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Abstract. We solve the non-linearized and linearized obstacle problems ef-
ficiently using a primal-dual hybrid gradients method involving projection

and/or L1 penalty. Since this method requires no matrix inversions or ex-

plicit identification of the contact set, we find that this method, on a variety
of test problems, achieves the precision of previous methods with a speed up of

1-2 orders of magnitude. The derivation of this method is disciplined, relying

on a saddle point formulation of the convex problem, and can be adapted to
a wide range of other constrained convex optimization problems.

1. Introduction

The obstacle problem is a classic motivating example in the mathematical study
of variational inequalities and free boundary problems with broad applications,
e.g., in fluid filtration in porous media, constrained heating, elasto-plasticity, op-
timal control, or financial mathematics [2, 7, 10, 22]. The classical formulation is
motivated by the equilibrium position of a membrane (described by the graph of
u : Ω ⊂ Rn → R), with fixed values f imposed on the boundary ∂Ω and constrained
to lie (almost everywhere) above an obstacle function, ϕ : Ω→ R:

(1.1) min
u∈H1(Ω)

∫
Ω

√
1 + |∇u|2 s.t. u ≥ ϕ a.e. in Ω and u = f on ∂Ω.

For small deflections, the above integral (1.1) is typically linearized into the Dirichlet
integral:

(1.2) min
u∈H1(Ω)

∫
Ω

|∇u|2 s.t. u ≥ ϕ a.e. in Ω and u = f on ∂Ω.

Within the Sobolev space H1(Ω), the admissible functions for either obstacle prob-
lem, (1.1) or (1.2), define the closed convex set U = U(Ω, φ, f):

(1.3) U = {u ∈ H1(Ω), u ≥ ϕ a.e. in Ω, u|∂Ω = f}
Standard arguments from variational analysis can be used to show that a unique
minimizer of (1.2) exists for sufficiently regular data (Ω, φ, f); see, for example,
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[10, 22, 2]. The non-coercivity of the nonlinear problem (1.1) can be handled using
the methods in [7].

In practice, numerical methods are required to solve the obstacle problem. Lions
and Mercier illustrated a splitting algorithm on the obstacle problem [16]. Finite
element methods were used to solve the obstacle problem as a free boundary prob-
lem [15, 5, 11]. Iteration methods based on penalty and projected gradients are
known approaches [6, 23]. In [12, 13], the obstacle constraint is incorporated into
the objective using a Lagrange multiplier. Multigrid and multilevel methods have
been employed to speed up computation: The obstacle problems described by vari-
ational inequalities can be solved using the iterative scheme proposed in [14], where
at each step the system is solved by a multigrid algorithm; [28] discretizes the prob-
lem into a continuous piecewise linear finite element space and turn the problem
into a quadratic programming problem with inequality constraints, which is then
solved with multilevel projection (MP).

In [17], the authors propose a modified level set method to solve the obstacle
problem and turn the problem into a nonsmooth minimization problem. Two meth-
ods are presented to solve the minimization problem: a proximal bundle method
is employed for solving a general nonsmooth minimization problem; a gradient
method is proposed to solve the regularized problems.

Most recently, in [26], the authors proposed an efficient numerical scheme for
solving the (linearized) obstacle problem (and generalizations) based on a reformu-
lation of the obstacle in terms of an L1-like penalty on the variational problem, in
lieu of the obstacle constraint:

(1.4) min
u∈H1(Ω)

∫
Ω

|∇u|2 + µ(ϕ− u)+ s.t. u|∂Ω = f,

where (·)+ = max(·, 0). It was shown that for sufficiently large but finite µ, the
minimizer of the unconstrained problem (1.4) is also the minimizer of the original,
constrained problem (1.2).

The functionals and constraints in (1.1), (1.2), and (1.4) are all closed and convex,
which makes the problems accessible to convex optimization techniques. There is
a huge corpus of algorithms that apply to such convex optimization problems.
Recently, primal-dual splitting algorithms have gained particular attention, most
notably so in the context of TV and L1-type problems in imaging; see, e.g., [8,
9, 29, 30]. Zosso and Bustin have applied the theory to the particular case of the
Beltrami functional [24], used as an interesting regularizer in imaging problems
that interpolates between the classical H1 and TV regularizers, and which is a
generalization of the surface area functional [31]. Zosso and Osting use the method
for efficient minimization of a minimal surface-based graph partitioning problem
[32].

In this paper, we develop a primal-dual hybrid gradient method to efficiently
solve constrained and L1-penalty formulations of the linear and non-linear obstacle
problems, (1.1) and (1.2). We comment that the original constrained problem is
algorithmically related to the L1-based problem for finite µ, and strictly identical
for the particular choice µ = ∞. Our results achieve state-of-the-art precision in
much shorter time; the speed up is 1-2 orders of magnitude with respect to the
method in [26], and even larger compared to older methods [16, 17, 27]. This is
demonstrated for a variety of one- and two-dimensional problems, including the
extension to elasto-plastic problems with double obstacles and potential term.
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It is important to note that our fast algorithm is derived from a primal-dual
reformulation of the original convex optimization problems in a very disciplined way.
The primal-dual hybrid gradients method employed here enjoys straightforward
convergence guarantees. Moreover, in the particular case of the linear obstacle
problem, the dual variable update is particularly simple, and the dual variable can
be eliminated altogether, resulting in a single primal variable update scheme that
greatly improves over standard explicit gradient descent in multiple ways. Namely,
the resulting scheme is fast because previous iterates keep being taken into account,
which has highly interesting interpretations in terms of “momentum method”, and
can also be reformulated as a damped wave equation. We illustrate this nature on
a very simple yet striking toy example. More general advantages of our method
are the avoidance of matrix/operator inversion (all update steps are explicit), and
the fact that the contact/coincidence set (the free boundary) is handled implicitly,
with no explicit tracking being necessary.

Outline: The remainder of the paper is organized as follows: Section 2 gives a for-
mulation of the discretized obstacle problem and its different flavors. Section 3
describes the proposed primal-dual algorithms. In Section 4, we compare the re-
sulting primal-dual algorithms to some more classical ones. Section 5 presents the
results of the primal-dual algorithm on a variety of numerical experiments. We
conclude in Section 6 with a discussion.

2. Discretized obstacle problem

In this section, we introduce a discretized obstacle problem and discuss some of
its properties. To this end, we introduce the following notation.

Let X = {x}, x ∈ RD denote the set of Cartesian grid points of the discretization
of the D-dimensional domain Ω ⊂ RD.

2.1. Inner products and norms.

Definition 2.1. For functions f, g : X → R, we define the L2 inner product

(2.1) 〈f, g〉L2(X) :=
∑
x∈X

f(x)g(x)

and the induced L2-norm

(2.2) ‖f‖L2(X) := 〈f, f〉
1
2

L2(X) =

√∑
x∈X

f(x)2

Definition 2.2. Similarly, for vectors v, w : X → RD, we define the L2 inner
product

(2.3) 〈v, w〉L2(X)D :=
∑
x∈X

D∑
d=1

vd(x) · wd(x)

and obtain the induced L2-norm

(2.4) ‖v‖L2(X)D := 〈v, v〉
1
2

L2(X)D
=

√√√√∑
x∈X

D∑
d=1

vd(x)2,

where vd(x) denotes the d-th component of the vector at location x.
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Definition 2.3. For a vector v : X → RD, the magnitude |v| : X → R is defined as
follows:

(2.5) |v|(x) :=

√√√√ D∑
d=1

vd(x)2, x ∈ X.

The magnitude operator, | · | : L2(X)D → L2(X), thus maps vector-valued func-
tions to scalar-valued functions. It is easy to see that ‖v‖L2(X)D = ‖|v|‖L2(X).

Definition 2.4. Finally, for the obstacle penalty, we need the single sided L1-
penalty of a function f : X → R:

(2.6) ‖f‖+ :=
∑
x∈X

max(f(x), 0).

A corresponding negative-sided penalty can be obtained directly as

(2.7) ‖f‖− := ‖ − f‖+.
It is easy to verify that ‖f‖+, ‖f‖− ≥ 0, and ‖f‖+ + ‖f‖− = ‖f‖1.

2.2. Finite difference operators.

Definition 2.5 (Gradient). For functions f : X → R, we denote by ∇X : L2(X)→
L2(X)D a suitable discretization of the continuous gradient by finite differences,
subject to desired boundary constraints.

Definition 2.6 (Divergence). Using the discrete gradient, for vectors v : X → RD
we define the discretized divergence divX : L2(X)D → L2(X), such that the two
operators satisfy the usual negative adjoint property:

(2.8) 〈∇Xf, v〉L2(X)D = −〈f, divX v〉L2(X), f : X → R, v : X → RD.

Definition 2.7 (Laplacian). For functions f : X → R, the composition of diver-
gence and gradient yields the discrete Laplacian operator ∆X : L2(X)→ L2(X):

(2.9) ∆Xf := (divX ◦∇X)f.

For example, we consider the standard forward differences stencil for the gradi-
ent; then the adjoint relation leads to backward differences in the divergence and
the resulting discretized Laplacian corresponds to the commonly used 2D+ 1 point
centered differences stencil.

2.3. Surface area and Dirichlet energy. Based on the preceding definitions,
we define the following two functionals:

Definition 2.8 (Surface area). For a Monge surface, discretized by the graph of
u : X → R, the discrete surface area, S : L2(X)→ R, is defined as

(2.10) S[u] :=
∑
x∈X

√
1 + |∇Xu|(x)2

Definition 2.9 (Dirichlet energy). Similarly the discrete Dirichlet energy, D : L2(X)→
R, is defined as

(2.11) D[u] :=
1

2
‖∇Xu‖2L2(X)D
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For slowly varying functions u, i.e., such that ∀x ∈ X : |∇Xu|(x) � 1, the
Dirichlet energy is an approximation to the surface area,

S[u] ≈ |X|+D[u],

where |X| denotes the number of sampling points in X, i.e., the area of the dis-
cretized domain Ω. Note that both the surface area and the Dirichlet energy func-
tional are proper, closed, and convex.

2.4. Convex conjugates. We recall the definition of the convex conjugate (a.k.a.
Legendre-Fenchel transform) of a function.

Definition 2.10 (Legendre-Fenchel transform). The convex conjugate of a function
f is the function f∗ defined by

(2.12) f∗(s) = sup
u
〈s, u〉 − f(u).

The biconjugate, f∗∗ := (f∗)∗, is the largest closed convex function with f∗∗ ≤ f .
As a result, f ≡ f∗∗ iff f is closed convex (Fenchel-Moreau-Rockafellar Theorem)
[21, Theorem 5].

Using Definitions 2.10 and 2.11, we can determine the respective convex conju-
gate functionals, D∗, S∗ : L2(X)D → R of the Dirichlet energy and surface area as
follows:

D∗[p] := sup
u∈L2(X)

〈∇Xu, p〉L2(X)D −D[u](2.13a)

=
1

2
‖p‖2L2(X)D ,

and

S∗[p] := sup
u∈L2(X)

〈∇Xu, p〉L2(X)D − S[u](2.13b)

=

−
∑
x∈X

√
1− |p|(x)2 if ∀x ∈ X : |p|(x) ≤ 1,

∞ otherwise.

Thanks to the Fenchel-Moreau theorem we know, that the biconjugate functionals,
S∗∗ and D∗∗, are identical to the original functionals:

S∗∗[u] := sup
p∈L2(X)D

|p|(x)≤1

〈∇Xu, p〉L2(X)D − S∗[p] = S[u](2.14a)

D∗∗[u] := sup
p∈L2(X)D

〈∇Xu, p〉L2(X)D −D∗[p] = D[u].(2.14b)

2.5. Discretized obstacle problem. Having defined the discretized surface area
and Dirichlet energy functionals, we next define the discretized optimization prob-
lem.

Given a discretization X and appropriate finite difference operators for gradient,
divergence, and Laplacian, we declare a subset ∂X ⊂ X to be boundary points.
Let ϕ : X → R be an obstacle, and f : ∂X → R the prescribed boundary values,
compatible with the obstacle, i.e., ∀x ∈ ∂X : ϕ(x) ≤ f(x). Consider further the set
Uf of square integrable functions who satisfy the boundary constraints,

(2.15) Uf := {u ∈ L2(X) | u(x) = f(x) ∀x ∈ ∂X},
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and the subset Uf,ϕ thereof additionally satisfying the obstacle constraint,

(2.16) Uf,ϕ := {u ∈ L2(X) | u(x) = f(x) ∀x ∈ ∂X and u(x) ≥ ϕ(x) ∀x ∈ X}.
Both these sets can be shown to be closed convex. We are interested in solving the
following four (primal) problems.

Constrained obstacle problem:

(P1) min
u∈Uf,ϕ

S[u]

Constrained linearized obstacle problem:

(P2) min
u∈Uf,ϕ

D[u]

L1-penalty obstacle problem:

(P3) min
u∈Uf

S[u] + µ‖ϕ− u‖+

Linearized L1-penalty obstacle problem:

(P4) min
u∈Uf

D[u] + µ‖ϕ− u‖+

Due to the convexity of functionals and admissible sets it follows from standard
arguments that all of these problems admit unique solutions.

In [26, Theorem 3.1] it is shown that for any µ ≥ −∆φ, the minimizers of the
constrained and L1-penalty linearized obstacle problems, the continuum version of
(P2) and (P4), are the same. Below, in Theorem 2.2, we give the analogous result
for the discrete problems, (P2) and (P4). The proof is largely the same, except for
one small but interesting point. In the continuum, one has that for any f ∈ H1,
〈∇f+,∇f−〉 = 0, where f+ = max(f, 0), f− = min(f, 0), and f = f+ + f−. In our
discrete setting we have the following result.

Lemma 2.1. For any f ∈ L2(X), 〈∇Xf+,∇Xf−〉L2(X)D ≥ 0.

Proof. Denoting the adjacent vertices of x ∈ X by N(x), we compute

〈∇Xf+,∇Xf−〉L2(X)D = −〈∆Xf+, f−〉L2(X)

= −
∑
x∈X

(∆Xf+)(x)f−(x)

= −
∑
x∈X

 ∑
y∈N(x)

f+(y)− f+(x)

 f−(x)

=
∑
x∈X
|f−(x)|

∑
y∈N(x)

|f+(y)|

≥ 0.

�

Theorem 2.2. Let u and uµ denote the minimizers of (P2) and (P4) respectively.
For any µ ≥ max{−∆Xφ(x) : x ∈ X}, we have that uµ = u.
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Proof. Consider w := uµ + (φ − v)+. Abbreviate 〈·, ·〉 = 〈·, ·〉L2(X)D and ‖ · ‖ =
‖ · ‖L2(X)D . Evaluating the objective of (P4) at the admissible w ∈ Uf,φ, we obtain

D[w] + µ‖φ− w‖+ = D[w]

= D[uµ] + 〈∇Xuµ,∇X(φ− uµ)+〉+
1

2
〈∇X(φ− uµ)+,∇X(φ− uµ)+〉

= D[uµ] + 〈−∆Xφ, (φ− uµ)+〉L2(X)

− 1

2
‖∇X(φ− uµ)+‖2 − 〈∇X(φ− uµ)+,∇X(φ− uµ)−〉

Now assuming µ ≥ max{−∆Xφ(x) : x ∈ X} and using Lemma 2.1, we obtain

D[w] + µ‖φ− w‖+ ≤ D[uµ] + µ‖φ− uµ‖+.

Since uµ is the unique minimizer of D[·] + µ‖φ − ·‖+ over Uf , we conclude that
w = µf which implies that uµ ≥ φ, i.e., uµ ∈ Uf,φ. Additionally, we have that

D[uµ] = D[uµ] + µ‖φ− uµ‖+ ≤ D[u] + µ‖φ− u‖+ = D[u].

Since u is the unique minimizer of D[·] over Uf,φ and uµ is admissible, we conclude
that u = uµ, as desired. �

2.6. Saddle point formulation. Thanks to the identity of a closed convex func-
tional with its biconjugate, we can substitute the functionals S[u] and D[u] by
the definition of their respective biconjugates (2.14a) and (2.14b). We thus obtain
the four primal-dual saddle point problems, respectively equivalent to the primal
problems (P1)–(P4):

Constrained obstacle problem:

(PD1) min
u∈Uf,ϕ

max
p∈L2(X)D

|p|(x)≤1

〈∇Xu, p〉L2(X)D − S∗[p]

Constrained linearized obstacle problem:

(PD2) min
u∈Uf,ϕ

max
p∈L2(X)D

〈∇Xu, p〉L2(X)D −D∗[p]

L1-penalty obstacle problem:

(PD3) min
u∈Uf

max
p∈L2(X)D

|p|(x)≤1

〈∇Xu, p〉L2(X)D − S∗[p] + µ‖ϕ− u‖+

Linearized L1-penalty obstacle problem:

(PD4) min
u∈Uf

max
p∈L2(X)D

〈∇Xu, p〉L2(X)D −D∗[p] + µ‖ϕ− u‖+

For discussing algorithms for the preceding problems (PD1)–(PD4), it is conve-
nient to summarize these saddle point problems in the following form:

(2.17) min
u∈U

max
p∈W∗

〈∇Xu, p〉L2(X)D − F ∗[p] +G[u],
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where we identify the admissible sets, U and W ∗, and the functionals, F ∗ and G,
as follows:

U :=

{
Uf,ϕ for (PD1), (PD2)

Uf for (PD3), (PD4)
(2.18a)

W ∗ :=

{
L2(X)D ∩ {p | |p|(x) ≤ 1} for (PD1), (PD3)

L2(X)D for (PD2), (PD4)
(2.18b)

F ∗[p] :=

{
S∗[p] for (PD1), (PD3)

D∗[p] for (PD2), (PD4)
(2.18c)

G[u] :=

{
0 for (PD1), (PD2)

µ‖ϕ− u‖+ for (PD3), (PD4).
(2.18d)

3. Algorithms

3.1. Primal-dual hybrid gradients scheme. To solve the general saddle point
problem (2.17) efficiently, we propose an adaptation of the primal-dual hybrid gra-
dients algorithm [8, 29, 30, 32]. For (2.17), the structure of the PDHG algorithm
is as follows:

pn+1 = arg min
p∈W∗

−〈∇X ūn, p〉L2(X)D + F ∗[p] +
1

2r1
‖p− pn‖2L2(X)D(3.1a)

un+1 = arg min
u∈U

−〈u,divX p
n+1〉L2(X) +G[u] +

1

2r2
‖u− un‖2L2(X)(3.1b)

ūn+1 = 2un+1 − un.(3.1c)

The first two steps are the proximal update of the dual and primal variable, re-
spectively. The third, extra-gradient step is an overrelaxation of the primal update
in order to overcome the stepsize shortening typical of first order methods; it is a
prediction of the primal variable update used in the dual variable update. Note the
appearance of ū instead of u in the dual variable update 3.1a.

In general, O(1/n) (where n is the number of iterations) convergence has been
shown for fixed r1, r2 satisfying

(3.2) r1r2‖∇X‖2 ≤ 1,

where ‖∇X‖ is the operator norm/induced norm of the discretized gradient op-
erator; equivalently, ‖∇X‖2 = ‖∆X‖ is the induced norm of the composition
∆X = divX ◦∇X .

In the following subsections, we show how the respective minimization sub-
problems (3.1a) and (3.1b) can be solved efficiently for each specific configuration
in (2.18) corresponding to (PD1)–(PD4).

3.2. Dual variable update. We first address the update of the dual variable p.
This step is unaffected by the choice of constrained or L1-penalty formulation, but
differs between the non-linear, S[u], and linearized, D[u], case.
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3.2.1. Linear cases, (PD2) and (PD4). In the linearized cases (PD2) and (PD4),
where F ∗ = D∗, the minimization problem of the dual variable update (3.1a) is
given by

(3.3) pn+1 =

arg min
p∈L2(X)D

−〈∇X ūn, p〉L2(X)D +
1

2
‖p‖2L2(X)D +

1

2r1
‖p− pn‖2L2(X)D .

The minimizer of this quadratic function is immediately found as

(3.4) pn+1 =
pn + r1∇X ūn

1 + r1
.

3.2.2. Non-linear cases (PD1) and (PD3). In the nonlinear cases (PD1) and (PD3),
where F ∗ = S∗, by rationalizing the numerator of the dual, the minimization
problem of the dual variable update (3.1a) can be rewritten as

(3.5) pn+1 =

arg min
p∈L2(X)D

|p|(x)≤1

−〈∇X ūn, p〉L2(X)D +
∑
x∈X

|p|(x)2 − 1√
1− |p|(x)2

+
1

2r1
‖p− pn‖2L2(X)D .

We propose to solve this in an iteratively reweighted least squares (IRLS) ap-
proach as follows. We observe that the objective in (3.5) without the square-root in
the denominator is quadratic in p. We fix the current estimate of p in the square-
root to obtain a weighted least squares problem, this weight is then updated, and
the process is repeated until convergence:

(3.6a) ψ0 = pn

(3.6b) ψt+1 =

arg min
ψ∈L2(X)D

|ψ|(x)≤1

−〈∇X ūn, ψ〉L2(X)D +
∑
x∈X

|ψ|(x)2 − 1√
1− |ψt|(x)2

+
1

2r1
‖ψ − pn‖2L2(X)D

(3.6c) pn+1 = lim
t→∞

ψt

Our focus is on the solution of the fixed-point minimization step (3.6b). Indeed, it
can be shown (see [32]) that for small enough r1, the solution to (3.6b) is given by

(3.7) ψt+1(x) =
εt(x)

εt(x) + 2r1
[pn(x) + r1(∇X ūn)(x)] , x ∈ X,

where εt(x) :=
√

1− |ψt|(x)2.

3.3. Primal variable update. We now consider the update problem (3.1b) of the
primal variable. Here, the choice of non-linear versus linearized cost functional is
irrelevant; instead, we distinguish the original constraint formulations (PD1) and
(PD2) from the relaxed L1-penalty formulations (PD3) and (PD4).



10 D. ZOSSO, B. OSTING, M. XIA, AND S. J. OSHER

3.3.1. Constrained formulation (PD1) and (PD2). The constrained primal variable
iteration (3.1b) reads

(3.8) un+1 = arg min
u∈Uf,ϕ

−〈u,divX p
n+1〉L2(X) +

1

2r2
‖u− un‖2L2(X).

Based on the projection theorem and variational inequalities [6], and in the tra-
dition of the Arrow-Hurwitz-Uzawa algorithm [1] and the first recent proposition
of the PDHG algorithm [29], this update is approximated by seeking a minimizer
in the relaxed set L2(X) and projecting onto the admissible set Uf,ϕ. This approx-
imation to the iteration can be written

un+1 = PUf,ϕ

[
arg min
u∈L2(X)

−〈u,divX p
n+1〉L2(X) +

1

2r2
‖u− un‖2L2(X)

]
(3.9)

= PUf,ϕ [u?],

with

(3.10) u? := un + r2 divX p
n+1

and where the projection PUf,ϕ : L2(X)→ Uf,ϕ is simply defined as

(3.11) PUf,ϕ [u?] := arg min
u∈Uf,ϕ

‖u− u?‖L2(X).

Therefore, more explicitly for x ∈ X, the update of the primal variable in the
constrained setting (PD1), (PD2), is:

(3.12) un+1(x) :=


f(x) if x ∈ ∂X,
ϕ(x) if x /∈ ∂X and u?(x) < ϕ(x),

u?(x) otherwise.

3.3.2. L1-penalty formulations (PD3) and (PD4). The L1-penalty method relaxes
the admissible set to Uf , i.e., L2(X) subject to only the boundary values f on ∂X,
and introduces the L1-like penalty term ‖ϕ− u‖+, instead. The resulting instance
of (3.1b) can be rewritten as

(3.13) un+1 = arg min
u∈Uf

µ‖ϕ− u‖+ +
1

2r2
‖u− (un + r2 divX p

n+1)‖2L2(X).

The minimizer can be easily found by making a change of variables, z = ϕ − u,
leading to

z? = arg min
z

r2µ‖z‖+ +
1

2
‖ϕ− (un + r2 divX p

n+1)− z‖2L2(X)(3.14)

= shrink+(ϕ− (un + r2 divX p
n+1), r2µ),

where shrink+ denotes single-sided soft-thresholding (shrinkage) as follows:

(3.15) shrink+(s, τ) :=


s if s < 0,

0 if 0 ≤ s ≤ τ,
s− τ if s > τ.

Let again u? = un + r2 divX p
n+1. We re-substitute un+1 = ϕ− z? and respect the

boundary conditions through projection PUf ,

(3.16) un+1 = PUf [ϕ− shrink+(ϕ− u?, r2µ)].
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This leads to the following explicit primal update for the L1-penalty based obstacle
problems, (PD3), (PD4):

(3.17) un+1(x) =


f(x) if x ∈ ∂X,
u?(x) + r2µ if x /∈ ∂X and u?(x) < ϕ(x)− r2µ,

ϕ(x) if x /∈ ∂X and ϕ(x)− r2µ ≤ u?(x) ≤ ϕ(x),

u?(x) otherwise.

Remark 1. Recall that in Theorem 2.2, we proved that the solutions to the con-
strained and L1-penalized obstacle problems, (PD2) and (PD4), are equivalent for
µ ≥ max{−∆Xϕ(x) : x ∈ X}; see also [26]. In light of this, it is interesting to
compare primal iterations (3.12) and (3.17) for the constrained and L1-penalized
obstacle problems. These two algorithms only disagree for points x /∈ ∂X with
u?(x) < ϕ(x)− r2µ, i.e., when the tentative membrane update u? violates the ob-
stacle constraint by an amount in excess of r2µ. This suggests that not only do the
solutions of these two problems agree for sufficiently large µ, but so do all of the
iterates in the proposed primal-dual methods.

3.4. Elimination of the dual variable in the linear case, (PD2) and (PD4).
In the updates of the primal variable, the dual variable only appears through its
divergence, divX p

n+1; see (3.10) being used in (3.12) and (3.17). However, in the
linear case, (PD2) and (PD4), by applying the divergence to (3.4), it is easy to see
that

(3.18) divX p
n+1 =

divX p
n + r1∆X ū

n

1 + r1
.

Assuming p0(x) = 0 for all x ∈ X, this recursion relation can be solved, giving

(3.19) divX p
n+1 =

n∑
η=0

r1∆X ū
n−η

(1 + r1)η+1
.

This allows rewriting the primal variable updates without the dual variable, effec-
tively eliminating the dual variable from the scheme altogether. After elimination,
the intermediate primal update (3.10) is now

(3.20) u? = un + r1r2

n∑
η=0

∆X ū
n−η

(1 + r1)η+1
,

which is then projected/shrunk according to (3.12) or (3.17) as before.

3.5. Complete algorithms. The complete algorithms for the four different flavors
of the obstacle problem (PD1)–(PD4) are summarized in Algorithms 1–2. These
algorithms have extremely simple structure and require only low-complexity oper-
ations. In particular, no matrix inversions are required. These algorithms converge
in O(1/n) (where n is the number of iterations) for r1, r2 satisfying

r1r2‖∆X‖ ≤ 1.

Remark 2. Although Algorithms 1 and 2 appear to be specifically engineered to
serve a particular purpose, it is important to note that they have been derived in
a disciplined manner: the re-formulation of the original, primal obstacle problem
as a saddle-point problem and by implementing a primal-dual hybrid gradients
algorithm with known convergence guarantees.
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Algorithm 1 Non-linear obstacle problem solver (PD1) and (PD3)

Input: X, ∂X, f , ϕ, r1, r2 such that r1r2‖∆X‖ ≤ 1.

Initialize u0, ū0, p0 ← 0
repeat

ψ0 ← pn

repeat
εt ←

√
1− |ψt|2

ψt+1 ← εt

εt+2r1
[pn + r1∇X ūn] . (3.7)

until convergence
pn+1 ← ψ∞

switch Problem do
case (PD1) . (3.12)

un+1 ← PUf,ϕ [un + r2 divX p
n+1]

end case
case (PD3) . (3.17)

un+1 ← PUf [ϕ− shrink+(ϕ− (un + r2 divX p
n+1), r2µ)]

end case
end switch
ūn+1 ← 2un+1 − un

until convergence: ‖un+1 − un‖∞ < ε

Output: Membrane u.

Algorithm 2 Linear obstacle problem solver (PD2) and (PD4)

Input: X, ∂X, f , ϕ, r1, r2 such that r1r2‖∆X‖ ≤ 1.

Initialize u0, ū0,Σ0 ← 0
repeat

Σn+1 ← Σn+∆X ū
n

(1+r1) . Accumulate sum in (3.20)

switch Problem do
case (PD2) . (3.12)

un+1 ← PUf,ϕ [un + r1r2Σn+1]
end case
case (PD4) . (3.17)

un+1 ← PUf [ϕ− shrink+(ϕ− (un + r1r2Σn+1), r2µ)]
end case

end switch
ūn+1 ← 2un+1 − un

until convergence: ‖un+1 − un‖∞ < ε

Output: Membrane u.
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4. Interpretation/comparisons for proposed algorithm

In this section we compare the proposed primal-dual algorithm (summarized in
Algorithms 1 and 2) to two time-stepping schemes arising in classical problems.

4.1. Comparison to the forward Euler scheme for the discrete heat equa-
tion. For a comparison, recall that the forward Euler time-stepping scheme for the
discrete heat equation, can be writtten

u? = un + r1r2∆Xu
n(4.1a)

= u0 + r1r2

n∑
η=0

∆Xu
η,(4.1b)

where r1r2 is the time step. Thus, after elimination of the dual variable, the
primal-dual method for the linear problem seems to perform something akin to an
alternating sequence of explicit heat diffusion steps (4.1), projection/thresholding
(3.12) or (3.17), and an extra gradient step (3.1c). Unfortunately, the explicit heat
diffusion (4.1) is well-known to be severely limited by its stability criterion and
therefore dreadfully slow. Why would this be a reasonable thing to do, then?

Indeed, the first term, η = 0, of the summation in (3.20) is an explicit heat
update step, subject to the usual constraint on the time step, here r1r2 ≤ ρ(∆X)−1.
However, thanks to the sum, previous iterates are taken into account (discounted
by a compounding factor of 1

1+r1
), the impact of which is essential for the efficiency

and convergence of the scheme. Consider the following two cases:

Away from the solution, subsequent heat updates point towards the same di-
rection and the sum lets the history of updates interfere constructively, effec-
tively greatly increasing the time step of the explicit heat update. Assuming
∆X ū

n−η ≈ ∆Xu
n is constant for recent iterations (small η), and noting that∑n

η=0
1

(1+r1)η+1 = 1
r1

, we can approximate (3.20) by

u? ≈ un + r2∆Xu
n.

The proposed scheme is thus heat diffusion with a 1/r1-fold larger effective time-
step, see (4.1). This is more pronounced for r1 � 1, reducing the discounting on
previous time steps (i.e., increasing the memory horizon of the summation).

Close to the solution, the membrane tends to oscillate about the optimum and
subsequent heat steps have opposing signs. The summation leads to destructive
interference of subsequent updates, dampening the oscillations and effectively sta-
bilizing the explicit heat update. In this case, larger values of r1 reduce the memory
horizon and allow the system to transition from constructive interference to a sta-
bilizing, destructive interference, thereby reducing overshooting.

4.2. Comparison to a time-stepping scheme for the damped wave equa-
tion. Another interesting analysis of the resulting update scheme, in the linear case
and away from obstacle and boundary value projections, emerges when we rewrite
it as a three-point scheme in time.

Lemma 4.1. The proposed update iterations of the primal variable (ignoring pro-
jections) satisfy the following three-point equality:

(4.2)
(
un+1 − 2un + un−1

)
+ r1

(
un+1 − un

)
= r1r2

(
2∆Xu

n −∆Xu
n−1
)
.
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Remark 3. The left hand terms in (4.2) are immediately identified as finite difference
approximations of untt ≈

(
un+1 − 2un + un−1

)
/h2 and unt ≈

(
un+1 − un

)
/h, and

one clearly recognizes elements of a damped wave equation:

(4.3) untt +
r1

h
unt =

r1r2

h2

(
2∆Xu

n −∆Xu
n−1
)

Proof. By substituting the extragradient (3.1c) into (3.18), we get:

(1 + r1) divX p
n+1 = divX p

n + r1

(
2∆Xu

n −∆Xu
n−1
)
.

From (3.10) and (3.12)/(3.17), but ignoring shrinkage and projections, we get

divX p
n+1 =

un+1 − un
r2

.

Put together, this yields the primal update

(4.4) un+1 = un +
un − un−1

1 + r1
+

r1r2

1 + r1

(
2∆Xu

n −∆Xu
n−1
)
.

from which (4.2) follows by simple term rearrangements. �

The three-point primal update scheme (4.4) highlights how the proposed scheme
performs explicit heat diffusion (based on the forward-projected Laplacian, in the
extragradient step), on top of which the most recent update is added. This scheme
is related to the “momentum method”—because it mimicks the motion of a system
u with a certain mass (and therefore inertia) [19]. This type of gradient descent ac-
celeration method is classically used in gradient-descent back-propagation training
of neural networks [20], and has been associated with a specific type of conjugate
gradients [4]. Also, the idea of maintaining momentum by mixing in an extrap-
olation of most recent updates is the essence of Nesterov’s gradient acceleration
scheme [18] and the core of the FISTA algorithm [3].

The evolution of a simple toy problem under both, standard Euler explicit heat
updates (4.1) and the proposed primal-dual scheme (3.20) is illustrated in Fig-
ure 1. It is easy to see how the summation in (3.20) causes the peak to decay at a
faster pace after the first iterate. As a result, the initial localized state splits into
two components that propagate away from the center and decay, illustrating the
damped wave nature of the iterations. The wave is reflected at the fixed boundaries,
inverting the sign, in contrast to the explicit scheme which remains non-negative
(according to the maximum principle). Evidently, the proposed scheme converges
to the (trivial) flat solution u = 0 much faster than the explicit heat update.

5. Numerical experiments

In all following problems, we assume X to be a Cartesian sampling of either an
interval in R, or of a rectangular subset of R2. The differential operators are chosen
as forward differences for the gradient, and, as a result, backward differences for
the divergence and central differences for the Laplacian.

We implemented the algorithms in MATLABr1, and ran our experiments on
standard computing equipment (2012 laptop with 2.80 GHz Intelr CoreTM i7, with
4 GB RAM). For comparison, we also ran the same experiments on a 2015 high-
end machine (20-core 3.0 GHz Intelr Xeonr, with 128 GB of RAM)—results were

1Code available at http://www.math.ucla.edu/~zosso/code.html

http://www.math.ucla.edu/~zosso/code.html
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Figure 1. Toy example problem: obstacle-free linearized mini-
mal surface problem (PD2) on 32-point 1D domain discretization,
f = 0 boundary conditions, and single peak initialization at the
center. Evolution of the membrane over iterations n. (a) stan-
dard Euler explicit heat update (4.1). (b) our primal-dual scheme
(3.20). Black area indicates error with respect to (trivial) solution.

identical and the observed running times not dramatically different primarily be-
cause the code is implemented in serial and cannot immediately benefit from the
extra cores and memory.

5.1. One-dimensional obstacles. We consider two obstacles on [0, 1], previously
considered in [23, 26]:

(5.1) ϕ1(x) :=


100x2 for 0 ≤ x ≤ 0.25

100x(1− x) for 0.25 ≤ x ≤ 0.5

ϕ1(1− x) for 0.5 ≤ x ≤ 1,
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(a) ϕ1 (b) ϕ2 (c) ϕ3

t [ms] = 78.1 81.1 308.6
iter. = 1301 1366 1669

Figure 2. 1D obstacles ϕ1 through ϕ3 (dotted) and respective
solutions to the obstacle problem (solid). (a)–(b) Linear obstacle
problem. N = 256, µ = 5, boundary conditions u(0) = u(1) = 0.
(c) Non-linear obstacle problem. N = 512, µ = ∞, u(0) = 5 and
u(1) = 10. For all three: r1 = 0.01, r2 = 25, ε = 10−5.

and

(5.2) ϕ2(x) :=


10 sin(2πx) for 0 ≤ x ≤ 0.25

5 cos(π(4x− 1)) + 5 for 0.25 ≤ x ≤ 0.5

ϕ1(1− x) for 0.5 ≤ x ≤ 1.

A third obstacle (from [26]) is given by

(5.3) ϕ3(x) := 10 sin2(π(x+ 1)2), x ∈ [0, 1].

All three problems and the obtained solutions are illustrated in Figure 2. In the
1D case, there is of course no difference between the solutions of the linear and the
non-linear versions: the solutions are identical to the obstacle on the contact set,
and straight lines away from it.

5.2. Two-dimensional obstacles. We now look at example problems in 2D (from
[26]). First, consider the square domain, ϕ4 : Ω → R, with Ω = [0, 1]2, and the
obstacle

(5.4) ϕ4(x, y) :=


5 for |x− 0.6|+ |y − 0.6| < 0.04

4.5 for (x− 0.6)2 + (y − 0.25)2 < 0.001

4.5 for y = 0.57 and 0.075 < x < 0.13

0 otherwise.

We solve the linear and non-linear obstacle problem (with 0 boundary values im-
posed) at different resolutions, as illustrated in Figure 3. Parameter values are as
follows: µ =∞, r1 = 0.01, r2 = 12.5, ε = 10−5.

In Table 1 we can compare to numerical experiments of previous algorithm im-
plementations, in particular the L1-penalty method [26], and the Lions-Mercier
splitting scheme [16], equally reported in [26]. These comparisons hold only in
a loose sense, because the implementation and computing infrastructure is undis-
closed for [26]. Nevertheless, our method seems to outperform by 1-2 orders of
magnitude.
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(a) Obstacles (b) linear, at N = 128

(c) linear, at N = 64 (d) non-linear, at N = 64

Figure 3. Solution to the linear and nonlinear problems (PD1)
and (PD2) for a 2D obstacle, ϕ4(x, y) in (5.4). (a) The obstacles
at 128 × 128. (b) The linear obstacle problem solution computed
at medium resolution 128×128. (c) 64×64 low-resolution solution
of the linear problem. (d) The low-resolution non-linear obstacle
problem solution.

Table 1. Running times for 2D obstacle problem ϕ4, at different
resolution. Values of [26], [16] provided for very approximate comparison

only: Figures for [16] were reported in [26], so presumably run on the same,
unspecified platform/computing infrastructure.

Our method Tran et al. [26] Lions/Mercier [16]

Size t [s] #iter. t [s] #iter. t [s] #iter.

64× 64 0.39 1416 20.8 315 55.1 3508
128× 128 1.91 1562 57.7 337 193.7 3997
256× 256 10.6 1707 222.3 469 1158.3 4383

Table 2. Running times for spherical 2D problem ϕ5, at differ-
ent resolution. Values of [17] provided for very approximate comparison
only: [17] was implemented with Fortran 77 and run on an HP9000/J5600

workstation (2 × 552 MHz PA8600 CPU).

Our method Majava/Tai [17]

Size t [s] #iter. t [s] #iter.

64× 64 0.55 1827 1862 1.3 · 106
128× 128 3.4 2607 51064 9.6 · 106
256× 256 18.0 2855 n/a n/a
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(a) obstacle (b) linear, at N = 64

−6

−4

−2

0
·10−5

(c) linear, at N = 128 (d) error map at N = 256

Figure 4. Radially symmetric 2D obstacle problem. (a) Obstacle
ϕ5(x, y). (b)–(c) Low- and medium-resolution solution and cir-
cular zero-level set (blue). (d) Error map of the high-resolution
solution 256 × 256. The error is concentrated as peaks near the
free boundary, mostly due to spatial discretization, and propagat-
ing from there into the free membrane parts.

Next, we consider the square domain Ω = [−2, 2]2, and the radially-symmetric
obstacle

(5.5) ϕ5(r) :=

{√
1− r2 for r ≤ 1,

−1 otherwise.

This obstacle has been used in [17, 26], and can be traced back to at least [25],
albeit with a typo in its definition. Assuming f = 0 on a circular boundary of
radius R = 22, the linear obstacle problem admits the following radially-symmetric
analytical solution:

(5.6) u∗5(r) =

{√
1− r2 for r ≤ r∗,
−(r∗)2 ln(r/R)/

√
1− (r∗)2 otherwise,

where r∗ = 0.6979651482 . . . satisfies (r∗)2(1− ln(r∗/R)) = 1.
Using the values of this analytical solution as prescribed boundary values on the

boundaries of the square domain, we solve the linear obstacle problem. We set the
parameters as follows: µ = 0.1, r1 = 0.008, r2 = 15.625, ε = 10−7. Results are
shown in Figure 4. The pointwise error is of the order of 10−5 and concentrated at
the circular free boundary, mainly as a result of discretization. This type of error
is comparable to the results reported in [17] and [26].

2None of these sources explicitly specifies the boundary values other than claiming f = 0 on
“some” (undisclosed) location, clearly different from the square border ∂Ω.
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For this obstacle problem, we can compare to numerical experiments of previous
algorithm implementations, see Table 2. In particular, we compare the runtime
and number of iterations with the levelset gradient-method [17]. Even assuming
that the 2004 computing times of [17] may be discounted by Moore’s law (by half
each 18 months, about a factor of 160-200 overall), we note that our method clearly
outperforms by 1-2 orders of magnitude.

5.3. Generalization to a double obstacle with forcing. A more general form
of the obstacle problem deals with two obstacles, bounding the membrane from
below (ϕ) and above (ψ), and the inclusion of a force term v acting vertically on
the membrane:

(5.7) min
u

∫
Ω

|∇u|2 − uv s.t. ψ ≥ u ≥ ϕ, u|∂Ω = f.

It is cumbersome but straightforward to extend the proposed algorithms to this
case: the double obstacle results in a second shrinkage term (albeit with opposite
signs), and the force v becomes an extra term in the primal variable update, u? =
un + r2 divX p

n+1 + v. The exact details are left as an exercise to the reader.
As an illustration of the performance of this slightly extended algorithm, we

consider an elastic-plastic torsion problem described in [27]. Let Ω = [0, 1]2 and X
a Cartesian sampling thereof. The obstacles are constructed as

ϕ6(x, y) := −dist(x, ∂Ω), and(5.8a)

ψ6(x, y) := 0.2.(5.8b)

The boundary values are u = 0 on ∂Ω. The force v : Ω→ R is defined as
(5.9)

v(x, y) :=


300, if (x, y) ∈ S := {(x, y) : |x− y| ≤ 0.1 ∧ x ≤ 0.3},
−70eyg(x), if (x, y) /∈ S ∧ x ≤ 1− y,
15eyg(x), if (x, y) /∈ S ∧ x > 1− y,

where we further have

(5.10) g(x) :=



6x, if 0 ≤ x ≤ 1/6,

2(1− 3x), if 1/6 < x ≤ 1/3,

6(x− 1/3), if 1/3 < x ≤ 1/2,

2(1− 3(x− 1/3)), if 1/2 < x ≤ 2/3,

6(x− 2/3), if 2/3 < x ≤ 5/6,

2(1− 3(x− 2/3)), if 5/6 < x ≤ 1.

The algorithm on a coarse grid 64 × 64 (as in [27]), with µ = 0.1, r1 = 0.008,
r2 = 15.625, and for a tolerance ε = 10−6, converges in 1104 iterations, requiring
only 0.45 seconds. The algorithm presented in [27] is reported to perform in 916.8-
1275.1 seconds, which is more than three orders of magnitude slower. The computed
minimum-energy membrane and the associated contact set (coincidence set) are
shown in Figure 5, and compare very well to the results in [27].

6. Conclusions and outlook

In this paper we have proposed a primal-dual hybrid gradients based method
for the efficient solution of the obstacle problem. We consider both the non-linear
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(a) Membrane at N = 64 (b) Contact set

Figure 5. Double obstacle with force: elasto-plastic torsion prob-
lem. (a) Computed optimal membrane u. (b) Computed contact
set: free membrane (blue), contact with upper obstacle (red), and
contact with lower obstacle (green). Compare with results in [27].

and linearized versions of the discrete obstacle problem, as well as both the origi-
nal, constrained formulation and the L1-penalty relaxation. All these problems are
convex minimization problems, and we start by reformulating them as primal-dual
problems, based on the Legendre-Fenchel transform (convex conjugate) of the sur-
face area and the Dirichlet energy, respectively. The resulting saddle-point problem
is solved by the primal-dual hybrid gradients method, which consists of three iter-
ative steps: the dual and primal variable proximal updates, and an extra-gradient
step (overrelaxation) of the primal variable. The proximal updates can be solved
efficiently, and in the linear case even particularly so. Indeed, the linear case allows
eliminating the dual variable altogether, resulting in primal-variable update and
extragradient scheme, only. We demonstrate on various 1D and 2D problems that
the resulting scheme outperforms current state-of-the-art methods by 1-2 orders of
magnitude.

In addition to being efficient, the proposed algorithm also benefits from a highly
interesting physical interpretation, as discussed in Sections 3.4 and 4.2. Firstly, the
elimination of the dual variable results in a single variable scheme that is strongly
reminiscent of gradient descent, except for the fact that previous iterates remain
involved. As a result, there is build-up of a certain “momentum” that accelerates
the updates beyond the limits of the usual CFL step-size criteria, see Section3.4.
Indeed, away from the solution the previous iterates interfere constructively result-
ing in a greatly increased apparent time step; whereas closer to the solution the
membrane has a tendency to oscillate, and the iterates cancel out leading to in-
creased stability. Similarly, the scheme can be brought into a form that is highly
reminiscent of a damped wave equation (4.2). This nature is also particularly il-
lustrated by the toy-example considered in Figure 1, where the momentum splits
an initial central state into two separate parts, who then propagate away laterally
and eventually dissipate.

A general advantage of the proposed primal-dual based method for the obstacle
problem is the absence of matrix/operator inversions, since the proximal updates
only contain explicit operations involving adjoints, at most. Also, in analogy to [23,
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26] but in contrast to e.g., [12, 13], the proposed method does not need to track the
contact set explicitly; indeed, the method handles the interface between coincidence
set and harmonic membrane as a free boundary, intrinsically. Finally, it is to
note that multigrid and multilevel methods that have been employed to speed up
computation in different approaches such as [28] may be applicable to the proposed
method as well, expected to result in a further speed up of the computations.

We remark that the properties of the proposed algorithm are not specifically
engineered, but emerge from a very disciplined derivation from convex optimization,
see Remark 2. More applications of this method, including elliptic PDE problems,
will be reported in [33].
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