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Abstract

We propose a method to reconstruct surfaces from oriented point clouds
by formulating the problem as a convex minimization that reconstructs the
indicator function of the surface’s interior. Our reconstruction is robust
to noise and outliers because it substitutes the usual least-squares fidelity
terms by robust Huber penalties that recover sharp corners and avoid the
shrinking bias of least squares. We adopt an implicit parametrization to
reconstruct surfaces of unknown topology and close gaps in the point cloud
and design efficient discretizations that avoid the high memory and com-
putational requirements of volumetric representations. To this purpose,
we investigate three discretizations with a hierarchy of locally-supported
functions adapted to the surface: two hierarchical B-spline bases of first
and second degree polynomials, and a dictionary of quadratic hierarchi-
cal B-splines. The hierarchical structure of these discretizations speeds
minimization through multiresolution and an efficient algorithm based on
convex optimization that allows non-differentiable functionals. Our exper-
iments show that our model improves reconstruction from both synthetic
and corrupted data, while the choice of discretization affects both the ac-
cyracy of the reconstruction and its computational cost.

1 Introduction

New challenges to surface reconstruction from measurements emerge as datasets
grow in size but lose in accuracy. The reduction in accuracy appears as sensors
evolve from short to long range, low-cost commodity scanners become widely
available, and computer vision is increasingly used to infer 3D geometry from
point sets. As a result, surface reconstruction methods must be robust to noise
and outliers, and scale favorably in terms of computation and memory use. This
impacts the choice of parametrization for the surface and the inference technique
that reconstructs a surface from an oriented point cloud.

Point positions suffer from non-uniform sampling, scan misregistration, and
gaps that appear as accessibility constraints leave regions devoid of data. The
normal vectors that describe the orientation of the surface, estimated from the
point positions or from direct measurements, also suffer from noise and artifacts.
Normals estimated from the points are unreliable for thick and noisy point clouds
or surfaces with touching sheets, while normals measured by scanning devices
– like photometric stereo– are corrupted by illumination artifacts. Noise in the
oriented normals is especially detrimental because normals locally define the
surface to first order and identify its topology. While correcting the normals
in an oriented point cloud is relatively easy, correcting the topology of the
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reconstructed surface is an expensive and delicate operation. For this reason, it
is critical that surface reconstruction methods estimate the topology correctly.

We propose a robust but simple algorithm to reconstruct a water-tight sur-
face from an oriented point cloud. We formulate the reconstruction as a convex
optimization that recovers the indicator function of the interior of the surface.
Our objective function penalizes deviations in the orientation and location of
the surface with a Huber loss function to robustly recover the topology of the
surface and allow for sharp corners; this makes our model more robust to noise
and avoids the “shrinking bias” of least-squares models [23, 24]. This is our first
contribution, explained in Section 3.

Our second contribution investigates three different discretizations to solve
the minimization problem described in Section 4. In each case, the solution is
parametrized by a linear combination of basis functions. The basis functions are
all scaled and translated versions of a piecewise polynomial and create a hier-
archical space that adapts the resolution of the representation to the resolution
of the point cloud. The three discretizations investigate different polynomial
orders and hierarchical constructions: a quadratic hierarchical B-spline, a linear
hierarchical B-spline equivalent to the discretization of [10], and a dictionary
of quadratic B-splines that have a more flexible hierarchy, do not form a basis,
and are equivalent to the discretization of the Poisson reconstruction [23, 24].
Investigating the different discretizations used in surface reconstruction allows
us to distinguish the improvements caused by the model from the ones caused
by the discretization. Usually reconstruction methods are evaluated as a whole,
making it difficult to determine whether improvements in accuracy or speed are
due to the model, the algorithm, or the discretization.

Our third contribution is an efficient algorithm that exploits the convexity of
the objective function to derive a first-order minimization algorithm that is easy
to parallelize and scales well with the size of the point cloud. To this purpose,
in Section 5 we adapt the primal-dual algorithm of [12] to our objective and
derive closed-form solutions for each proximal update.

Compared to our conference paper [18], we have improved the model and
have investigated two new discretizations. The new model does not require
normal interpolation and is robust to noise and outliers in both the location
and orientation of the points, while the new discretizations over octrees are
lighter in terms of memory and computation.

2 Related Methods. Choice of Representation

Surface reconstruction methods can be classified as either parametric or implicit.
Parametric techniques represent the surface as a topological embedding of a 2D
parameter domain into 3D space. They include approaches based on computa-
tional geometry that partition space into Voronoi cells from the input samples
and exploit the intuitive idea that eliminating facets of Delaunay tetrahedra pro-
vides a triangulated parametrization of the surface [3, 17, 4, 35, 9, 40, 25] and
describes a combinatorial problem solved by local analysis of the cells [4, 35, 9],
eigenvector decomposition [40], or graph cuts [25]. The reconstructed surface
thus interpolates most of the input samples and requires post-processing to
smooth the surface and correct the topology. Parametric methods generally re-
quire clean data as they assume the topology of the surface to be known, while
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implicit methods are designed to reconstruct surfaces from noisy point clouds
with unknown topology.

Implicit representations both reconstruct the surface and estimate its topol-
ogy, but increase the dimension of the problem by representing the surface as
the zero-level set of a volumetric function. Their accuracy is thus limited by
the resolution of the grid, with efficient representations requiring non-uniform
grids [23, 30, 10, 24].

Implicit representations can be formulated as either global or local. Lo-
cal methods consider subsets of nearby points one at a time and handle large
datasets efficiently. Earlier methods [22, 15] estimate tangent planes from the
nearest neighbors of each sample and parametrize the surface by the signed dis-
tance to the tangent plane of the closest point in space. Moving least squares
(MLS) techniques [2, 28, 39, 5] reconstruct surfaces locally by solving an opti-
mization that finds a local reference plane and then fit a polynomial to the sur-
face. The least-squares fit of MLS, however, is sensitive to outliers and smooths
out small features; for this reason variants robust to outliers [34, 19] and sharp
features [29, 16] appeared. [33] also constructs implicit functions locally but
blends them together with partitions of unity. Common to these methods is
their locality (i.e., partitioning into neighborhoods and merging local functions)
that makes them highly scalable but sensitive to non-uniform sampling and
point-cloud gaps.

Global methods define the implicit function as the sum of basis functions
(RBFs [11], splines [23, 24], wavelets [30]) and consider all the data at once
without heuristic partitioning. Kazhdan et al. [23, 24] solve a Poisson problem
that aligns the gradient of the indicator function to the normals of the point
cloud with a least-squares fit, not robust to outliers. Manson et al. [30] similarly
approximate the indicator function with wavelets efficiently designed to compute
basis coefficients with local sums over an octree. Calakli and Taubin [10] use a
signed-distance function to represent the surface, but also rely on least squares
to fit the normals and include a screening term that improves accuracy by fitting
the input points to the zero-level set of the implicit function. For this reason,
our model includes a screening term together with a robust Huber penalty to
fit the normal field and allow for sharp edges. Existing methods account for
sharp features by explicit representations [1, 21, 29] or anisotropic smoothing
[14, 42, 13]; they are fast but depend on local operators that do not seek a global
optimum.

Our reconstruction combines benefits of global and local schemes. It is global
in the sense that it does not involve heuristics on neighborhoods, while it pre-
serves locality by requiring the basis functions to be locally supported and adapt
to the input point cloud. Our discretizations adapt to the input point cloud by
means of an octree and are motivated by the octree representations of [10] and
[23, 24], while the use of a hierarchical B-spline [44] is inspired by [8] and gen-
eralizes well-known uniform B-splines [43, 6, 41].

3 Variational Model

The reconstruction of a surface S from oriented points can be cast as a mini-
mization problem that estimates the indicator function χ of the interior of the
surface. Let {(xk,nk)}nP

k=1 be the oriented point cloud, with xk ∈ R3 the point
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location and nk ∈ S2 its associated normal; our goal is to estimate a continuous
function χ : Ω ⊂ R3 → R such that S = {x : χ(x) = 0}, χ takes negative values
in the interior enclosed by S and χ positive outside.

The key to estimating the continuous function χ from the set of discrete
point samples is to observe that each oriented point (xk,nk) is a sample of the
gradient of the indicator function, that is, ∇χ(xk) = nk. As a result, we can
reconstruct S by finding the scalar function whose gradient best matches these
samples.

To account for noise in the data, we formulate the reconstruction as a min-
imization, instead of interpolation, problem:

min
χ

α

nP∑
k=1

f(χ(xk)) + β

nP∑
k=1

g(nk −∇χ), (1)

where α, β are positive model parameters, and f and g are Huber loss functions
in R and R3 with parameters εx, εn. In particular f = hεx , g = hεn , with

hε(v) =

{
1
2ε |v|

2
2 |v|2 < ε

|v|2 − ε
2 |v|2 ≥ ε

. (2)

The Huber loss function h is a convex and differentiable penalty that avoids
two artifacts of least-squares models [23, 10, 24] due to overpenalizing outliers:
shrinkage of thin structures and smoothing of sharp edges. It overcomes these
limitations by using different penalties for small errors and outliers, but results
in a minimization harder to solve than the linear systems derived from least-
squares fits.

The first term in (1) sets the points as soft interpolation constraints and
fixes the surface parametrization to the zero-level set of χ; it is a generalization
of the screening term of [32], but defined over a sparse set of points rather than
the integration domain Ω and with a robust Huber penalty instead of a least-
squares fit. The second term penalizes errors in the sampled normals with a
Huber loss function that make our model robust to noise in the normals; this
is particularly important in reconstruction because errors in the normals cause
errors in the surface topology that are difficult and expensive to correct once
the surface is extracted.

The minimization problem (1) is undetermined for reconstruction because
the model only constrains the gradient of χ close the sampled points, but lets χ
vary freely away from them. From all the functions whose gradient approximates
the samples, we are interested in those that lead to implicit representations of
the surface and only evaluate to zero on it. We achieve this with a regular-
izer that ensures that χ does not evaluates to zero far from the samples and
produce spurious surface sheets. In level-set parametrizations, this is usually
accomplished by enforcing an approximate distance function with constant ∇χ
far from the surface or, equivalently, by penalizing changes in ∇χ with a penalty
on the Hessian Hχ. The reconstruction model reads

min
χ

α

nP∑
k=1

f(χ(xk)) + β

nP∑
k=1

g(nk −∇χ) +
1

2

∫
Ω

w|Hχ|F , (3)

where | · |F is the Frobenius norm, and w is a weighting function defined on the
bounding box of the point cloud Ω. The first two terms in (3) are data terms

4



that should dominate the cost function close to the input samples and make χ
an implicit parametrization of the surface, while the regularization term should
dominate the objective far from the points to encourage an approximate signed
distance parametrization. To achieve this balance, the weighting function w is
a binary mask with 0 value in a neighborhood of samples and 1 elsewhere.

Our method is related to the Poisson reconstruction of [24] and the smooth
signed distance of [10], but our model, representation of the surface, and min-
imization techniques are different. First, in terms of the model, we propose a
robust Huber penalty on both the normals and the screening term to be resilient
to outliers, instead of the least-squares penalty of [24] and [10]. Compared to
[24] and our conference paper [18], we also avoid the interpolation of the sampled
normals into a field by the inclusion of the Hessian regularizer; this requires the
computation of additional second order derivatives but avoids pre-processing
the normal samples, and in general leads to more accurate reconstruction of
corners, where normal interpolation smears sharp changes in orientation. Com-
pared to [10], our regularizer uses the Frobenius norm of the Hessian, instead of
its square, to better approximate a signed distance function. Second, we adopt
multiple discretizations to represent χ, two of them equivalent to the ones pro-
posed by [10] and [24], and investigate the effects of discretization on the quality
of the reconstruction. Finally, our minimization exploits the convexity of (1)
to develop an efficient primal-dual algorithm, instead of finite-element methods
that cannot handle the Huber loss functions.

4 Discretization

The discretization of (3) exploits the fact that its solution only needs to be
accurate near the zero isolevel that parameterizes the surface, that is, in the
neighborhood of the point samples. This calls for representations over irregular
grids with high-resolution around the surface and coarser resolutions far from
it. To this purpose, we discretize the space of functions over Ω with a finite
dimensional vector space given by the span of basis functions φ1, . . . , φn with
higher spatial resolution near the point samples.

In the following, a function in Ω is discretized by the linear combination

χ(x) =
∑
A

cAφA(x), (4)

where A is the finite index that sorts the basis functions, and c = (c1, . . . , cn)
are the coefficients that represent χ and the variables in the optimization.

The accuracy of the representation is determined by the shape and resolution
of the basis functions {φA}, while its computational cost is determined by the
evaluation of the basis functions and their derivatives. These two criteria guide
our choice of discretization: first, the basis functions must have derivatives up
to second order that are integrable, either analytically or well approximated
by quadrature rules; second, they must be compactly supported so that only a
few functions are non-zero at each point and the linear combinations that define
χ,∇χ,Hχ can be evaluated fast. To accomplish this, we adopt a hierarchical B-
spline (HBS) representation and investigate the impact of different polynomial
degrees and smoothness with three discretizations:

1. a basis of quadratics HBS,
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2. a lighter dictionary of quadratic HBS that do not form a basis,

3. a linear HBS basis that approximates second-order derivatives with finite
differences.

4.1 Hierarchical B-splines

Hierarchical B-splines [20] are constructed through tensor products of splines
over a hierarchy of grids of varying spatial resolution. Figure 1 shows a hi-
erarchical B-spline in one dimension. B-spline functions are defined over the
underlying knot partition at each level to define functions with varying spatial
resolution and, to define a basis, linear dependencies are eliminated between
levels. In Figure 1, the basis functions are denoted by solid lines, while those
functions that are linearly dependent on higher levels are denoted by hatched
lines. Hierarchical bases are a natural choice for our parametrization because
of the compact representation, smoothness, and efficiency in performing local
adaptivity due to the simple hierarchical structure.
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Figure 1: Basis functions for a 3-level quadratic HBS space. Basis functions are
plot by solid colored lines, functions that are linearly dependent on higher-level
functions by dashed colored lines, and inactive functions by grey dotted lines.

B-Spline Spaces

At each level of the hierarchy, a trivariate tensor-product B-spline space is de-
fined by specifying the polynomial degree p and a knot vector that partitions
the domain Ω into a regular hexahedral grid. For a unit volume Ω = [0, 1]3, the
space is spanned by the tensor-product B-splines

Np
i,j,k(x, y, z) = Np

i (x) Np
j (y) Np

k (z) 0 ≤ i, j, k ≤ m, (5)
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where the univariate B-spline functions are parameterized by knot vectors [ξ0, ξ1, . . . , ξm]
with ξ0 = 0, ξi ≤ ξi+1, ξm = 1 in each dimension and defined recursively as

N0
i (x) =

{
1 ξi ≤ x < ξi+1

0 otherwise
(6)

Np
i (x) =

x− ξi
ξi+p − ξi

Np−1
i (x) +

ξi+p+1 − x
ξi+p+1 − ξi+1

Np−1
i (x), (7)

where fractions with zero denominators evaluate to zero. In our case, we have
uniform knot vectors with ξi+1 − ξi = s for 0 ≤ i < m, and the B-spline space
is parametrized by the degree p of the polynomial and the scale parameter s.

From this definition, each B-spline function Np
i,j,k is positive, differentiable

p-derivatives at the knots, and has compact support

suppNp
i,j,k = [ξi, ξi+p+1]× [ξj , ξj+p+1]× [ξk, ξk+p+1]. (8)

The set N p
s = {Np

i,j,k} is linearly independent and forms a basis for the space
of piecewise polynomials of degree p with uniform knot intervals of scale s.

Hierarchical B-Spline Spaces

A basis Bp of a hierarchical B-spline space is constructed recursively from a set
of nested volumetric patches Ω = Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩL of increasing spatial
resolution, as follows:

1. Initialization: Bp0 = N p
1 .

2. Recursion: Bpl = {φ ∈ Bpl−1 : suppφ * Ωl} ∪ {φ ∈ N p
2−l : suppφ ⊆ Ωl}.

3. At level L, Bp = BpL defines the basis functions {φA} in our discretization.

We initialize Bp0 = N p
1 and at each recursive step l we replace the basis functions

whose support is entirely contained in the refined patch Ωl by the refined basis
functions in N p

2−l over this patch. With this construction, the basis functions
of each Bp are linearly independent and form a basis for spanBp with nested
spaces spanBpl ⊆ spanBpl+1 [44].

4.2 Discretization 1: Quadratic HBS Basis

Our first discretization is a quadratic hierarchical B-spline space where the basis
functions {φA} = B2 define a basis. We choose p = 2 because it provides the
twice-differentiable basis with minimal support and allows us to have analyti-
cal expressions for the Hessian. This is important because it allows us to use
interpolation to evaluate χ, ∇χ and Hχ in our objective functional.

In particular, the linearity of the discretization lets us efficiently compute
the value of χ at any point x in the domain by evaluating the basis functions
at this point. In other words,

χ(x) =
∑
A

cAφA(x) = [φ1(x) . . . φn(x)] c. (9)

The procedure is efficient for two reasons: first, only a few basis functions are
active at this point and thus the sum involves only a few terms and, second,
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there are a number of efficient algorithms to evaluate the basis functions such
as the Cox-De Boor algorithm[26]. Similarly, the gradient and Hessian ∇χ, Hχ
are evaluated efficiently as

∇χ(x) =
∑
A

cA∇φA(x) = [∇φ1(x), . . . ,∇φn(x)] c (10)

Hχ(x) =
∑
A

cAHφA(x) = [Hφ1(x), . . . ,Hφn(x)] c. (11)

Finally, we discretize the integral in our objective functional (1) as the weighted
sum ∫

R3

w(x)|Hχ(x)|Fdx ≈
nQ∑
i=1

wqiw(qi)|Hχ(qi)|F (12)

with Gauss quadrature rules, where qi is a quadrature point and wqi its asso-
ciated quadrature weight. For efficiency, we use mid-point quadrature with a
single quadrature point at the middle of each cell and weight given by its area.

4.3 Discretization 2: Linear HBS Basis

Our second discretization is a linear hierarchical B-spline space where the basis
functions {φA} = B1 define a basis. Choosing p = 1 reduces the support of
the basis functions and speeds up evaluation of B-spline functions and their
derivatives, but reduces the smoothness of the reconstruction.

The value of a B-spline function and its gradient are computed in the same
way as for the quadratic HBS basis, but evaluating the Hessian requires a finite-
difference approximation. Indeed, with a linear basis the gradient is constant
within each cell and discontinuous at the cell boundaries, that is, the Hessian is
a Dirac distribution supported on cell faces that is only integrable in the general
sense. To compute the regularizer we substitute the integral over the volume
by a sum over cell faces and compute the Hessian at the joint face of cells CA
and CB with the finite difference of their gradients:

HAB χ =
1

∆AB
(∇Aχ−∇Bχ), (13)

where ∆AB is the Euclidean distance between the centers of the cells and ∇Aχ
is the constant value of ∇χ over cell CA [10]. The integral in the objective
functional simplifies into the sum∫

Ω

|Hχ|2F =
∑

(A,B)

wAB |HAB χ|2F , (14)

where wAB is the area of the face shared by cells CA and CB .

4.4 Discretization 3: Dictionary of quadratic HBS

Our third discretization is equivalent to the hierarchical spline space proposed
in [23, 24] for surface reconstruction. This representation is designed to be as
light as possible while providing smooth second derivatives and the same – but
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not higher– spatial resolution than the input point cloud. To this purpose, the
hierarchical structure of the space is defined by the octree of the input samples,
and a quadratic B-spline basis is created at the center of each cell A with its
scale set to match the width of the cell

φA(x) = N2

(
x− xA

sA

)
, (15)

where φ is the unit trivariate quadratic B-spline basis with support [−1.5, 1.5]3,
xA is the center of the cell and sA its width. As a result, the basis functions
are again translated and scaled versions of a quadratic uniform B-spline and
hierarchically organized by their scale but, unlike in a quadratic HBS space,
each basis function is defined independently of the others with no guarantees
on their linear independence.

Dropping the linear-independence condition allows to replace basis functions
at coarsers levels more aggressively because there is no constraint on the size of
the patch to be refined. Indeed, in the hierarchical construction of Section 4.1,
only basis functions whose support is completely contained in the finer patch
can be refined to ensure linear independence over this patch[20]. As a result,
the size of the refined patch must exceed the support of the basis functions or,
equivalently, any region needing refinement that is smaller than the support of
the active basis functions must be expanded to ensure linear independence. This
condition is more restrictive with quadratic than linear splines because their
support is larger, motivating the definition of our quadratic B-spline dictionary.
In particular, with the hierarchical structure of the octree and the quadratic
spline (15), basis functions centered at a finer patch are refined even when their
support exceeds the patch. This allows us to refine smaller patches than the
quadratic HBS basis and reduce the size of the hierarchical representation at
the cost of representation power and the linear-independence property.

The order of the spline basis is again quadratic because it has the minimum
support for a twice differentiable basis with non-zero Hessian. As a result,
the integral in the objective functional is again discretized with a weighted
sum with the mid-point Gauss quadrature rule (12). A minimum support is
important to ensure that a small number of basis overlap at each point and a
linear combination of them only involves summing over a small subset.

This discretization provides higher-resolution discretizations at higher hier-
archical levels, but it does not provide a basis as the other discretizations. This
limits a multiresolution representation because it is only possible to approxi-
mately project the solution at depth l into the solution at depth l + 1, but it
does not affect the convergence1 of our optimization algorithm because we only
need an approximate multiresolution representation to initialize the iterative
algorithm at each scale (see Section 6).

4.5 Spatial Refinement with Octrees

In our HBS discretizations, it is necessary to define the set of nested volumetric
patches Ω = Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩL that determine the spatial resolution of the

1In the least-squares models of [23, 24], a basis representation is required to ensure that the
system of equations can be solved. This is not a restriction with our formulation because our
solution is guaranteed by convexity and our algorithm does not solve a linear system requiring
linear independence to have a unique solution.
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discretization. We do so by by scaling2 the bounding volume to a unit cube Ω
and constructing the minimal octree that ensures that every point sample falls
into a leaf node at depth L = 7. The hierarchical structure and spatial refine-
ment of the octree is then translated into the three discretizations of Section
4.2-4.2 by simply mapping the tree structure of its cells into a corresponding
nesting and refinement of patches: Ωl ⊃ Ωl+1 is defined by setting Ωl to the
coarser cell of the parent node and Ωl+1 the set of refined cells of its children.

This partitioning naturally leads to a finer resolution near the surface as
described by the point cloud and provides a mesh where locating point samples
and finding neighboring cells reduces to checking Morton codes [31]. With this
refinement, our second discretization is equivalent to the mixed finite-element
and finite-differences over an octree proposed by [10] for surface reconstruction,
while the third discretization corresponds to the quadratic splines used in the
Poisson reconstruction of [23, 24].

5 Minimization Algorithm

In all our discretizations, the integral in (1) becomes the weighted sum∫
R3

w(x)|Hχ(x)|Fdx =

nQ∑
i=1

wi|Hχ(qi)|F . (16)

With quadratic basis functions, this sum is the result of applying standard
quadrature rules where wi = wqiw(qi) is the product of the quadrature weight
wqi and the value of the weighting function w at quadrature point qi. In the
case of the linear HBS, the sum results from the definition of the Hessian as a
Dirac distribution supported on the grid faces, and qi, wqi are the position and
area of the shared grid faces.

By restricting χ to the span of the basis {φA}nA=1, we confine the minimiza-
tion to coefficients c ∈ Rn.

min
c

α

nP∑
k=1

g(χ(xk)) + β

nP∑
k=1

f(∇χ(xk)− nk) +
1

2

nQ∑
i=1

wi|Hχ(qi)|F (17)

s.t. χ(xk) =
∑
A

cAφ(xk) 1 ≤ k ≤ nP (18)

∇χ(xk) =
∑
A

cA∇φ(xk) 1 ≤ k ≤ nP (19)

Hχ(qi) =
∑
A

cAHφ(qi) 1 ≤ i ≤ nQ. (20)

The constraints (18) can be written more compactly by defining the row
vector Pk = (φ1(xk) . . . φn(xk)) ∈ R1×n for each sample xk and stacking them
into a sparse matrix P ∈ RnP×n with Pij = φj(xi), that is,

χ(xk) = Pk c (21)

2If the scaling is anisotropic, then the normal vector coordinates need to be scaled as well
and then re-normalized to unit length.
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Similarly, we can write the linear constraints on the gradient and Hessian (19)-
(20) as multiplications with sparse matrices N and Q by stacking the compo-
nents of each ∇χ(xk) and Hχ(qi) into 3 and m-dimensional3 column vectors,
that is,

∇χ(xk) = Nk c ∈ R3 with Nk = [∇φ1(xk), . . . ,∇φn(xk)] ∈ R3×n

Hχ(qi) = Qi c ∈ R9 with Qi = [Hφ1(qi), . . . ,Hn(qi)] ∈ Rm×n

where the sparse matrices N ∈ R3nP×n and Q ∈ RmnQ×n are constructed by
stacking the block components Nkj = ∇φj(xk) ∈ R3 and Qij = Hφj(qi) ∈ Rm
for each sample and quadrature point. The minimization problem (17) then
simplifies into the constrained minimization

min
c, u, V, W

nP∑
k=1

αg(uk)︸ ︷︷ ︸
G(u)

+

nP∑
k=1

βf(Vk − n(xk))︸ ︷︷ ︸
F (V )

+
1

2

nQ∑
i=1

wi|Wi|F︸ ︷︷ ︸
H(W )

s.t.

 u = Pc
V = Nc
W = Qc

min
c

X=[u,V,W ]

G(u) + F (V ) +H(W ) s.t. X = Kc with matrix K =

PN
Q

 .
(22)

The problem now has the standard form of many convex minimization problems
that are solved with splitting techniques. Among them, we adopt a primal-dual
formulation of [12] by rewriting (22) as the saddle-point associated with its
Lagrangian

max
ν, λ, µ

min
c
− F ∗(λ)−G∗(ν)−H∗(W ) + 〈ν, Pc〉+ 〈λ,Nc〉+ 〈µ,Qc〉. (23)

with the dual variable Y = [ν, λ, µ] associated with the constraint Y = Kc, and
F ∗, G∗ and H∗ the convex conjugates of F , G and H.

We can solve (23) efficiently with the primal-dual algorithm [12]. We choose a
first-order method because the size of the problem makes second-order methods
unfeasible. The convexity of each term in the objective allows us to solve the
minimization as a sequence of proximal problems and updates:

νn+1 ← min
ν

σG∗(ν) +
1

2
‖ν − νn+1 − σP c̄n‖2 (24)

λn+1 ← min
λ

σF ∗(λ) +
1

2
‖λ− λn − σNc̄n‖2 (25)

µn+1 ← min
µ

σH∗(µ) +
1

2
‖µ− µn − σQc̄n‖2

cn+1 = cn − τ(P ∗νn+1 +N∗λn+1 +Q∗µn+1)

c̄n = cn + θ(cn − cn−1) (26)

where P ∗, N∗, Q∗ are the adjoints of P,N,Q and αn, τ, σ are algorithm param-
eters.

The efficiency of the proposed algorithm comes from the spatial separability
of F ∗, G∗, H∗ and from the ability to find closed-form solutions for minimization
problems (24) - (26). The derivation of closed-form solutions is detailed next,
and Algorithm 1 summarizes the resulting updates, which are easy to parallelize.

3m = 9 for the spline discretizations, while m = 3 for the linear HBS discretization.
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Initialize variables to zero. Set τ, σ, θ > 0 according to [12].
while ‖cn+1 − cn‖ > 1−4 do

νn+1
k = αmin(1,

|ν̂k|
α+ εxσ

) sign(ν̂k) ν̂ = ζnν + σP c̄n

λn+1
k = β

λ̄k
max(β + σεn, |λ̄k|2)

) λ̄ = ζnλ + σ(Nc̄n − nk)

µn+1
i =

γwi
max(γwi, |µ̂|2)

µ̂ µ̂ = ζnµ + σQc̄n

cn+1 = cn − τ(P ∗νn+1 +N∗λn+1 +Q∗µn+1)

c̄n = cn + θ(cn − cn−1)

end

Algorithm 1: Primal-dual minimization algorithm.

5.0.1 Minimization in ν

Let ν̂ = ζnν − σQc̄n, we solve the minimization in ν (24) through Moreau’s
identity [36]:

ν ← min
ν

σG∗(ν) +
1

2
‖ν − ν̂‖2 ⇐⇒ ν = ν̂ − σu∗, u∗ ← min

u
G(u) +

σ

2
‖u− ν̂

σ
‖2.

The minimization in u is decoupled in each of its components ui ∈ R with a
single term in the sum

min
u

nP∑
k=1

αg(uk) + 0.5σ(uk − σ−1ν̂k)2. (27)

The minimization is thus solved by independently minimizing each term in the
corresponding uk. Due to the convexity and differentiability of the Huber loss g,
the optimality conditions are obtained by differentiating the objective function
with respect to uk.

If |u∗k|1 ≤ εx, the optimality conditions are

α

εx
u∗k + σu∗k = ν̂k ⇐⇒ u∗k =

εx
α+ εxσ

ν̂k, (28)

and the condition |u∗k|1 ≤ εx becomes |ν̂k|1 ≤ α+ εxσ.
If |u∗k|1 > εx, the optimality conditions

α sign(u∗k) + σu∗k = ν̂k whith |u∗k|1 > εx (29)

are solved by

u∗k =

{
σ−1(ν̂k − α) ν̂k > α+ σεx

σ−1(ν̂k + α) ν̂k < −α− σεx
. (30)
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Combining these two cases, the dual variable νn+1
k = ν̂k − σu∗k is updated by

νk = αmin(1,
|ν̂k|1

α+ εxσ
) sign(ν̂k) =


α ν̂k > α+ σεx

α
α+σεx

ν̂k |ν̂k|1 ≤ α+ σεx

−α ν̂k < −α− σεx
. (31)

5.0.2 Minimization in λ:

Let λ̂ = ζnλ −σNc̄n, we solve the minimization in λ (25) again through Moreau’s

identity [36] and set λ = λ̂− σV ∗ with

V ∗ ← min
V

F (V ) +
σ

2
‖V − λ̂

σ
‖2.

The minimization in V is decoupled in each one of its block components Vi ∈ R3

with a different term in the sum

min
V

np∑
k=1

βf(Vk − nk) + 0.5σ(Vk − σ−1λ̂k)2. (32)

The minimization is thus solved by independently minimizing each term in the
sum. As the Huber loss function is differentiable and convex, the minimizers
are the zeros of the derivative of the objective function with respect to each Vk,
that is,

β
V ∗k − nk

max(εn, |V ∗k − nk|2)
+ σV ∗k − λ̂k = 0. (33)

If |V ∗k − nk|2 ≤ εn, the optimality conditions are solved as follows

β

εn
(V ∗k − nk) + σV ∗i = λ̂i ⇐⇒ V ∗k = nk +

εn
β + εnσ

(λ̂k − σnk), (34)

and the condition |V ∗k − nk|2 ≤ εn becomes |λ̂k − σnk|2 ≤ β + εnσ.
If |V ∗k − nk|2 > εn, the optimality conditions can be re-written as[

β

|V ∗k − nk|2
+ σ

]
(V ∗k − nk) = λ̂k − σnk, (35)

and vectors V ∗k − nk and λ̂k − σnk are co-linear. The problem is then reduced

to finding the scalar ρ such that V ∗k − nk = ρ(λ̂k − σnk), that is

β

|λ̂k − σnk|2
+ σρ = 1 ⇐⇒ ρ =

1

σ
[1− β

|λ̂k − σnk|2
]. (36)

As a result V ∗k = nk+ 1
σ [1− β

|λ̂k−σnk|2
](λ̂k−σnk) and the condition |V ∗k −nk|2 >

εn becomes |λ̂k − σnk|2 > β + εnσ. Combining these two cases, we obtain the

following closed-form update for the dual variable λn+1
k = λ̂k − σV ∗k

λk = β
λ̂k − σnk

max( β + εnσ, |λ̂k − σnk|2 )
. (37)
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5.0.3 Minimization in µ:

Let µ̂ = ζnµ −σQc̄n, we solve the minimization in µ (26) again through Moreau’s
identity [36] and set µ = µ̂− σW ∗ with

W ∗ ← min
W

H(W ) +
σ

2
‖W − µ̂

σ
‖2.

The minimization in W is decoupled in each one of its block components Wi ∈
Rm with a different term in the sum

min
W

nQ∑
i=1

γwi|Wi|F + 0.5σ(Wi − σ−1µ̂i)
2. (38)

The minimization is thus solved by independently minimizing each term in the
sum with respect to its Wi; this correspond to the proximal operator of the
Frobenius norm that results in the shrinkage operator

W ∗i =
1

γwi + σ
µ̂. (39)

The dual variable µn+1
k = µ̂i − σW ∗i is updated by

µi =
γwi

max( γwi, |µ̂i|F )
µ̂i. (40)

6 Multiresolution

Given the hierarchy of the proposed discretizations, it is natural to accelerate
the minimization with multiresolution. To this end, the basis functions are
partitioned according to their hierarchical level Bp = BpL ∪ B

p
L−1 ∪ · · · ∪ B

p
1 and

the optimization problem (17) is solved with increasing resolution as follows:

1. Initialize χ0
0 = 0.

2. Repeat

(a) Optimization at level l: find χl ∈ spanBpl that solves (17) with Al-
gorithm 1 initialized at χl0.

(b) Compute χl+1
0 by projecting χl into spanBpl+1 with B-spline refine-

ment [20, 23].

3. At level L, χ = χL.

At each level, the optimization converges with only a few iterations because
the algorithm is initialized close to the optimum with the solution at a coarser
resolution. This speeds up the optimization without changing the final solution
because the convexity of the problem guarantees a unique minimum.

Multiresolution reduces the size of the discretization, but the size of the data
terms in the minimization problem (3) remains fixed because the data terms

α

nP∑
k=1

f(χ(xk)) + β

nP∑
k=1

g(nk −∇χ) (41)
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loop over all the input samples. We can introduce multiresolution in the model
and accelerate reconstruction by defining approximate data terms that cluster
the samples to the resolution of the representation. To this purpose, we exploit
the octree structure and substitute all the point samples inside an octree cell C
by their centroid xC and weight their contribution by the number of samples in
the cell wC . At intermediate resolutions we then substitute

nP∑
k=1

αf(χ(xk)) + βg(nk −∇χ) ≈
∑
C
wC
[
αf(χ(xC)) + βg(nC −∇χ(xC))

]
,

(42)

where nC is the average normal of the samples in cell nC . The complexity of the
resulting minimization matches the complexity of the computational grid and
improves speed at intermediate resolutions without compromising the accuracy
of the reconstruction at the finest resolution.

7 Experimental Results

We perform experiments with two kinds of data: synthetic data with ground
truth, and point clouds obtained from structured-light scanning with a Kinect
camera [7] or a range sensor. Kinect and range data suffers from non-uniform
noise, large scanning gaps, and artifacts. We use the synthetic point clouds for
quantitative evaluation and the noisy ones to test reconstruction on data with
real noise and artifacts4.

The reconstructed surfaces are obtained by extracting the zero isolevel of
the implicit function with the Dual-Marching-Cubes algorithm of [38]. This
algorithms discretizes the surface with a polygonal mesh and can be applied to
any volumetric grid of hexahedral cells like the ones of our discretzations.

The model parameters α, β are normalized by the number of points and γ is
normalized by the size of the bounding volume to make the model independent
of size and range of the point cloud. After this normalization, they are manually
set to values as they provide good reconstructions for all the experiments. The
parameters εx, εn are fixed estimates of the noise in the location and orientation
of point cloud that we set manually to 0 for clean data and 0.1 for noisy ones.
Spatially varying parameters are possible, but we do not investigate them here.

Our first experiment compares the proposed model to a least-square fit in
Figure 2 with synthetic, noisy and corrupted data with the same discretization
(linear HBS basis) to focus on our first contribution, the use of robust penalties
for both the normal field and the screening term. In Figures 2(a) - 2(d) the least-
squares model rounds the cube’s corners because it blindly averages the normal
samples from different cube sides on the corners, our robust model overcomes
this limitation with a Huber penalty that considers the normal samples from
different cube sides as outliers for the others. In Figures 2(e) - 2(h), a least-
squares penalty on the screening term shrinks thin structures, like the ears or
horns of the cow, because point samples from opposite sides act as outliers and
pull the reconstruction to the center of the thins structure, leading to shrinkage.

4 All the datasets are publicly available at http://graphics.stanford.edu/data/3Dscanrep/,
http://www.cc.gatech.edu/projects/large models/, http://people.sc.fsu.edu/ jburkardt/data,
and http://bitbucket.org.jbalzer/yas.
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Table 1: Average reconstruction time and Haussdorf distance distance, as a
percentage of the bounding-box diagonal, between the point cloud and the re-
constructed surface from 10% of its samples.

discretizations average distance running time (seconds)
dragon bunny cow cube dragon bunny cow cube

quadratic HBS basis 0.387 0.538 0.402 1.125 672 403 432 326
HBS dictionary 0.105 0.111 0.088 0.808 81 75 46 24
linear HBS basis 0.098 0.143 0.068 0.157 58 53 45 5

Finally, our reconstruction is robust to outliers caused by scanning artifacts
in the scanned head of Figures 2(i) - 2(k) without shrinking the ear by over-
smoothing like the least-squares model. From this experiment, we conclude that
the robust data-fidelity term improves reconstruction, both for the screening and
normal components.

Our second experiment investigates the effects the discretization in the ac-
curacy of the reconstruction. Results are shown in Figure 3 and Table 1. The
richer but also more complex discretization is the first one (quadratic HBS ba-
sis), while the other two correspond to two possible simplifications in terms of
polynomial degree (linear HBS basis) and the refinement strategy (quadratic
HBS dictionary). In particular, the quadratic dictionary and the linear HBS
defined by the octrees create the same hierarchical structure and have compa-
rable complexity, but differ slightly in speed and accuracy. Quadratic splines
are slighty slower because they require computing second-order derivatives with
a Cox-DeBoor algorithm, while the linear HBS basis only needs to evaluate
finite-differences of vertex values. In terms of accuracy, the linear HBS has con-
stant derivatives within each cell that lead to smoother reconstructions when
combined with the hierarchical basis, while the quadratic HBS dictionary pro-
duce very small and localized basis functions in textured areas that can cause
wiggles, see the cow’s torso in Figures 3(m) and 3(o). The quadratic HBS basis
produces smoother results but is an order of magnitude slower than the sim-
plified discretizations, moreover the posterior use of marching cubes to extract
the surface can lead to holes or cracks, as observed in the right ear of the cow
or the lower left wing of the angel in Figures 3(n) and 3(h). Both the cracks in
the quadratic HBS dictionary and the wiggles in the quadratic HBS dictionary
can be eliminated by increasing the order of the quadrature rule at the price
of a higher computational cost – in memory and computations. For this rea-
son, we adopt the linear HBS discretization over the octree in the rest of our
experiments.

A third set of experiments compares our model and discretizations to the
state-of-the-art techniques [23, 24, 10] 5. Figure 4 compares them visually for
synthetic data, for which we have ground truth, and Table 2 quantitatively.
Although the least-squares models [24, 10] have average Haussdorf distances
comparable to our model, see Table 2, they produce errors that are not captured
by the statistics of the point cloud but the geometry of the reconstruction. The
models of [24, 10] round the cube’s corners and shrink the ears of the cow

5As [24] is a generalization of [23] and we can switch between the two models by adapting
a parameter, we tune this parameter for the best reconstruction performance with each point
cloud and only report results for [24] models.
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Table 2: Average reconstruction time and Haussdorf distance dH, as a per-
centage of the bounding-box diagonal, between the point cloud and the clean
reconstructed surface. Average running time

dH 10% subsampled point cloud point cloud with noise of σ = 0.1 average
dragon bunny cow cube dragon bunny cow cube time (s)

[10] 0.112 0.116 0.069 0.192 0.150 0.290 0.198 0.288 8
[24] 0.096 0.095 0.043 0.193 0.110 0.170 0.187 0.221 88
ours 0.098 0.143 0.068 0.158 0.112 0.172 0.171 0.225 51

because they rely on least-squares data terms, while our model overcomes these
artifacts with a robust Huber penalty that recovers the sharp corner in the
cube and avoids the shrinking bias. This bias does not only reduce the size of
small structures, but it can lead to geometrically incorrect reconstructions, as
shown in Figures 4(j)-4(l) where the least-squares models of [24, 10] merge the
ears and horns of the cow into a single structure that misrepresents the high-
curvature geometry of these areas. These experiments allow us to quantitatively
evaluate the performance of our model in Table 2 by measuring the Haussdorf
ditance between clean point clouds and the surfaces reconstructed from pertubed
point clouds, obtained by either sub-sampling the point cloud or adding white
Gaussian noise of standard deviation σ to the point locations and normals.

As we are interested in reconstruction from corrupted point clouds suffering
from outliers, we also perform experiments with noisy point clouds captured
with a kineckt camera [7] and range data. In this case, the least-squares mod-
els [24] and [10] reconstruct surfaces that reproduce the scanning artifacts of
the point clouds and lead to incorrect topology estimates, as shown in Figures
5-6. The two model contributions of our reconstruction are featured in these
experiments. First, the use of a robust Huber function allows us to estimates
the correct topology – the shoelace of Figure 6(k) or the human ear in Figure
5(l)– and eliminate spurious point clusters – the head of the cleaner in Figure
5(h) or the dancers stature of Figure 6(g). Estimating the correct topology is an
important feature because it is expensive to recover the correct topology once
an explicit parametrization, e.g., a triangulated surface, has been extracted.
Second, our regularizer allows for sharp changes in orientation and avoids over-
smoothing the normals in textured areas, as shown in Figures 5(c)-5(d) and
6(j)-6(k). In our regularizer, we weight the norm of the Hessian with a mask
that is only active far from the samples to avoid smoothing the normals close
to the point cloud, as [10] does in Figure 6(j), and do not square the Frobenius
norm to allow for sharp changes in surface orientation that appear whenever
two surface sheets with opposite orientations are spatially close. As a result, we
are able to reconstruct the correct topology of the statue in Figure 5(d), while
[10] merges the two surface sheets at statue’s leg because it overpenalizes sharp
changes in orientation and oversmooths the normals in Figure 5(c). This is an
important feature for the reconstruction of surfaces with touching sheets and
highlights the importance of both robust data terms and regularizers for the
estimation of a continuous surface from a set of sparse points.
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8 Conclusions

We reconstruct surfaces from corrupted point clouds by formulating the prob-
lem as a convex minimization that is robust to outliers, avoids the shrinking
bias of least squares, and is able to recover sharp corners as well as smooth
regions. To this purpose, we substitute the usual least-squares penalties for ro-
bust Huber loss functions and introduce a regularizer that allows sharp changes
in the surface’s orientation and is only active far from the samples to avoid
over-smoothing of textured regions. These properties are demonstrated experi-
mentally with both clean and corrupted and synthetic and real data.

For an efficient parametrization, we approximate the implicit function with
hierarchical basis functions that are spatially localized to match the resolu-
tion of the data. After investigating discretizations of different complexity and
smoothness, we conclude that a linear hierarchical B-spline basis over an octree
offers the best performance for our data resolution, allowing us to both represent
smooth regions and sharp corners with piecewise linear elements.

The proposed discretizations lend themselves to a multiresolution strategy
for the minization. This is particularly advantageous because the use of robust
Huber penalties in our variational model leads to a more complex minimization
problem that we solve efficiently with a primal-dual algorithm that exploits its
convexity and is easy to parallelize. As a result, our method is just an order of
magnitude slower that the least-squares models [23, 10, 24] for a more robust
and accurate results.
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(a) Huber, clean cube (b) least squares, clean (c) Huber, noisy cube (d) least squares, noisy

(e) Huber, clean samples (f) least squares, clean samples

(g) Huber, noisy samples (h) least squares, noisy samples

(i) point cloud (j) Huber (k) least squares

Figure 2: Comparison of reconstruction models with least-squares and Huber
data terms with a linear HBS discretization. The Huber penalty of our recon-
struction model offers 3 advantages in comparison to a least-squares penalties:
first, it is able to reconstruct sharp corners, as observed for the clean and noisy
samples of cube in Figures 2(a)-2(d); second, it avoids the shrinkage of thin
structures, like the ears of the cow in Figures 2(e)-2(h)), and third, it is robust
to outliers due to scanning artifacts whithout over-smoothing and shrinking, as
Figures 2(i)-2(k) show for the ear region.
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(a) HBS dictionary (b) quadratic HBS basis (c) linear HBS basis

(d) HBS dictionary (e) quadratic HBS basis (f) linear HBS basis

(g) HBS dictionary (h) quadratic HBS basis (i) linear HBS basis

(j) HBS dictionary (k) quadratic HBS basis (l) linear HBS basis

(m) HBS dictionary (n) quadratic HBS basis (o) linear HBS basis

Figure 3: Reconstructed surface and execution time with different discretiza-
tions. The quadratic HBS basis produces smoother results but is an order of
magnitude slower than the octree discretizations, while the octree representa-
tions differ in the reconstruction of smooth regions: the quadratic splines pro-
duce wiggles in textures areas, and the mixed FE-FD recovers smooth regions
in the cow’s torso.
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(a) [24] (b) [10] (c) our

(d) [24] (e) [10] (f) our

(g) [24] (h) [10] (i) our

(j) [24] (k) [10] (l) our

Figure 4: Comparison to state-of-the-art for synthetic data, with and without
noise. The models of [24, 10] round the cube’s corners and shrink the ears of the
cow because they rely of least-squares data terms, while our model overcomes
these artifacts with a robust Huber penalty that recovers the sharp corner in
the cube and avoids the shrinking bias that merges the ears and horns of the
cow in least-squares reconstructions [24, 10] from noisy samples.
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(a) kinekt point cloud (b) [24] (c) [10] (d) our model

(e) kinekt point cloud (f) [24] (g) [10] (h) our model

(i) range point cloud (j) [24] (k) [10] (l) our model

(m) zoom on 5(j) (n) zoom on 5(k) (o) zoom on 5(l)

Figure 5: Comparison to state-of-the-art models [24, 10] with noisy point clouds
captured with a kineckt camera [7] and a range scanner. The models of [24, 10]
are not robust to outliers and lead to reconstructions with incorrect topologies:
[10] merges the two surface sheets in the statue’s knee because it relies on a
least-squares regularizer of the Hessian that smooths the normal samples of
close surface sheets, while both [24] and Calakli2011 reconstructions reproduce
the scanning artifacts of the point cloud at the head of the cleaner bottle and
the ear of the human head. Our model is robust to outliers and estimates the
correct topology.
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(a) kinekt point cloud (b) [24] (c) [10] (d) our model

(e) [24] (f) [10] (g) our model

(h) kinekt point cloud (i) [24] (j) [10] (k) our model

(l) zoom on 6(i) (m) zoom on 6(j) (n) zoom on 6(k)

Figure 6: Comparison to state-of-the-art models [24, 10] with noisy point clouds
captured with a kineckt camera [7]. The models of [24, 10] are not robust to
outliers and lead to reconstructions with incorrect topologies: there are residual
spheres due to a cluster of outliers in the reconstruction of the dancers in Fig-
ures 6(b) and 6(c), more visible in the close-up views of Figures 6(e) and 6(f).
Similarly, only our model is able to capture the right topology of the shoelace
in the reconstruction of the scanned shoe of Figures 6(i)-6(n).
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