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Abstract—We consider a graph-based approach for image
segmentation. We introduce several novel graph construction
models which are based on graph-based segmentation criteria
extending beyond—and bridging the gap between—segmentation
approaches based on edges and homogeneous regions alone. The
resulting graph is partitioned using a criterion based on the
sum of the minimal Dirichlet energies of partition components.
We propose an efficient primal-dual method for computing the
Dirichlet energy ground state of partition components and a
rearrangement algorithm is used to improve graph partitions.
The method is applied to a number of example segmentation
problems. We demonstrate the graph partitioning method on
the five-moons toy problem, and illustrate the various image-
based graph constructions, before successfully running a variety
of region-, edge-, hybrid, and texture-based image segmentation
experiments. Our method seamlessly generalizes region- and
edge-based image segmentation to the multi-phase case and can
intrinsically deal with image bias as well as more interesting
image features such as texture descriptors.

Keywords—Image segmentation, graph partitioning, active con-
tours, Dirichlet energy, primal-dual hybrid gradients.

I. INTRODUCTION

We are interested in the classical problem of finding the
boundaries of objects in images. This problem has a huge
spectrum of applications; for example, in medical imaging
we would like to detect and localize a tumour in MRI
slices or CT volumes, as a vital step for correct diagnosis,
treatment planning, and evaluation. Other prominent examples
are surveillance and remote sensing (vehicle detection, number
plate recognition, satellite image analysis), computer vision,
or microscopy: Briefly, whenever the partitioning is required
to perform downstream analysis and processing on distinct
subregions of interest of the input image.

This object delineation task is often formulated as an image
segmentation problem as follows: Image segmentation is the
task of partitioning the image domain Ω into homogeneous
regions corresponding to individual objects, Ω = tiΩi, or
by duality, to find the contours Γ that define the boundaries
∂Ωi of these objects. Classical models for image segmentation,
which are briefly surveyed in Section II-A, are very successful
in cases where edges are very prominent or regions neatly
homogeneous; however they are prone to fail on more com-
plicated images which are affected by intensity bias (uneven
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illumination). Such bias is common in imaging, for example
as field inhomogeneity in MRI, or sample non-uniformity in
atomic force microscopy.

To exploit the structure of images better than by just
looking at global statistics or very local features, non-local and
graph-based approaches have proven very successful. Indeed,
images often have repetitive character, so that pixels do not
only correlate very locally, but also with other pixels much far-
ther away [1]–[3]. These non-local dependencies are naturally
handled using a graph-based approach, allowing for pairwise
comparisons to be made between pixels. Moreover, if pixels
are considered as vertices of a graph, and the edge weights
model pixel similarity between (arbitrary) pairs of pixels, then
the segmentation is equivalent to a graph partitioning problem.
The quality of the obtained segmentation, however, critically
depends on the appropriate construction of this graph on the
one hand, and the model employed for its partitioning on the
other hand.

Therefore, in this paper, we propose: (i) a geometric graph
partitioning model based on a Dirichlet energy criterion and
its efficient optimization, (ii) the formulation of the image
segmentation problem as such a graph partitioning problem by
defining appropriate strategies for graph construction to model
existing segmentation models, and (iii) a novel definition of
graph-based segmentation criteria extending beyond segmen-
tation approaches based purely on edges or homogeneous
regions alone. In this work, we combine the strengths of
localized region-based models, as interpolators of edge- and
region-based segmentation, with the proven benefits of graph-
based non-locality in a single, geometric graph partitioning ap-
proach. Our algorithm can easily incorporate semi-supervised
information (transductive learning), but does not require it.
Also, once our image-based graphs have been constructed, the
underlying image information can be discarded; in particular,
we do not require any region statistics to be updated during
the iterations. Finally, our model intrinsically includes the
multiphase case and thus seamlessly generalizes beyond the
standard image bi-partition.

Outline: The remainder of this paper is structured as
follows. In Section II, we discuss related work. In Sections III
and IV, we introduce the graph partitioning model and an
algorithm for finding local minima, respectively. In Section V
we discuss graph construction. In Section VI we present the
results from several numerical experiments. We conclude in
Section VII with a brief discussion.



II. RELATED WORK

A. Image segmentation and active contours

Image segmentation is most commonly formulated varia-
tionally as the problem of optimizing a parameterization of the
regions or their contours towards specific segmentation criteria
encoded in the objective functional [4].

Let I : Ω ⊂ Rn → R denote the input image to be
segmented, where Ω denotes the image domain. The prime
example of edge-based image segmentation are geodesic active
contours (GAC), which relies on Euclidean curve shortening
[5]. Its essential ingredient is the conformal metric g (edge de-
tector) modulating the Euclidean arc-length of the segmenting
contour Γ, to attract the curve to image features of interest
(e.g., strong image gradients |∇I|):

JGAC[Γ] =

∫
Γ

g
(∣∣∇I(Γ)

∣∣), (1)

with, e.g., g(u) := (1 + λu2)−1, λ > 0.

The canonical region-based image segmentation model is
the Chan-Vese model (CV), [6]. The CV model is defined
as the cartoon-limit of the Mumford-Shah functional (MS)
[7], such that the recovered image is required to be piece-
wise constant, and regions are thus characterized by a single
representative color each, µi. The reduction of the model to
two phases and using the level-set representation [8], [9] of
these two phases leads to the classical formulation [6]:

JCV[µ1, µ2, φ] = λ1

∫
Ω

(µ1 − I)2H(φ)

+ λ2

∫
Ω

(µ2 − I)2(1−H(φ)) + β

∫
Ω

|∇H(φ)|, (2)

where the levelset function φ : Ω → R is positive in object
regions, negative in background regions, zero on the object
boundaries, H is the Heaviside function, and λ1, λ2, β > 0
are parameters. The last, total variation term is the co-area-
formula equivalent of the boundary length.

The above models are based either on very local image
gradients, or on global intensity statistics. While certainly
appropriate in some cases, “natural” images are typically more
complicated and exhibit structure that cannot be characterized
at the local or global level, respectively. Therefore, inspired
by more recent “localized” region-based models [10], [11], our
work aims at a model that seamlessly interpolates the criterion
between edge- and region-based segmentation.

Moreoever, a graph representation of images is more ap-
propriate to both capture the discrete, sampled nature of image
pixels, as well as the multiscale and multirange correlations
observed in common images. Another great advantage of such
methods is that the edge weight can be based on almost any
distance (or similarity) measure between pixels, e.g., as a
function of texture or color. Several formulations of graph-
based image segmentation have been proposed; examples
in literature include ratio cuts, normalized cuts, graph cuts,
spectral clustering, and random walkers [12]–[18].

More recently, the image segmentation problem, and in
particular the established Chan-Vese and geodesic active con-

tour models, have been re-considered under a pairwise, “non-
local” perspective [19]. The authors of [20] extend the exist-
ing models by considering non-local interface regularization
through non-local total variation and non-local region-based
data-terms relating to [11]. The work of [21] can be considered
an extension of [20], mainly written in the language of patch-
based non-local methods [22], [23] and by including a broader
variety of distance-metrics, such as Gabor features and the
Wasserstein distance [24]. These three examples all work with
“traditional” levelset functions or phase-field approximations,
and not within a graph-partitioning setting. The model in [25]
performs CV-like segmentation of data defined on graphs;
it corresponds to the non-local-TV model in [20], but using
MBO-like threshold dynamics for optimization. In particular,
this approach still requires computing the mean statistics for
each region at every iteration. Finally, Ginzburg-Landau dif-
fuse interface models and MBO threshold dynamics [26], [27]
have been used to bi-partition a graph constructed based on
image features; however, these models require semi-supervised
input as forcing term to avoid trivial partitions.

B. Graph partitioning

Given a graph G = (V,E) with non-negative edge weights
{wij}(i,j)∈E , we consider the problem of “optimally” parti-
tioning the vertex set, V , into k subsets. The challenges are that
datasets are typically large-scale and high-dimensional, com-
mon formulations of the problem lead to NP-hard problems,
and that the criterion of optimality is application dependent.

A common criterion is the generalized Cheeger cut (bal-
anced graph cut). That is, one seeks a k-partition, such that

min
V=tk`=1V`

k∑
`=1

per(V`)
min (|V`|, |V c` |)

,

where per(S) :=
∑

i∈S,j∈Sc
wij (3)

is the graph perimeter of S ⊂ V [28], [29], and Sc is the sub-
graph complement Sc := V \S. This problem is NP-hard, and
spectral clustering methods [30], which use a sub-level-set of
the Fiedler vector, were the first attempt at relaxing it [12].

Many methods have now been developed for the efficient
solution of (3). These include diffuse interface methods [26],
graph Merriman-Bence-Osher (MBO) flows [31], graph curva-
ture flow [32]–[34], and proximal splitting methods [35]–[37].

Recently, an alternative to the criterion in (3), based on the
Dirichlet energies of the partition components was proposed
[38]. There, a non-convex optimality criterion is given by
the sum of the Dirichlet-Laplacian eigenvalues of partition
components:

min
V=tk`=1V`

k∑
`=1

λ(V`), where λ(S) := inf
ψ
‖∇ψ‖2w,E

s.t. ‖ψ‖V,2 = 1, ψ|Sc = 0 (4)



is the Dirichlet energy of a subset S ⊂ V :

‖∇ψ‖2w,E :=
∑

(i,j)∈E

wij(ψi − ψj)2,

‖ψ‖2S,2 :=
∑
i∈S

driψ
2
i , di :=

∑
j

wij , and r ∈ [0, 1]. (5)

The value λ = λ(S) in (4) satisfies the Dirichlet eigenvalue
problem, ∆rψ = λψ, in S ⊂ V , where ψ = ψ(S), is the
corresponding eigenvector (or eigenfunction), satisfying the
Dirichlet boundary condition ψ = 0 on Sc. Here, ∆r :=
D1−r − D−r/2WD−r/2, where D = diag(W1) and W are
the degree and weighted similarity matrix, respectively.

This eigenvalue partitioning problem (4) has an analogous
continuum formulationwhich is highly interesting as well, and
various results have been proven, such as existence of optimal
partitions, regularity, and the asymptotic behavior of optimal
partitions as the number of partitions tends to infinity, as well
as computational methods for finding locally optimal partitions
[39]–[46].

III. DIRICHLET ENERGY CRITERION FOR GRAPH
PARTITIONING

A. A discrete calculus for graphs

In this section, we recall several definitions of graph-based
differential operators. Let G = (V,E,w) be an undirected
graph with vertex set V = {i}Ni=1, edge set E = {(i, j)} for
some i, j ∈ V , and non-negative edge-weights w : E → R.
For notational convenience, we extend w to V × V by setting
w(i, j) = 0 if (i, j) /∈ E.

For functions f, g : V → R, we define the L2 inner product,
〈f, g〉L2(V ) :=

∑
i∈V figi and derived L2 norm, ‖f‖22 :=

〈f, f〉L2(V ). More generally, for f : V → R, we define the
partial Lp norm on a subset S ⊆ V , ‖f‖pS,p :=

(∑
i∈S |fi|p

)
.

For skew-symmetric functions u, v : E → R, we define the
L2 inner product, 〈u, v〉L2(E) :=

∑
(i,j)∈E u(i, j)v(i, j) and

derived L2 norm ‖v‖2L2(E) := 〈v, v〉L2(E).

For f : V → R, we define the graph gradient as edge func-
tion ∇wf : E → R consisting of weighted vertex differences,

(∇wf)(i, j) :=
√
w(i, j)(fi − fj), (i, j) ∈ E.

For skew-symmetric v : E → R, let divw v : V → R denote
the divergence

(divw v)i :=
∑

j : (i,j)∈E

√
w(i, j)v(i, j), i ∈ V.

It is easy to verify that the graph gradient and divergence
are adjoint using the vertex and edge L2 inner products, i.e.,
for f ∈ L2(V ) and v ∈ L2(E),

〈∇wf, v〉L2(E) = 〈f, divw v〉L2(V ) . (6)

The graph Laplacian, ∆w : L2(V )→ L2(V ) is defined as
the composition of graph divergence and graph gradient,

(∆wf)i := (divw ◦∇wf)i =
∑

j : (i,j)∈E

w(i, j)(fi − fj).

Finally, the Dirichlet energy of f : V → R is defined as

D[f ] :=
1

2
‖∇wf‖2L2(E) =

1

2

∑
(i,j)∈E

w(i, j)(fi − fj)2.

B. Proposed Dirichlet energy graph partitioning criterion

Let S ⊂ V be a vertex subset. On S, we consider the
vertex function u?, which has unit L1(V ) norm1, vanishes on
the complement Sc := V \S, and has minimal Dirichlet energy,
i.e., satisfies

J?[S] := min
u

D[u]

s.t. u : V → [0, 1], ‖u‖V,1 = 1, and u|Sc = 0. (7)

We refer to the unique minimizer, u?, in (7) as the ground
state associated with the subset S.

To a vertex partition of the graph, V = tk`=1V`, we
associate an energy, which is the sum of the minimal Dirichlet
energies,

∑k
`=1 J

?[V`]. We then consider the Dirichlet graph
partitioning problem,

min
V=t`V`

k∑
`=1

J?[V`]. (8)

We call V ?` the optimal partitions and u?` their ground states.

A semi-supervised version for transductive learning [37] or
label transfer [26], [27] can be obtained simply by imposing
prescribed labels for some of the graph vertices.

C. Relaxation of Dirichlet boundary conditions

An interesting route of rendering (8) accessible to efficient
computational optimization has been proposed for the closely
related Dirichlet and Beltrami energy graph partitioning prob-
lem in [38], [42], [47]. The approach consists of relaxing
the Dirichlet boundary conditions of the inner minimization
problem by replacing them with a penalty.

Indeed, the boundary conditions are equivalently obtained
by imposing the partial Lq norm of u to vanish on Sc:

u|Sc = 0 ⇔ ‖u‖qSc,q = 0. (9)

Instead of imposing this constraint strictly, one can penalize
violations by including the partial Lq norm in the optimization
problem. Natural choices include q = {1, 2}.

The relaxed partitioning model then becomes:

min
V=t`V`

k∑
`=1

Jα,?[V`] (10)

where the inner model (7) is relaxed to

Jα,?[S] := min
u

{
D[u] +

α

q
‖u‖qSc,q

}
s.t. u : V → [0, 1], ‖u‖V,1 = 1. (11)

A variation of this penalty term based on the relaxation
studied in [40] has also been implemented as a numerical
method in [48].

1This is a significant difference from [38], because it results in a convex
set of admissible functions, enabling fast convex optimization methods.



IV. ALGORITHMS

A. Rearrangement algorithm for problem (10)

With the relaxation of the boundary condition in place, the
bi-level optimization problem can be solved by a rearrange-
ment algorithm extended from [38].

1) Given partitions V = t`V`, compute a minimizer u?`
for satisfying (11) with S = V` for each ` = 1, . . . , k.
(This is the inner problem for (10).)

2) Given minimizers u?` , reassign partitions by the “win-
ner takes all” rule,

V` 3 v ⇐⇒ ` = arg max
l
{u?l (v)}.

In [38], it was shown that the solution to the relaxed
partitioning model (10) exists and the rearrangement algorithm
converges to a local minimum in a finite number of steps.

B. Primal-dual methods for solution of the inner problem

The computation of the minimizers u?` satisfying (11) is the
computational bottleneck of the proposed optimization scheme.

We note that all functionals in (11) are proper, closed and
convex, and the set of admissible u, the probability simplex

U := {u | u : V → [0, 1], ‖u‖V,1 = 1}, (12)

is closed and convex, as well. Therefore, using the Legendre-
Fenchel transform (convex conjugate) of the Dirichlet energy,

D∗[φ] := sup
u
{〈∇wu, φ〉 −D[u]} =

1

2
‖φ‖2L2(E), (13)

the inner problem (11) is rewritten as the primal-dual problem:

min
u∈U

max
φ∈L2(E)

{
〈∇wu, φ〉L2(E) −

1

2
‖φ‖2L2(E) +

α

q
‖u‖qSc,q

}
.

(14)

To solve this saddle point problem efficiently, we adapt the
general primal-dual hybrid gradients algorithm [47], [49]–[51]
to (14) as follows:

φn+1 = arg min
φ∈L2(E)

{
−〈∇wūn, φ〉L2(E) +

1

2
‖φ‖2

L2(E)
+

1

2r1
‖φn − φ‖22

}
(15a)

un+1 = arg min
u∈U

{
〈u, divw φ〉L2(V ) +

α

q
‖u‖qSc,q +

1

2r2
‖un − u‖22

}
(15b)

ūn+1 = 2un+1 − un (15c)

Problems (15a) and (15b) are proximal updates, while (15c)
is a simple extragradient step “predicting” the update of the
primal variable u for the update of the dual variable φ. Note
the appearence of the predicted value ū instead of u in (15a).

C. Dual variable update

We first address the update of the dual variable φ. The
solution to (15a) is immediately given by

φn+1(i, j) =
φn(i, j) + r1(∇wūn)(i, j)

1 + r1
, (i, j) ∈ E. (16)

We discuss the elimination of the dual variable in §IV-E, below.

D. Primal variable update

We now turn our attention to the minimization problem
(15b), associated with the proximal update of the primal
variable u. There are two cases to be considered, corresponding
to the two choices q = 2 and q = 1 of the penalty term of
the relaxed Dirichlet boundary condition. As will be shown
shortly, both problems admit a simple closed form solution
ũq , for the unconstrained problem with u ∈ L2(V ). To find
the optimal solution within U , we then project ũq onto U ,

un+1 = PU (ũq), (17)

which is a reasonable approach for practical purposes, given
the convexity of the involved functionals and the set U . Indeed,
this mimics the projected gradient steps in the primal update
of the Arrow-Hurwitz-Uzawa algorithm [49], [52], modulo the
backward update used here instead of explicit, forward gradient
descent. To this end, we first have to find the respective ũq .

1) Primal variable update for q = 2: Let us consider the
relaxed problem u ∈ L2(V ):

min
u

{
〈u,divw φ〉L2(V ) +

α

2
‖u‖2Sc,2 +

1

2r2
‖un − u‖22

}
(18)

The minimization problem is quadratic and admits the follow-
ing closed form solution:

(ũ2)i =
uni − r2(divw φ

n+1)i
1 + αr2(1− χi)

, ∀i ∈ V, (19)

where χ : V → {0, 1} is the characteristic function of the
subset S ⊂ V , the current partition, and the update can be
computed by simple vertex-wise operations.

2) Primal variable update for q = 1: Let us in turn
consider the relaxed problem u ∈ L2(V ) of the q = 1 based
problem:

min
u

{
〈u,divw φ〉L2(V ) + α‖u‖Sc,1 +

1

2r2
‖un − u‖22

}
.

(20)
An equivalent minimization problem is given by

min
u

{
αr2‖u‖Sc,1 +

1

2
‖u− (un − r2 divw φ

n+1)‖22
}
, (21)

which is an L1-type problem solved by shrinkage:

(ũ1)i = shrink(uni − r2(divw φ
n+1)i, αr2(1− χi)), (22)

for i ∈ V , where the soft-thresholding operator is defined as

shrink(z, τ) :=


z + τ z < −τ,
0 |z| ≤ τ,
z − τ z > τ.

(23)

Again, we see that all operations are simple and vertex-wise.

3) Probability simplex projection: Here, PU : L2(V )→ U
denotes projection on the probability simplex:

PU (u) := arg min
v∈U

‖v − u‖22

i.e., such that ‖v‖V,1 = 1 and ∀i ∈ V : vi ≥ 0. (24)



To avoid special considerations regarding negative compo-
nents, we first uniformly shift the function u so that it is non-
negative at each vertex:

u+ := u−min
i∈V

(ui).

Such a translation happens along a direction orthogonal to the
probability simplex, and the projection is thereby not altered.
The actual projection algorithm then practically distinguishes
between two cases, depending on the L1-norm of the non-
negative u+ ∈ L2(V ): If ‖u+‖V,1 > 1, then PU (u) is obtained
by an appropriate soft-thresholding of u+ [53]. On the other
hand, if ‖u+‖V,1 ≤ 1, then the projection is obtained by
distributing the lacking mass over all vertices, uniformly:

(PU (u))i =

{
shrink((u+)i, λ) if ‖u+‖V,1 > 1,

(u+)i +
1−‖u+‖V,1
|V | if ‖u+‖V,1 ≤ 1,

(25)

for i ∈ V , where |V | denotes the number of vertices in V .
An efficient strategy for finding the appropriate thresholding
parameter λ is given in [53].

E. Elimination of the dual variable

In the update of the primal variable, the dual variable only
appears through its divergence, divw φ

n+1. It is easy to see
that

(divw φ
n+1)i =

(divw φ
n)i + r1(∆wū

n)i
1 + r1

, ∀i ∈ V. (26)

Assuming φ0(i, j) = 0 for all (i, j) ∈ E, we thus get

(divw φ
n+1)i =

n∑
η=0

r1(∆wū
n−η)i

(1 + r1)η+1
, ∀i ∈ V. (27)

This allows rewriting the primal variable updates without the
dual variable, effectively eliminating the dual variable from the
scheme altogether. After elimination, the q = 2 primal update
based on (19) becomes

(ũ2)i =
uni −

∑n
η=0

r1r2(∆wū
n−η)i

(1+r1)η+1

1 + αr2(1− χi)
, (28)

and the q = 1 update (22) turns into

(ũ1)i = shrink

(
uni −

n∑
η=0

r1r2(∆wū
n−η)i

(1 + r1)η+1
, αr2(1− χi)

)
.

(29)

F. Impact of dual variable elimination and speed up

After eliminating the dual variable, the resulting update
equations (28) and (29) seem to perform an alternating se-
quence of explicit heat diffusion, probability-simplex projec-
tion (17), and extra gradient step (15c) (see algorithm 1). But
the explicit heat diffusion is well-known to be critical regarding
time-step selection and therefore dreadfully slow. How could
this be a reasonable thing to do, then?

The answer needs closer inspection: if for a moment we
forget about the summation and only look at the first term
η = 0, then that is indeed an explicit heat update step, subject
to the usual constraint on the time step, here r1r2 ≤ ρ(∆w).
However, thanks to the sum, previous heat updates continue

Algorithm 1 Dirichlet energy algorithm for graph partitioning
Input: Graph G(V,E,w), initial {V`}k`=1; k, α, q, r1, r2.

while {V`}k`=1 not converged do
for all ` = 1 . . . k do

Initialize u0
` , ū0

` ← u0
` , χ from V`.

while un` not converged do
ũq using (28)/(29) . Diffusion
un+1
` ← PU (ũq) . L1 projection
ūn+1
` ← 2un+1

` − un` . Extra-gradient
end while

end for
V` 3 v ⇐⇒ ` = arg maxl{u∞l (v)} . Rearrangement

end while
Output: Partitions {V ?` }k`=1, ground states {u?`}k`=1.

to be taken into account. Away from the solution, subsequent
heat updates point towards the same direction and the sum
lets the history of updates interfere constructively, effectively
greatly increasing the time step of the explicit heat update.
This is more pronounced for r1 � 1, reducing the discounting
of previous time steps (i.e., increasing the memory horizon).
On the other hand, close to the solution, subsequent heat steps
have opposing sign; here, the summation leads to destructive
interference of subsequent updates, dampens the oscillations
and effectively stabilizes the explicit heat update. Larger values
of r1 reduce the memory horizon and lets the system transition
from boosting, constructive interference to stabilizing, destruc-
tive interference more quickly, thereby reducing overshooting.

The elimination of the dual variable, besides highlighting
the boosting and stabilizing properties of the scheme, also pro-
vides great computational speed up over the original scheme
including both primal and dual variable updates. These primal
((19) and (22)) and dual updates (16) involve the non-local
operators∇wu and divw φ. Performing their composition, ∆w,
in a single step after the elimination of the dual variable is
computationally much more interesting.

G. Comparison to Merriman-Bence-Osher (MBO) dynamics

The rearrangement algorithm presented in Section IV-A
for solving the bi-level optimization problem (10) has many
attributes in common with the diffusion-generated Merriman-
Bence-Osher (MBO) flow [27], [34], [54]–[56]. Recall that the
MBO flow consists of alternatively diffusing the characteristic
function associated with each partition component for a short
time τ and then assigning each vertex the label of the diffused
state which is maximal at that vertex.

Meanwhile, the ground state for the `-th partition compo-
nent satisfying (11) is proportional to the long-time limit of
the solution to

u̇` = [∆− α(1− χ`)] u`, u(0) = u0 (30)

for any generic initial condition u0. One diffusive step of
the MBO method can be seen as one iteration of a split-
step method for solving (30) for initial condition given by
a characteristic function. The rearrangement steps for the two
methods are then exactly the same.



In this light, the qualitative difference between MBO flow
and the method studied here is the following. On each parti-
tion component, the MBO method diffuses the characteristic
function for a short time τ—and hence only the vertices near
the partition interface are significantly changed. Therefore the
thresholding step only changes the partition membership of
vertices near the interface. On the other hand, the ground
states satisfying (11), have effectively evolved according to
(30) for longer time and could (for smaller values of α) have
significant mass on the complement of their respective partition
components. Viewed as the ground state of a Schrödinger
operator with potential localized on each component, this
corresponds to the states having significantly tunneled, in the
quantum sense, into their neighboring partition components.
A small value of α roughly corresponds to choosing a larger
time step τ in the MBO flow.

V. GRAPH CONSTRUCTION FOR IMAGE SEGMENTATION

In the following subsections, we briefly present different
strategies for the construction of graphs, the partitioning of
which solves the image segmentation problem. We first build
graphs that mimic the well-known edge- and region-based
image segmentation models, before interpolating them in a
semi-local hybrid model. Lastly, we briefly describe how more
complicated pixel (dis-)similarities can be used to construct
these graphs, e.g., for texture-based segmentation.

A. Domain partitioning

As starting point we consider a rectangular image domain
with free boundary conditions to be partitioned, without con-
sidering image information at all. To this end one constructs
a rectangular grid and a graph where each vertex is connected
to its nearest neighbors, N(i). Weights w of these edges are
taken to be 1:

w(i, j) :=

{
1, if j ∈ N(i)

0, otherwise
∀i, j ∈ V. (31)

Partitioning this graph corresponds to a “blind” segmentation
of the image domain with regular interfaces.

B. Edge-based image segmentation

Edge-based image segmentation according to (1) mini-
mizes the interface length modulated by a metric based on
image gradients. In terms of a corresponding graph construc-
tion for partitioning, the edge-based model achieves image
segmentation by lessening the interface cost at locations of
strong image gradients. The edge-detector can take many
different forms. Here, we suggest to use the Perona-Malik edge
detector [57], in accordance to the original GAC paper [5]. We
use the following weight construction:

w(i, j) :=

{
1

ε+λ‖I(j)−I(i)‖2 , if j ∈ N(i)

0, otherwise
(32)

∀i, j ∈ V , for some ε, λ > 0, where I(i) ∈ Rd denotes the
feature value of pixel i, and ‖I(j)− I(i)‖2 is the squared L2-
distance of the pixels in feature space. The driving force for
segmentation is thus obtained through a weakening of edges
between regions. Note that because of image noise it might be
useful to compute the edge-detector at a different, coarser scale

by pre-filtering the image, for example with a Gaussian low-
pass filter, such as in [58]. Also, the formulation is intrinsically
capable of dealing with non-scalar image features I , such as
color, hyperspectral, or other multi-channel features.

C. Region-based image segmentation

On the other hand, the Chan-Vese segmentation model (2)
is based on a combination of regular interfaces and homo-
geneous regions. A simple graph partitioning model corre-
sponding to region-based image segmentation (including the
multiphase case k > 2) can be obtained through extension of
the domain partitioning graph (31) by strengthening the weight
between spatially distant but feature-wise similar pixels. We
introduce the coefficient p related to λ/β in (2) as a balancing
factor between the homogeneity and interface regularity terms:

w(i, j) :=

{
p

ε+λ‖I(j)−I(i)‖2 + (1− p), if j ∈ N(i)
p

ε+λ‖I(j)−I(i)‖2 , otherwise
(33)

∀i, j ∈ V , and p ∈ (0, 1). The optimal partition aligns the
ground states u` with homogeneous regions in the image, and
gradients of u` with gradients in I .

Instead of computing the pixel distance from its region’s
statistics, µ, as in the CV model (2), here the range-proximity
of a pixel to its peers is determined stochastically through
pairwise comparisons. In particular, given the typical size
of an image to be segmented, a fully connected graph is
obviously not practicable and we uniformly subsample the
non-local connectivities at a very low rate. This is tantamount
to estimating the region statistics from the statistics of some
of its samples.

D. Graph construction for hybrid GAC/CV interpolation

Region-based image segmentation typically fails when im-
ages are affected by bias, while edge-based image segmen-
tation suffers from “myopia”. We thus want to interpolate
between the two models through a smooth family of graph
constructions. This is most easily achieved by working the
region-statistics-from-sampling analogy. Indeed, think of a
graph-edge sampling that is not uniform, but whose sampling
radius can be tuned through a scaling parameter. A localized
sampling of edges allows overcoming the myopia of the purely
edge-based model, while limiting the comparison of local pixel
intensity to localized region statistics. This is the graph analog
of local region-statistics and region-scalable fitting models
[10], [11].

In our implementation, we propose to sample the neighbors
according to a 2D Gaussian distribution centered at the pixel
of interest and with prescribed standard deviation. To this
end, we actually perform a much simpler strategy in terms
of implementation efficiency: we uniformly sample the image
domain to get candidates jk, as for the region-based construc-
tion. For each such candidate pixel jk we also draw a sample
from an r-Rayleigh distributed random variable rk ∼ R(r)
(the Euclidean distance of a 2D sample from the mean of its
Gaussian distribution is Rayleigh distributed). If the distance
of the uniform sample exceeds the value of the Rayleigh
sample, ‖i− jk‖ > rk, then the candidate pixel jk is rejected.
The distribution of the retained samples jk will be Gaussian



with isotropic standard deviation r in each dimension; from
pixel i they approximately have median distance r

√
2 ln 2 and

mean distance r
√

π
2 . The distribution is naturally bounded

by the extent of the image domain, skewing the distribution
accordingly; so these statistics are only reliable far from the
boundaries and for reasonably small r. It is easy to see,
that for r → ∞ the model performs uniform sampling and
corresponds to region-based graph construction (33); equally,
for r very small and p = 1 the graph approaches the edge-
based construction (32).

A potential alternative to non-uniform sampling for semi-
local graph construction is uniform sampling localized by
kernel weighting. This less stochastic approach was chosen
in [20], [21], and can also be related to bilateral filtering [59].

E. Graph construction based on textural features

The world of image segmentation holds many examples
where region affiliation of a pixel is not characterized simply
by its intensity or intensity gradient. Instead, region homo-
geneity or image “edges” can equally be defined in terms of
texture. Texture-region-based models for example make use of
Gabor features [60]–[62], while edge-based models have been
defined, e.g., in terms of generalized edge-detectors [63].

More recently, the Wasserstein distance between local
image histograms was used as a texture-based dissimilarity
measure of pixels [21], [24]. To this end, one can estimate
the local image histogram by sampling a patch (neighbor-
hood) around the pixel of interest i, denoted as vector Pi.
For practical purposes, and considering scalar images, the
L2-Wasserstein distance (or Vasershtein metric, “earth-mover
distance”) between pixels i and j is then computed as the least
Euclidean distance over all possible histogram permutations,
Pπ:

W (i, j) = min
Pπ
‖Pi − PπPj‖2. (34)

In this case, the optimal permutation is the one that matches
equally ranked samples; in practice, we therefore compute the
L2-distance between sorted image patch-vectors [21]. At this
point, it is straightforward to see how this can easily be built
into the proposed segmentation-through-graph-partitioning al-
gorithm: Instead of using the pixel intensity as pixel feature
I(i) in the graph construction, we pre-process the image by
extracting patches around each pixel as sorted feature vectors.

VI. NUMERICAL EXPERIMENTS

In this section, we consider several image segmentation
problems. All numerical results are based on a Matlab imple-
mentation of the algorithms described in Sections III-V and
run on a standard desktop computer2.

A. Five moons toy problem

We start by illustrating the proper functioning of the
proposed Dirichlet criterion for general graph partitioning.
A classical example is the five-moons partitioning problem,
illustrated in Figure 1. To examine the robustness of the graph
partitioning model, we initialize it multiple times: Out of 100
independent, unsupervised runs with different random noise

2Code available at http://www.math.ucla.edu/∼zosso/code.html.

Fig. 1. Five moons. Parameters are: k = 5, α = 0.2, q = 2. Purity 99.88 %.

(a) CV-like (b) r = 20 (c) r = 10

(d) r = 5 (e) r = 2 (f) GAC-like

Fig. 2. Image-based graph construction illustration. Edge-weight is indi-
cated by linewidth and pixel “heat”. (a) Region-based. (b)–(e) Hybrid with
decreasing sampling radius r. (f) Edge-based.

and random initialization, 41 % of results exhibited at least
99 % partition purity. The algorithm required approximately
10-15 outer iterations to converge.

B. Image-based graph construction

We now turn to the construction of graphs based on
underlying images. As a visualization, we consider a 100×100
grayscale image, with four different quadrants and affected by
additive Gaussian white noise, see Figure 2. For a pixel of
interest located at (45, 45) in the upper left, bright quadrant,
we show its edges and weight according to region, edge,
and hybrid graph construction. This highlights the CV/GAC-
interpolating nature of the proposed hybrid graph construction.

C. Partitioning noise

Next, we look at the segmentation of a purely white noise
image, i.e., we are interested in the system response in the
absence of meaningful image stimulus. We partition a 100 ×
100 Gaussian random noise image using both region and edge-
based graph construction. The results are shown in Figure 3.

For the region-based, CV-like model we note the following:
In the absence of regularization (p = 1), the pixels are
clustered by intensity only, and the partition entirely lacks
spatial coherence. This essentially reproduces basic intensity-
based thresholding schemes and can be related to k-means
clustering. For smaller values of p, thus increasing the interface
regularity weight, spatial coherence increases; the resulting
partitions have coarser structure. In the limit p → 0, we end
up with an image-independent domain partitioning problem,
as given by (31).



(a) p = 1 (b) p = 10−4

(c) p = 10−5 (d) p = 10−6 (e)

Fig. 3. Segmenting noise. (a)–(d) CV-like region-based graph construction
for various values of p. k = 3, α = 10−4, 20 edges per vertex, q = 2,
ε = 0.001, λ = 15. For the fine-grained p = 1 case we show both the
partition labels and the boundaries overlaid on the input image, for the other
cases the boundaries are sufficiently intelligible. (e) Segmenting the noise with
GAC-like edge-based graph construction. Same parameters, except α = 10.

The edge-based problem does not have a regularity bal-
ancing term. Due to the i.i.d. nature of the noise, the metric
is stochastically flat; as a result the interface location is not
influenced by the “image” (noise), and we also effectively
solve a classical domain partitioning problem.

This experiment highlights the intrinsic drive of the model
to achieve about equally sized partitions in the absence of
strong image cues, and in particular so in the edge-based case.

D. Region-based

As a first actual image segmentation example we consider
segmenting the 318× 212 RGB input image, I : V → [0, 1]3,
shown in Figure 4(a). From this image, we construct a graph
using (33) with parameters p = 7 · 10−3, ε = 0.001, and
λ = 15. The long range connections are sub-sampled at about
20 edges per pixel. We apply the graph partitioning algorithm
with parameters k = 4, α = 0.1, and q = 2. The resulting
segmented image is shown in Figure 4(b) and the associated
ground states u` are given in Figure 4(c).

E. Edge-based and hybrid

To explore the edge-based and hybrid graph constructions,
let us now consider images affected by bias. Two examples are
provided in figures 5 and 6. The first example has dimensions
96× 96, while the Yin-Yang image is 134× 134.

As is to be expected, in both examples the region-based
segmentation attempt fails due to bias (left column, respec-
tively). In contrast, the edge-based approach successfully cap-
tures the outline of the structures, presenting strong edges
despite overall bias, but fails to “see” the holes due to the
model’s inherent myopia. The hybrid approach, however, turns
out to be an ideal compromise of both worlds: it is sufficiently
local so as to not be affected by bias thanks to the limited
visibility, yet the visibility is far enough and “semi-region-
based” to capture the holes.

(a) Input (b) Final partition

(c) Ground states u`
Fig. 4. Region-based image segmentation as a graph partitioning problem:
(a) 318 × 212 RGB input image. (b)–(c) Image segmentation results using
graph partitioning parameters k = 4, α = 0.1, q = 2.

Fig. 5. Image segmentation affected by bias: Partition and ground states.
left: CV-like region-based, center: GAC-like edge-based, and right: hybrid
graph construction. Parameters: k = 2, q = 2, α = 2, 60 edges per vertex,
ε = 0.001, p = 0.1, λ = 250; hybrid sampling radius r = 8.

F. Texture segmentation based on Wasserstein distance

Finally, we make use of the Wasserstein-distance region-
graph construction (34) to tackle the segmentation of images
based on texture. In Figure 7 we show the successful results
for a cheetah (256×256) and a zebra image (254×157), and in
Figure 8 we apply the model to a Brodatz texture composite.

Fig. 6. Yin-Yang: Tri-partition and ground states. left: CV-like region-
based, center: GAC-like edge-based, and right: hybrid graph construction.
Parameters: k = 3, q = 2, α = 2, 50 edges per vertex, ε = 0.001, p = 0.1,
λ = 25; hybrid sampling radius r = 13.



Fig. 7. Wasserstein-distance based graph construction and Dirichlet 2-
partition from purely random initialization. left: Cheetah. k = 2, q = 2,
α = 0.1, 60 edges per vertex, ε = 0.001, p = 0.15, λ = 25, Wasserstein
patch size 13× 13. right: Zebra. Same parameters, except p = 0.3.

Fig. 8. Wasserstein-distance based graph construction and 5-phase segmen-
tation from random initialization: Partition (left) and first five ground states
(right). Parameters: k = 5, q = 2, α = 0.5, 60 edges per vertex, ε = 0.001,
p = 0.1, λ = 25, Wasserstein patch size 13× 13.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we considered a graph-based approach for
image segmentation. We describe several graph construction
models and the resulting graphs are partitioned using a cri-
terion based on the sum of the minimal Dirichlet energies
of partition components. We propose an efficient primal-dual
method for computing the Dirichlet energy of partition compo-
nents and a rearrangement algorithm is proposed to find graph
partitions. The inner problem is particularly efficiently solved
thanks to a possible elimination of the dual variable, resulting
in a boosted explicit heat diffusion scheme. The proposed
algorithm is applied to a number of example segmentation
problems, both region- and edge-based, binary and multiphase.
We demonstrate advantages of the hybrid semi-local graph
construction in the presence of image bias, and show the
seamless generalization to texture features through the use of
a patch-based Wasserstein distance in the graph construction.

The simple region- and edge-based image segmenta-
tion problem shown here are, of course, more efficiently
solved with specific state-of-the-art segmentation models. The
strength of the proposed approach is its versatility and flex-
ibility in how the graph construction can generalize to any
interesting feature distance, (e.g., patch-based or using other
texture descriptors). Also, by non-uniformly sub-sampling the
long-range connectivities, we can render the region-based seg-
mentation more local and can thus seamlessly deal with images
affected by bias, such as [10], [11], [64]. Finally, our model
intrinsically includes multi-phase segmentation problems, and
incorporates semi-supervised input in a straightforward way.

The contributions in this paper for graph construction and
graph partitioning can be viewed as independent. Namely,
the graph construction method described here can be used

with your favorite graph partitioning method, while the graph
partitioning method described here can be used for other
learning tasks involving graph partitioning. Finally, the primal-
dual methods proposed for the computation of the ground
states for each partition component are very efficient and will
be applied to a variety of problems for elliptic PDE in [65].
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[3] D. Tschumperlé and L. Brun, “Image denoising and registration by
PDE’s on the space of patches,” in International Workshop on Local
and Non-Local Approximation in Image Processing (LNLA’08), 2008.

[4] T. F. Chan, J. J. Shen, and L. A. Vese, “Variational PDE models in image
processing,” Notices of the AMS, vol. 50, no. 1, pp. 14–26, 2003.

[5] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” Int.
J. Comput. Vis., vol. 22, no. 1, pp. 61–79, 1997.

[6] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE
Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, 2001.

[7] D. Mumford and J. Shah, “Optimal approximations by piecewise
smooth functions and associated variational problems,” Communica-
tions on Pure and Applied Mathematics, vol. 42, no. 5, pp. 577–685,
Jul. 1989.

[8] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formulations,”
Journal of Computational Physics, vol. 79, no. 1, pp. 12–49, Nov. 1988.

[9] M. Burger and S. J. Osher, “A survey on level set methods for
inverse problems and optimal design,” European journal of applied
mathematics, vol. 16, no. 02, pp. 263–301, 2005.

[10] T. Brox and D. Cremers, “On local region models and a statistical
interpretation of the piecewise smooth Mumford-Shah functional,”
International Journal of Computer Vision, vol. 84, no. 2, pp. 184–193,
Jul. 2008.

[11] C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, “Minimization of region-
scalable fitting energy for image segmentation,” IEEE Transactions on
Image Processing, vol. 17, no. 10, pp. 1940–1949, Oct. 2008.

[12] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8, pp. 888–905, 2000.

[13] S. Wang and J. M. Siskind, “Image segmentation with ratio cut,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 25,
no. 6, pp. 675–690, Jun. 2003.

[14] Y. Boykov and V. Kolmogorov, “Computing geodesics and minimal
surfaces via graph cuts,” in Proceedings Ninth IEEE International
Conference on Computer Vision. IEEE, 2003, pp. 26–33 vol.1.

[15] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, no. 2,
pp. 167–181, Sep. 2004.

[16] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping
using the Nyström method.” IEEE transactions on pattern analysis and
machine intelligence, vol. 26, no. 2, pp. 214–25, Feb. 2004.

[17] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient N-d image
segmentation,” International Journal of Computer Vision, vol. 70, no. 2,
pp. 109–131, Nov. 2006.

[18] L. Grady, “Random walks for image segmentation.” IEEE transactions
on pattern analysis and machine intelligence, vol. 28, no. 11, pp. 1768–
83, Nov. 2006.



[19] L. Bertelli, B. Sumengen, B. S. Manjunath, and F. Gibou, “A variational
framework for multiregion pairwise-similarity-based image segmenta-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 8, pp. 1400–1414, 2008.

[20] X. Bresson and T. Chan, “Fast dual minimization of the vectorial total
variation norm and applications to color image processing,” Inverse
Problems and Imaging, vol. 2, no. 4, pp. 455–484, Nov. 2008.
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