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Abstract. Decomposing multidimensional signals, such as images, into spa-
tially compact, potentially overlapping modes of essentially wavelike nature

makes these components accessible for further downstream analysis. This

decomposition enables space-frequency analysis, demodulation, estimation of
local orientation, edge and corner detection, texture analysis, denoising, in-

painting, and/or curvature estimation.

Our model decomposes the input signal into modes with narrow Fourier
bandwidth; to cope with sharp region boundaries, incompatible with narrow

bandwidth, we introduce binary support functions that act as masks on the

narrow-band mode for image re-composition. L1 and TV-terms promote spar-
sity and spatial compactness. Constraining the support functions to partitions

of the signal domain, we effectively get an image segmentation model based
on spectral homogeneity. By coupling several sub-modes together with a sin-

gle support function we are able to decompose an image into several crystal

grains.
Our efficient algorithm is based on variable splitting and alternate direc-

tion optimization; we employ Merriman-Bence-Osher-like (MBO,[48]) thresh-

old dynamics to handle efficiently the motion by mean curvature of the support
function boundaries under the sparsity promoting terms.

The versatility and effectiveness of our proposed model is demonstrated on

a broad variety of example images from different modalities. These demonstra-
tions include the decomposition of images into overlapping modes with smooth

or sharp boundaries, segmentation of images of crystal grains, and inpainting

of damaged image regions through artifact detection.

1. Introduction

In this paper, we are interested in decomposing images f : Rn → R into ensembles
of constituent modes (components) that have specific directional and oscillatory
characteristics. Simply put, the goal is to retrieve a small number K of modes
uk : Rn → R, that each have a very limited bandwidth around their characteristic
center frequency ωk. These modes are called intrinsic mode functions (IMF) and can
be seen as amplitude- and frequency-modulated (AM-FM) n-D signals (“plane”-
waves). Such a mode can have limited spatial support, its local (instantaneous)

Date: November 8, 2015.
2010 Mathematics Subject Classification. Primary: 68U10.
Key words and phrases. Image decomposition, Image segmentation, Spatio-spectral decompo-

sition, Microscopy, Crystal grains, Artifact detection, Threshold dynamics, Variational methods,

Sparse time-frequency analysis.
This work was supported by the Swiss National Science Foundation (SNF) under grants

PBELP2-137727 and P300P2-147778, the UC Lab Fees Research grant 12-LR-236660, and the
W. M. Keck Foundation.

1



2 D. ZOSSO, K. DRAGOMIRETSKIY, A. L. BERTOZZI, AND P. S. WEISS

frequency and amplitude vary smoothly, several modes can overlap in space, and
together the ensemble of modes should reconstruct the given input image up to
noise and singular features.

Many fields use signal decomposition as a fundamental tool for quantitative and
technical analysis. In remote sensing, decomposing images based on frequency con-
tent and signal priors, such as housing lattices and terrain structures, is useful
for segmentation, identification, and classification [16]. In oceanography, a com-
bination of baroclinic modes helps model density profiles of seasonal cycles, and
other geophysical phenomena such as thermal or solar variation [23, 64]. Similarly,
in seismology, modes with differing frequency components help highlight different
geological and stratigraphic information [34]. In holography, mode decomposition
allows reducing speckle [44]. In the fields of energy and power engineering, mode
decompositions are used for vibration analysis and fault detection, e.g., [27, 66].
Multivariate mode decomposition and mode entropy analysis are useful tools in
neural data analysis [41]. In crystallography, because the crystal lattice exhibits
multiple spatial periodicities, interpretable as a superposition of multiple differ-
ent cosine-waves, we wish to couple several “sub-modes” into a single phase. This
coupled-mode decomposition enables robust estimates of mesoscopic properties such
as crystal defects, rotations, and grain boundaries. Recent work in crystal orien-
tation detection includes variational methods based on tensor maps in conjunc-
tion with a regularization scheme [19] and 2D synchrosqueezed transforms [72]. In
nanoscale imaging, segmentation enables analyses and comparisons of surface re-
gions of different structures as well as directed measurements of function, spectra,
and dynamics [63, 68]. Ultimately, efficient segmentation will enable directed data
acquisition and parsing acquisition time between different modalities to assemble
and to converge complementary structural, functional, and other information.

Independent of the scientific discipline, sparse signal decomposition provides
expansive utility and a more advanced podium from which to elucidate greater
understanding.

1.1. Recent and related work. The problem is inspired by the one-dimensional
empirical mode decomposition (EMD) algorithm [42] and its more recent derivates,
such as [24, 37, 38, 39, 46, 55, 56, 57, 61, 67, 70]. We are interested in the two-
dimensional (2D) analogs and extensions of such decomposition problems. The 2D
extension of EMD [53] similarily uses recursive sifting of 2D spatial signals by means
of interpolating upper and lower envelopes, median envelopes, and thus extracting
image components in different “frequency” bands. This 2D-EMD, however, suffers
from the same drawbacks in robustness as the original EMD in extremal point
finding, interpolation of envelopes, and stopping criteria imposed. More recent
work, such as the Prony-Huang Transform [60], has only partially improved on
some of these drawbacks using modern variational and transform methods.

Classical decomposition methods include the discrete Fourier transform (DFT)
and the continuous wavelet transform (CWT), where a fixed basis can be used to
find a sparse representation. Using more general bases or frames, extended methods
such as matching pursuit decomposition (MP), method of frames, best orthogonal
basis (BOB), and basis pursuit (BP) are more robust and, in principle, decompose
a signal into an “optimal” superposition of dictionary elements. Though these
methods have had success with simple signals, they are still not fully robust to
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non-stationary waves and require a large, redundant dictionary of elements, which
are not reflective of the specifics of the given signal.

More specific methods for directional image decomposition work by mostly rigid
frames, decomposing the Fourier spectrum into fixed, mostly or strictly disjoint,
(quasi-)orthogonal basis elements. Examples include Gabor filters [65], wavelets
[13, 15, 45], curvelets [5], or shearlets [33, 43]. These methods are not adaptive
relative to the signal, and can attribute principle components of the image to dif-
ferent bands, as well as contain several different image components in the same
band. Adaptivity and tuned sparsity concerns have been addressed through syn-
chrosqueezed wavelet transforms [10, 14, 69, 73], where unimportant wavelet coeffi-
cients are removed by thresholding based on energy content. In pursuit of the same
goal, the 2D empirical wavelet transform (EWT) [29, 30] decomposes an image by
creating a more adaptive wavelet basis.

In previous work [17], Dragomiretskiy and Zosso defined a fully variational model
for mode decomposition of 1D signals. The so-called variational mode decomposi-
tion (VMD) in 1D is essentially based on well-established concepts such as Wiener
filtering, the 1D Hilbert transform and the analytic signal, and heterodyne de-
modulation. The goal of 1D-VMD is to decompose an input signal into a discrete
number of sub-signals (modes), where each mode has limited bandwidth in the
spectral domain. In other words, one requires each mode uk : R→ R to be mostly
compact around a center pulsation ωk, which is to be determined along with the
decomposition. In order to assess the bandwidth of a mode, the following scheme
was proposed [17]: 1) for each mode uk, compute the associated analytic signal by
means of the Hilbert transform in order to obtain a unilateral frequency spectrum.
2) For each mode, shift the mode’s frequency spectrum to “baseband”, by mixing
with an exponential tuned to the respective estimated center frequency. 3) The
bandwidth is now estimated through the H1 smoothness (Dirichlet energy) of the
demodulated signal. The resulting constrained variational problem is the following:

(1) min
uk : R→R, ωk

{∑
k

∥∥∥∥∂t [{(δ(·) +
j

π·

)
∗ uk(·)

}
(t)e−jωkt

]∥∥∥∥2

2

}
s.t. ∀t ∈ R :

∑
k

uk(t) = f(t).

In [17], it was shown that this variational model can be minimized efficiently and
it outperforms empirical mode decomposition algorithms in various respects, most
notably regarding noise robustness and mode cleanliness.

1.2. Proposed method. In this paper we propose a natural two-dimensional ex-
tension of the (1D) variational mode decomposition algorithm [17] in the context
of image segmentation and directional decomposition. The 2D-VMD algorithm is a
non-recursive, fully adaptive, variational method that sparsely decomposes images
in a mathematically well-founded manner.

Here, we are interested in making the advantages of the variational model acces-
sible for the 2D case (and higher dimensions equally so). The first order of business
is thus to generalize the 1D-VMD model to the multidimensional case, as sketched
in [18]. Second, we want to address an intrinsic conflict of the VMD model, namely
the inverse relation between spatial and frequency support: in 1D VMD it was
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noted that the algorithm had difficulties whenever signals exhibited sudden onset
and amplitude changes, since these effectively represent a violation of the assump-
tions of Bedrosian’s theorem, a key element of the VMD model. In this work, we
address this issue by further introducing a separate amplitude function that masks
the underlying mode spatially, which allows decoupling spatial from spectral sup-
port. In 2D, this approach allows extraction of modes with sharp boundaries. We
then introduce various priors on the shape of the amplitude function. Requiring the
amplitude function to be binary and penalizing its total variation regularizes the
mode boundaries. Restricting the ensemble of amplitude functions associated with
the various modes to the probability simplex at each pixel leads to non-overlapping
modes effectively segmenting the image. Coupling several modes to share a single
support function further allows extraction of multi-wave textures, such as hexagonal
lattice patterns.

The remainder of this paper is organized as follows. In section 2, we provide a
short definition and description of the Hilbert transform and one of its generaliza-
tions to higher dimensions, formulate our proposed 2D-VMD model, and present a
strategy to solve it numerically. We further introduce a separate term for compact
spatial support in section 3, by defining binary support functions. In section 4, we
can then restrict the support of the modes to form a partition of the image do-
main, resulting in spectrum-based image segmentation. Further, we couple several
submodes together (joint support) to model domains with non-trivial spectral dis-
tributions, in section 5. Finally, we include an artifact detection term to eliminate
outlier pixels, as described in section 6. Decomposition and segmentation results on
synthetic and real data are provided in section 7, and we discuss the implications
of and prospects for this work in section 8.

2. Two-Dimensional Variational Mode Decomposition

We design the 2D model analogously to its 1D predecessor, minimizing the con-
stituent sub-signals bandwidth while maintaining data fidelity. While derivatives
in higher dimensions are simply generalized by gradients, and modulation is also
straightforward, the generalization of the analytic signal is less obvious. To com-
plete the analogy, we must first define the appropriate “analytic signal”-equivalent
in the n-D context.

2.1. n-D Hilbert transform / Analytic signal. In the 1D time domain, the
analytic signal is achieved by adding the Hilbert transformed copy of the original
signal f : R→ R as imaginary part [25]:

(2)
fAS : R → C

fAS(t) 7→ f(t) + jH{f}(t),

where j2 = −1, and the 1D Hilbert transform is defined as:

(3) H{f}(t) :=

{
1

πs
∗ f(s)

}
(t) =

1

π
p.v.

∫
R

f(s)

t− s
ds,

where ∗ denotes convolution. We note that the real signal is recovered simply by
taking the real component of the analytic signal.
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In the spectral domain, this definition of analytic signal corresponds to suppress-
ing the negative frequencies, thus giving it a unilateral spectrum:

(4) f̂AS(ω) =


2f̂(ω), if ω > 0,

f̂(ω), if ω = 0,

0, if ω < 0,

where

f̂(ω) := F{f(·)}(ω) = 1/
√

2π

∫
R
f(t)e−jωtdt

is the unitary Fourier transform in 1D.
Single-sidedness of the analytic signal spectrum was the key property motivating

its use in the 1D case, since this property allowed for easy frequency shifting to base-
band by complex exponential mixing. Therefore, to mimic this spectral property
in 2D, one half-plane of the frequency domain must effectively be set to zero;1 this
half-plane is chosen relative to a vector, in our case to ~ωk. Thus the 2D analytic
signal of interest can first be defined in the frequency domain by generalizing the
concept of half-space spectrum suppression:

(5)
f̂AS(~ω) =


2f̂(ω), if 〈~ω, ~ωk〉 > 0,

f̂(ω), if 〈~ω, ~ωk〉 = 0,

0, if 〈~ω, ~ωk〉 < 0,

= (1 + sgn(〈~ω, ~ωk〉)f̂(~ω)

where the n-D Fourier transform is defined as

f̂(~ω) := F{f(·)}(~ω) = (2π)−n/2
∫
Rn

f(~x)e−j〈~ω,~x〉d~x.

The 2D analytic signal in the time domain with the aforementioned Fourier
property is given in [4]. It is easy to see how the generalized analytic signal reduces
to the classical definition in 1D.

2.2. n-D VMD functional. We are now able to put all the generalized VMD
ingredients together to define the two-dimensional extension of variational mode
decomposition. The functional to be minimized, stemming from this definition of
n-D analytic signal, is:

(6) min
uk : Rn→R, ~ωk∈Rn

{∑
k

αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2

}
s.t. ∀~x ∈ Rn :

∑
k

uk(~x) = f(~x),

where uAS,k denotes the generalized analytic signal obtained from the mode uk
according to (5) using its associated center frequency ωk. We thus minimize the
Dirichlet energy of the modes after half-space spectrum suppression (uk → uAS,k)

and demodulation to baseband (e−j〈~ωk,~x〉), subject to collective signal fidelity. This
model specifically includes the desired two-dimensional case n = 2, and reduces to
the earlier 1D-VMD for n = 1.

Analogous to the 1D VMD model, the reconstruction constraint is addressed
through the introduction of a quadratic penalty and Lagrangian multiplier (the

1Similarly, in higher dimensions, a half-space of the frequency domain needs to be suppressed.
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augmented Lagrangian, AL, method), and we proceed by alternate direction mini-
mization (ADMM) for optimization [2, 17, 52].

2.3. Augmented Lagrangian and ADMM Optimization. To render the con-
strained minimization problem (6) unconstrained, we include both a quadratic
penalty and a Lagrangian multiplier to enforce the fidelity constraint. We thus
define the augmented Lagrangian:

(7) L({uk} , {ωk} , λ) :=
∑
k

αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2

+
∥∥∥f(~x)−

∑
uk(~x)

∥∥∥2

2
+
〈
λ(~x), f(~x)−

∑
uk(~x)

〉
.

where λ : Rn → R is the Lagrangian multiplier. We can now solve the unconstrained
saddle point problem instead of (6):

(8) min
uk : Rn→R, ~ωk∈Rn

max
λ : Rn→R

L({uk} , {ωk} , λ)

The solution to the original constrained minimization problem (6) is now found as
the saddle point of the augmented Lagrangian L in a sequence of iterative sub-
optimizations called alternate direction method of multipliers (ADMM) [2, 36, 58].
The idea is to iterate the following sequence of variable updates:

ut+1
k ← arg min

uk : Rn→R
L
({
ut+1
i<k

}
, uk,

{
uti>k

}
,
{
ωti
}
, λt
)

(9a)

~ωt+1
k ← arg min

~ωk∈Rn

L
({
ut+1
i

}
,
{
~ωt+1
i<k

}
, ~ωk,

{
~ωti>k

}
, λt
)

(9b)

λt+1 ← λt + τ
(
f −

∑
ut+1
k

)
(9c)

for 1 > τ ≥ 0. For simplified notation while considering the subminimization
problems (9a) and (9b) in the following paragraphs, we incorporate the Lagrangian
multiplier term λ into the quadratic penalty term, and rewrite the objective ex-
pression slightly different:

(10) L({uk} , {ωk} , λ) =
∑
k

αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2

+

∥∥∥∥f(~x)−
∑

uk(~x) +
λ(~x)

2

∥∥∥∥2

2

−
∥∥∥∥λ(~x)2

4

∥∥∥∥2

2

2.4. Minimization w.r.t. the modes uk. The relevant update problem derived
from (10) is

(11) un+1
k = arg min

uk : Rn→R

{
αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2

+
∥∥∥f(~x)−

∑
i

ui(~x) +
λ(~x)

2

∥∥∥2

2

}
Since we are dealing with L2-norms, we can make use of the L2 Fourier isometry and
rewrite the subminimization problem in spectral domain (thus implicitly assuming
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periodic boundary conditions):

(12) ûn+1
k = arg min

ûk|uk : Rn→R

{
αk ‖j~ω [ûAS,k(~ω + ~ωk)]‖22

+
∥∥∥f̂(~ω)−

∑
i

ûi(~ω) +
λ̂(~ω)

2

∥∥∥2

2

}
.

The ωk-term in the spectrum of the analytic signal is due to the modulation with
the complex exponential, and justified by the well-known transform pair:

(13) f(~x)e−j〈~ω0,~x〉 F←→ f̂(~ω) ∗ δ(~ω + ~ω0) = f̂(~ω + ~ω0),

where δ is the Dirac distribution and ∗ denotes convolution. Thus, multiplying an
analytic signal with a pure exponential results in simple frequency shifting. Further,
we can push the frequency shift out of the analytic signal spectrum through a change
of variables, to obtain:

(14) ûn+1
k = arg min

ûk|uk : Rn→R

{
αk ‖j(~ω − ~ωk) [ûAS,k(~ω)]‖22

+
∥∥∥f̂(~ω)−

∑
i

ûi(~ω) +
λ̂(~ω)

2

∥∥∥2

2

}
.

We now plug in the spectral definition of the n-D analytic signal (5),

ûAS,k(~ω) = (1 + sgn(〈~ω, ~ωk〉))ûk(~ω).

Also, the spectra in the second term have Hermitian symmetry, since they corre-
spond to real signals. Let

Ωk ⊂ Rn : Ωk := {~ω | 〈~ω, ~ωk〉 ≥ 0}
denote the frequency domain half-space to which the n-D analytic signal is re-
stricted. We rewrite both terms as integrals over these frequency domain half-
spaces:

(15) ûn+1
k = arg min

ûk|uk : Rn→R

{
2αk

∫
Ωk

|~ω − ~ωk|2|ûk(~ω)|2d~ω

+

∫
Ωk

∣∣∣f̂(~ω)−
∑
i

ûi(~ω) +
λ̂(~ω)

2

∣∣∣2d~ω}.
This subminimization problem is now solved by letting the first variation w.r.t.

ûk vanish2. The optimal mode spectrum thus satisfies:

(16) 0 = 2αk|~ω − ~ωk|2ûk −
(
f̂(~ω)−

∑
i

ûi(~ω) +
λ̂(~ω)

2

)
, ∀~ω ∈ Ωk.

With this optimality condition, solving for ûk yields the following Wiener-filter
update:

(17) ûn+1
k (~ω) =

(
f̂(~ω)−

∑
i 6=k

ûi(~ω) +
λ̂(~ω)

2

) 1

1 + 2αk|~ω − ~ωk|2
, ∀~ω ∈ Ωk.

2Note that the spectrum of uk is complex valued so the process of “taking the first variation”

is not self-evident. However, the functional is analytic in ûk and complex-valued equivalents to
the standard derivatives do indeed apply.
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The full spectrum ûn+1
k can then be obtained by symmetric (Hermitian) completion.

Equivalently, we can decide to update the half-space analytic signal of the mode,
ûn+1
AS,k, on the entire frequency domain, instead:

(18) ûn+1
AS,k(~ω) =

(
f̂(~ω)−

∑
i 6=k

ûi(~ω) +
λ̂(~ω)

2

) 1 + sgn(〈~ω, ~ωk〉)
1 + 2αk|~ω − ~ωk|2

, ∀~ω ∈ Rn,

from which the actual mode estimate is recovered as the real part after inverse
Fourier transform. The term in parentheses is the signal’s k-th residual, where

f̂(~ω) −
∑
i 6=k ûi(~ω) is the explicit current residual, and λ̂ accumulates the recon-

struction error over iterations (see below). The second term is identified as a fre-
quency filter tuned to the current estimate of the mode’s center pulsation, ~ωk, and
whose bandwidth is controlled by the parameter αk.

2.5. Minimization w.r.t. the center frequencies ~ωk. Optimizing for ~ωk is
even simpler. Indeed, the respective update goal derived from (10) is

(19) ~ωn+1
k = arg min

~ωk∈Rn

{
αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2

}
.

Or, again we may consider the equivalent problem in the Fourier domain:

(20) ~ωn+1
k = arg min

~ωk∈Rn

{
αk
∥∥j(~ω − ~ωk)(1 + sgn(〈~ωk, ~ω〉))ûk(~ω)

∥∥2

2

}
= arg min

~ωk∈Rn

{
4αk

∫
Ωk

|~ω − ~ωk|2 |ûk(~ω)|2 d~ω
}
.

The minimization is solved by letting the first variation w.r.t. ~ωk vanish, leading
to:

(21)

∫
Ωk

(~ω − ~ωn+1
k ) |ûk(~ω)|2 d~ω = 0.

The resulting solutions are the centers of gravity of the modes’ power spectra,
|ûk(~ω)|2, restricted to the half-space Ωk:

(22) ~ωn+1
k =

∫
Ωk
~ω|ûk(~ω)|2d~ω∫

Ωk
|ûk(~ω)|2d~ω

=

∫
Rn ~ω|ûAS,k(~ω)|2d~ω∫
Rn |ûAS,k(~ω)|2d~ω

,

where the second form is given for implementation purposes, based on the analytic
signal spectrum and involving the entire frequency domain.

2.5.1. Maximization w.r.t. the Lagrangian multiplier λ. Maximizing the λ is the
simplest step in the algorithm. The first variation for λ is just the data reconstruc-
tion error, f(~ω)−

∑
k u

n+1
k (~ω). We use a standard gradient ascent with fixed time

step 1 > τ ≥ 0 to achieve this maximization:

(23) λn+1(~x) = λn(~x) + τ

(
f(~x)−

∑
k

un+1
k (~x)

)
.

It is important to note that choosing τ = 0 effectively eliminates the Lagrangian
update and thus reduces the algorithm to the penalty method for data fidelity
purposes. Doing so is useful when exact data fidelity is not appropriate, such as
in (high) noise scenarios, we reconstruction error actually allows capturing noise
separately.
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Note also that the linearity of the Euler-Lagrange equation allows an impartial
choice in which space to update the Lagrangian multiplier, either in the time domain
or in the frequency domain. In our implementation, we perform our dual ascent
update in the frequency domain, since the other appearance of the Lagrangian
multiplier in (18) is in spectral terms, as well. Thus:

(24) λ̂n+1(~ω) = λ̂n(~ω) + τ

(
f̂(~ω)−

∑
k

ûn+1
k (~ω)

)
.

2.5.2. Complete 2D VMD algorithm. The entire proposed algorithm for the 2D-
VMD functional optimization problem (6) is summarized in algorithm 1. Variables
are trivially initialized at 0, except for the center frequencies, ~ωk, for which smart
initialization is of higher importance; initial ~ω0

k can, e.g., be spread randomly, radi-
ally uniform, or initialized by user input. Further, we choose to assess convergence
in terms of the normalized rate of change of the modes. Typical thresholds ε > 0
range in orders of magnitude from 10−4 (fast) down to 10−7 (very accurate).

Algorithm 1 2D-VMD

Input: signal f(~x), number of modes K, parameters αk, τ , ε.
Output: modes uk(~x), center frequencies ~ωk.

Initialize {ω0
k}, {û0

k} ← 0, λ̂0 ← 0, n← 0
repeat

n← n+ 1
for k = 1 : K do

Create 2D mask for analytic signal Fourier multiplier:

Hn+1
k (~ω)← 1 + sgn(〈~ωnk , ~ω〉)

Update ûAS,k:

ûn+1
AS,k(~ω)← Hn+1

k (~ω)

 f̂(~ω)−
∑
i<k

ûn+1
i (~ω)−

∑
i>k

ûni (~ω) + λ̂n(~ω)
2

1 + 2αk|~ω − ~ωnk |2


Update ~ωk:

~ωn+1
k ←

∫
R2 ~ω|ûn+1

AS,k(~ω)|2d~ω∫
R2 |ûn+1

AS,k(~ω)|2d~ω
Retrieve uk:

un+1
k (~x)← <

(
F−1

{
ûn+1
AS,k(~ω)

})
end for
Dual ascent (optional):

λ̂n+1(~ω)← λ̂n(~ω) + τ

(
f̂(~ω)−

∑
k

ûn+1
k (~ω)

)
until convergence:

∑
k ‖û

n+1
k − ûnk‖22/‖ûnk‖22 < ε.

An example of image decomposition achieved with 2D VMD according to algo-
rithm 1 is shown in figure 1.
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3. VMD with Compact Spatial Support

A main assumption regarding the intrinsic mode functions considered so far is
that their amplitude (spatially) varies much more slowly than the wavelength of
the carrier. Indeed, IMFs can be defined as signals (in time or space) that are
both amplitude and frequency modulated [14]. In [17], we have defined the total
practical IMF bandwidth of such an AM-FM signal, as an extension to Carson’s
rule for FM-signal bandwidth [6]:

(25) BWAM-FM := 2(∆f + fFM + fAM),

where ∆f and fFM represent the frequency swing and modulation bandwidth, re-
spectively, of the FM part, while fAM denotes the bandwidth of the amplitude
modulation. The last, AM bandwidth, conflicts with signals composed of modes
having sudden signal onset, in particular those with compact spatial support. In-
deed, this inverse relation between spatial and spectral compactness is well known
and stated by the Heisenberg uncertainty principle.

3.1. Introducing binary support functions Ak. To make our “modes have
limited bandwidth”-prior compatible with signals of limited spatial support, it is
thus necessary to deal with the spatial and spectral compactness of the modes,
separately. To this end, we introduce a binary support function for each mode, in
order to capture the signal onset and offset disconnected from the smooth AM-FM
modulations.

We consider signals and modes f, uk : Rn → R (thus including both the 1D-VMD
and higher dimensional signals such as 2D-VMD stated above). Let

Ak : Rn → {0, 1}
denote the binary support functions for each mode uk. The mode decomposition
problem can then formally be stated as

find uk, Ak s.t. f =
∑
k

Ak · uk,

i.e., we want the modes uk, now masked by their binary support function Ak, to
reproduce collectively the given input signal. Note that the modes uk can extend
arbitrarily into their inactive regions where Ak = 0; in particular, they can decay
smoothly or oscillate ad infinitum, thus keeping small spectral bandwidth.

3.2. Sparsity promoting VMD functional. It is important to introduce spar-
sity promoting regularity constraints on the support function to achieve reasonable
compact local support. Here, we consider both total variation (TV) and L1 penal-
ties on Ak, thus effectively penalizing support area and boundary length (through
the co-area formula).

We incorporate the binary support functions Ak and their regularizers in the
n-D VMD functional as follows:

(26) min
uk : Rn→R, Ak : Rn→{0,1}, ~ωk∈Rn{∑

k

αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1

}
s.t. ∀~x ∈ Rn :

∑
k

Ak(~x)uk(~x) = f(~x).



2D VARIATIONAL MODE DECOMPOSITION 11

The L1 penalties on Ak and ∇Ak ensure that an individual mode is only active in
places where it is “sufficiently justified” (i.e., the increased data fidelity outweighs
the incurred friction cost), and represent the prior on modes to have limited spatial
support and regular outlines.

3.3. Model “relaxation”. Due to the introduction of the binary support func-
tions Ak in the fidelity constraint, and the L1-based prior terms, the functional is
no longer directly translatable to the spectral domain. Moreover, the L1-terms do
not lend themselves to standard calculus of variations methods, directly. Instead,
we propose an ensemble of splitting techniques [11, 12, 31] that have been applied to
L1-based and related optimization problems with great success, such as [22, 32, 76].

First, we would like to restore spectral solvability of the modes uk. Currently, the
masks Ak prevent this, since in the quadratic penalty addressing the reconstruction
constraint, the spatial multiplication translates to spectral convolution. Spectral
solvability for uk is restored by introducing a splitting of the modes uk = vk, and
applying spectral bandwidth penalty and reconstruction over the separate copies:

(27) min
uk : Rn→R, Ak : Rn→{0,1}, ~ωk∈Rn{∑

k

αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1

}

s.t. ∀~x ∈ Rn :

{
uk(~x) = vk(~x),∑
k Ak(~x)vk(~x) = f(~x).

The splitting constraint can be addressed with a quadratic penalty (proximal split-
ting, [12]), or using an augmented Lagrangian [31]. As an intermediate illustration,
and since the latter includes the former, we give the full saddle-point functional
(augmented Lagrangian) incorporating both equality constraints through quadratic
penalty and Lagrangian multipliers, in analogy to (7):

(28) L({uk}, {vk}, {Ak}, {ωk}, λ, {λk}) :={∑
k

αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1

+ ρ
∥∥∥f(~x)−

∑
Ak(~x)vk(~x)

∥∥∥2

2
+
〈
λ(~x), f(~x)−

∑
Ak(~x)vk(~x)

〉
+
∑
k

ρk ‖uk(~x)− vk(~x)‖22 + 〈λk(~x), uk(~x)− vk(~x)〉
}
,

where λk are the Lagrangian multipliers associated with the K equality constraints
uk = vk, and ρ, ρk are parameters weighting the different quadratic penalties. All
terms involving uk translate nicely into the spectral domain, while all terms in vk
lend themselves to efficient point-wise optimization in time domain. Before actually
looking at the specific subminimization problems, we want to study the L1-terms
further by recognizing them as essentially balloon and motion-by-mean-curvature
forces acting on the binary support functions Ak.

3.4. Excursion on MBO. The first variation associated with the TV-term is
proportional to div(∇Ak/|∇Ak|). One can expect difficulties with this term, for
example in flat regions where |∇Ak| → 0. Moreover, if the gradient descent PDE
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is integrated explicitly, then the time step is also heavily limited by the stiffness
constraint [62].

An important contribution stems from the diffusion-threshold scheme for ap-
proximating motion by mean curvature proposed by Merriman, Bence, and Osher
(MBO) [49]. The fundamental idea is to reproduce the motion by mean curva-
ture due to the boundary-length term TV (Ak) by more efficient means than direct
gradient descent.

SinceAk is binary we opt for alternative schemes other than split-Bregman/shrinkage
or dual minimization [7, 32, 74]. As a preliminary, motivational step, let us replace
the total variation of the support function Ak, by the real Ginzburg-Landau (GL,
also known as Allen-Cahn) functional [50]:

(29) EεGL(Ak) := ε

∫
Ω

|∇Ak(~x)|2d~x+
1

ε

∫
Ω

W (Ak(~x))d~x, ε > 0,

where W (s) is a double-well potential with two equal minima at s = 0 and s = 1,
for example W (s) := s2(1−s)2. Minimizing this functional yields a phase field that
is smooth and tends to be binary. In particular, it has been shown [50] that the
GL-functional Γ-converges to the total variation functional of binary phase-fields
Ak ∈ {0, 1} as ε→ 0:

(30) E0
GL(Ak) = σ(W )

∫
Ω

|∇Ak|,

where σ(W ) is a surface tension term depending on the double well potential. The
minimizing flow of this functional for ε→ 0+ produces motion by mean curvature
of the interface, which is exactly what one needs in the spatially sparse VMD
model minimization. However, now, the PDE associated with the GL-functional
minimization is

(31)
∂Ak
∂t

= 2ε∇2Ak −
1

ε
W ′(Ak),

and this PDE is conveniently solved in a discrete-time two step time-splitting ap-
proach:

(1) Propagate Ak according to the heat equation,

∂Ak
∂t

= 2ε∇2Ak

(2) Propagate Ak according to the double well potential gradient descent,

∂Ak
∂t

= −1

ε
W ′(Ak).

The heat equation is efficiently solved, e.g., based on convolution or spectral trans-
forms [59].

Now, the MBO-scheme [49] improves on this time-split GL-optimization in that
the ODE is recognized as essentially performing thresholding. While the first step
is reduced to propagation according to the standard heat equation, the second step
in MBO is actual thresholding (projection onto the binary set {0, 1}):

(1) Propagate Ak according to the heat equation,

∂Ak
∂t

= ∇2Ak
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(2) Rectify Ak by thresholding:

Ak(~x) =

{
0 if Ak(~x) ≤ 1

2

1 if Ak(~x) > 1
2

∀~x ∈ Rn

These MBO threshold dynamics have already been successfully integrated with
imaging data terms, such as [21, 75], where in addition to the heat diffusion and
thresholding steps, a data-driven gradient descent step is included in the itera-
tions. We propose a similar structure here, to account for the balloon force and
reconstruction fidelity term contributions to the Ak minimization.

3.5. n-D-TV-VMD Minimization. Based on the preparatory steps of the pre-
ceding sections, we now propose to solve the constraint, sparsity promoting n-D
VMD functional (26) through its augmented Lagrangian (28). Consider the follow-
ing saddle point problem:

(32) min
uk,vk : Rn→R, Ak : Rn→{0,1}, ~ωk∈Rn

max
λ,λk : Rn→R{
L({uk}, {vk}, {Ak}, {ωk}, λ, {λk})

}
.

This saddle point problem is an extended version of the 2D VMD saddle point
problem (8) (without spatial sparsity promoting terms), and is again efficiently
solved through alternate direction minimization and dual ascent (ADMM):

ut+1
k ← arg min

uk : Rn→R

L
({
ut+1
i<k

}
, uk,

{
uti>k

}
,
{
vti
}
,
{
Ati
}
,
{
ωti
}
, λt,

{
λti
})

(33a)

vt+1
k ← arg min

vk : Rn→R

L
({
ut+1
i

}
,
{
vt+1
i<k

}
, vk,

{
vti>k

}
,
{
Ati
}
,
{
ωti
}
, λt,

{
λti
})

(33b)

At+1
k ← arg min

Ak : Rn→{0,1}

L
({
ut+1
i

}
,
{
vt+1
i

}
,
{
At+1
i<k

}
, Ak,

{
Ati>k

}
,
{
ωti
}
, λt,

{
λti
})

(33c)

~ωt+1
k ← arg min

~ωk∈Rn

L
({
ut+1
i

}
,
{
vt+1
i

}
,
{
At+1
i

}
,
{
~ωt+1
i<k

}
, ~ωk,

{
~ωti>k

}
, λt,

{
λti
})

(33d)

λt+1 ← λt + τ
(
f −

∑
At+1
k vt+1

k

)
(33e)

λt+1
k ← λtk + τk

(
ut+1
k − vt+1

k

)
(33f)

We provide details on the individual sub-minimization problems in the following
paragraphs. The complete algorithm for n-D-TV-VMD functional (with spatial
sparsity promoting terms) is then easily derived in analogy to algorithm 1.
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3.5.1. n-D-TV-VMD Subminimization w.r.t. uk. The relevant minimization prob-
lem (33a) with respect to the modes uk reads

(34) ut+1
k = arg min

uk : Rn→R

{
αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2

+ ρk

∥∥∥∥uk(~x)− vk(~x) +
λk(~x)

ρk

∥∥∥∥2

2

}
.

In full analogy to the problem without spatial sparsity terms, (11), the update is
most easily computed in spectral domain, like (17). Unsurprisingly, the update rule
on the frequency halfspace Ωk = {ω | 〈ω, ωk〉 ≥ 0} is found to be:

(35) ût+1
k (~ω) = (ρkv̂k − λ̂k)

1

ρk + 2αk|ω − ωk|2
, ∀ω ∈ Ωk.

From this half-space update, the full spectrum can again be obtained by Hermitian
completion; Or by updating the mode’s half-space analytic signal instead:

(36) ût+1
AS,k(~ω) = (ρkv̂k − λ̂k)

1 + sgn(〈ω, ωk〉)
ρk + 2αk|ω − ωk|2

.

3.5.2. n-D-TV-VMD Subminimization w.r.t. vk. The update (33b) of vk reduces
to the following minimization problem:

(37) vt+1
k = arg min

vk : Rn→R

{
ρ

∥∥∥∥f(~x)−
∑

Ai(~x)vi(~x) +
λ(~x)

ρ

∥∥∥∥2

2

+ ρk

∥∥∥∥uk(~x)− vk(~x) +
λk(~x)

ρk

∥∥∥∥2

2

}
This problem admits the following pointwise Euler-Lagrange equations:

(38) − ρAk(~x)

(
f(~x)−

∑
Ai(~x)vi(~x) +

λ(~x)

ρ

)
− ρk

(
uk(~x)− vk(~x) +

λk(~x)

ρk

)
= 0, ∀~x ∈ Rn

yielding the simple update rule

(39) vt+1
k (~x) =

ρAk(~x)
(
f(~x)−

∑
i 6=k Ai(~x)vi(~x) + λ(~x)

ρ

)
+ ρkuk(~x) + λk(~x)

ρAk(~x)2 + ρk
,

∀~x ∈ Rn.

This update is interpreted as a balance between fidelity to the split mode uk (en-
forced through Lagrangian multiplier λk), and the reconstruction fidelity constraint
where Ak is active (enforced through λ).
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3.5.3. n-D-TV-VMD Subminimization w.r.t. Ak. As outlined above, the minimiza-
tion problem with respect to the binary support functions Ak involves the L1-based
priors:

(40) At+1
k = arg min

Ak : Rn→{0,1}

{
βk‖Ak‖1 + γk‖∇Ak‖1

+ ρ

∥∥∥∥f(~x)−
∑

Ai(~x)vi(~x) +
λ(~x)

ρ

∥∥∥∥2

2

}
.

Motivated by successful implementation for image segmentation problems, for ex-
ample, we want to employ diffusion and threshold dynamics for the efficient solution
of this problem. In analogy to the image segmentation scheme, we devise a three-
fold time-split gradient descent iteration: The first step is gradient descent based
on the support area and reconstruction-fidelity penalty. The second step is diffusion
by the heat equation, followed by thresholding, to deal with the boundary length
term and the projection on the admissible set {0, 1}.

Since Ak is non-negative, it is safe to drop the absolute value and relax the L1-
area term to βk

∫
Rn Ak. This makes the functional smoothly differentiable in the

area and reconstruction term.
We thus propose to update the binary support functions At+1

k in MBO-like fash-
ion [21, 49, 75] by iterating over the following three evolution equations:

(1) Area penalty and reconstruction fidelity ODE:

(41)
∂Ak(~x)

∂t
= −βk + 2ρvk(~x)

(
f(~x)−

∑
Ai(~x)vi(~x) +

λ(~x)

ρ

)
,

(2) Heat equation PDE for diffusion:

(42)
∂Ak(~x)

∂t
= γk∇2Ak(~x),

(3) Rectification by thresholding:

(43) Ak(~x) =

{
0 if Ak(~x) ≤ 1

2

1 if Ak(~x) > 1
2

∀~x ∈ Rn.

Note that the ODE problem can be addressed through an implicit (backward) Euler
scheme, and the heat equation PDE is efficiently solved spectrally.

3.5.4. n-D-TV-VMD Subminimization w.r.t. ωk. The last, remaining sub-problem
of the saddle-point problem (32) is the update of the mode’s central frequency, ωk.
The relevant portion of the functional (28) is identical to the non-sparse 2D-VMD
model (7). Therefore the corresponding subminimization problem here is identical
to (19), and thus the update is equally given by (22).

The complete algorithm for the ADMM optimization of the 2D-TV-VMD model
is shown in algorithm 2, and illustrative examples of its use are given in figures 1
and 2.
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Algorithm 2 2D-TV-VMD (sparsity promoting)

Input: signal f(~x), number of modes K, parameters αk, βk, γk, ρ, ρk, t, τ , τk,
ε.
Output: modes uk(~x), support functions Ak(~x), center frequencies ~ωk.

Initialize {ω0
k}, {u0

k} ← 0, {v0
k} ← 0, {A0

k} ← 1, {λk}0 ← 0, λ0 ← 0, n← 0
repeat

n← n+ 1
for k = 1 : K do

Create 2D mask for analytic signal Fourier multiplier:

Hn+1
k (~ω)← 1 + sgn(〈~ωnk , ~ω〉)

Update ûAS,k:

ûn+1
AS,k(~ω)← Hn+1

k (~ω)

[
ρkv̂

n
k (~ω)− λ̂nk (~ω)

ρk + 2αk|~ω − ~ωnk |2

]
Retrieve uk:

un+1
k (~x)← <

(
F−1

{
ûn+1
AS,k(~ω)

})
Update vk:

vn+1
k (~x)←

ρAnk (~x)

(
f(~x)−

∑
i<k

Ani (~x)vn+1
i (~x)−

∑
i>k

Ani (~x)vni (~x) + λn(~x)
ρ

)
+ ρku

n+1
k (~x) + λnk (~x)

ρAnk (~x)2 + ρk

Update Ak through modified MBO:

A
n+1/3
k (~x)←

Ank (~x) + t

(
−βk + 2ρvn+1

k (~x)

(
f(~x)−

∑
i<k

An+1
i (~x)vn+1

i (~x)−
∑
i>k

Ani (~x)vni (~x) + λn(~x)
ρ

))
1 + 2tρ(vn+1

k (~x))2

Â
n+2/3
k (~ω)←

Â
n+1/3
k (~ω)

1 + tγk|~ω|2

An+1
k (~x)←

{
0 if A

n+2/3
k (~x) ≤ 1

2

1 if A
n+2/3
k (~x) > 1

2

Update ~ωk:

~ωn+1
k ←

∫
R2 ~ω|ûn+1

AS,k(~ω)|2d~ω∫
R2 |ûn+1

AS,k(~ω)|2d~ω
Dual ascent u-v coupling:

λn+1
k (~x)← λnk (~x) + τk

(
un+1
k (~x)− vn+1

k (~x)
)

end for
Dual ascent data fidelity:

λn+1(~x)← λn(~x) + τ

(
f(~x)−

∑
k

An+1
k (~x)vn+1

k (~x)

)
until convergence
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4. Spectral Image Segmentation

Up to now we have considered modes whose spatial support was mutually inde-
pendent. In particular, this means that VMD and TV-VMD modes can be spatially
overlapping, and conversely, that not all parts of a signal are covered by an active
mode. Here, we want to consider the case where modes are restricted to be non-
overlapping while covering the entire signal domain. In other words, the modes’
support functions Ak form a partition of the signal domain. For example, such a
model includes the image segmentation problem.

In terms of the binary support functions, Ak : Rn → {0, 1}, this means imposing
the following constraint:

(44)
∑
k

Ak(~x) = 1, ∀~x ∈ Rn.

In return, the area penalty βk‖Ak‖1 is obsolete, of course, unless not all modes
incur the same area penalty due to different size priors, corresponding to βi 6= βj
for at least some (i, j) ∈ {1, . . . ,K}2.

We propose the following spatially disjoint n-D-TV-VMD model, as a modifica-
tion of (26):

(45) min
uk : Rn→R, Ak : Rn→{0,1}, ~ωk∈Rn{∑

k

αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1

}

s.t. ∀~x ∈ Rn :

{∑
k Ak(~x)uk(~x) = f(~x),∑
k Ak(~x) = 1.

Next we outline two different strategies to accommodate this extra constraint on
the support functions in the minimization scheme. The first strategy incorporates
the partitioning constraint through another augmented Lagrangian to be included
in the saddle point problem. The second model deals with the restricted solution
space through projection, more precisely by modifying the current rectification step
included in the MBO-like diffusion and threshold-dynamics.

4.1. Augmented Lagrangian method. In the first approach, we incorporate the
segmentation constraint as a third augmented Lagrangian term. Based on the AL
(28) of the spatially overlapping compact VMD functional (26), we write:

(46) L({uk}, {vk}, {Ak}, {ωk}, λ, {λk}) :={∑
k

αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1

+ ρ
∥∥∥f(~x)−

∑
Ak(~x)vk(~x)

∥∥∥2

2
+
〈
λ(~x), f(~x)−

∑
Ak(~x)vk(~x)

〉
+
∑

ρk ‖uk(~x)− vk(~x)‖22 +
∑
〈λk(~x), uk(~x)− vk(~x)〉

+ ρ′
∥∥∥∑Ak(~x)− 1

∥∥∥2

2
+
〈
λ′(~x),

∑
Ak(~x)− 1

〉}
,

where λ′ : Rn → R is the newly introduced Lagrangian multiplier, and ρ′ the weight
of the corresponding quadratic penalty term. Sticking to the alternate direction
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gradient descent and dual ascent scheme (32) for optimization, we realize that all
sub-optimization problems remain unchanged, except for the Ak update and an
additional dual ascent step.

The heat diffusion and thresholding steps are not affected by the extra terms
in the functional. Instead, the corresponding first variation is incorporated in the
first, ODE step (41), as follows:

(47)
∂Ak(~x)

∂t
= −β + 2ρvk(~x)

(
f(~x)−

∑
Ai(~x)vi(~x) +

λ(~x)

ρ

)
− 2ρ′(

∑
Ak(~x)− 1)− λ′(~x).

4.2. Projection: Multiphase MBO and rearrangement. Instead of the ad-
ditional penalty and Lagrangian multiplier term, the partitioning constraint can
be dealt with by the rectification step in the MBO-like part. Indeed, the parti-
tioning problem corresponds to a multiphase interface problem. The fundamental
idea is to propagate the data-ODE (41) and the heat-diffusion PDE (42) on each
support function Ak individually, but to replace the individual thresholding step
(43) by a single, common “winner-takes-it-all” rectification. This idea has been
discussed more rigorously in [20], and is related to the rearrangement algorithm for
the discrete graph partitioning problem [54].

The projection-based partitioning update for Ak becomes:

(1) Area penalty and reconstruction fidelity ODE propagation for each mode
k, according to (41).

(2) Heat diffusion PDE for each mode k according to (42).
(3) “Winner-takes-it-all” rectification; Projection of the intermediate Ak on the

feasible set Ak ∈ {0, 1} ∩
∑
Ak = 1:

(48) At+1
k =

{
1 if k = arg maxiAi,

0 otherwise.

For an application of the same strategy to graph-based image processing see
[26, 40, 47]. The modified 2D-TV-VMD algorithm with segmentation constraint is
given in algorithm 3, while illustrative examples are shown in figures 3 et seqq.

5. Lattice Segmentation

Until now, our decomposition associates one spatial characteristic support func-
tion, Ak, with only one intrinsic mode function, uk. This results in a simple decom-
position where each spatial region has exactly one simple oscillation. Let us now
consider a case where the image is composed of regions not corresponding to plane
waves, but combinations of simple oscillatory patterns, such as a checkerboard or
hexagonal pattern. Microscopy of single-molecule layers, colloids, and crystal grains
have such patterns. In biochemistry and nanoscience, the decomposition of such
microscopy images into regions of homogeneity provides a necessary mechanic for
further downstream analyses.

In microscopy, a crystal image contains different mesoscopic grains, where each
grain typically can be a homogeneous, lattice region. Each grain has different
spatial periodicities, depending on the crystal lattice structure. These structures
are modelled by Bravais lattices, which, depending on the 2D crystalline arrange-
ment, come in five forms: oblique, rectangular, centered rectangular, hexagonal,
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Algorithm 3 2D-TV-VMD with segmentation constraint

Input: signal f(~x), number of modes K, parameters αk, βk, γk, ρ, ρk, t, τ , τk,
ε.
Output: modes uk(~x), domain partitioning support functions Ak(~x), center
frequencies ~ωk.

Initialize {ω0
k}, {u0

k} ← 0, {v0
k} ← 0,{A0

k} ← 1, {λk}0 ← 0, λ0 ← 0, n← 0
repeat

n← n+ 1
for k = 1 : K do

Create 2D mask for analytic signal Fourier multiplier:

Hn+1
k (~ω)← 1 + sgn(〈~ωnk , ~ω〉)

Update ûAS,k:

ûn+1
AS,k(~ω)← Hn+1

k (~ω)

[
ρkv̂

n
k (~ω)− λ̂nk (~ω)

ρk + 2αk|~ω − ~ωnk |2

]
Retrieve uk:

un+1
k (~x)← <

(
F−1

{
ûn+1
AS,k(~ω)

})
Update vk:

vn+1
k (~x)←

ρAnk (~x)

(
f(~x)−

∑
i<k

Ani (~x)vn+1
i (~x)−

∑
i>k

Ani (~x)vni (~x) + λn(~x)
ρ

)
+ ρku

n+1
k (~x) + λnk (~x)

ρAnk (~x)2 + ρk

Update ~ωk:

~ωn+1
k ←

∫
R2 ~ω|ûn+1

AS,k(~ω)|2d~ω∫
R2 |ûn+1

AS,k(~ω)|2d~ω
Dual ascent u-v coupling:

λn+1
k (~x)← λnk (~x) + τk

(
un+1
k (~x)− vn+1

k (~x)
)

end for
for k = 1 : K do

Update Ak through time split ODE and PDE propagation:

A
n+1/3
k (~x)←

Ank (~x) + t

(
−βk + 2ρvn+1

k (~x)

(
f(~x)−

∑
i<k

A
n+2/3
i (~x)vn+1

i (~x)−
∑
i>k

Ani (~x)vn+1
i (~x) + λn

ρ

))
1 + 2tρ(vn+1

k (~x))2

Âk
n+2/3

(~ω)←
Â
n+1/3
k (~ω)

1 + tγk|~ω|2

end for
for k = 1 : K do

Rectify Ak through winner-takes-it-all:

An+1
k (~x) =

{
1 if k = arg maxiA

n+2/3
i (~x)

0 otherwise

end for
Dual ascent data fidelity:

λn+1(~x)← λn(~x) + τ

(
f(~x)−

∑
k

An+1
k (~x)vn+1

k (~x)

)
until convergence
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and square. Thus a grain’s Fourier spectrum has several distinct peaks, associated
with the various cosine waves that constitute the pattern, which share a common
spatial support (function). For example, a grain in a homogeneously hexagonal
lattice patch would have three coupled peaks in the spectral half-space. Grains
differ by orientation, so it is interesting to find the grain supports, their boundaries
and defects, and the Fourier peaks associated with each grain. A crystal image
composed of such grains can be considered as an assemblage of 2D general intrinsic
mode type functions with non-overlapping supports, specified propagating direc-
tions and smoothly varying local wave vectors. A recent state-of-the-art method
uses 2D synchrosqueezed transforms together with slow-oscillating, global-structure
providing functions, known as shape functions, in order to model atomic crystal im-
ages [72]. In general, knowing the Bravais lattice structure yields strong priors on
the relative positions of the frequency peaks; here, however, we only make use of
the known number of peaks, but not their relative positions.

To accommodate such regions, our spectral image segmentation needs to be
adapted to allow for multiple single-Fourier-peak modes to be joined together
through a single binary support function. Let {ukj}j denote the set of modes
associated with the single binary support function Ak. Each of these modes needs
to be individually of small bandwidth, but they contribute to the signal reconstruc-
tion jointly through their single support function Ak. This simple modification
allows us to segment signals into meaningful pieces.

To this end, we modify the spatially disjoint n-D-TV-VMD model (45) as follows:

(49) min
uki : Rn→R, Ak : Rn→{0,1}, ~ωki∈Rn{∑
k,i

αki

∥∥∥∇ [uAS,ki(~x)e−j〈~ωki,~x〉
]∥∥∥2

2
+
∑
k

βk‖Ak‖1 +
∑
k

γk‖∇Ak‖1
}

s.t. ∀~x ∈ Rn :

{∑
k Ak(~x)

∑
i uki(~x) = f(~x),∑

k Ak(~x) = 1.

We call this the n-D-TV-VMD lattice segmentation model. The model can be
optimized in much the same way as the simpler model (45). The only significant
difference is in the ODE propagation step of the Ak update: Here, all associated
modes uki (resp. their copies vki) jointly influence the update of the single Ak.
Indeed, (41) now becomes:

(50)
∂Ak(~x)

∂t
= −β + 2ρ

(∑
i

vki(~x)

)f(~x)−
∑
l

Al(~x)
∑
j

vlj(~x) +
λ(~x)

ρ

 .

Explicitly modifying the previous algorithms to incorporate this submode cou-
pling is fairly straightforward and left as an exercise to the reader. Examples of
image decomposition with submode coupling are shown in figures 7–10.

6. Outlier Detection: Artifact Detection and Inpainting

As a final complication regarding crystallography images, we now wish to deal
with image features that cannot be explained by the VMD model thus far, such
as defects and artifacts. While artifacts can be due to acquisition noise or sample
impurities (accidental or intended), defects are irregularities in the regular crystal
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structure, within crystal grains, or more frequently at the grain boundaries. In
imaging terms, these are characterized by a stark deviation from the regular spatial
pattern modeled by the band-limited modes of the VMD model. In the presence of
imaging noise, one naturally relaxes the data-fidelity constraint by just a quadratic
penalty, i.e., not making use of a Lagrangian multiplier. Therefore, unless otherwise
accounted for, such defects and artifacts appear in the data-fidelity residual, but
due to their non-Gaussian nature as strong outliers will also affect and deteriorate
the mode decomposition. It is imperative, therefore, to address these features more
specifically beyond making Gaussian noise assumptions.

6.1. Artifact indicator function. Recently, a dynamic artifact detection model
was introduced in the framework of classical Chan-Vese image segmentation [75].
There, individual pixels were eliminated from the region-based segmentation terms
to prevent skewing and misleading the segmentation. This method is related to
similar approaches in occlusion detection in optical flow [1] and salt-and-pepper
denoising [71]. Here, the goal is to isolate defects and artifacts from interfering
with the regular modes.

We introduce an artifact indicator function,

χ : Rn → {0, 1},

where for each pixel a 1 denotes an artifact, and 0 absence thereof. We use this ar-
tifact indicator function to limit the data-fidelity constraint to non-artifact regions,
only, e.g.,

(51) ∀~x ∈ Rn | χ(~x) = 0:
∑
k

Ak(~x)uk(~x) = f(~x).

This is equivalent to

(52) ∀~x ∈ Rn :
∑
k

(1− χ(~x))Ak(~x)uk(~x) = (1− χ(~x))f(~x),

where (1 − χ(~x)) = 1 in regions not classified as artifacts, which is where data
fidelity is to be enforced. A similar modification can be made to all data-fidelity
constraints of the previous models.

6.2. Defect and artifact detection and inpainting. We have not described, so
far, how the values of the binary defect and artifact indicator function χ are to be
determined, in the first place. While there are reasonable grounds to believe that
these defect and artifact locations could be heuristically identified from images
in preprocessing, we want to integrate this detection process into the very same
decomposition model.

At this point, we do not have a concise and simple characterization of the shape
and appearance of defects and artifacts, and for the general case we even want to
avoid including too many such priors. Instead, we characterize lattice defects and
image artifact locations by what they are not; indeed, at these locations the image
simply fails to be sufficiently well modeled by the band-limited modes extracted
nearby. We thus decide to classify a certain pixel f(~x) as an artifact or defect,
χ(~x) = 1, if the incurred data-fidelity cost would be too large, locally, otherwise.
This is most simply achieved by including an L1-term on χ.
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We modify the constrained n-D-TV-VMD cost functional (26) to become the
n-D-TV-XVMD (with artifact detection) functional as follows:

(53) min
uk : Rn→R, Ak,χ : Rn→{0,1}, ~ωk∈Rn{∑

k

αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1 + δ‖χ‖1

}
s.t. ∀~x ∈ Rn :

∑
k

(1− χ(~x))Ak(~x)uk(~x) = (1− χ(~x))f(~x).

The corresponding unconstrained saddle point problem (without Lagrange multi-
plier on the data-fidelity) then becomes:

(54) L({uk}, {vk}, {Ak}, {ωk}, χ, {λk}) :={∑
k

αk

∥∥∥∇ [uAS,k(~x)e−j〈~ωk,~x〉
]∥∥∥2

2
+ βk‖Ak‖1 + γk‖∇Ak‖1

+ δ‖χ‖1 + ρ
∥∥∥(1− χ(~x))(f(~x)−

∑
Ak(~x)vk(~x))

∥∥∥2

2

+
∑
k

ρk ‖uk(~x)− vk(~x)‖22 + 〈λk(~x), uk(~x)− vk(~x)〉
}
.

It is important to note that the masking only impacts the data-fidelity evaluation
domain, while all other terms are not affected. Indeed, only two sub-minimization
steps will be altered by the introduction of the (1− χ)-term:

(1) the area penalty and reconstruction fidelity ODE (41) will collapse to just
∂tAk(~x) = −βk whenever χ(~x) = 1 (and remain unchanged, otherwise).
In particular, the TV- and L1-terms on the binary support functions Ak
will now exclusively drive the evolution of the latter whenever a location is
marked as artifact, since the data-fidelity constraint is the only link between
modes and support functions.

(2) Similarly, the update (39) of vk collapses to vt+1
k (~x) = uk(~x) + λk(~x)/ρk

when χ(~x) = 1, which effectively unlinks the local mode estimate from the
observed data and simply in-paints the artifact regions by Fourier interpo-
lation of the modes.

On the other hand, the estimation of the artifact indicator function χ itself
also leads to a straightforward optimization step. The binary optimization can be
carried out independently for each pixel, and the optimal χ∗(~x) chooses between
paying data-fidelity penalty versus artifact cost δ, as follows:

(55) χ∗(~x) =

{
0 if ρ(f(~x)−

∑
Ak(~x)vk(~x))2 ≤ δ

1 otherwise

This thresholding scheme has an immediate interpretation from a hypothesis-
testing perspective. Indeed, if we consider the data-fidelity weight ρ to be the
precision of the implicitly assumed Gaussian noise distribution, then the expression
ρ(f(~x) −

∑
Ak(~x)vk(~x))2 represents the squared z-score (standard score) of the

local image intensity under such a noise distribution. This squared z-score is com-
pared against the threshold δ. The artifact classification is effectively a concealed
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statistical hypothesis z-test of the pixel intensity with a Gaussian distribution

p(f(~x)) = N (f(~x) |
∑

Ak(~x)vk(~x), ρ−1)

as null-hypothesis H0, and a pixel is classified as an artifact (H1) if the z-score of

its intensity is more extreme than
√
δ. The model parameter δ is thus intimately

related to the level of statistical significance attached to the artifact classification
and its expected false positives rate.

Again, in the interest of conciseness, we leave the modification of the algorithms
to include the artifact detection and inpainting terms as an exercise for the reader.
An inpainting example is illustrated in figure 6.

7. Experiments and Results

We have implemented the above three algorithms 1–3, including the submode
coupling of section §5 and the artifacts detection and inpainting (§6) extensions,
in MATLAB R©. The algorithms can be implemented in a single code file, because
they are mostly generalizations of each other.

In the implementation, we make two deliberate choices that have not been dis-
cussed, so far. The first choice is with respect to initialization of the center fre-
quencies, where we include four options:

(1) initialization of frequencies uniformly spread on a circle (deterministic),
(2) random initialization on the positive half-space,
(3) user selection through graphical user interface, and
(4) user input as parameters.

Unless otherwise noted, all the examples shown below make use of the deterministic
radial frequency initialization scheme.

The second particularity is with respect to model selection 2D-VMD, 2D-TV-
VMD, and 2D-SEG-VMD. Indeed it is useful in practice to initialize the TV-VMD
model by some iterations of unrestricted 2D-VMD, in order to settle the center
frequencies close to the optimal location; and similarly, the segmentation model is
best initialized based on the outcome of 2D-TV-VMD optimization. We will thus
always start optimizing in 2D-VMD mode, and over the iterations, switch to the
two more complicated models at user-defined time-points (which may be set to
infinity, thereby producing results of simpler models as final output).

Our implementation is publicly available for download at http://www.math.

ucla.edu/~zosso/code.html, and on MATLAB Central.

7.1. Synthetic overlapping texture decomposition. The first, synthetic image
is a composition of spatially overlapping basic shapes, more precisely six ellipses
and a rectangle, with frequency patterns varying in both periodicity and direction,
courtesy of J. Gilles [28]. The spectrum is ideal for segmentation due to modes
being deliberately both well spectrally isolated and narrow-banded. The resolution
of the synthetic image is 256× 256.

We feed the synthetic image to our models and show the resulting decompositions
for both 2D-VMD and 2D-TV-VMD models in figure 1. The parameters are3:

3Of course, the simpler 2D-VMD model only uses a subset of these parameters, for the support
functions are fixed at Ak = 1 uniformly.

http://www.math.ucla.edu/~zosso/code.html
http://www.math.ucla.edu/~zosso/code.html
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K αk βk γk δ ρ ρk τ τk t
5 1000 0.5 500 ∞ 10 10 2.5 2.5 1.5

In addition, the center frequency of the first mode is held fixed at ω1 = 0 to
account for the DC component of the image. As a result, the first mode contains
the solid ellipse and rectangle, while the four remaining decompositions in figure 1
show clear separation of the patterned ellipses.

In the simple 2D-VMD model of figure 1(e), due to the solid pieces having sharp
edges, their spectra are not band-limited and only smoothed versions are recovered.
This is naturally paired with the two lower frequency modes absorbing residual
boundary artifacts of the DC component, and ghost contours appearing in these
modes.

The spatially compact 2D-TV-VMD model, figure 1(f)–(h), however, can han-
dle sharp boundaries through the support functions Ak, while the modes uk can
smoothly decay. The resulting masked modes, Akuk, are thus clean and sharp.

7.2. Overlapping chirps. The second example problem is still synthetic, but the
modes have non-trivial Fourier support. More precisely, the synthetic image is a
superposition of three compactly supported yet spatially overlapping 2D chirps (see
figure 2). Starting from radial initialization, we let our algorithm determine the
correct support and appropriate center frequencies for this problem, based on the
following parameters:

K αk βk γk δ ρ ρk τ τk t
3 2000 1 1000 ∞ 7 10 1 1 1

The resulting decomposition is accurate with only little error on the true support
functions. The modes are spectrally clean. It is interesting to observe how our
model extrapolates the modes outside their rectangular domain boundaries. Note
that the decay distance correlates with the wave-length of the mode.

7.3. Textural segmentation for denoising. The two examples encountered so
far were noise-free and perfect reconstruction was possible through the use of La-
grange multipliers (τ, τk > 0). In the presence of noise, however, enforcing strict
data fidelity may be inappropriate, and instead relying on just the quadratic penalty
to promote data-fidelity is the proper way to go. This is easily achieved by pre-
venting the Lagrangian multipliers from updating: τ, τk = 0. As a result, the noise
can be handled with a residual slack between the splitting variables. In particular,
the quadratic penalty term corresponds to a Gaussian noise assumption, where the
penalty coefficients ρ, ρk relate to the noise precision.

Here, we explore the idea of using the slack in the absence of Lagrangian mul-
tipliers for denoising based on spectral sparsity. To this end, we construct a four-
quadrant, non-overlapping unit-amplitude cosine-texture image with different levels
of noise, shown in figure 3. Because the quadrants are non-overlapping, we are in-
terested in the output of the 2D-SEG-VMD model using the following parameters:

K αk βk γk δ ρ ρk τ τk t
4 3500 1.5 750 ∞ 7 10 0 0 1
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Synthetic overlapping texture (a) Input image f . (b)
2D-VMD reconstruction

∑
k uk. (c) Compactly supported 2D-TV-

VMD reconstruction
∑
k Akuk. (d) Support boundaries overlaid

onto original image. (e) 2D-VMD modes uk. (f) 2D-TV-VMD
modes uk. (g) Detected supports Ak. (h) Masked modes Akuk.
See §7.1 in text for explanation and discussion.
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(a) (b)

(c) (d)

Figure 2. Chirp decomposition. (a) Input signal f . (b) 2D-TV-

VMD modes uk. (c) Fourier spectrum f̂ . (d) Determined supports
Ak. See §7.2.

σ = 0 σ = 0.1 σ = 0.2 σ = 0.5 σ = 1

Figure 3. Denoising. Noise standard deviation σ. Top: noisy
f with detected phase borders (red). Bottom: denoised signal∑
k Akuk. See §7.3.

Without the Lagrangian multipliers active, it is important to realize that the
two copies of the modes, uk and vk, may be different; and that uk is the potentially
cleaner copy of the two.

In figure 3, we can see that even for important noise levels, the partition is
recovered with good precision (red contours). In addition, the recovered composite
of the four masked modes is very clean, seemingly irrespective of the degrading
noise level.

7.4. Segmentation of peptide β-sheets. The next test case are two atomic force
microscopy (AFM) images of peptide β-sheets bonding on a graphite base, courtesy
of the Weiss group at the California NanoSystems Institute (CNSI) at UCLA, [9].
The peptide sheets grow in regions of directional homogeneity and form natural
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(a) (b) (c)

(d) (e) (f)

Figure 4. Atomic force microscopy (AFM) image of peptide β-
sheets, 512 × 512 pixels, 500 nm × 500 nm (I). (a) Input f . (b)
2D-TV-VMD boundaries (red). (c) 2D-SEG-VMD partition (red).
(d) 2D-VMD modes uk. (e) 2D-TV-VMD modes Akuk. (f) 2D-
SEG-VMD modes Akuk. See §7.4 in the text for details and dis-
cussion.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Atomic force microscopy (AFM) image of peptide β-
sheets, 512 × 512 (II). (a) Input f . (b) 2D-SEG-VMD partition
(red). (c) Partition (red) with enabled artifact detection (cyan).
(d) 2D-VMD modes uk. (e) 2D-SEG-VMD modes Akuk. (f) Modes
obtained with artifact detection enabled. See §7.4 for details.



2D VARIATIONAL MODE DECOMPOSITION 29

spatial boundaries where the regions meet. It is important to scientists to have
accurate segmentation for their dual interests in complementary analysis of the
homogeneous regions and their boundaries. Identifying regions of homogeneity
enables the subsequent study of isolated peptide sheets of one particular bonding
class. For these types of scans, manually finding the boundaries is a tedious problem
that demands the attention of a skilled scientist on a rote task. In addition to speed
and automation, the proposed 2D-VMD is superior in accuracy to manual boundary
identification due to regions potentially having very similar patterns, of which the
orientation differs by only a few degrees, difficult to discern by eye.

Nanoscale images such as these are a useful testbed since data are often over-
sampled relative to the smallest observable features, atoms and molecular parts.
Also, segmentation in one imaging modality can be used to guide segmentation or
data acquisition in a complementary imaging mode [3, 8, 35, 51, 68].

The first example, shown in figure 4, is a 512×512 false-color image, of which we
only consider the average intensity across color channels as a proxy, in lieu of the
actual raw data produced by the microscope. Also, as classical pre-processing step,
we apply a Laplacian of Gaussians (LoG) band-pass filter to the image in order to
remove both some noise and the DC component. Expert inspection suggests that
there are six different grain orientations represented in this image. We perform
2D-VMD, 2D-TV-VMD, and 2D-SEG-VMD using these parameters:

K αk βk γk δ ρ ρk τ τk t
6 2000 1 250 ∞ 7 10 0 0 2.5

The recovered modes are shown in figure 4(d)–(f). The unconstrained 2D-VMD
model produces overly smooth modes without clear boundaries. The compactly
supported 2D-TV-VMD model yields modes with sharp delineation. As can be
seen from the grain boundaries overlaid to the input image, in figure 4(b), the
modes are not overlapping, but do not cover the entire image domain, leaving
unaccounted space at the grain boundaries. This problem is effectively addressed
by the addition of the segmentation constraint, as seen by the boundaries in 4(c).

The second example, shown in figure 5, is believed to consist of only three main
grain orientations. This 512×512 image is of the same type as the previous example
and pre-processed in the same way. The image exhibits strong singular spots due
to additional material deposition on the sample surface. In order to address these
outliers, we make use of the artifact detection and inpainting extension, for δ finite:

K αk βk γk δ ρ ρk τ τk t
3 2000 1 75 3.5 7 10 0 0 2.5

While the singular deposits (“artifacts”) negatively impact the mode purity for
both 2D-VMD and 2D-TV-VMD (figure 5(d)–(e)), this effect is partially alleviated
by the automatic detection and inpainting capability of the artifacts-extension (fig-
ure 5(f))4. In addition to the outlined grain boundaries (red), the location of the
detected artifacts is highlighted in cyan, in figure 5(c). Note that the artifact de-
tection also allows spotting at least some of the grain defects, in addition to the
deposits.

4Lower artifact threshold δ and higher TV-weight γk might increase the mode cleanliness even
further.
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(a) (b)

(c) (d)

Figure 6. 2D-VMD inpainting. (a) Input image f . (b) Fourier

spectrum f̂ . (c) Recovered modes
∑
k uk. (d) Detected artifacts

χ. See §7.5.

7.5. Inpainting. Here, we are interested in exploiting the model’s capability of
intrinsically inpainting the modes (and therefore the input image) in regions that
are labeled as artifacts/outliers. To this end, we construct a simple checkerboard
image, which essentially corresponds to a superposition of two cosine-waves with full
support each. In addition, portions of the image are corrupted by “pencil-scribble”,
as shown in figure 6(a). We set up the model as a two-modes 2D-VMD image
decomposition problem, with a finite artifact detection threshold. The data-fidelity
Lagrangian is inactive in order to allow some slack (Gaussian noise assumption)
and artifact detection, while we maintain an active Lagrangian multiplier on the
u− v splitting:

K αk βk γk δ ρ ρk τ τk t
2 1500 n/a n/a 30 150 20 0 1 n/a

As can be seen in figure 6(c)–(d), the model succeeds well in detecting the scribble
as outliers. In the artifact-labeled image portions, the submodes are inpainted by
intrinsic Fourier-interpolation, and as a result, a full checkerboard can be recovered
from the decomposition.

7.6. Textural segmentation: Lattices. We finally turn our attention to the
segmentation of images with lattice texture, as observed, for example in crystal-
lography and microscopy images of crystalloid samples. The fundamental assumed
property of such images is that they consist of K different domains (grains) form-
ing a partition of the image, such that each grain has a distinct lattice texture
composed of a superposition of M different essentially wavelike sub-bands. As seen
earlier, a checkerboard lattice would consist of a superposition of M = 2 orthogonal
cosine waves, while a hexagonal lattice consist of M = 3 modes differing by 60 ◦

rotation. Our model allows for multiple sub-modes uki to share a common support
function Ak, and thus be spatially coupled.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Lattice decomposition. (a) Input f . (b) Fourier spec-

trum f̂ . (c)–(d) Recovered phases
∑
iAkuki. (e)–(f) Submodes

uki. See §7.6.1.

7.6.1. Checkerboard: 2 phases with 2 sub-modes. As a first simple example, we
consider the composite of two checkerboard halves, of which one is slightly rotated,
as shown in figure 7(a). The goal is to find the support of two phases, partitioning
the 256×256 image domain, and the respective two sub-modes for each such grain.
We run the 2D-SEG-VMD model with the following parameters:

K M αk βk γk δ ρ ρk τ τk t
2 2 2000 1 250 ∞ 7 10 0 0 2.5

The resulting decomposition into the two checkerboard phases, Ak
∑
i uki, is

shown in figure 7(c)–(d), while the constituting two sub-modes per phase, uki, are
illustrated in figure 7(e)–(f).

7.6.2. Hexagonal lattice: 3 phases with 3 sub-modes. A slightly more complicated
problem is illustrated in figure 8. We start with a tripartite 256 × 256 image,
where each domain consists of an artificial hexagonal lattice pattern, obtained by
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(a) (b) (c)

(d)

Figure 8. 3 phase 3 modes. (a) Input f . (b) Fourier spectrum f̂ .
(c) 2D-SEG-VMD partition (red). (d) Phases Ak

∑
i uki. See

§7.6.2.

superposing three cosine waves rotated by 60 ◦ against each other. Each domain
has a slightly different lattice orientation (0 ◦, 15 ◦, 45 ◦). Like the previous example,
this is a 2D-SEG-VMD problem, this time with three phases and three sub-modes,
each. The other parameters remain unchanged:

K M αk βk γk δ ρ ρk τ τk t
3 3 2000 1 250 ∞ 7 10 0 0 2.5

As can be seen in figure 8(c)–(d), the recovered phases and their boundaries are
very precise. Note that this decomposition involves the identification of nine center
frequencies and associated wave functions, and the delineation of three support
functions partitioning the image domain.

7.6.3. Simulated hexagonal crystal. The 3-phase-3-waves hexagonal lattice image
of the previous sub-section was an idealized synthetic version of what real world
acquired images of hexagonally arranged crystal structures might look like. In
an attempt to make the problem more realistic, we created a more complicated
synthetic lattice image as follows: We predefine a 5-partition of the 256×256 image
domain. In each domain, individual pixels corresponding to approximate “bubble
locations” of the crystal lattice are activated. The exact center position is affected
by discretization noise (the pixel locations are obviously limited to the Cartesian
grid) as well as additional, controllable jitter. The resulting “nail board” is then
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(a) (b) (c) (d) (e)

Figure 9. Simluated crystal lattice. 2D-SEG-VMD decomposi-
tion in two runs, first with, then without Lagrangian multipliers.
See §7.6.3 in text for details and discussion. (a) Input image f . (b)

Fourier spectrum f̂ . (c) First run reconstruction
∑
k,iAkuki. (d)

Partition (red) of second run. (e) Reconstruction of second run.
Middle row: Phases obtained in first run with with τ, τk > 0 to
find correct ωki. Bottom row: Clean phases Ak

∑
i uik of second

run with τ = τk = 0 and well-initialized ωki.

convoluted with a circular point spread function designed to mimic the approximate
appearance of an individual lattice element, and Gaussian white noise is added. An
example is shown in figure 9(a). Due to this construction the grain boundaries
exhibit very irregular defects. All of these complications make the resulting image
much more interesting and challenging to segment.

In a first, simple attempt, we configure the 2D-SEG-VMD algorithm as follows:

K M αk βk γk δ ρ ρk τ τk t
5 3 2000 1 250 ∞ 7 10 1 1 2.5

In contrast to the actually noise-free preceding examples, here, we enforce data-
fidelity strictly by picking τ = τk = 1, so as to make sure the phases and modes pick-
up the relevant center frequencies and do not lazily get stuck in local minima (see
a discussion in [17] for the role of the Lagrangian multipliers in low-noise regimes).
The model is thus obliged to over-explain all image noise (jitter and Gaussian noise)
in terms of mode decomposition. As a result, the obtained partition captures the
five phases largely, but suffers from strong noise, as shown in the middle of figure 9.
Most importantly, though, this procedure found the correct 5×3 center frequencies.

These correctly identified center frequencies can now be used as a very strong
prior when running the 2D-SEG-VMD model a second time, in a different regime



34 D. ZOSSO, K. DRAGOMIRETSKIY, A. L. BERTOZZI, AND P. S. WEISS

with inactive Lagrangian multipliers to allow noise-slack. To this end, we use the
obtained center frequencies as user initialization for a second run, with parameters
as follows:

K M αk βk γk δ ρ ρk τ τk t
5 3 2e4 1 500 ∞ 7 10 0 0 2.5

Now, the increased αk renders the modes more pure, and also keeps the cen-
ter frequencies from drifting too much, while the partition regularity is regularized
slightly stronger (increased γk). The main difference are the inactivated Lagrangian
multipliers, relaxing the data-fidelity constraint considerably. The resulting decom-
position is shown in figure 9. In the correctly initialized denoising regime we obtain
a very accurate partition and much cleaner crystal grain estimates.

7.6.4. Colloidal image. As a last example problem, we consider a bright-field light
microscopy image of 10 µm-sized spherical glass particles suspended in water5.
These glass particles form a collection of small 2D colloidal crystals with grain
boundaries between them. These grains have a hexagonal lattice structure similar
to the previously considered examples. For our purposes, the original image is
cropped, band-pass filtered with a LoG-filter, and downsampled to a final dimension
of 256× 256. The effective input image is shown in figure 10(a).

Visual inspection of the Fourier spectrum suggests that there are probably four
different grain orientations to be found in the image (see figure 10(b)). We thus
configure the 2D-SEG-VMD model with the following parameter choice:

K M αk βk γk δ ρ ρk τ τk t
4 3 2000 1 250 ∞ 10 50 0.1 0.1 2.5

The resulting grain boundaries shown in figure 10(c) should be compared to
computationally determined lattice irregularities (grain boundaries, defects) in fig-
ure 10(d)6.

8. Conclusions and Outlook

In this paper, we have presented a variational method for decomposing a mul-
tidimensional signal, f : Rn → R, (images for n = 2) into ensembles of constituent
modes, uk : Rn → R, intrinsic mode functions which have specific directional and
oscillatory characteristics. This multidimensional extension of the variational mode
decomposition (VMD) method [17] yields a sparse representation with band-limited
modes around a center frequency ωk, which reconstructs the initial signal, exactly
or approximately.

In addition to generalizing the 1D VMD model to higher dimensions, we in-
troduce a binary support function Ak : Rn → {0, 1} for each mode uk, such that
the signal decomposition obeys f ≈

∑
k Ak · uk. In order to encourage compact

spatial support, an L1 and a TV-penalty term on Ak are introduced. After appro-
priate variable splitting, we present an ADMM scheme for efficient optimization
of this model. In particular, this includes MBO-like threshold dynamics to tackle

5Image used with permission, courtesy by Richard Wheeler, Sir William Dunn School of Pathol-

ogy, University of Oxford, UK.
6Ibid.
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(a) (b)

(c) (d)

Figure 10. Bright-field microscopy image of colloidal crystal and
its segmentation. Individual beads are 10 µm in diameter. See
§7.6.4. (a) Cropped, LoG-filtered, and downsampled input im-

age f . (b) Fourier spectrum f̂ . (c) 2D-SEG-VMD 4-partition
(red) overlaid on input image. (d) Colloidal connectivity graph for
comparison: white edges indicate hexagonal alignment (six equally
spaced neighbors) and that a particle is therefore part of a crys-
talline domain (grain), while colored edges indicate grain bound-
aries and defects.

the motion by mean curvature stemming from the support-function regularizing
TV-term.

In this general setting, our model allows for spatially compact modes that may be
spatially overlapping. By restricting the support functions on the probability sim-
plex,

∑
k Ak = 1, the modes have mutually exclusive spatial support and actually

form a partition of the signal domain. In this fashion, we obtain an image segmen-
tation model that can be seen as a Chan-Vese-like region-based model, where the
homogeneity is assessed through spectral bandwidth. Our variable splitting and
the handling of region boundaries through the binary support functions elegantly
overcomes the usual tradeoff between spatial and spectral compactness/bandwidth.

In order to deal with images of crystal grains, each region being more complicated
than a simple cosine-wave, we introduce the coupling of sub-modes with a single
binary support function. This allows the segmentation of crystal grain images, e.g.,
from microscopy, into respective grains of different lattice orientation. Further,
non-Gaussian image noise, outliers, and lattice defects are efficiently addressed by
the introduction of an artifact indicator function, χ : Rn → {0, 1}.

In summary, the models and algorithms allow decomposing a signal/image into
modes that may:

• have smooth or sharp boundaries (with or without TV/L1 terms on Ak),
• overlap or form a partition of the domain (image segmentation),
• be essentially wavelike (single mode) or crystalline (coupled sub-modes),
• reconstruct the input image exactly or up to Gaussian noise,
• identify outlier pixels/regions and inpaint them.
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