RESULTS ON URBAN DATASET

Algorithm Run-Time Accuracy
K-means 7s 75.20%

NMF 87s 55.70%

H2NMF 7s 85.96%

MBO 92s 78.86%

NLTV 292s 92.25%

NLTV-2 H2NMF init 100s 92.10%

NLTV H2NMF init 47s 91.56%

tree, and grass. The RGB image of the urban dataset is shown
in Fig 6.

There was no ground-truth provided for the data. We used
a structured sparse algorithm [42] (which is different from
all of the algorithms listed above) to initialize a ground truth
division, then corrected areas pixel by pixel to provide a
framework for numerical analysis of accuracy. As this “ground
truth” was hand-corrected, it does not necessarily represent the
most accurate segmentation of the image; however, it provides
a basis for quantitative comparison. Values for λ and µ were
106 and 10−5 respectively; λ represents the weight on the
fidelity term, and µ represents the balance of the cosine and
Euclidean distance. As the magnitude of the squared cosine
distance is generally very small, a small µ and a large λ are
required to balance the scale.

It is worth mentioning that after running every algorithm
that are compared to create six clusters, we noticed that all
the algorithms split “grass” into two different clusters (one
of them actually corresponds to a mixture of grass and dirt),
while treating “road” and “metal” as the same. To obtain
a reliable overall accuracy of the classification results, we
combined the two “grass” clusters in every algorithm, hence
obtaining the classification results for 5 clusters, which are
“grass”, “dirt”, “road+metal”, “roof”, and “tree”. The “ground
truth” is modified in the same fashion.

The overall classification accuracies are displayed in Table
II, as well as run-times. As can be seen, although our method
took longer to run than the competing algorithms again, it
performed consistently at higher accuracy. It is easier to see
visually in Fig. 7 that the NLTV algorithm performs best of
the five algorithms tested; specifically, the NLTV algorithm
alone distinguished all of the dirt beneath the parking lot and
the intricacies of the road around the parking lot. The total
variation process also gives the segmented image smoother and
more distinct edges, allowing for easier human identification
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K-means NMF H2NMF

MBO NLTV-2, H2NMF init NLTV, K-means init

Fig. 5. Clustering results for the synthetic dataset generated by 5 endmembers. The large image on the left is the ground truth, and the six smaller images
on the right are the clustering results of the corresponding algorithms.

Fig. 6. RGB Image of the Urban dataset

TABLE III
RUN-TIMES FOR SAN DIEGO AIRPORT AND PLUME DATASETS

Dataset San Diego Airport Plume
K-means 9s 2s

NMF 4s 2s

H2NMF 13s 2s

MBO 329s 18s

NLTV 92s 69s

NLTV H2NMFinit 68s 54s

of the clusters.

D. San Diego Airport Dataset

We examined the San Diego Airport dataset, provided by
the HYDICE sensor, which is 400 x 400 pixels and contains

158 clean spectral bands. There are seven types of materials:
trees, grass, three types of road surfaces (boarding and landing
zones, parking lots, and streets), and two types of rooftops [5].
The RGB image with cluster labels are shown in Fig. 8.

After examining the spectral signatures of various pixels
in the scene, we managed to pinpoint some errors that were
common for each algorithm. We will not go into detail about
the NMF and H2NMF algorithms, which clearly do not
perform well on this dataset. K-means obtains some decent
results, but splits the rooftops of the four buildings on the
bottom right of the image into two distinct clusters, and fails
to separate two different buildings at the top. The MBO
scheme fails on two accounts: it does not properly segment
two different road surfaces (cluster 6 and 7), and does not
account for the different rooftop types (cluster 3 and 4). Our
linear model with H2NMF initialization is significantly more
accurate than H2NMF and MBO. It successfully picks out
two different types of roof (cluster 3, light blue and cluster 4,
yellow), two different types of road (cluster 6, medium blue
and 7, green), although the other type of road (cluster 5, dark
blue) is mixed with one type of roof (cluster 3, light blue).
The best result was obtained by using our quadratic model
with random initialization, with the only problem that tree
and grass (clusters 1 and 2, red) are mixed up. However, this
mixing of grass and tree is actually the case for all the other
algorithms. This means that our algorithm alone was able to
identify six of the seven clusters correctly.

E. Chemical Plume Dataset
Next we examined the chemical plume dataset, which

consists of frames taken from a hyperspectral video of the
release of chemical plumes provided by the John Hopkins
University Applied Physics Laboratory. These images were
taken by long wave infrared spectrometers placed 2km from
the release of the plume at an elevation of approximately 1300
feet. The image is 128 x 320 pixels, with 129 clean spectral
bands. There was no ground truth provided for this data, so we
assumed segmentation into four classes: chemical plume, sky,
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Ground Truth, 5 Clusters K-means, 5 Clusters NMF, 5 Clusters H2NMF, 5 Clusters

MBO, 5 Clusters NLTV, 5 Clusters NLTV-2 H2NMF init, 5 Clusters NLTV H2NMF init, 5 Clusters

Fig. 7. Clustering results for Urban dataset. Five clusters including rooftops, grass, trees, dirt, and “road+metal” are generated by the algorithms.

Fig. 8. RGB Image of San Diego Airport

foreground, and mountain. A fifth cluster is added so that the
noise pixels would not interfere with the segmentation [22].

Analyzing images for chemical plumes is a far more difficult
problem than merely segmenting images, because the gas in
the plumes is generally diffuse and semi-transparent and thus
very difficult to detect. Chemical plume detection generally
faces the challenge of a high presence of noise in the pic-
ture that requires intensive preprocessing before segmentation
schemes can be implemented. We ran all the algorithms on
the image before it was denoised and the results are shown
in Figure 10. Parameters for NLTV were λ and µ were 109

and 0 respectively. And due to the diffusion of the plume, we
kept 20 nearest neighbor for every pixel, instead of 10 in the
previous cases.

We figured out that unmixing methods such as NMF and
H2NMF do not perform very well on this dataset. MBO, spher-
ical K-means, NLTV can all properly identify the chemical
plume. Notice that NLTV with H2NMF as centroid initializa-
tion can again raise the accuracy of the initializing algorithm.
We have to point out that the result of our quadratic model
with completely randomized centroid is again not very robust
on this dataset, but we can still use the initializing procedure
in “K-means++” [41] to overcome this problem. Also, as long
as at least one random centroid is chosen from the “plume”,
the entire plume cluster can be detected by quadratic NLTV.

VI. CONCLUSION

In this paper we present the framework for a nonlocal total
variation method for unsupervised HSI classification, which
we solve with the primal-dual hybrid gradient algorithm. We
develop a linear and a quadratic version of this model; the
linear version updates more quickly and can refine results
produced by an centroid extraction algorithm like hierarchical
non-negative matrix factorization, and the quadratic model
provides a robust means of classifying hyperspectral images
with randomized pixel initialization. To reduce computational
time, we introduce a stable simplex clustering scheme, and
utilize a k-d tree and approximate nearest neighbor search to
compute the weight matrix.

We test this algorithm on both synthetic and three real-
world datasets, with very promising results. Our algorithm
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H2NMF

NLTV NLTV, H2NMF init

K-means

MBO

NMF

Fig. 9. Clustering results for San Diego Airport dataset. Seven clusters including trees, grass, three types of road surfaces, and two types of rooftops are
generated by the algorithms. Only NLTV quadratic model can accurately detect 6 out of 7 clusters.

K-means NMF H2NMF

MBO NLTV NLTV, H2NMF init

Fig. 10. Clustering results for Chemical Plume dataset. Number of clusters k=5.

consistently performed with highest accuracy on synthetic
and urbanized datasets (Urban, San Diego Airport), both
producing smoother results with easier visual identification

of segmentation, and distinguishing classes of material that
other algorithms were not able to differentiate. Our algorithm
also performed well on anomaly detection scenarios like the
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Chemical Plume datasets; with proper initialization on the
plume dataset, it performed on par with the Merriman-Bence-
Osher scheme developed specifically for this dataset. While the
run-times were not yet idealized, they were still comparable
to the other methods, and the consistent higher accuracy on
different types of datasets suggests that this technique is a
more robust and precise means of classifying hyperspectral
images.
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