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Abstract. In this paper, we investigate the extension of the recently proposed weighted Fourier burst accumulation
(FBA) method into the wavelet domain. The purpose of FBA is to reconstruct a clean and sharp image from a sequence
of blurred frames. This concept lies in the construction of weights to amplify dominant frequencies in the Fourier
spectrum of each frame. The reconstructed image is then obtained by taking the inverse Fourier transform of the
average of all processed spectra. In this paper, we first suggest to replace the rigid registration step used in the original
algorithm by a non-rigid registration in order to be able to process sequences acquired through atmospheric turbulence.
Second, we propose to work in a wavelet domain instead of the Fourier one. This leads us to the construction of
two types of algorithms. Finally, we propose an alternative approach to replace the weighting idea by an approach
promoting the sparsity in the used space. Several experiments are provided to illustrate the efficiency of the proposed
methods.
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1 Introduction

In the last decade, turbulence image mitigation algorithms gained a lot of interest since long range

imaging systems have been developed to improve target identification. Such problem is challeng-

ing because it corresponds to the propagation of light through a random media (i.e the atmospheric

optical properties are not homogeneous) resulting in two main effects on the observed images:

geometric distortions and blur. Such situation can occur in many scenarios: for example, underwa-

ter imaging which is subject to the water scattering effects, or video shooting during the summer

which suffers from hot air turbulence near the ground, and so on. Weak and medium turbulence

do not really affect human observers, but they can be critical for automatic target recognition algo-

rithms. Indeed, shapes of objects may be very different from those learned by the algorithm.

Local filtering techniques1 (Wiener filter, Laplacian regularization, . . . ) were first proposed in the

literature to retrieve a “clear image”. Such methods are implemented by block partitioning of the
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image, having the main issue that they result in some block artifacts on the restored images. In,2, 3

the authors proposed to model the turbulence phenomenon by using two operators:

vipxq “ DipHpupxqqq ` noise, (1)

where u is the static original scene we want to retrieve, x the pixel location, vi the observed image

at time i, H a blurring kernel, and Di represents the geometric distortions at time i (it is commonly

accepted that the blur is a stationary phenomenon compared to geometric distortions). Based on

this model, in,4 and then improved by combining5 and,6 the authors proposed methods to evaluate

the inverse operators H´1 and D´1
i . In,7 the authors took a system point of view. They combined

a Kalman filter to stabilize the deformations with a Nonlocal Total Variation8 deconvolution step.

A centroid based approach is proposed in9 and.10 In,11 assuming long exposure video capture, the

authors used Principal Component Analysis to find the statistically best restored image. In,12 the

authors followed the assumption that for a given location in the image, at some specific timings,

its neighborhood has some high probability to appear with good quality (this principle is called the

“lucky-region” approach). The restored region is then a fusion of the “best” ones. A spatially vari-

ant deblurring approach was proposed in13 but it does not address the geometrical distortion issue.

Based on Frake’s model described above, in14 the authors used a B-Spline registration algorithm

embedded in a Bayesian framework with bilateral total variation (TV) regularization to invert the

geometric distortions and the blur. In,15 the authors proposed to obtain a latent (stabilized) image

from the sequence tviu by combining Sobolev gradients and Laplacian in a unified framework.

In,16 a precise and rapid control grid optical flow estimation algorithm is proposed and used to

remove geometric distortions due to turbulence. In,17, 18 the authors designed a two steps method:
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first they used a multiscale optical flow estimation and second, they introduced an algorithm, called

First Register Then Average And Subtract, to reconstruct a restored image. In,19 the SURE (Stein’s

unbiased risk estimate) method is used to optimize an objective function, which combines temporal

and spatial information, to obtain a restored image. An algorithm combining non-rigid registra-

tion and the lucky-region approach is proposed in.20 In,21 a generalized regression neural network

technique is used to learn, predict and then compensate turbulence induced deformations. In,22

the authors proposed a method fusing coefficients from a dual tree complex wavelet domain. The

fusion technique is based on the selection of informative regions of interest (ROI) and using a non-

rigid registration technique. The proposed approach has two main drawbacks: it requires a manual

selection of the used ROIs in the image and it uses a segmentation step in the fusion strategy. Such

segmentation step can be rapidly limiting, indeed, the “general” segmentation problem is still an

open problem and results are highly dependent on the type of images (textured v.s non-textures for

instance).

Recently, outside the context of turbulence degradations, the authors of23 (and extended in24 to

videos with moving objects) proposed a simple algorithm to remove motion blur from a sequence a

observation. This technique consists in a weighted accumulation of all frames in the Fourier space.

In this paper, we investigate the opportunity to extend such accumulation process to restore images

acquired through atmospheric turbulence. First, we propose to incorporate a non-rigid registration

step in the algorithm given in.23 Second, we generalize the concept of weighted accumulation in

wavelet spaces instead of the Fourier space. We design two different algorithms and study their

mathematical properties. We also suggest an alternative to the weighting process based on a spar-

sity constraint. Several experiments ran on real data with different wavelet families are presented

to illustrate advantages of using wavelets instead of Fourier. The paper is organized as follows:
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Section 2 recalls the weighted Fourier burst accumulation algorithm proposed in.23 In section 3, we

propose the use of an initial non-rigid registration step. Section 4 introduces the generalization to

the wavelet domain while in Section 5 we investigate some mathematical properties. In Section 6,

we introduce the concept of sparse burst accumulation where a sparsity constraint is used instead

of the weighting method. Section 7 presents experimental results. Finally, we conclude the paper

in Section 8.

2 Fourier burst accumulation

In this section we recall the concept of weighted Fourier Burst Accumulation (FBA) proposed

in23 and we introduce some notations which will be used throughout this paper. The aim of the

FBA method is to retrieve a deblurred image of an original scene, denoted u, from a sequence of

observations, assuming that those observations are affected by hand-shake blur. We will denote

tviu
M
i“1 the sequence of M observations such that, @i “ 1, . . . ,M ,

vipxq “ pki ˚ uqpxq ` nipxq, (2)

where ˚ denotes the convolution product, x the position in the image, ni some noise and ki is a

blurring kernel affecting u at the frame i.

The authors of23 defined the weighted Fourier Burst Accumulation (FBA) algorithm in the follow-

ing way: let p be a positive integer, the restored image, up, is obtained by

uppxq “ FBAptvipxqu
M
i“1u, pq “ F´1

˜

M
ÿ

i“1

wipξqFpviqpξq

¸

pxq, (3)

with wipξq “
Gσp|Fpviqpξq|pq

řM
j“1Gσp|Fpvjqpξq|pq

.
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Where F denotes the Fourier transform (ξ are the frequencies) and Gσ is a Gaussian filtering

of standard deviation σ. The authors mention that the algorithm is not sensitive to the choice of σ

and it can be automatically set to σ “ minpmw,mhq{50 (where mw and mh are respectively the

width and height of the image). In practice, the authors apply first a preprocessing registration step

(they use a combination of SIFT25 and ORSA26 algorithms) in order to remove affine transforma-

tions (translations, rotations and homothety). The authors also suggest that optional denoising and

sharpening final steps can be applied for contrast enhancement purposes.

This approach is based on the following principle: Fourier coefficients which represent an impor-

tant information in the image must appear consistently in all observations. Therefore, the weights

wipξq are large if Fourier coefficients Fpviqpξq are relatively stable through time, and weak other-

wise. Then multiplying the Fourier spectrum of each observation by these weights will amplify the

important information and attenuate time non-consistent information. Finally, an average spectrum

is computed and up can be easily retrieved by inverse Fourier transform.

3 Non-rigid regularization

As mentioned in the previous section, the authors of23 use an initial rigid registration step before

applying the FBA algorithm. Unfortunately, for atmospheric turbulence mitigation purposes the

observations are affected by non-rigid deformation and the use of a registration step based on SIFT

and ORSA algorithms is inefficient. In,5 a non-rigid regularization technique was proposed to

remove atmospheric non-rigid distortions. It consists in solving the following variational problem

pû, tΦ̂iuq “ argu,Φi
min Jpuq s.t. @i, vi “ Φiu` noise, (4)
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where each Φi corresponds to geometric distortions induced by the turbulence on the original

scene u at time i. The term Jpuq is a regularizer permitting to introduce some constraints on the

expected restored image û. In,5 the authors proposed to use the Non-Local Total Variation (NLTV)

but other regularizers like the Total Variation or sparsity in a wavelet-type representation can also

be used. The deformation fields Φi can be estimated via some optical-flow algorithm. Thus,

the algorithm consists in iterating two steps: a non-rigid registration step and a regularization

step. In this paper, we only keep the non-rigid registration step. In details, it consists first to

compute an average frame vapxq “ 1
M

řM
i“1 vipxq. Next, the deformation mappings Φi, such

that @i “ 1, . . . ,M ; vi “ Φipvaq, are estimated via an optical flow algorithm (in this paper, we

use the multiscale Lukas-Kanade algorithm27). Finally, the inverse mappings based on bilinear

interpolations are applied to each frame: Φ´1
i pviq Ñ vi. This registered sequence can then be used

as the input of the burst accumulation methods.

4 Weighted wavelet burst accumulation

Other image representations than the Fourier one are widely used in image processing, notably

wavelet type representations (wavelets, framelets, curvelets,. . . ). Given a family of N wavelets

tψnu
N
n“1, the wavelet representation of an image v is given by the set of projections tvnuNn“1 “

txv, ψnyu
N
n“1. In this paper, we will denote W a wavelet type transform of the image v, i.e

tvnuNn“1 “Wpvq. The inverse wavelet transform will be denotedW´1, i.e v “W´1ptvnuNn“1q.

We can define two types of burst accumulation approaches. The first one processes the burst ac-

cumulation directly in the wavelet domain, we will denote it WWBA (Weighted Wavelet Burst

Accumulation). Here, the weights are computed from the wavelet coefficients themselves, in each

subband, amplifying the most dominant coefficients through time. The corresponding formulation
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is given by equations (5).

uppxq “ WWBAptviu, tψnu, pq “W´1

¨

˝

#

M
ÿ

i“1

wni pxqv
n
i pxq

+N

n“1

˛

‚, (5)

with wni pxq “
Gσp|v

n
i pxq|

pq
řM
j“1Gσp|vnj pxq|

pq
.

The Gaussian filter, Gσ, is chosen as in the Fourier case.

The second type of accumulation consists in doing first the wavelet decomposition of each input

frame. Then we apply the Fourier Burst Accumulation algorithm from23 (recalled in Section 2)

to each subband sequences tvni u
M
i“1. We call this approach the Weighted Wavelet Fourier Burst

Accumulation (WWFBA) and can be formulated by equations (6).

uppxq “ WWFBAptviu, tψnu, pq “W´1
´

 

FBAptvni pxqu
M
i“1, pq

(N

n“1

¯

. (6)

This option is equivalent to deblur the wavelet coefficients themselves.

5 Mathematical characterization

In,23 the authors characterized the FBA algorithm with the following proposition.

Proposition 1. Applying the FBA algorithm on a sequence tviuMi“1 provides a restored image up equivalent to

up “ ke ˚ u` n̄ where ke “ F´1

˜

M
ÿ

i“1

wiFpkiq

¸

, (7)

and n̄ is the weighted average of the input noise.

In this section, we investigate the opportunity to get the same kind of characterization for the two

previously introduced algorithms in the wavelet domain described by (5) and (6) in the previous
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section. First, we need to switch to the filter bank point of view about the wavelet decomposition.

In the previous section, we denoted the wavelet decomposition of v by tvnuNn“1 “ txv, ψnyu
N
n“1.

It is also well-known in wavelet theory, using the frame formalism,28 that it can be written as a

convolution product:

tvnuNn“1 “ tv ˚ ψnu
N
n“1, (8)

where ψnpxq “ ψnp´xq. The inverse wavelet transform is given by

vpxq “W´1
ptvnuNn“1qpxq “

N
ÿ

n“1

pvn ˚ ψnqpxq. (9)

Therefore, in the same formalism, the wavelet transform of each observed frame vi can be written

as (we omit x in the following in order to simplify the notations)

tvni u
N
n“1 “ tvi ˚ ψnu

N
n“1 “ tpki ˚ u` niq ˚ ψnu

N
n“1 “ tki ˚ u ˚ ψnu

N
n“1 ` tni ˚ ψnu

N
n“1. (10)

5.1 Analysis of the WWBA algorithm

The WWBA restoration algorithm proposed in the previous section is equivalent to

up “W´1

¨

˝

#

M
ÿ

i“1

wni v
n
i

+N

n“1

˛

‚ (11)

“

N
ÿ

n“1

˜˜

M
ÿ

i“1

wni v
n
i

¸

˚ ψn

¸

(12)

“

N
ÿ

n“1

M
ÿ

i“1

`

wni pki ˚ u ˚ ψn ` ni ˚ ψnq
˘

˚ ψn (13)

“

M
ÿ

i“1

N
ÿ

n“1

pwni pki ˚ u ˚ ψnqq ˚ ψn `
M
ÿ

i“1

N
ÿ

n“1

pwni pni ˚ ψnqq ˚ ψn. (14)
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Unfortunately, pointwise multiplication and convolution do not commute so it is not possible to

write this expression as the convolution of u with some equivalent kernel as the authors did in23

for the Fourier burst case.

5.2 Analysis of the WWFBA algorithm

In the WWFBA algorithm case, we have the following proposition.

Proposition 2. Applying independent Fourier burst accumulations on each subband (n) sequences tvni u
M
i“1 is equiva-

lent to

up “ pke ˚ uq ` n where ke “
N
ÿ

n“1

M
ÿ

i“1

F´1pwn
i q ˚ ki ˚ ψn ˚ ψn. (15)

Proof: In the following, we use indistinctly Fpuq or û to designate the Fourier transform and

F´1puq or ǔ for the inverse transform in order to simplify the notations.

up “W´1
´

 

FBA
`

tvni u
M
i“1, p

˘(N

n“1

¯

(16)

“W´1

¨

˝

#

F´1

˜

M
ÿ

i“1

wni Fpvni q

¸+N

n“1

˛

‚ (17)

“W´1

¨

˝

#

F´1

˜

M
ÿ

i“1

wni

´

k̂iû
xψn ` n̂i

xψn

¯

¸+N

n“1

˛

‚ (18)

“W´1

¨

˝

#

M
ÿ

i“1

F´1
´

wni k̂iû
xψn ` w

n
i n̂i

xψn

¯

+N

n“1

˛

‚ (19)

“W´1

¨

˝

#

M
ÿ

i“1

|wni ˚ ki ˚ u ˚ ψn ` |wni ˚ ni ˚ ψn

+N

n“1

˛

‚. (20)
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Using the expression of the inverse wavelet transform, we get

up “
N
ÿ

n“1

˜

M
ÿ

i“1

|wni ˚ ki ˚ u ˚ ψn ` |wni ˚ ni ˚ ψn

¸

˚ ψn (21)

“

N
ÿ

n“1

M
ÿ

i“1

´

|wni ˚ ki ˚ u ˚ ψn ˚ ψn ` |wni ˚ ni ˚ ψn ˚ ψn

¯

(22)

“

M
ÿ

i“1

N
ÿ

n“1

|wni ˚ ki ˚ ψn ˚ ψn ˚ u`
M
ÿ

i“1

N
ÿ

n“1

|wni ˚ ni ˚ ψn ˚ ψn. (23)

If we denote

n “
M
ÿ

i“1

N
ÿ

n“1

|wni ˚ ni ˚ ψn ˚ ψn, (24)

and

ke “
M
ÿ

i“1

N
ÿ

n“1

|wni ˚ ki ˚ ψn ˚ ψn, (25)

then the wavelet burst accumulation is equivalent to up “ ke ˚ u` n which ends the proof.

6 Non-linear burst accumulation

The frame accumulation techniques described in section 4 are all based on linear combination

(either by pointwise multiplications or convolutions) of each frames in different representation

domains. These weights basically correspond to amplify dominant coefficients thus we can ask if

it is possible to exploit other approaches to perform such amplification? In this section, we propose

an alternative to the use of weights. Amplifying only the dominant coefficients can be interpreted

in the sense that only those dominant coefficients are important to represent the image. Therefore,

instead of using some amplification, we can imagine to keep the dominant coefficients and remove

the other ones. In other words the restored image is expected to have a sparse representation in

the used representation domains. It is then natural to promote the sparsity in each representation
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before doing the accumulation. In the last decade, the compressive sensing community widely

developed such concepts. It is notably well established that minimizing models based on L1-norm

provide sparse solutions.29 Let a function f , the simplest model to find a sparse representation g

from f is given by (26).

g “ arg
g̃

min }g̃}1 `
1

2λ
}g̃ ´ f}22. (26)

It is well-known that the solution of this minimization problem is given by soft-thresholding f with

threshold λ, and is given by (the operators are understood pointwise)

g “ Softpf, λq “
f

|f |
maxp|f | ´ λ, 0q. (27)

Therefore, denoting D the representation domain which can be either F or W , we propose the

following general sparse burst accumulation model.

uppxq “ SDBAptvipxquMi“1u, λq “ D´1

˜

M
ÿ

i“1

SoftpDpviq, λq

¸

pxq. (28)

Notice that in the case of a wavelet-type decomposition, the soft-thresholding operator is applied

in each subband.

7 Experiments

In our experiments, we decided to use two popular families of wavelets in image processing:

framelets and curvelets. Framelets are basically constructed in the same philosophy as for classic

2D tensor wavelets except that no downsampling is involved in the process. This particularity per-

mits to guarantee translation invariant decompositions which is important for image processing.
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Moreover, it well known that such family form a tight frame which ensures easy reconstructions

and permits to have algorithms which are less sensitive to important loss of information (see30 for

more details). Curvelets also form a tight frame but their main particularity is in the fact that they

also capture directional information hence providing better representations of geometric structures

in images (see31, 32 for details).

In order to distinguish between the different algorithms, we will use the following acronyms:

• FBA: Fourier Burst Accumulation,

• Fr-WWBA: Framelet based Weighted Wavelet Burst Accumulation,

• C-WWBA: Curvelet based Weighted Wavelet Burst Accumulation,

• Fr-WWFBA: Framelet based Weighted Wavelet Fourier Burst Accumulation,

• C-WWFBA: Curvelet based Weighted Wavelet Fourier Burst Accumulation,

• SFBA: Sparse Fourier Burst Accumulation,

• Fr-SWBA: Framelet based Sparse Wavelet Burst Accumulation,

• C-SWBA: Curvelet based Sparse Wavelet Burst Accumulation.

We experiment the proposed algorithms on three sequences denoted Barchart 1, Barchart 2 and

Barchart 3 (frames 1 and 25 for each sequence are illustrated in Figure 1). These sequences were

acquired with different equipments and meteorological (turbulence) conditions. We ran all algo-

rithms (FBA, Fr-WWBA, C-WWBA, Fr-WWFBA, C-WWFBA, SFBA, Fr-SWBA and C-SWBA)

on each sequence without any registration and with non-rigid registration. As suggested by the

authors of,23 we fix p “ 11 for all weighted methods. For the sparse based methods, the parameter
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λ is set to λ “ 0.5 for SFBA and λ “ 0.001 for Fr-SWBA and C-SWBA (the influence of these

parameters will be discussed below). We used sequences of 50 frames in each test.

Figures 2, 3 and 4 present the results obtained without any registration step. If, compared to the

original frames, cleaner images are obtained, it is worth to notice that some geometric distortions

remain in the reconstructed images thus comforting the idea that a non-rigid registration step is

needed to deal with the turbulence problem.

The results obtained after using the non-rigid registration step are given in Figures 5, 6 and 7. It is

clear that the non-rigid registration step is essential to correct the geometric distortions induced by

the turbulence. For instance, we can notice that vertical bars in the different barcharts are straighter

and sharper than in either the original and restored without non-rigid registration images. Com-

paring the different methods with non-rigid registration, the wavelet based options give clearer

restored images than the FBA technique. The advantage looks like to be in favor of the sparse

options as they provide images with more contrast than the weighted approaches.

As mentioned above, for the weighted algorithms, we used p “ 11 as proposed by the authors of.23

However, we tried several values of p on the weighted wavelet burst methods to see the influence of

p. Figure 8 illustrates the obtained results and if the choice of p does not seem very influential, we

actually observe that p “ 11 seems to be a good trade-off between improving the image contrast

and keeping only the most dominant coefficients. Unfortunately, no theoretical results support this

value for p and its investigation is a difficult task as it corresponds to a nonlinear optimization

problem.

In Figure 9, we illustrate the influence of λ on the C-SWBA algorithm, we verified that the same

behavior also occurs for the Fr-SWBA method. It is clear that the bigger λ, the more regularized

is the restored image. This behavior is easy to understand since when λ increases, it corresponds
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Barchart 1 Barchart 2 Barchart 3
FBA 2.29 2.08 2.27

Fr-WWBA 91.71 84.98 94.82
C-WWBA 27.59 18.46 19.51

Fr-WWFBA 97.97 92.91 103.37
C-WWFBA 9.8 9.39 11

SFBA 1.63 1.74 1.91
Fr-SWBA 24.75 23.30 26.07
C-SWBA 4.35 4.05 4.77

Table 1 Running times (in seconds) for each algorithms.

to remove larger coefficients in the transform domain, i.e removing more details in the image. In

all our experiments, we found that λ “ 0.001 for wavelet based methods and λ “ 0.5 for sparse

Fourier burst are good trade-offs providing sufficient regularization while keeping details in the

image.

In Table 1, we provide the different running times for each algorithms. All codes were run on a

2Ghz Inter(R) Xeon(R) E5-2640v2 (only a single core was used). All codes were implemented in

Matlab 2015b and it is worth to notice that the used framelet library is not optimized and based on

pure Matlab code (i.e does not have pre-compiled functions) while the libraries implementing the

FFT and the curvelet transform were based on compiled code. This difference explains why the

framelet based algorithms perform much slower than the other methods. We can notice, among all

wavelet approaches, that the sparse methods are faster than the weighted based approaches.

8 Conclusion

In this paper, we extend the work of Delbracio et al. on restoring a static image from a sequence

of blurred frames. We replace the rigid registration step by a non-rigid registration in order to be

able to deal with geometric distorted frames. We also propose to use some wavelet domain instead

of the Fourier domain and design two main approaches. Moreover, we suggest to replace the
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Fig 1 Original sequences: Barchart 1 (top row), Barchart 2 (middle row), Barchart 3 (bottom row). The consecutive
columns correspond to the frames 1 and 25, respectively.

weighting process by a sparsity constraint in the considered domains. We show several experiments

on real turbulence sequences to illustrate the efficiency of all described methods. These results

permit to observe that the sparse based methods give better reconstructions and are faster than the

weighted approaches. Future investigation can be made in terms of studying the best “operators”

that could be used to combine the different frames in both the Fourier or wavelet domains. A more

challenging theoretical question which should be addressed is why values of p close to 11 seem to

be the “optimal” ones?
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FBA Fr-WWBA

C-WWBA Fr-WWFBA

C-WWFBA SFBA

Fr-SWBA C-SWBA

Fig 2 Restoration results on Barchart 1 sequence (50 frames) without non-rigid registration and p “ 11 (without any
final denoising or sharpening step).
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FBA Fr-WWBA

C-WWBA Fr-WWFBA

C-WWFBA SFBA

Fr-SWBA C-SWBA

Fig 3 Restoration results on Barchart 2 sequence (50 frames) without non-rigid registration and p “ 11 (without any
final denoising or sharpening step).

New Mexico’s field trials, and the Naval Air Warfare Center at China Lake, CA for providing the

sequence Barchart 3. This work is supported by the Air Force Office of Scientific Research grant

FA9550-15-1-0065.

17



FBA Fr-WWBA

C-WWBA Fr-WWFBA

C-WWFBA SFBA

Fr-SWBA C-SWBA

Fig 4 Restoration results on Barchart 3 sequence (50 frames) without non-rigid registration and p “ 11 (without any
final denoising or sharpening step).
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FBA Fr-WWBA

C-WWBA Fr-WWFBA

C-WWFBA SFBA

Fr-SWBA C-SWBA

Fig 5 Restoration results on Barchart 1 sequence (50 frames) with non-rigid registration and p “ 11 (without any final
denoising or sharpening step).
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FBA Fr-WWBA

C-WWBA Fr-WWFBA

C-WWFBA SFBA

Fr-SWBA C-SWBA

Fig 6 Restoration results on Barchart 2 sequence (50 frames) with non-rigid registration and p “ 11 (without any final
denoising or sharpening step).
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FBA Fr-WWBA

C-WWBA Fr-WWFBA

C-WWFBA SFBA

Fr-SWBA C-SWBA

Fig 7 Restoration results on Barchart 3 sequence (50 frames) with non-rigid registration and p “ 11 (without any final
denoising or sharpening step).
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p “ 5 p “ 11

p “ 19 p “ 25

Fig 8 Influence of p in the weighted methods. Here is it illustrated on Fr-WWBA with non-rigid registration.

λ “ 0.0001 λ “ 0.001

λ “ 0.01 λ “ 0.1

Fig 9 Influence of λ in the sparse methods. Here is it illustrated on C-SWBA with non-rigid registration.
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