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Abstract. Parameterization, a process of mapping a complicated domain onto a simple canon-
ical domain, is crucial in different areas such as computer graphics, medical imaging and scientific
computing. Conformal parameterization has been widely used since it preserves the local geometry
well. However, a major drawback is the area distortion introduced by the conformal parameteriza-
tion, causing inconvenience in many applications such as texture mapping in computer graphics or
visualization in medical imaging. This work proposes a remedy to obtain a parameterization that
balances between conformality and area distortions. We present a variational algorithm to compute
the optimized conformal parameterization with controllable area distortions. The distribution of the
area distortion can be prescribed by users according to the application. The main idea is to minimize
a combined energy functional involving the Beltrami coefficient and Jacobian of the map, which are
used to control the conformality and area distortions respectively. Landmark constraints can be
incorporated into the model to obtain landmark-aligned parameterization. Experiments have been
carried out on both synthetic and real data. Results demonstrate the efficacy of the proposed model
to obtain an optimized parameterization with controllable area distortion while preserving the local
geometry as good as possible.

Key words. Area preserving mapping, Beltrami coefficient, conformality distortion, parame-
terization, texture mapping.

1. Introduction. Surface parameterization of 3D geometric objects has central
importance in the field of geometry processing. It refers to the process of mapping a
surface one-to-one and onto a simple parameter domain. Applications can be found
in various fields such as computer graphics, medical imaging and scientific computing.
Recently, various surface parameterization techniques have been introduced.

In general, surface parameterization introduces different kinds of distortions. De-
pending on applications, different parameterization algorithms aim to minimize dif-
ferent types of distortions. For example, isometric parameterization aims to preserve
the metric tensor as good as possible. Authalic projection minimizes the area distor-
tion under the parameterization. Amongst the various parameterization techniques,
the conformal parameterization has been extensively used, since it preserves angles
and hence the local geometry well. However, a major drawback of the conformal
parameterization is that it introduces area distortion. Although angles are preserved,
some regions on the surface can be seriously squeezed on the parameter domain. This
leads to problems in some practical applications in scientific computing and computer
graphics. For instance, in computer graphics, surface conformal parameterizations
can be used for texture mapping. The goal is to project a 2D image onto the surface
to increase the realism of the 3D model. When there is a huge area distortion under
the texture map, the projected texture on the surface may look unnatural. In practice,
it is more desirable to obtain a parameterization whose distortions are controllable
by users.

In this paper, we propose a variational model to obtain an optimized conformal
parameterization with controllable area distortions. Depending on the specific appli-
cation, the distribution of the area distortion under the conformal parameterization
can be prescribed by users. Our goal is to find an optimal map from the surface
onto a simple domain, such that the area distortion follows the prescribed distribu-
tion as much as possible while minimizing the conformality distortion. The key idea
is to minimize a combined energy functional involving the Beltrami coefficient and
Jacbobian of the mapping. The Beltrami coefficient term aims to control the confor-
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mality distortion and hence the local geometric distortion under the parameterization.
The area term involving the Jacobian aims to control the area distortion under the
mapping. Parameters in the energy model can be adjusted by users to balance be-
tween the conformality and area distortions. Sometimes, landmark features of the
surface are required to be projected to desired locations. For this purpose, landmark
constraints can also be incorporated in our proposed model. In this work, we pro-
pose to apply a splitting method to minimize the proposed energy functional, which
alternatively optimizes the energy terms involving the Beltrami coefficient and the
mapping respectively. Experiments have been carried out to parameterize different
surface models. Results demonstrate the efficacy of our proposed method to obtain an
optimized parameterization that preserves both local geometry and area distortion as
good as possible. Applications of the proposed parameterization method in computer
graphics and medical imaging are also shown.

In short, the contributions of this paper are two-folded. Firstly, we propose a
variational model to obtain the optimized conformal parameterization with controlled
area distortion. Secondly, we propose to incorporate feature landmarks into the model
to obtain meaningful parameterizations with consistent feature alignment.

The rest of the paper is organized as follows. In Section 2, we describe some
previous works closely related to our paper. In Section 3, we introduce the basic
mathematical concepts about the conformal and quasi-conformal geometry. In Sec-
tion 3, our proposed parameterization model is described in details. The numerical
implementation of the proposed model is explained in Section 4. Experimental results
are shown in Section 5. Conclusion and future works are discussed in Section 6.

2. Previous work. In this section, we give an overview of the previous works
related to the paper.

2.1. Conformal parameterization. Conformal surface parameterization, which
minimizes angular distortions, has been widely used to obtain parameterizations which
preserve local geometry well [12, 15, 35, 36]. Least square conformal map (LSCM),
which was proposed by Bruno et al. in [27] , and the discrete conformal parame-
terization proposed by Desbrun et al. in [4] are two well-known variational methods
to compute conformal mapping/ parameterization with free boundaries. However,
the obtained results obtained are often affected by the quality of the input triangu-
lar meshes, due to the use of cotangent formula. Later, Muller et al. [28] proposed
the spectral conformal parameterization. The basic idea is to consider the eigen-
value problem of a sparse, symmetric matrix. This provides a convenient and efficient
way to find a parameterization that minimizes the conformal energy. However, a
folding-free parameterization cannot guaranteed. Haker et al. [11] applied the confor-
mal surface parameterization to obtain angle preserving texture mapping. However,
conformal parameterization generally cannot cope with feature correspondence and
causes severe area distortion. Gu et al. [10] and Lui et al. [22] proposed the al-
gorithm for finding conformal parameterizations of genus-zero closed surfaces and
apply them to landmark-based brain surface registration with optimized conformal-
ity distortion. Since gradient descent based algorithms are used, the computation
costs of these algorithms are comparitively high. Recently, Choi et al. [3] proposed
the FLASH algorithm, which can efficiently parameterize a genus-zero closed surface
with prescribed landmark constraints by solving a few linear systems.

2.2. Area preserving parameterization. Several works have been done on
flattening surfaces with area preserving constraints [1]. Dominitz et al. applied the
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optimal mass transport technique to find the area preserving parameterization, which
was used for texture mapping [6]. Zhao et al. [38] improved the efficiency of the
optimal mass transport technique to find the area-preserving flattening which is based
on the Monge-Brenier theory. Zou et al. [39] proposed to use Lie advection to compute
the area preserving surface mapping. However, all the above methods do not handle
prescribed landmark constraints.

2.3. Feature point mapping. Landmark-based registration has also been widely
studied and different algorithms have been proposed. Bookstein et al. [2] proposed
to use the thin-plate spline regularization (or biharmonic regularization) to obtain a
registration that matches landmarks as much as possible. Tosun et al. [33] proposed
to combine the iterative closest point registration, the parametric relaxation and the
inverse stereographic projection to align cortical sulci across brain surfaces. These dif-
feomorphisms obtained can better match landmark features, although not perfectly.
Wang et al. [26, 25, 23] proposed to compute the optimized harmonic registrations of
brain cortical surfaces. The main idea is to minimize a compounded energy involving a
landmark-mismatching term [22]. The obtained registration is an optimized harmonic
map that better aligns landmarks. However, landmarks are not exactly matched and
bijectivity cannot be guaranteed under large number of landmark constraints. To
secure the bijectivity of the mapping, Joshi et al. [16] proposed the large deformation
diffeomorphic metric mapping (LDDMM) to register images with a large deforma-
tion. The registration mapping can be shown to lie in the space of diffeomorphisms.
Following this work, Glaunés et al. [9, 8, 34] proposed to generate large deformation
diffeomorphisms with given displacements of a finite set of template landmarks. The
time dependent vector fields are useful for the computation of registration with large
deformations, although the computational cost of the algorithm is more expensive.

Quasi-conformal mapping that matches landmarks consistently has also been pro-
posed [20, 24, 29, 17]. Wei et al. [37] proposed to compute landmark-matching quasi-
conformal mappings for human face registration. The Beltrami coefficient associated
to a landmark-matching parameterization is approximated. However, neither exact
landmark matching nor the bijectivity of the mapping can be ensured when large de-
formations occur. Later, Lam et al. [18] proposed an iterative scheme, which provides
an efficient way to obtain an exact landmark matching registration even with large
deformations.

3. Mathematical Background. In this section, we describe some basic math-
ematical concepts related to our algorithms. For details, we refer the readers to
[7, 19, 30].

A surface S with a conformal structure is called a Riemann surface. Given two
Riemann surfaces M and N , a map f : M → N is conformal if it preserves the
surface metric up to a multiplicative factor called the conformal factor. An immediate
consequence is that every conformal map preserves angles. With the angle-preserving
property, a conformal map effectively preserves the local geometry of the surface
structure.

A generalization of conformal maps is the quasi-conformal maps, which are orien-
tation preserving homeomorphisms between Riemann surfaces with bounded confor-
mality distortion, in the sense that their first order approximations takes infinitestimal
circles to infinitestimal ellipses of bounded eccentricity [7]. Mathematically, f : C→ C
is quasi-conformal provided that it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (3.1)



4 Ka Chun Lam and Lok Ming Lui

Fig. 3.1: Illustration of the relationship between a quasi-conformal map and its Bel-
trami differential.

for some complex-valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami
coefficient, which is a measure of non-conformality. It measures how far the map at
each point is deviated from a conformal map. In particular, the map f is conformal at
p when µ(p) = 0. In other words, f is angle-preserving at p when µ(p) = 0. Infinites-
imally, around a point p, f may be expressed with respect to its local parameter as
follows:

f(z) ≈ f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(3.2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composed of a translation to f(p) together
with a stretch map S(z) = z + µ(p)z, which is post-composed by a multiplication
of fz(p), which is conformal. All the conformal distortion of S(z) is caused by µ(p).
S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p),
we can determine the angles of the directions of maximal magnification and shrinking
and the amount of them as well. Specifically, the angle of maximal magnification
under the stretch map is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|; The angle of
maximal shrinking under the stretch map is the orthogonal angle (arg(µ(p)) − π)/2
with shrinking factor 1 − |µ(p)|. Thus, the Beltrami coefficient µ gives us all the
information about the properties of the map (See Figure 3.1).

The maximal dilation of f is given by:

K(f) =
1 + ||µ||∞
1− ||µ||∞

. (3.3)

4. Proposed model. In this section, we describe our proposed variational model
for the optimized conformal parameterization with controllable area distortion in de-
tails.

Problem setting. Let S be a simply-connected open surface. Suppose D ⊂ R2

is our target parameter domain, which can either be a 2D rectangle or a unit disk
D. Our goal is to look for an optimized parameterization ϕ : S → D, which satisfies
the prescribed area distribution and minimizes the conformality distortion as good as
possible. Mathematically, our problem can be formulated as follows:
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minimize
ϕ

E(ϕ)

subject to J(ϕ)
∣∣
Ωi

= λi, i = 1, . . . ,m
(4.1)

where J(ϕ) is the Jacobian determinant of ϕ and E(ϕ) is an energy functional that
controls the conformality distortion of the parameterization ϕ. Note that both λi
and Ωi are user-defined. In addition, we assume the area distribution λi is prescribed
according to the following condition:∫

D

dA−
m∑
i=1

∫
Ωi

λidA

{
= 0 if

∑m
i=1 Ωi ≡ D

> 0 if
∑m
i=1 Ωi ⊂ D

The above condition ensures the area distribution is correctly prescribed. More
specifically, the prescribed total area of the sub-domains Ωi’s must be smaller than
the total area of D.

In some situations, one might want to parameterize S in such a way that feature
landmarks on S are aligned to prescribed locations in D. This type of parameter-
ization is called the landmark-aligned parameterization. For example, in computer
graphics, landmark aligned parameterization is required for an accurate texture map-
ping. For this purpose, the abovementioned model can be extended to compute a
landmark-aligned optimized conformal parameterization with controllable area distor-
tion. Denote the corresponding landmark constraints by {pi ∈ S}ni=1 ↔ {qi ∈ D}ni=1.
We require that ϕ(pi) = qi for 1 ≤ i ≤ n. The extended model can be formulated as
follows.

minimize
ϕ:D→S

E(ϕ)

subject to ϕ(pi) = qi, i = 1, . . . , n

J(ϕ)
∣∣
Ωi

= λi, i = 1, . . . ,m

(4.2)

Energy model. In this subsection, we describe how we can set the energy func-
tional E to control the conformality distortion of the parameterization.

The conformality of the parameterization ϕ can be measured by its Beltrami
coefficient µ(ϕ). The mapping is conformal at a point p if and only if µ(ϕ)(p) = 0.
Hence, we define the energy functional E as follows.

E(ϕ) =

∫
D

|µ(ϕ)|2 +

∫
D

|∇µ(ϕ)|2 (4.3)

The first energy term aims to minimize the conformality distortion. The second
energy term is a regularization term that enhances the smoothness of ϕ.

To simplify the problem, we eliminate the hard constraint J(ϕ)
∣∣
Ωi

= λi by incor-
porating it into the energy functional:

Ẽ(ϕ) =

∫
D

|µ(ϕ)|2 +

∫
D

|∇µ(ϕ)|2 + α

(
m∑
i=1

∫
Ωi

| log J(ϕ)− log λi|2
)

(4.4)

Here, α is called the penalty parameter. It controls how well the parameterization ϕ
follows the prescribed area distribution. If α is set to be large, ϕ follows the prescribed
area distortion more in the cost of losing the conformality. When α is small, the first
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two energy terms are more dominant. Thus, more conformality and smoothness can
be achieved, however, ϕ follows the prescribed area distribution less.

Furthermore, ϕ is required to be diffeomorphic. The bijectivity of ϕ can be
controlled by µ(ϕ). In fact, ||µ(ϕ)||∞ < 1 if and only if ϕ is diffeomorphic. To see
this, note that the Jacobian J(ϕ) of ϕ and µ(ϕ) are related as follows:

J(ϕ) = |∂ϕ
∂z
|2(1− |µ(ϕ)|2). (4.5)

Suppose ||µ(ϕ)||∞ < 1, J(ϕ) > 0 everywhere. Hence, by the inverse function theory, ϕ
is locally diffeomorphic. Since S is simply-connected and ϕ is proper, we can conclude
that ϕ is a diffeomorphism. In fact, ϕ is a universal covering map of degree 1. Hence,
ϕ must be bijective.

Our optimization problem can now be formulated as follows.

minimize
ϕ:D→S

Ẽ(ϕ) :=

∫
D

|µ(ϕ)|2 +

∫
D

|∇µ(ϕ)|2 + α

(
m∑
i=1

∫
Ωi

| log J(ϕ)− log λi|2
)

subject to (1) ϕ(pi) = qi, i = 1, . . . , n

(2) ‖µ(ϕ)‖∞ < 1
(4.6)

The above variational model (4.6) enforces hard landmark constraints. Some-
times, it may be more suitable to enforce soft landmark constraints, which allows cer-
tain degree of landmark mismatching. This situation occurs when landmarks cannot
be precisely located. In the situation when exact landmark matching is not necessary,
enforcing soft landmark constraints allow more conformality to be achieved. Model
(4.6) can be easily modified to a variational model with soft landmark constraints by
minimizing:

Ẽsoft(ϕ) =

∫
D

|µ(ϕ)|2 +

∫
D

|∇µ(ϕ)|2 + α

∫
D

| log J(ϕ)− log λ|2 + β

n∑
i=1

|ϕ(pi)− qi|2.

(4.7)
subject to the constraint that ‖µ(ϕ)‖∞ < 1.

Note that minimizing the above variational models (4.6) or (4.7) over ϕ is chal-
lenging. In particular, µ(ϕ) is defined as the quotient of first derivatives of ϕ, whereas
∇µ(ϕ) involves the second derivatives of ϕ. The Euler-Lagrange equations of the en-
ergy functionals are complicated. To alleviate this issue, we simplify our optimization
process using the splitting method. Note that the original model (4.6) is equivalent
to minimizing

Ẽ′(ν, ϕ) =

∫
D

|ν|2 +

∫
D

|∇ν|2 + α

(
m∑
i=1

∫
Ωi

| log J(ϕ)− log λi|2
)

(4.8)

subject to (1) ϕ(pi) = qi for i = 1, 2, ..., n; (2) ||ν||∞ < 1 and (3) ν = µ(ϕ).

We consider the following simplified model of the original variational problem
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(4.6):

minimize
ν:D→C,ϕ:D→S

Ẽsplit(ν, ϕ) :=

∫
D

|ν|2 +

∫
D

|∇ν|2 + α

(
m∑
i=1

∫
Ωi

| log J(ϕ)− log λi|2
)

+ γ

∫
D

|ν − µ(ϕ)|2

subject to (1) ϕ(pi) = qi, i = 1, . . . , n

(2) ‖ν‖∞ < 1
(4.9)

The last term aims to enforce the constraint (3) of the original problem (4.8) as
much as possible. γ is the penalty parameter. When γ is large enough, the constraint
(3) can be well satisfied. We minimize the simplified model (4.9) alternatively. That
is, we minimize the model with respect to ν and ϕ alternatively. This will be explained
in more details in the next subsection.

Similarly, the soft landmark constraint model (4.7) can also be simplified as follows
by minimizing:

Ẽsplitsoft (ν, ϕ) =

∫
D

|ν|2 +

∫
D

|∇ν|2 + α

(
m∑
i=1

∫
Ωi

| log J(ϕ)− log λi|2
)

+ β

n∑
i=1

|ϕ(pi)− qi|2

+ γ

∫
D

|ν − µ(ϕ)|2

(4.10)

subject to the constraint that ‖ν‖∞ < 1.

Minimization of the energy model. In this subsection, we describe how we
minimize the energy models (4.9).

To simplify the problem, the surface S is firstly parameterized onto D using a
conformal map φ : D → S. As a result, our problem is reduced to a 2D problem to
look for an optimal map f : D → D such that the composition map f ◦ φ−1 is our
desired parameterization.

We first consider the minimization problem (4.9). With the parameterization as
introduced above, our optimization problem can be formulated as:

minimize
ν:D→C,f :D→D

Ẽsplit(ν, f) :=

∫
D

|ν|2 +

∫
D

|∇ν|2 + α

(
m∑
i=1

∫
Ωi

| log J(f)− log λi|2
)

+ γ

∫
D

|ν − µ(f)|2

subject to (1) f ◦ φ−1(pi) = qi, i = 1, . . . , n

(2) ‖ν‖∞ < 1
(4.11)

Conventional penalty method increases the penalty parameter γ in each itera-
tion until ∞. To further improve the efficiency of the algorithm, we fix the penalty
parameter γ to be a large enough constant and solve only one optimization problem.

Suppose we are in the nth iteration with (νn, fn), we first consider the derivative
of the area mismatching term Earea(f) =

∫
Ω
| log J(f)− log λ|2. Here, we simplify our

discussion by considering Ω only.
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Now we wish to find the function v adding to fn so that the area mismatching term
E(f + εv) decreases, for some small value of ε. More precisely, we wish to find the
first variational of E(fn) such that E(fn + εv) decreases most rapidly. The desired
direction is simply the negative of the functional derivative. Consider

d

dε
Earea(fn + εv)

∣∣∣∣
ε=0

=

∫
Ω

∂

∂ε

(
| log J(fn + εv)− log λ|2

)∣∣∣∣
ε=0

=

∫
Ω

2

J(fn + εv)
(log J(fn + εv)− log λ)

d

dε
J(fn + εv)

∣∣∣∣
ε=0

=

∫
Ω

4

J(fn)
(log J(fn)− log λ)

(
∂f1

n

∂x

∂v2

∂y
+
∂f2

n

∂y

∂v1

∂x
− ∂f1

n

∂y

∂v2

∂x
− ∂f2

n

∂x

∂v1

∂y

)
where fn = (f1

n, f
2
n) : R2 → R2 and v = (v1, v2) : R2 → R2. By using integration by

parts, we have

< ∇Earea(fn), v >

=
d

dε
Earea(fn + εv)

∣∣∣∣
ε=0

=

∫
Ω

[
∂

∂x

(
4

J(fn)
(log J(fn)− log λ)

∂f2
n

∂y

)
− ∂

∂y

(
4

J(fn)
(log J(fn)− log λ)

∂f2
n

∂x

)]
v1

+

[
∂

∂y

(
4

J(fn)
(log J(fn)− log λ)

∂f1
n

∂x

)
− ∂

∂x

(
4

J(fn)
(log J(fn)− log λ)

∂f1
n

∂y

)]
v2

Therefore, the functional derivative ∇E is obtained. By taking the negative of
∇E, we have the descent direction:

dfn =−

 ∂
∂x

(
4

J(fn) (log J(fn)− log λ)
∂f2

n

∂y

)
− ∂

∂y

(
4

J(fn) (log J(fn)− log λ)
∂f2

n

∂x

)
∂
∂y

(
4

J(fn) (log J(fn)− log λ)
∂f1

n

∂x

)
− ∂

∂x

(
4

J(fn) (log J(fn)− log λ)
∂f1

n

∂y

) 
(4.12)

Once we have found dfn, the mapping is updated to be fn + κdfn for some step-
size κ. Determining a suitable step-size is important for the minimization process,
which will be discussed in Section 5.3.

From the new mapping fn + κdfn and the Beltrami equation, we know that the
Beltrami coefficient is also perturbed by some µdfn . Note that

∂fn + κdfn
∂z̄

= (µ(fn) + µdfn)
∂fn + κdfn

∂z
(4.13)

By a simple calculation, we obtain

µdfn = κ

(
∂dfn
∂z̄
− µ(fn)

∂dfn
∂z

)/
∂fn + κdfn

∂z
(4.14)
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From above, we transform the displacement dfn of the mapping fn to the variation
of the Beltrami coefficient µdfn . Similarly, we can compute the decent direction for
the energy term

∫
D
|νn − µ(fn)|2, which is given by:

dµp = 2(νn − µ(fn)) (4.15)

Therefore, the decent direction for the energy term

α

(
m∑
i=1

∫
Ωi

| log J(fn)− log λi|2
)

+ γ

∫
D

|νn − µ(fn)|2

is given by dµ = µdfn + γdµp. We then update µn to µ̃ = µn + tdµ for some small
step-size t.

To sum up, the above discussion tells us how to update the Beltrami coefficient
so as to minimize:

α

(
m∑
i=1

∫
Ωi

| log J(fn)− log λi|2
)

+ γ

∫
D

|νn − µ(fn)|2 (4.16)

We can then solve the Beltrami equation with µ̃ as the Beltrami coefficient, while
enforcing the landmark constraints f◦φ−1(pi) = qi, i = 1, 2, . . . , n. We then obtain the
corresponding mapping f̃ , whose Beltrami coefficient closely resembles to µ̃. Note that
this mapping satisfies the hard landmark constraints. Since µ̃ may not be admissible
with the landmark constraints enforced, the Beltrami coefficient of f̃ may not be
exactly equal to µ̃. We set µn+1 = µ(f̃).

In this paper, we solve the Beltrami equation using the Linear Beltrami Solver
(LBS) as introduced in [21]. We will now describe LBS briefly. In fact, the Beltrami
equation can be reduced to two elliptic PDEs. We write f = u +

√
−1v. From the

Beltrami equation (3.1),

µ =
(ux − vy) +

√
−1 (vx + uy)

(ux + vy) +
√
−1(vx − uy)

(4.17)

Suppose µ = ρ+
√
−1 τ . Then:

∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0 (4.18)

Here, A =

(
α1 α2

α2 α3

)
is symmetric positive definitie where α1 = (ρ−1)2+τ2

1−ρ2−τ2 ; α2 =

− 2τ
1−ρ2−τ2 and α3 = 1+2ρ+ρ2+τ2

1−ρ2−τ2 .

Hence, given µ, the quasi-conformal map f can be reconstructed by solving (4.18)
subject to the landmark constraints. In the discrete case, the elliptic PDEs (4.18) can
be discretized as two linear systems subject to the landmark constraints. Such a solver
for quasi-conformal map is called the Linear Beltrami Solver (LBS). For details, please
refer to [21].

With the new Beltrami coefficient µn+1, our next step is to minimize the energy
terms ∫

D

|ν|2 +

∫
D

|∇ν|2 + γ

∫
D

|ν − µn+1|2 (4.19)
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with respect to ν. Note that these terms act as the regularizer of the energy model as
well as minimizing the Beltrami coefficient to enforce the bijectivity constraint. By
considering the Euler-Lagrange equation, the optimization problem (4.19) is equiva-
lent to solving

(−∆ + 2I + 2γI) ν = 2γµn+1 (4.20)

Once we have solved for νn+1 satisfying the Euler-Lagrange equation (4.20), we can
update fn+1 by solving the Beltrami equation with µ = νn+1 using LBS. We repeat
the above process until ‖µ(fn+1)− µ(fn)‖∞ ≤ ε for some small threshold ε.

The overall algorithm can now be summarized as follows:

Algorithm 1: Optimized conformal parameterization with controllable area dis-
tortion

Input: Surface S and its conformal parameterization φ; Prescribed area
distribution λ; Boundary condition for the target domain D.

Output: Optimized parameterization f ◦ φ−1 : S → D balancing between the
area distortion and conformality distortion.

1 Initial ν0 = 0; f0 = Id; µ0 = 0;
2 repeat
3 Compute df minimizing the area mismatching term;
4 Compute the step-size κ as described in Section 5.3;
5 Compute µ̃ = µ(f + κdf);

6 Use LBS to reconstruct f̃ from µ̃ with landmark constraints;

7 Compute µn+1 = µ(f̃);
8 Solve νn+1 from the Euler-Lagrange equation

(−∆ + 2I + 2γI) ν = 2γµn+1;

Use LBS to reconstruct fn+1 from νn+1 with landmark constraints;
9 Compute µ(fn+1);

10 until ||µ(fn+1)− µ(fn)||∞ ≤ ε;

5. Numerical implementation. In this section, we discuss the numerical im-
plementation of our proposed algorithm in details.

5.1. Discrete differential operators. Consider a triangle T = [v1, v2, v3] where
vk = xk + iyk for k = 1, 2, 3. Suppose we have a function f on the triangle. By the
first order approximation

f(z) ≈ f(p) + fz(p)z + fz̄ z̄ (5.1)

we have the following equality on each triangle in the triangulation mesh: f(v1)
f(v2)
f(v3)

 =

 v1 v1 1
v2 v2 1
v3 v3 1

 fz(p)
fz̄(p)
f(p)

 (5.2)

where p is any interior point in the triangle. By solving this equation on each triangle,
we can define the discrete differential operator Dz and Dz̄ explicitly. With the discrete
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differential operator Dz and Dz̄, we can obtain the discrete Beltrami coefficients
directly.

Let T1 = [vi, vj , vk] and T2 = [vi, vj , vl]. The mesh Laplacian is defined as:

∆(f(vi)) =
∑
T∈Ni

cotαij + cotβij
2

(f(vj)− f(vi)) (5.3)

where αij and βij are the two interior angles of T1 and T2 which are opposite to the
edge [vi, vj ] [13].

5.2. Descent direction for the area mismatching term. Recall that the
descent direction of the area mismatching term in equation (4.12):

dfn =−

 ∂
∂x

(
4

J(fn) (log J(fn)− log λ)
∂f2

n

∂y

)
− ∂

∂y

(
4

J(fn) (log J(fn)− log λ)
∂f2

n

∂x

)
∂
∂y

(
4

J(fn) (log J(fn)− log λ)
∂f1

n

∂x

)
− ∂

∂x

(
4

J(fn) (log J(fn)− log λ)
∂f1

n

∂y

) 
or in the complex form:

dfn =−
(
∂

∂z̄

)(
8

J(fn)
(log J(fn)− log λ)

∂fn
∂z

)
+(

∂

∂z

)(
8

J(fn)
(log J(fn)− log λ)

∂fn
∂z̄

)
where fn = f1

n + if2
n. By the discretization of the differential operator introduced in

section 5.1, we have the discrete version of the descent direction;

dfn = −D∗z (MDzfn) +D∗z̄ (MDz̄fn) (5.4)

where M is a diagonal matrix with elements 8
J(fn) (log J(fn)− log λ) defined on each

triangle of the mesh and D∗ is the conjugate transpose of a matrix D.

5.3. Choice of the parameter. After the decent direction df reducing the area
mismatching energy term is found, we also need to choose the step-size κ. κ is chosen
as follows:

Algorithm 2: Step-size κ

Input: Triangular mesh with vertex v; Descent direction df .

1 Initial κ = 1;
2 Find κ such that

κ∗ = max
0<κ≤1

{
κ‖ det (v + κdf) > 0 for ∀ triangle v = [v1, v2, v3]T

}
;

3 If κ∗ < 1, update κ← κ∗;

To solve for κ∗, let vi = [xi, yi] and df(vi) = [dxi, dyi] respectively. We further denote
xij = xi − xj for simplicity. Then consider the following

det

 x1 x2 x3

y1 y2 y3

1 1 1

+ κ

 dx1 dx2 dx3

dy1 dy2 dy3

0 0 0

 = Aκ2 +Bκ+ C
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where

A = dx21dy31 − dx31dy21

B = dx21y31 + dy31x21 − dx31y21 − dy21x31

C = x21y31 − x31y21

Therefore, by considering the above quadratic equation, we can determine the con-
dition on κ that guarantees the preservation of the orientation for each triangle, i.e.
avoiding flips of triangles on the mesh.

6. Experimental results. We have tested our proposed algorithm on both syn-
thetic and real data. In this section, we report the experimental results.

6.1. Synthetic examples.

Example 1. We first test our proposed model on a synthetic example, whose
area distribution is prescribed as an expanding ball in the center of the rectangular
mesh. In this example, the regularization terms in our model∫

D

|ν|2 + |∇ν|2

are removed. The aim is to check whether the area mismatching term can effectively
enforce the prescribed area distribution. Figure 6.1(a) shows the original domain S to
be parameterized, which is just a 2D rectangular mesh. S is deformed, under which
the central disk is enlarged, which is shown in (b). (c) shows the logarithm of the
Jacobian determinant of the deformation, visualized by a colormap. It is used to define
the area distribution in this example. Figure 6.2(a) shows the result obtained by our
algorithm. Although the area distribution can be matched accurately, conformality
distortion is large, especially on the region near the boundary of the ball. Figure
6.2(b) shows the energy versus iterations in the algorithm. Since regularization terms
are not considered, a zero energy means an exact matching of the area distribution.
(c) shows the distribution of the conformality distortion. Note that the regularization
terms are removed and hence the conformality distortion of the parameterization is
not under control. Some triangles have large Beltrami coefficients with µ > 0.75,
which indicate large conformality distortions.

Example 2. In the second example, we include the both regularization term
(with the corresponding coefficient equal to 1) and area distortion term with coefficient
α = 0.3. As shown in Figure 6.3(a), instead of having an exact matching of area
distribution, the regularization terms prevent the triangles on the boundary of the
ball from being squeezed. The magnitude of the area mismatching log J(f) − log λ
is relatively larger when comparing with other regions. However, as shown in Figure
6.3(c), the maximal conformality distortion, which is expressed as the norm of the
Beltrami coefficient µ, is smaller (with ‖µ‖∞ = 0.4609). It means the obtained
parameterization preserves more conformality.

Example 3. We have also tested the same setup with α = 0.1. By decreasing the
parameter α, the conformality distortion becomes less when comparing with Example
1 and Example 2 (See Figure 6.4(c)). However, the mis-matching of the prescribed
area distribution is bigger than that in Example 1 and 2. In these examples, we can
observe that there is always a balance between the area distortion and conformality
distortion of the parameterization. The parameter α is therefore a convenient tool to
control the balance.
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(a) (b) (c)

Fig. 6.1: Setup in Example 1. (a) shows the original mesh S, which is a 2D square
domain. The original mesh S is deformed, under which the central disk is enlarged, as
shown in (b). (c) shows the logarithm of the Jacobian determinant of the deformation,
visualized by a colormap. It is used to define the area distribution in Example 1.

(a) (b) (c)

Fig. 6.2: Result of Example 1 without considering the regularization terms. (a) shows
the optimized parameterization that matches the prescribed area distribution. (b)
shows the plot of energy versus iterations in the algorithm. (c) shows the histogram
of magnitude of the Beltrami coefficient, which describes the distribution of the con-
formality distortion under the optimized parameterization.

Example 4. In this example, we define the area distribution λ such that log λ is
compactly supported in a small region (the red region in Figure 6.5(a)). The colormap
on Figure 6.5(a) is given by log λ. In other words, we aim to obtain a parameterization,
which enlarges the area of the interesting (red) region. We set α = 10/3 to balance
between area and conformality distortions of the parameterization. (b) shows the
parameterization result, whose colormap is given by log J . As expected, the red
region is enlarged under the parameterization. Note that log J is not exactly equal
to the input log λ, since a non-zero α is set to balance between the matching of area
distribution and conformality distortion. (c) shows the plot of the energy versus
iterations. Note that the energy is minimized iteratively. (d) shows the magnitude of
the Beltrami coefficient asssociated to the obtained parameterization.
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(a) (b) (c)

Fig. 6.3: Results of Example 2. (a) shows the optimized parameterization in Example
2, in which the regularization terms are included in the model with α = 0.3. (b) shows
the plot of energy versus iterations in the algorithm. (c) shows the histogram of mag-
nitude of the Beltrami coefficient, which describes the distribution of the conformality
distortion under the optimized parameterization.

(a) (b) (c)

Fig. 6.4: Results of Example 3. (a) shows the optimized parameterization in Example
2, in which the regularization terms are included in the model with α = 0.1. (b) shows
the plot of energy versus iterations in the algorithm. (c) shows the histogram of mag-
nitude of the Beltrami coefficient, which describes the distribution of the conformality
distortion under the optimized parameterization.

Example 5. In this example, we test our algorithm to compute optimized con-
formal parameterization with landmark constraints enforced. Figure 6.6(a) shows the
landmark points pi on S and their target positions qi, which are represented by blue
and red dots respectively. We set λ ≡ 1 on the whole domain in this example. In other
words, we aim to compute an optimized parameterization of S onto a 2D rectangle D,
which satisfies the landmark constraints while preserving the area as much as possible.
(b) shows the parameterization when we set α = 0. The colormap is given by log J .
It can be observed that triangular faces in the middle region are squeezed drastically.
It is expected since area distortion term is removed in the model. (c) shows the pa-
rameterization result when we set α = 1. As the area distortion term is included in
the model, the squeezing of triangular faces are eliminated. (d) shows the energy plot
versus iteration and (e) shows the conformality distortion of the parameterization.



Optimized parametrization with controllable area distortions 15

(a) (b)

(c) (d)

Fig. 6.5: Results of Example 4. S is again chosen as the square mesh. (a) shows the
area distribution log λ, which is compactly supported in the red region. (b) shows
the optimized parameterization obtained from our algorithm. The colormap is given
by the logarithmic of the Jacobian determinant of the parameterization. (c) shows
the plot of energy versus iterations in the algorithm. (d) shows the histogram of the
magnitude of the Beltrami coefficient.

Example 6. We have also tested our proposed algorithm on 3D surface S. One
of the application of such an optimized parameterization is for texture mapping. In
this example, we are given a surface mesh S and a texture image (See Figure 6.7(a)).
We will parameterize S onto a rectangular domain D such that the area distribution
is consistent with the area distribution of the surface S. We first conformally param-
eterize the 3D surface onto D. Using the conformal parameterization, we map the
texture image onto S, which is shown in (b). Observe that the characters “8” and “5”
are enlarged and distorted unnaturally at the bumps. (c) shows the optimized confor-
mal parameterization minimizing the area distortion. The colormap is given by the
area distribution mismatching in logarithmic scale. Note that the difference are close
to zero, meaning that the area distribution of the parameterization closely resembles
to that of S. (d) shows the textured surface using the obtained optimized parame-
terization. Note that the distortions of the characters ′′8′′ and ′′5′′ at the bumps are
avoided. (e) and (f) shows the energy versus iterations and the conformality distortion
of the optimized parameterization respectively.

6.2. Real examples. We have also tested our proposed model on real data.

Brain surface parameterization. The complicated structure of the brain hin-
ders the shape analysis of brain cortical surfaces. To alleviate this issue, parameter-
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(a) (b) (c)

(d) (e)

Fig. 6.6: Results of Example 5. (a) shows the original domain S and the landmark
points denoted by blue dots. Their target positions are denoted by red dots. (b)
shows the landmark-aligned optimized parameterization with α = 0. The colormap
is given by the logarithmic Jacobian determinant of the parameterization. (c) shows
the landmark-aligned optimized parameterization with α = 1. The colormap is given
by the logarithmic Jacobian determinant of the parameterization. (d) shows the plot
of energy versus iterations and (e) shows the conformality distortion of the parame-
terization.

ization techniques are often used to flatten the cortical surface, so that the analysis
and computation can be carried out on the 2D domain. Conformal parameterizations
have been widely used since they preserve the local geometry well. Hence, local ge-
ometric structures of the brain cortical surface can be visualized on the 2D domain.
However, the major drawback of a conformal parameterization is that it may intro-
duce area distortion, such as a serious squeezing. This causes difficulties to visualize
the geometric structure of the brain on the parameter domain. Using our proposed
algorithm, we can obtain an optimized parameterization that balances between con-
formality and area distortions. Figure 6.8(a) shows a human brain cortical surface. Its
conformal parameterization is shown in (b). It can be observed that a large portion
of the surface are squeezed onto the central region of the parameter domain under
the parameterization. (c) shows the optimized parameterization obtained from our
proposed model. The squeezing effect on the parameter domain is avoided, while the
geometric pattern of the sulci can be well observed.

Surface parameterization. We have also tested our proposed algorithm on real
3D surfaces. In this example, we parameterize a lion head surface with prescribed area
distribution, so as to enlarge the interesting region on the parameter domain. The
lion head surface is shown in Figure 6.9(a). The area distribution is defined such that
the mouth and eyes of the lion head are enlarged on the parameter domain. (b) shows
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(a) (b) (c)

(d) (e) (f)

Fig. 6.7: (a) shows a surface mesh S and the texture image. (b) shows the textured
surface using the conformal parameterization. (c) shows the optimized conformal
parameterization that minimizes area and conformality distortions. (d) shows the
textured surface using the optimized parameterization. (e) shows the plot of energy
versus iterations. (f) shows the conformality distortion of the parameterization.

the conformal parameterization of the lion head surface, whose colormap is given by
the prescribed area distribution log λ. (c) shows the conformal parameterization of
the lion head, whose colormap is given by the curvature of the surface. (d) shows
the optimized parameterization obtained using our algorithm. Using our proposed
algorithm with the prescribed area distribution, we successfully enlarge the mouth
and eyes. The result is shown in Figure 6.9(d). The shapes of the mouth and eyes
can be observed on the parameter domain.

Vertebral bone registration. An important application of parameterizations
is to compute surface registration. Once the landmark-aligned parameterizations of
two surfaces are obtained, a landmark-matching registration between the two sur-
faces can be easily computed through the composition map of the parameterizations.
In this example, we tested our model to register genus-one surfaces with prescribed
landmark constraints. Figure 6.10 (a) shows the surface mesh of a vertebrae bone
A. Feature landmark points are marked as blue dots. Its conformal parameterization
onto the universal covering space is shown in (b). The feature landmarks points on
the parameter domain are also represented by the blue dots, which are located in the
dense region of the parameterized mesh. Note that we applied the parameterization
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(a) (b) (c)

Fig. 6.8: (a) shows the brain cortical surface. The colormap is given by the mean
curvature of the brain surface. (b) shows the conformal parameterization. (c) shows
the optimized parameterization, which minimizes both the area and conformality
distortions.

(a) (b) (c) (d)

Fig. 6.9: (a) shows the surface mesh of a lion head. (b) shows the prescribed area
distribution log λ, shown on the conformal parameter domain. (c) shows the comfor-
mal parameterization. (d) shows the optimized parameterization obtained from our
proposed model.

algorithm proposed in [14] and a periodic boundary condition must be satisfied. Fig-
ure 6.10(c) and (d) show the surface mesh of a vertebrae bone B and its conformal
parameterization respectively. The red dots in (c) and (d) represent the feature land-
mark points of vertebrae bone B. To register bone A onto bone B, we parameterize
bone A such that its landmark points are mapped to the landmark points of bone
B on its parameter domain. Our goal is to obtain a landmark-aligned optimized pa-
rameterization, which balances between area and conformality distortions. (e) shows
the optimized parameterization result of bone A. Using the composition map of the
parameterization, we deform bone A to bone B, which is shown in (f). This gives the
surface registration between the two surface meshes. (g) shows the histogram of the
logarithmic Jacobian determinant of the overall mapping. The distribution is accu-
mulated at zero, indicating that most of the triangles in the surface mesh preserve
area under the mapping.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 6.10: (a) shows the surface mesh of Vertebrae bone A. Feature landmark points
are marked as blue dots. (b) shows the conformal parameterization of bone A onto
its universal covering space. (c) shows the surface mesh of Vertebrae bone B. Corre-
sponding feature landmark points are marked as red dots. (d) shows the conformal
paramterization of bone B onto its universal covering space. (e) shows the landmark-
aligned optimized parameterization, which minimizes both the conformal and area
distortions. Using the composition map of the parameterizations, we deform bone A
to bone B, which is shown in (f). (g) shows the histogram of the logarithmic Jacobian
determinant of the overall mapping.

Visualization of surface-based protein. In this example, we tested our algo-
rithm to parameterize protein surfaces to facilitate the visualization of protein struc-
tures. The protein data are obtained from the RCSB Protein Data Bank(PDB). We
have chosen proteins with ID 4CS4 and 4D2I in our experiment. The motivation to
study the surface of a protein is that the 3 dimensional structures of proteins can give
useful information to determine their functionalities, through the comparison with
other well-studied proteins. In particular, the electrostatic surface of a protein is an
important information to study the protein-protein interaction [31]. Figure 6.11(a)
and (b) show the surface representations of proteins 4CS4 and 4D2I respectively. The
red regions denote the particular regions we are interested in. (c) and (d) show the
electrostatic surfaces of proteins 4CS4 and 4D2I respectively. The electrostatic prop-
erties of the protein are calculated by solving the Poisson-Boltzmann equation [5].
The zoom-in of the selected regions with electrostatic information are shown in (e)
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and (f).

(a) (b)

(c) (d)

(e) (f)

Fig. 6.11: (a) shows the surface representation of the protem with ID 4CS4. A selected
region is labeled in red. (b) shows the surface representation of the protein with ID
4D2I. A selected region is labeled in red. (c) shows the electrostatic information of
the proteins in (a). (d) shows the electrostatic information of the proteins in (b).
(e) shows the zoom-in of the selected red region of (a). (f) shows the zoom-in of the
selected red region of (b).

To test our algorithm, we parameterize the selected region of each protein with
landmark constraints enforced (so that regions of interest are aligned consistently
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for the ease of shape comparison). In addition, we set the area distribution of each
selected region, such that the red sub-region is enlarged on the parameter domain
(See Figure 6.12(a) and (b)). (c) and (d) show the conformal parameterization of
the two selected regions. The purple and the blue colors indicate the positive and
negative potential respectively. The distribution of the potential play a significant
role on the binding between proteins, defining mechanisms of protein-protein com-
plex formation as well as the study of protein movements [32]. Notice that the red
regions are squeezed on the conformal parameter domains in both cases. This hinders
the visualization and shape comparison of protein structures on the 2D parameter
domain. Using our proposed algorithm, we aim to obtain protein parameterizations
which balance between area and conformality distortion. Two landmarks are delin-
eated on each protein surface. The green dots in (c) and (d) denote the locations of
landmarks on the conformal parameter domain. In order to compare the two proteins,
we fix the parameter domain for both surfaces as a 2D rectangle of certain dimen-
sions. Corresponding feature landmarks are also required to be aligned consistently
on the parameter domain. (e) and (f) show the parameterization results. Note that
corresponding landmarks are indeed aligned consistently. Also, unlike the conformal
parameterizations, the red regions of the proteins are not squeezed on the parameter
domain under our parameterizations. Our algorithm can produce optimized parame-
terizations, which give good balances between area and conformality distortions. This
allows us to visualize the electrostatic information in the interested (red) regions on
the 2D parameter domain more effectively. The energies versus iterations of our al-
gorithm to compute the parameterizations of (a) and (b) are shown in (g) and (h)
respectively. Figure 6.13(a) and (b) give a clearer visualization of the parameterized
meshes, whose colormaps are given by their electostatic information.

7. Conclusion. This paper presents a new approach to obtain a landmark con-
strained surface parameterization which balances between the conformal and area
distortions. Furthermore, the area distribution of the surface parameterization can
be prescribed by users to fit their applications. The main strategy is to minimize an
energy functional involving the area mismatching term and the regularization term
involving the Beltrami coefficient. The Beltrami coefficient measures the conformal-
ity distortion of the quasiconformal map. It also helps controlling the bijectivity and
smoothness of the parameterization. Experiments have been carried out on both syn-
thetic and real data. Results show that our proposed method can effectively control
the area distribution as well as the conformality distortion of the parameterization.
In the future, we plan to extend our proposed algorithm to 3D volumetric data and
apply our proposed algorithm to medical imaging for diseases analysis.
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