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Abstract. Microwave imaging has been widely used in the prediction and tracking of hurricanes, typhoons, and tropical storms. Due to the
limitations of the sensors, the acquired remote sensing data is usually blurry and has relatively low resolution, which calls for the development of fast
algorithms for deblurring and enhancing the resolution. In this paper, we propose an efficient algorithm for simultaneous image deconvolution and
upsampling for low resolution microwave hurricane data. The algorithm is derived by splitting the total variation regularization, the deconvolution
operator and the upsampling operator in the objective in such a way that the alternating direction method of multipliers (ADMM) gives rise to
three subproblems with closed-form solutions. We also extend the framework to the multichannel case with the multichannel total variation (mTV)
regularization. A variety of numerical experiments on synthetic and real Advanced Microwave Sounding Unit (AMSU) and Microwave Humidity
Sounder (MHS) data were conducted. The results demonstrate the outstanding performance of the proposed method.
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1 Introduction

Severe weather phenomena, such as hurricanes and tropical storms, can be continuously captured using geostationary
microwave sensors. These sensors are designed to penetrate through thick clouds to record geophysical profiles of a
storm, including temperature, humidity, water vapor, and cloud properties. The acquired images in a broad bandwidth
are valuable for evaluating internal processes of the storm and its strength. For example, the Geostationary Synthetic
Thinned Aperture Radiometer (GeoSTAR) is a microwave spectrometer aperture synthesis system that has been under
development at Jet Propulsion Laboratory (JPL) since 1998 and will be used to capture hurricane imagery.1 In princi-
ple, an aperture synthesis system is characterized by convolution with a point spread function (PSF), which is modeled
as a two-dimensional sinc-like function. Due to the presence of positive and negative excursions in a PSF (cf. Fig. 1),
there are ringing artifacts along sharp edges and other transitions in the observed field. It is of high necessity to process
low-resolution physical weather systems. In the variational framework, we aim to solve the ill-posed deconvolution
and upsampling problem to produce high-resolution images from blurry low-resolution data which may be polluted
by the additive Gaussian noise.

In this paper, we use the data captured by the Microwave Humidity Sounder (MHS) instrument. MHS is a five-
channel passive microwave radiometer, with frequencies ranging from 89 to 190 GHz, carried aboard meteorological
satellites. It is similar in design to the Advanced Microwave Sounding Unit - B (AMSU-B) instrument, with some
channel frequencies being slightly different from AMSU-B. The instrument examines several bands of microwave
radiation and performs sounding of atmospheric physical properties. AMSU and MHS data have been used extensively
in weather prediction, and long term AMSU and MHS records are used in climate studies.
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Fig 1 The GeoSTAR point spread function (PSF). A characteristic of an aperture synthesis system is that the PSF is a two-dimensional sinc-like
function, showing positive and negative excursions, that produces ringing at sharp edges and other transitions in the observed field.
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Motivated by the previous work,2 this paper skillfully applies the alternating direction method of multipliers
(ADMM) to solve the problem of image deconvolution and upsampling in a manner that all subproblems have closed-
form solutions. In the single-channel case, we separate the three components in the objective functional–the total
variation regularization, the deconvolution operator and the upsampling operator– and obtain three subproblems in the
ADMM so that each has a closed-form solution. Among closely related work are3 where upsampling is not being
addressed, and4 where different applications are considered. The multichannel case of our method considers the mul-
tichannel total variation (mTV) regularization and thereby has three subproblems in the ADMM that can be solved
in closed forms. In particular, the solution to the subproblem involving mTV is given by the generalized shrinkage.
Even though more computation is needed at each iteration, the proposed multichannel method takes fewer iterations
to achieve convergence than the single-channel one.

The rest of the paper is organized as follows. Section 2 reviews the ADMM and total variation minimization.
Section 3 describes the proposed splitting technique, applies the ADMM to derive the corresponding algorithm and
discusses its convergence rates. Section 4 extends the proposed method to the multichannel deconvolution and upsam-
pling model with the mTV regularization. Section 5 presents the numerical results on the synthetic AMSU and real
MHS hurricane data. Finally, Section 6 concludes this paper and discusses future work.

2 Preliminaries

Since the ADMM was introduced by Glowinski and Marrocco5 and Gabay and Mercier,6 it has been widely applied
to problems in imaging, statistical regression, machine learning, optimal control, and many other areas. To apply the
ADMM, one must reformulate a problem into the form of

min
x,z

f(x) + g(z) s.t. Ax+Bz = c, (1)

where x, z are unknown vectors, f, g are proper closed convex functions, A,B are matrices, and c is a given vector.
(We restrict our discussion to Euclidean spaces.)

The ADMM is an abstract algorithm with two subproblems, one involving f and A and the other involving g and
B, which must be solved at every iteration. There are many different approaches to reformulate a convex optimization
problem into the form of (1), and they generally give rise to different subproblems (though they reduce to a few
equivalence classes7).

Let us first review the ADMM. The augmented Lagrangian for the problem (1) is

Lρ(x, z, y) := f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22 ,

where y is the dual variable. The ADMM seeks a solution to the problem (1) by iterating
xk+1 ∈ argmin

x
Lρ(x, z

k, yk)

zk+1 ∈ argmin
z

Lρ(x
k+1, z, yk)

yk+1 = yk + γρ(Axk+1 +Bzk+1 − c),

(2a)

(2b)

(2c)

where ρ > 0 and the stepsize γ ∈ (0, (
√

5 + 1)/2) [8, Chapter 6]. Note that we could construct the following
augmented Lagrangian

L̃ρ(x, z, y) := f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ y‖22

which yields the same solution for the x-subproblem (2a) and the z-subproblem (2b) with the scaled update yk+1 =
yk + γ(Axk+1 +Bzk+1 − c). For the sake of simplification, we stick to the latter version in the entire paper. We use
“∈” instead of “=” since the solutions xk+1 and zk+1 can be non-unique though different solutions will yield the same
Axk+1, Bzk+1 and thus yk+1. The ADMM has recently become a popular method for solving convex optimization
problems arising in various application fields. It turned out to be equivalent to the Douglas-Rachford splitting iteration,
a primal-dual iteration, and the ADMM itself applied to the Lagrange dual problem of (1) (see7, 9, 10).

Total variation minimization11 is a well-known approach in regularized inverse problems and the recovery of im-
ages with sharp edges. In this paper, we use the isotropic version of the discrete total variation: TV(u) = ‖Du‖1 =∑
j

√
(D1u)2j + (D2u)2j with the discrete finite difference operator D = [D1, D2] satisfying the periodic boundary
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conditions where Du = [D1u, D2u]. In addition to the traditional denoising problem,11 the total variation minimiza-
tion has been widely used in recovering images from their incomplete measurements.12, 13 Typically, the corresponding
optimization problem has the following form:

min
u
‖Du‖1 +

µ

2
‖Au− b‖22 , (3)

where A is a sampling operator, b is the (noisy) observation of the true imaging under A, and µ > 0 is a tuning
parameter.

The use of variable splitting and the ADMM to total variation minimization and compressive sensing image re-
covery started in.13, 14, 15 A dummy variable w is introduced to separate Du from ‖ · ‖1, giving rise to the equivalent
problem:

min
u,w
‖w‖1 +

µ

2
‖Au− b‖22 s.t. w −Du = 0, (4)

which is in the form of (1). It is recognized in14 that whenA andD are both convolution operators and satisfy the same
boundary conditions, e.g., the periodic boundary conditions, a least-squares subproblem involving Au and Du has a
closed-form solution via the diagonalization by the (discrete) Fourier transform. Such a least-squares subproblem
arises in a quadratic penalty model in14, 15 and the augmented Lagrangian method in.13 It is worth noting that the
ADMM has been skillfully applied to other image recovery problems in.16, 17, 18, 19

The problem of image deconvolution and upsampling studied in this paper has the form (3) with an operatorA that
composes sampling with convolution. Due to this composition, the least-squares subproblem that involvesAu andDu
no longer has a closed-form solution. We experimented solving the least-squares subproblem with the gradient descent
method in3 and recognized a strong need for better performance. In this paper, we introduce a much more efficient
method by reformulating the problem and obtaining an ADMM algorithm with three subproblems, all of which have
closed-form solutions.

3 Proposed Image Deconvolution and Upsampling Algorithm

Without loss of generality and for presentation simplicity, we assume a square image domain. Let u0 ∈ Rn2

be the
ground truth image to be reconstructed, and K : Rn2 → Rn2

be a discrete convolution operator associated with the
point spread function k. The observed blurry and noisy low-resolution image b ∈ Rm (m < n2) satisfies

b = Kpu0 + noise,

where Kp is the composition of the convolution and the sampling operators, i.e., Kp = PK. The two-dimensional
convolution operator K corresponds to the block circulant matrix in the following sense

vec(k ∗ v) = Kvec(v), v ∈ Rn×n.

To reconstruct u0, we consider the following total variation based minimization problem

min
u
‖Du‖1 +

µ

2
‖PKu− b‖22 , (5)

where D : Rn2 → R2n2

is the finite difference operator following the periodic boundary conditions and µ is a
parameter related to the noise level. The solution u of (5) is an estimate of u0.

Unlike the conventional deconvolution models, the non-circulant structure of P will make it difficult to solve the
least-squares u-subproblem if we directly apply the ADMM. By introducing w = Ku, we split P and K (in the sense
that they are applied to different variables) as follows:

min
u,v,w

‖v‖1 +
µ

2
‖Pw − b‖22 s.t. Du− v = 0, w −Ku = 0. (6)

Then the augmented Lagrangian is

Lρ1,ρ2(u, v, w, x, y) = ‖v‖1 +
µ

2
‖Pw − b‖22 +

ρ1
2

(
‖Du− v + x‖22 +

ρ2
ρ1
‖w −Ku+ y‖22

)
,

3



where x and y are the scaled dual variables, scaled by ρ1, ρ2, respectively, so they appear in the quadratic penalty
terms. The scaled alternating direction method of multipliers (ADMM) yields the following iteration

(vk+1, wk+1) = argmin
v,w

Lρ1,ρ2(uk, v, w, xk, yk)

uk+1 = argmin
u

Lρ1,ρ2(u, vk+1, wk+1, xk, yk)

xk+1 = xk + γ(Duk+1 − vk+1)

yk+1 = yk + γ(wk+1 −Kuk+1).

(7a)

(7b)

(7c)

(7d)

Due to the separability of variables v and w in the first subproblem, we are able to update v and w individually.

• v-subproblem:
vk+1 = argmin

v
‖v‖1 +

ρ1
2

∥∥Duk − v + xk
∥∥2
2

can be solved in the closed form as

vk+1 = shrink(Duk + xk, 1/ρ1),

where shrink(v, σ) = sgn(v)�max(|v| − σ, 0) with componentwise multiplication �.

• w-subproblem:
wk+1 = argmin

w

µ

2
‖Pw − b‖22 +

ρ2
2

∥∥w −Kuk + yk
∥∥2
2

reduces to the normal equations:

µPT (Pw − b) + ρ2(w −Kuk + yk) = 0,

which again can be solved in the closed form as

w = (µPTP + ρ2I)−1(µPT b+ ρ2(Kuk − yk)),

or equivalently {
w ← Kuk − yk
wP ← (µb+ ρ2wP )/(µ+ ρ2).

(8)

Here wP represents the subvector of w with the index set specified by the sampling operator P . In the noise-free
case where the w-subproblem has an equality constraint

w = argmin
w

ρ2
2

∥∥w −Kuk + yk
∥∥2
2

s.t. Pw = b,

the solution can be obtained by {
w ← Kuk − yk
wP ← b.

(9)

In fact, this is the projection of the least-square solution Kuk − yk to the hyperspace {w : Pw = b}.

• u-subproblem:

uk+1 = argmin
u

ρ1
2

∥∥Du− vk+1 + xk
∥∥2
2

+
ρ2
2

∥∥wk+1 −Ku+ yk
∥∥2
2

reduces to the normal equations

ρ1

2∑
i=1

DT
i (Diu− vk+1

i + xki ) + ρ2K
T (Ku− wk+1 − yk) = 0,
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which can be solved in the closed form by applying the two-dimensional discrete Fourier transform as follows:

u = F ∗

(
ρ1
∑2
i=1 FD

T
i (vk+1

i − xki ) + ρ2FK
T (wk+1 + yk)

ρ1
∑2
i=1 diag(FDT

i DiF ∗) + ρ2 diag(FKTKF ∗)

)
, (10)

where the operator diag : Rn2 × Rn2 → Rn2

extracts all diagonal entries of a square matrix as a vector, the
matrix F ∈ Cn2×n2

is generated by Kronecker product of the one-dimensional discrete Fourier transformation
matrix Fn ∈ Cn×n and itself, and the division is applied componentwise. Note that although matrix-vector
multiplication is involved in (10), we apply the two-dimensional fast Fourier transform (FFT) directly to the im-
age in the numerical implementation. Since K represents the convolution operator under the periodic boundary
conditions, i.e., Ku = k⊗ u, the matrix FKTKF ∗ can be efficiently computed by FFT. Under general bound-
ary conditions for the convolution operator, especially non-circulant K, we could decompose K = K1 + K2

where K1 is still circulant and K2 is sparse added to correct the boundary conditions.20

The convergence of the ADMM has been long proved in [8, Chapter 6]. We apply the results from the papers21, 22 to
obtain the following rates:

• The violation to the constraints in the problem (6) ‖Duk − vk‖2 + ‖wk −Kuk‖2 reduces at the rate of o(1/k),
and if we replace uk by the running average ūk = 1

k

∑k
i=1 u

i and replace vk and wk by their running averages
as well, then the rate improves to O(1/k2). The latter is known as the ergodic rate. Note that the violation is not
monotonic in general.

• Let ηk :=
∥∥vk∥∥

1
+ µ

2

∥∥Pwk − b∥∥
2

and η∗ := ‖Du∗‖1 + µ
2 ‖PKu∗ − b‖2. Then, the objective error |ηk − η∗|

reduces at the rate of o(1/
√
k), and the corresponding ergodic rate improves to O(1/k). Note that it is possible

that ηk < η∗ due to constraint violation.

4 Multichannel Extension

When the underlying data has multiple channels, we extend the deconvolution and upsampling model (5) by choosing
the mTV as the regularization term. Instead of processing the data channel by channel, the mTV couples various
channels and ensures consistent regularity across the channels. More specifically, let u = (u1, . . . , uc)

T with each
ui ∈ Rn2

, and generalize the model (5) to the following form:

min
u
‖u‖mTV +

µ

2

c∑
i=1

‖PKui − bi‖22 . (11)

Here the mTV semi-norm of u is defined as

‖u‖mTV =
∑
j

√√√√ c∑
i=1

|(Dui)j |2.

Let D1 and D2 be the difference operators along the x-axis and the y-axis, respectively. Here we use the isotropic
total variation at each pixel defined in Section 2. Similar to (6), we split the regularization term and the fidelity term
as follows

min
u,v,w

‖v‖mTV +
µ

2

c∑
i=1

‖Pwi − bi‖22 s.t. Dui − vi = 0, wi −Kui = 0, i = 1, . . . , c. (12)

With the augmented Lagrangian defined by

Lρ1,ρ2(u,v,w,x,y) = ‖v‖mTV +
µ

2

c∑
i=1

‖Pwi − bi‖22 +

c∑
i=1

(ρ1
2
‖Dui − vi + xi‖22 +

ρ2
2
‖wi −Kui + yi‖22

)
,
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we obtain the following ADMM iteration:

(vk+1,wk+1) = argmin
v,w

Lρ1,ρ2(uk,v,w,xk,yk)

uk+1 = argmin
u

Lρ1,ρ2(u,vk+1,wk+1,xk,yk)

xk+1
i = xki + γ(Duk+1

i − vk+1
i ), i = 1, . . . , c.

yk+1
i = yki + γ(wk+1

i −Kuk+1
i ), i = 1, . . . , c.

(13a)

(13b)

(13c)

(13d)

Similar to the analysis in Section 3, each subproblem has a closed-form solution. In particular, the v-subproblem has
the solution represented by the generalized shrinkage operator

vk+1
i =

Duki + xki
sk

max

{
sk −

1

ρ1
,0

}
, i = 1, . . . , c,

where

sk =

√√√√ c∑
i=1

∥∥Duki + xki
∥∥2
2
.

Each component wi is updated via (8) or (9) depending on the noise level. Similar to the derivation of (10), by letting
xi = (xi,1, xi,2)T and vi = (vi,1, vi,2)T with xi,j , vi,j ∈ Rn2

for i = 1, . . . , c and j = 1, 2, we obtain the following
solution to the u-subproblem:

ui = F ∗

(
ρ1
∑2
j=1 FD

T
j (vk+1

i,j − xki,j) + ρ2FK
T (wk+1

i + yki )

ρ1
∑2
j=1 diag(FDT

j DjF ∗) + ρ2 diag(FKTKF ∗)

)
, i = 1, . . . , c. (14)

5 Numerical Results

This section presents the numerical results obtained by applying the proposed algorithms on various synthetic and real
data of severe weather phenomena. The 32 × 32 discretized GeoSTAR point spread function depicted on Fig. 1 was
chosen as the blurring kernel for all tests. To measure performance, we use the relative error defined by

Relerr =
‖u− û‖2
‖u‖2

where u ∈ Rn2

is the ground truth image and û is the recovered image. All experiments were run in Matlab 2013a
on a desktop computer with 8GB of RAM and a 3.10GHz Intel i7-4770S CPU. All parameters are chosen to yield the
best performance.

In the first experiment, we used simulated microwave images of the 2005 Atlantic hurricane Rita shown on Fig. 2
and 3. By default, all images are displayed in the range [110, 285] in Kelvin. Fig. 2 shows 50.3, 52.8, 53.6, 54.4, 54.9,
55.5 GHz, and Fig. 3 shows 150, 157, 166, 176, 180, 182 GHz channel images. For comparison, GeoSTAR operates
at some of the same frequencies of the Advanced Microwave Sounding Unit - A (AMSU-A) and - B (AMSU-B)
temperature and humidity sounders near 55 GHz and 180 GHz, respectively. The images have 400 × 400 pixels and
were derived from cloud resolving numerical weather prediction model (WRF)23, 24 simulations. A standard radiative
transfer model was used to generate the brightness temperatures from the WRF fields. The resolution of a pixel is 1.3
km. With this grid spacing, we are able to resolve features that are approximately 5 km wide.

Fig. 4 and Fig. 5 depict images of Fig. 2 and 3 blurred with GeoSTAR kernel as well as the results after applying
the proposed algorithm to the blurry low-resolution data. We choose the downsampling factor r = 2 and 3, i.e.,
downsampling the 402 × 402 blurry images into the 201 × 201 and 134 × 134 ones, respectively. Note that the
selected downsampling factors, i.e, 2 and 3, are most commonly used in applications, as larger downsampling factors
produce results that are not so accurate. The corresponding comparison of relative errors are shown in Table 1.
From the results, one can see that as the image has more fine features, the reconstruction becomes more difficult as
reflected in the increase of relative error. On the contrary, if the image to be recovered is more piecewise constant,
the reconstruction has smaller relative error. In Table 2, we show the results by fixing the sampling factor as two and
varying the noise level as σ = 5, 10, 15.
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(a) (b) (c)

(d) (e) (f)
Fig 1 Original microwave channels of the simulated hurricane Rita image. (a) to (f) correspond to 50.3, 52.8, 53.6, 54.4, 54.9, 55.5 GHz.

2

Fig 2 Original microwave channels of the simulated hurricane Rita image. (a) to (f) correspond to 50.3, 52.8, 53.6, 54.4, 54.9, 55.5 GHz.

(a) (b) (c)

(d) (e) (f)
Fig 2 Original microwave channels of the simulated hurricane Rita image. (a) to (f) correspond to 150, 157, 166, 176, 180, 182 GHz.

3

Fig 3 Original microwave channels of the simulated hurricane Rita image. (a) to (f) correspond to 150, 157, 166, 176, 180, 182 GHz.

Channel (GHz) r = 2 r = 3 Channel (GHz) r = 2 r = 3
50.3 0.0392 0.0713 150 0.0515 0.0837
52.8 0.0098 0.0167 157 0.0339 0.0538
53.6 0.0038 0.0072 166 0.0140 0.0222
54.4 0.0021 0.0040 176 0.0071 0.0126
54.9 0.0015 0.0026 180 0.0040 0.0074
55.5 0.0014 0.0024 182 0.0024 0.0039

Table 1 Relative error comparison for the simulated hurricane Rita data with sampling factors r = 2 and 3.
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Channel (GHz) σ = 5 σ = 10 σ = 15 Channel (GHz) σ = 5 σ = 10 σ = 15
50.3 0.0816 0.0926 0.1013 150 0.0882 0.0988 0.1049
52.8 0.0292 0.0325 0.0440 157 0.0594 0.0666 0.0741
53.6 0.0234 0.0258 0.0374 166 0.0321 0.0363 0.0464
54.4 0.0234 0.0250 0.0371 176 0.0262 0.0294 0.0403
54.9 0.0229 0.0257 0.0383 180 0.0247 0.0272 0.0391
55.5 0.0265 0.0289 0.0432 182 0.0251 0.0273 0.0404

Table 2 Relative error comparison for the simulated hurricane Rita data with various noise levels and fixed sampling factor r = 2. For all tests,
µ = 10−8, ρ1 = 10−6. Here ρ2 is set to 10−6 when σ = 5 and 10−7 otherwise.

In Fig. 6 and Fig. 7, we tested the proposed method on real MHS data of the 2005 Atlantic hurricane Katrina
and the 2005 Pacific typhoon Talim, respectively. Each image has five frequency bands at 89, 150, 183±1, 183±3,
and 183±7 GHz. The resolution of each pixel is 15 km. We used sampling factor r = 2, 3 in our experiments. The
corresponding relative errors are shown in Table 3.

Channel (GHz) Katrina Talim
r = 2 r = 3 r = 2 r = 3

89 0.0242 0.0392 0.0252 0.0396
157 0.0349 0.0567 0.0186 0.0304

183±1 0.0208 0.0297 0.0170 0.0230
183±3 0.0248 0.0401 0.0155 0.0240

190 0.0293 0.0490 0.0167 0.0273
Table 3 Relative error comparison of hurricane Katrina and typhoon Talim MHS channels with sampling factors r = 2 and 3. Note that for r = 2,
ρ2 = 10−3, and all other parameters are set the same as those specified in Fig. 6 and Fig. 7 when r = 3.

Finally, we tested the proposed multichannel algorithm (12) on three sets of data with sampling factors r = 2, 3.
The performance comparison in terms of relative error for each channel are listed in Tables 4 and 5. Comparing these
results with those obtained by the single channel algorithm in Tables 1 and 3, one can see that the mTV is able to
enhance the reconstruction quality for those channels with more fine features while trading the quality of the channels
with less features. In addition, Table 6 compares the average running time in seconds per iteration for each data set
using the proposed single-channel algorithm and the multichannel algorithm. Note that the multichannel algorithm
usually uses far less iterations (200∼400) to reach a desired result while its single-channel counterpart uses various
numbers of iterations (200∼1000) for each channel and some channels need a lot more iterations to achieve the desired
accuracy. Nevertheless, both versions are very efficient so that the reconstruction of an image is achieved at the rate of
about 2.5× 10−7 per pixel per iteration.

Channel (GHz) r = 2 r = 3 Channel (GHz) r = 2 r = 3
50.3 0.0377 0.0696 150 0.0496 0.0828
52.8 0.0095 0.0165 157 0.0320 0.0532
53.6 0.0044 0.0077 166 0.0136 0.0229
54.4 0.0024 0.0042 176 0.0076 0.0138
54.9 0.0017 0.0028 180 0.0046 0.0086
55.5 0.0018 0.0025 182 0.0029 0.0048

Table 4 Relative error comparison for the simulated hurricane Rita data using the multichannel Algorithm (12). When r = 2, µ = 10−3 and
ρ1 = 10, and ρ2 = 10−1. When r = 3, µ = 10−4, ρ1 = 10 and ρ2 = 10−3.
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Channel (GHz) Katrina Talim
r = 2 r = 3 r = 2 r = 3

89 0.0244 0.0391 0.0241 0.0385
157 0.0347 0.0569 0.0189 0.0307

183±1 0.0200 0.0289 0.0167 0.0223
183±3 0.0238 0.0393 0.0151 0.0235
190±7 0.0283 0.0485 0.0163 0.0271

Table 5 Relative error comparison of hurricane Katrina and typhoon Talim MHS data using the multichannel Algorithm (12). For all tests,
µ = 10−4 and ρ1 = 10. We choose ρ2 = 10−2 when r = 2 and 10−3 when r = 3.

Rita 402× 402 Katrina 150× 90 Talim 210× 90
Single-channel 0.0450 0.0038 0.0044
Multichannel 0.3383 0.0187 0.0239

Table 6 Comparison of running time in seconds per iteration.

6 Conclusions

We proposed an efficient deconvolution and upsampling method for the hurricane microwave data, and extended it to
handle multichannel data by using the mTV regularization. Derived from proper variable splitting and the ADMM,
the proposed algorithms provide simple subproblems and fast convergence, and produce high resolution images with
small reconstruction errors. The experiments on the synthetic microwave data demonstrate the great potential of our
work. Our technique can be easily adapted or extended to address other ill-posed problems for applications dealing
with large-scale data sets. For the future work, the weighted mTV with adaptive weights can be considered to improve
the smoothness for each channel. Taking the texture-like features in the microwave hurricane images into account, the
multi-resolution transformation based regularization will be worth exploring as well.
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Test data (r = 2) Recovered Test data (r = 3) Recovered

Fig 3 Tests on the simulated hurricane Rita data with sampling factors r = 2 and 3. From top to bottom: 50.3, 52.8, 53.6, 54.4, 54.9, 55.5 GHz
channels. If r = 2, then µ = 10−3, ρ1 = 10 and ρ2 = 10−2. If r = 3, then µ = 10−4, ρ1 = 10 and ρ2 = 10−4.
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Fig 4 Tests on the simulated hurricane Rita data with sampling factors r = 2 and 3. From top to bottom: 50.3, 52.8, 53.6, 54.4, 54.9, 55.5 GHz
channels. If r = 2, then µ = 10−3, ρ1 = 10 and ρ2 = 10−2. If r = 3, then µ = 10−4, ρ1 = 10 and ρ2 = 10−4.
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Test data (r = 2) Recovered Test data (r = 3) Recovered

Fig 4 Tests on the simulated hurricane Rita data with sampling factors r = 2 and 3. From top to bottom: 150, 157, 166, 176, 180, 182 GHz
channels. Here we choose µ = 10−4, ρ1 = 10 and ρ2 = 10−4.

5

Fig 5 Tests on the simulated hurricane Rita data with sampling factors r = 2 and 3. From top to bottom: 150, 157, 166, 176, 180, 182 GHz
channels. Here we choose µ = 10−4, ρ1 = 10 and ρ2 = 10−4.
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89 GHz 157 GHz 183±1 GHz 183±3 GHz 190 GHz

Fig 5 Tests on hurricane Katrina MHS 89, 157, 183±1, 183±3, 190 GHz channels with sampling factor r = 3. From top to bottom: ground truth
images, blurry data with downsampling factor r = 3, and the recovered images. Here we choose µ = 10−4, ρ1 = 10 and ρ2 = 10−4.

6

Fig 6 Tests on hurricane Katrina MHS 89, 157, 183±1, 183±3, 190 GHz channels with sampling factor r = 3. From top to bottom: ground truth
images, blurry data with downsampling factor r = 3, and the recovered images. Here we choose µ = 10−4, ρ1 = 10 and ρ2 = 10−4.
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89 GHz 157 GHz 183±1 GHz 183±3 GHz 190 GHz

Fig 6 Tests on typhoon Talim MHS 89, 157, 183±1, 183±3, 190 GHz channels with sampling factor r = 3. From top to bottom: ground truth
images, blurry data with downsampling factor r = 3, and the recovered images. Here we choose µ = 10−4, ρ1 = 10 and ρ2 = 10−4.

7

Fig 7 Tests on typhoon Talim MHS 89, 157, 183±1, 183±3, 190 GHz channels with sampling factor r = 3. From top to bottom: ground truth
images, blurry data with downsampling factor r = 3, and the recovered images. Here we choose µ = 10−4, ρ1 = 10 and ρ2 = 10−4.
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