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ABSTRACT: We review the continuous max-flow approaches for the variational image segmentation models
with piecewise constant representations. The review is conducted by exploring the primal-dual relationships be-
tween the continuous min-cut and max-flow problems. In addition, we introduce the parameter free primal-dual
method for solving those max-flow problems. Empirical results show that the primal-dual method is competitive
to the augmented Lagrangian method.

1 INTRODUCTION

Multi-phase image segmentation (or multi-labelling)
is an important problem in image processing and has
a wide range of applications in related areas such as
computer vision (Paragios, Chen, & Faugeras 2005),
stereo (Kolmogorov & Zabih 2002, Kolmogorov &
Zabih 2004a) and 3D reconstruction (Vogiatzis, Es-
teban, Torr, & Cipolla 2007).The basic task in image
segmentation is to optimally assign different labels to
different pixels of an image with respect to some en-
ergy functional.

In the spatially discrete setting, the image is usu-
ally modelled as a graph, and the solution of the
multi-phase image labelling problem can be found
by computing the min-cut or max-flow solutions of
the graph, see (Kolmogorov & Boykov 2005, Kol-
mogorov & Zabih 2004b, Boykov, Veksler, & Zabih
2001, Boykov & Kolmogorov 2003) and references
therein. In the spatially continuous setting, the vari-
ational approach has been widely studied, where the
problem is formulated as the minimization problem
of a continuous energy functional. Compared with the
graph-based method in the discrete setting, the varia-

tional method has several advantages: 1) it can avoid
the metrication errors thanks to the crucial rotation
invariance property; 2) a wide range of reliable nu-
merical schemes are available, and these schemes can
be easily implemented and accelerated; 3) it requires
less memory in computation; 4) it is easy to use GPU
and parallel processors.

In this paper, we focus on the variational approach
for the image segmentation problem. Let Ω denote the
domain of an input image. Then the task is to find a
partition {Ωi}ni=1 of Ω which minimises the following
energy functional

min
{Ωi}ni=1

n∑
i=1

∫
Ωi

fi(x)dx+ αR ({Ωi}ni=1)

s.t.∪ni=1 Ωi = Ω and Ωk ∩Ωl = ∅ for k 6= l,

(1)

where R(·) is a regularisation term. Concrete rep-
resentations for {Ωi}ni=1 are needed so that we can
design numerical algorithms to solve (1). Over the
last 30 years, many representations have been pro-
posed, for example the level set method (Osher &
Sethian 1988, Chan & Vese 2001). In this work, we



are interested in the piecewise constant representa-
tions where each region is represented by a unique bi-
nary or integer value (Lie, Lysaker, & Tai 2005, Lie,
Lysaker, & Tai 2006b, Lie, Lysaker, & Tai 2006a).
With the piecewise constant representations, convex
relaxations can often be constructed for (1) and so ef-
ficient and robust numerical algorithms can be devel-
oped based on those relaxations. So far there are three
typical piecewise constant representations for {Ωi}ni=1

and each representation will result in a particular form
of (1).

Binary value representation: For each partition Ωi,
we can define an indicator function

ui(x) =

{
1 x ∈ Ωi

0 x /∈ Ωi,
i = 1, · · · , n.

With these indicator functions, model (1) with the
Potts regulariser R ({Ωi}ni=1) =

∑n
i=1 |∂Ωi| can be

rewritten as1

min
ui∈{0,1},u∈S

∑
i=1

∫
Ω

uifidx+ α

n∑
i=1

∫
Ω

|∇ui|dx (2)

where

S =

{
(u1, · · · , un) :

n∑
i=1

ui = 1, ui ≥ 0

}
.

Such a representation was used in (Lellmann, Kappes,
Yuan, Becker, & Schnörr 2009, Zach, Gallup, Frahm,
& Niethammer 2008). In (Bae, Yuan, & Tai 2011),
global minimization property for this model was
proven. In (Yuan, Bae, Tai, & Boykov 2010), this
model was interpreted as a min-cut problem with a
corresponding max-flow model.

Integer value representation: Let u : Ω →
{1, · · · , n} be a labelling function such that u(x) = i
if x ∈ Ωi, i = 1, · · · , n. Let ψi(u) be the correspond-
ing indicator functions for Ωi which is related to u.
Then model (1) with the regulariser R ({Ωi}ni=1) =∑n

i=1 |∂Ωi| reduces to

min
u∈{1,2···n}

n∑
i=1

∫
Ω

fiψi(u)dx+ α
n∑
i=1

∫
Ω

|∇ψi(u)|dx,

(3)

This model was first introduced in (Lie, Lysaker, &
Tai 2005, Lie, Lysaker, & Tai 2006b). Augmented
Lagrangian was used in (Lie, Lysaker, & Tai 2005,
Lie, Lysaker, & Tai 2006b) to solve it. In (Bae & Tai
2009), discrete graph cut was used to solve this model
which is very much related to the graph based method

1In the sequel, we will omit the notation x when there is no
confusion from the context.

in (Ishikawa 2003, Darbon & Sigelle 2006). The in-
terpretation of this model as a min-cut problem and
its corresponding max-flow model was given in (Bae,
Yuan, Tai, & Boykov 2010, Bae, Yuan, Tai, & Boykov
2014a). This problem can also be transformed into
a binary minization problem. If we replace the reg-
ulariser by R ({Ωi}ni=1) =

∫
Ω
|∇u|dx and introduce

λi(x) =

{
1 if u(x) > i

0 if u(x) ≤ i , i = 1, · · · , n− 1

and λ0(x) = 1, λn(x) = 0. Then model (1) can also be
written as a binary minimization problem (Liu, Tai,
Leung, & Huang 2014)

min
λi∈{0,1},λ∈B

n∑
i=1

∫
Ω

(λi−1−λi)fidx+α
n−1∑
i=1

∫
Ω

|∇λi|dx,

(4)

where

B = {(λ0, · · · , λn) : 1 = λ0 ≥ · · · ≥ λn = 0} .

After solving (4), the labelling function u can be re-
covered by u =

∑n
i=1(λi−1 − λi) · i.

Product of binary values representation: This rep-
resentation was was first given in (Lie, Lysaker, &
Tai 2005, Lie, Lysaker, & Tai 2006a) extending the
multiphase level set framework of Vese-Chan (Vese
& Chan 2002). In the case of two-phase labelling,
its convex relaxation and global minimization was
proposed in (Chan, Esedoglu, & Nikolova 2006).
For simplicity, assume n = 2m. Define w0(s) = 1−
s and w1(s) = s and introduce m binary function
φ1, · · · , φm : Ω→ {0,1} such that x ∈ Ωi if and only
if φ1 · · ·φm is a binary representation of the integer i.
With these notations, model (1) with the regulariser
R ({Ωi}ni=1) =

∑m
i=1 |∇φi|dx can be formulated as

min
φi∈{0,1}

∫
Ω

n∑
i=1

m∏
k=1

waik (φk)fidx+ α
m∑
k=1

∫
Ω

|∇φk|dx,

(5)

where ai1 · · ·aim is a binary representation of i, de-
noted by i = [ai1 · · ·aim]. The interpretation of this
model as a min-cut problem and its corresponding
max-flow model was given in (Bae, Lellmann, & Tai
2013, Bae & Tai 2015, Liu, Tai, Leung, & Huang
2014).

2 CONTINUOUS MAX-FLOW APPROACHES

Three piecewise constant representations and the cor-
responding formulations for labelling problems were



introduced in the last section. All the three for-
mulations are non-convex because either the con-
straints are non-convex or both the objective func-
tional and the constraints are non-convex. A num-
ber of approaches have appeared in the literature re-
cently showing that these models can be interpreted
as continuous min-cut problems. There exists a cor-
responding continuous max-flow model for each of
these three min-cut problems. Exploring the connec-
tion between these continuous min-cut and max-flow
problems, convex global minimization method could
be derived for these non-convex problems.

Since the pioneer work of Chan et al. (Chan, Ese-
doglu, & Nikolova 2006), one of the important re-
search topics in image segmentation is to find good
convex relaxations for the non-convex minimization
problems arising from the variational methods and
then design numerical algorithms for the correspond-
ing convex relaxations. In a series of research papers
(Yuan, Bae, Tai, & Boykov 2014, Bae & Tai 2015,
Bae, Yuan, Tai, & Boykov 2014b, Bae, Lellmann, &
Tai 2013, Yuan, Bae, Tai, & Boykov 2010), the au-
thors have developed a set of computationally effi-
cient algorithms for the models in the last section. The
essential idea is to interpret these models as continu-
ous min-cut problems and each of them has a corre-
sponding continuous max-flow problem. This section
reviews the continuous max-flow approaches from the
primal-dual perspective. However, we use a different
derivation to get these continuous max-flow models.

2.1 Two-phase image segmentation

We first consider the Chan-Vese model (Chan, Ese-
doglu, & Nikolova 2006) for the two phase segmen-
tation problem

min
u∈{0,1}

∫
Ω

(1− u)Csdx+

∫
Ω

uCtdx+ α

∫
Ω

|∇u|dx.

(6)

Model (6) can be viewed as a special case of either the
formulation (2) or (5). Since (6) is a non-convex opti-
mization problem, it is not tractable to find its global
solution. Thus the authors propose to relax the binary
valued function u to 0 ≤ u ≤ 1 and solve the follow-
ing convex problem

min
u∈[0,1]

∫
Ω

(1− u)Csdx+

∫
Ω

uCtdx+ α

∫
Ω

|∇u|dx.

(7)

Moreover, it is proved in (Chan, Esedoglu, &
Nikolova 2006) that the solution to (6) can be ob-
tained by thresholding the solution to (7). However,

the numerical algorithms for (7) usually suffer from
the non-smoothness of the TV term. We can form a
dual problem of (7) as follows:

min
u∈[0,1]

∫
Ω

(1− u)Csdx+

∫
Ω

uCtdx+ α

∫
Ω

|∇u|dx

= min
u∈[0,1]

max
ps≤Cs
pt≤Ct
|q|≤α

∫
Ω

(1− u)psdx+

∫
Ω

uptdx+

∫
Ω

udiv qdx

= min
u∈R

max
ps≤Cs
pt≤Ct
|q|≤α

∫
Ω

(1− u)psdx+

∫
Ω

uptdx+

∫
Ω

udiv qdx

= max
ps≤Cs
pt≤Ct
|q|≤α

min
u∈R

∫
Ω

(1− u)psdx+

∫
Ω

uptdx+

∫
Ω

udiv qdx

= max
ps≤Cs
pt≤Ct
|q|≤α

min
u∈R

∫
Ω

psdx+

∫
Ω

u (div q− ps + pt)dx

= max

∫
Ω

psdx s. t.
{
ps ≤ Cs, pt ≤ Ct, |q| ≤ α
div q− ps + pt = 0,

(8)

where in the first equality, we use the fact (Giusti
1977)∫

Ω

α |∇u|dx = max
|q|≤α

∫
Ω

udiv qdx

in the distributional sense; and the third equality fol-
lows from the minmax theorem (Ekeland & Teman
1999, Chapter 6, Proposition 2.4). Instead of regard-
ing (7) as a convex relaxation, our view point is that
(6) is a min-cut problem over a continuous domain
and the last maximization problem in (8) is a max-
flow problem. Problem (7) is the dual problem of (8).
The pair of min-max problems (7) and (8) are con-
tinuous analogue of the min-cut and max-flow prob-
lems in the graph based methods (Yuan, Bae, & Tai
2010, Yuan, Bae, Tai, & Boykov 2014). In the dis-
crete case, it is well-known that the min-cut problem
is equivalent to the max-flow problem. In the contin-
uous setting, the following three problem are equiva-
lent, c.f. (Yuan, Bae, Tai, & Boykov 2014, Prop. 3.1),
and thus gives another way to explain the convex re-
laxation model (7):

Min-cut problem (6)⇔Max-flow problem (8)

⇔ Dual of max-flow problem (7)

From the above derivation, we can see that the so-
called cut for (7) is the Lagrangian multiplier for the



flow conservation constraint div q− ps + pt = 0 of the
max-flow problem.

2.2 Multi-phase image segmentation

We will derive the max-flow models for the multi-
phase image formulations (2), (4) and (5) one by one
and show that the equivalence between the min-cut
and max-flow problems can also be extended to multi-
phase cases.

2.2.1 Binary value representation
Following the convex relaxation technique for the
two-phase Chan-Vese model, a natural convex relax-
ation for (2) is

min
u∈S

∑
i=1

∫
Ω

uifidx+ α
n∑
i=1

∫
Ω

|∇ui|dx. (9)

We can form a dual problem of (9) by introducing an-
other n variables pi, i = 1, · · · , n which corresponds
to the data fidelity term and an auxiliary variable ps:

min
(u1,··· ,un)∈S

n∑
i=1

∫
Ω

uifidx+ α
n∑
i=1

∫
Ω

|∇ui|dx

= min
ui≥0

max
ps

∫
Ω

(
1−

n∑
i=1

ui

)
psdx+

n∑
i=1

∫
Ω

uifidx

+ α
n∑
i=1

∫
Ω

|∇ui|dx

= min
ui∈R

max
ps

pi≤fi
|qi|≤α

∫
Ω

(
1−

n∑
i=1

ui

)
psdx+

n∑
i=1

∫
Ω

uifidx

+
n∑
i=1

∫
Ω

ui div qidx

= max
ps

pi≤fi
|qi|≤α

min
ui∈R

∫
Ω

(
1−

n∑
i=1

ui

)
psdx+

n∑
i=1

∫
Ω

uifidx

+
n∑
i=1

∫
Ω

ui div qidx

= max
ps

pi≤fi
|qi|≤α

min
ui∈R

∫
Ω

psdx+
n∑
i=1

∫
Ω

ui (div qi − ps + pi)dx

= max

∫
Ω

psdx s. t.
{
pi ≤ fi, |qi| ≤ α
div qi − ps + pi = 0,

(10)

where the third equality follows from the minmax the-
orem. The maximization problem (10) corresponds to
a type of max-flow model in the spatially continuous
domain (Yuan, Bae, Tai, & Boykov 2010).

2.2.2 Integer value representation
Relaxing λi ∈ {0,1} to λi ∈ [0,1] gives the convex
relaxation of (11)

min
λ∈B

n∑
i=1

∫
Ω

(λi−1 − λi)fidx+ α
n−1∑
i=1

∫
Ω

|∇λi|dx. (11)

By fixing λ0 = 1 and λn = 0, the dual problem of (11)
can be computed as follows:

min
λ∈B

n∑
i=1

∫
Ω

(λi−1 − λi)fidx+ α
n−1∑
i=1

∫
Ω

|∇λi|dx

= min
λi∈R

max
pi≤fi
|qi|≤α

n∑
i=1

∫
Ω

(λi−1 − λi)pidx+
n−1∑
i=1

∫
Ω

λi div qidx

= max
pi≤fi
|qi|≤α

min
λi∈R

n∑
i=1

∫
Ω

(λi−1 − λi)pidx+
n−1∑
i=1

∫
Ω

λi div qidx

= max
pi≤fi
|qi|≤α

min
λi∈R

∫
Ω

p1dx+
n−1∑
i=1

λi (div qi − pi + pi+1)dx

= max

∫
Ω

p1dx s. t.
{
pi ≤ fi, |qi| ≤ α
div qi − pi + pi+1 = 0,

(12)

where in the first equality 1 ≤ i ≤ n− 1 for λi and qi,
whereas 1 ≤ i ≤ n for pi; again the second equality
follows from the minmax theorem. The maximisation
problem (12) also corresponds to a continuous max-
flow model (Bae, Yuan, Tai, & Boykov 2014b).

2.2.3 Product of binary values representation
The energy functional in (5) is also non-convex in ad-
dition to the non-convexity of the constraints. In or-
der to find a convex relaxation of (5), we can compute
the pixel-wise convex envelop of the data term, which
can be obtained by computing the bi-conjugate of the
functional twice (Bae, Lellmann, & Tai 2013). The
bi-conjugate of g(u) :=

∑n
i=1

∏m
k=1waik (uk)fi, uk ∈

{0,1} (k = 1, · · · ,m) is

g∗(p) = max
uk∈{0,1}

{
m∑
k=1

pkuk −
n∑
i=1

m∏
k=1

waik (uk)fi

}
.

Consequently the bi-conjugate of g∗ is

g∗∗(φ) = max
p∈Rm

{
m∑
k=1

φkpk − g∗(p)

}



= max
p∈Rm

{
m∑
k=1

φkpk

+ min
uk∈{0,1}

(
n∑
i=1

m∏
k=1

waik (uk)fi −
m∑
k=1

pkuk

)}

= max
p∈Rm

m∑
k=1

{φkpk + p0}

s. t. p0 ≤ −
m∑
k=1

uikpk + fi, for any i = [ui1 · · ·uim],

where the constraint in the last equality follows from
the fact
n∑
i=1

m∏
k=1

waik

(
uik
)
fi = fi if i = [ui1 · · ·uim].

Thus the problem (5) with the regularisation term can
be relaxed to

min
φ

max
p

∫
Ω

p0dx+

∫
Ω

m∑
k=1

φkpkdx+ α

∫
Ω

m∑
k=1

|∇φk|dx

= min
φ

max
p,|qi|≤α

∫
Ω

p0dx+

∫
Ω

m∑
k=1

φkpkdx

+

∫
Ω

m∑
k=1

φk div qkdx

= max
p,|qi|≤α

min
φ

∫
Ω

p0dx+

∫
Ω

m∑
k=1

φk(div qk + pk)dx

= max

∫
Ω

p0dx s. t.


p0 ≤ −

∑m
k=1 u

i
kpk + fi

|qk| ≤ α
div qk + pk = 0.

(13)

Moreover, if the data term of (5) is sub-modular, (13)
is a tight convex relaxation for (5). In particular, the
data term is sub-modular when n = 4 (Bae & Tai
2015).

3 GENERAL ALGORITHMIC FRAMEWORK

3.1 Augmented Lagrangian method

The maximisation problems (8), (10), (12) and (13)
share the following general form

max
p
F (p) s. t.


p ∈ Cp
q ∈ Cq,
Lq +Dp = 0,

(14)

where

• F (p) is a (linear) functional of p,

• L and D are linear mappings,

• Cp and Cq are convex sets.

The augmented Lagrangian formulation of (14) is

L(p, q, γ) = F (p) + 〈γ,Lq +Dp〉 − c

2
‖Lq +Dp‖2 .

(15)

Then with a triple of intial points (p0, q0, γ0), we can
solve (14) by the augmented Lagrangian method as
follows (Alg. 1):

• pl+1 = arg maxp∈Cp L(p, ql, γl),

• ql+1 = arg maxq∈Cq L(pl+1, q, γl),

• γl+1 = γl − c (Lq +Dp).

When there are no explicit solutions to the first two
subproblems, they can be solved approximately by
several projected ascent iterations (Yuan, Bae, Tai, &
Boykov 2014, Bae & Tai 2015, Bae, Yuan, Tai, &
Boykov 2014b, Bae, Lellmann, & Tai 2013, Yuan,
Bae, Tai, & Boykov 2010). The penalization parame-
ter c is chosen by trial-and-error in numerical tests.

3.2 Primal-dual method

In this section, we will provide another method for
solving the continuous max-flow problems in Sec. 2.
As it can be observed from the derivation process,
each continuous max-flow approach is associated
with a min-max problem of the form

min
γ∈Cγ

max
p∈Cp
q∈Cq

F (p, q, γ), (16)

where F (p, q, γ) is (linear) functional of p, q and γ.
Then following the general set-up of the primal-dual
method in (Chambolle & Pock 2011, Esser, Zhang, &
Chan 2010), we can solve (16) as follows (Alg. 2):

• pl+1 = pl + τ pl
∂F (p,ql,γl)

∂p
,

• ql+1 = ql + τ ql
∂F (pl+1,q,γl)

∂q
,

• γl+1 = γl − βl ∂F (pl+1,ql+1,γ)
∂γ

,

where τ pl , τ
q
l and βl are adaptive stepsizes.The primal-

dual method is parameter free compared with the
augmented Lagrangian method in Sec. 3.1 as there
is no proximal regularizer in Alg. 2. Moreover, we
can choose the stepsizes automatically to accelerate
the algorithm, for example see Tab. 1. In general,
τ il (i = p, q) and βl should be inverse to each other,
which are proportional to l and 1/l respectively.



4 NUMERICAL EXPERIMENTS

This section compares the aforementioned two algo-
rithms on the image segmentation problems. The tests
are conducted on a Mac Pro laptop with Intel Core i5
CPUs @ 2.4 GHz and executed from Matlab. For the
discretized version of the gradient, divergence and TV
operators, we refer the readers to (Zhu 2008, Ch. 1.3).

In our tests, the data term has the form fi = |u−
ci|β, where u is the input image and ci is the average
intensity of the region i which is assumed to be fixed.
Apparently, fi is convex when β ≥ 1 and non-convex
when β < 1. Here β is set to 1.

In order to compare the convergence rate of the two
tested algorithms, we first (numerically) compute the
optimal primal energy, denoted by E∗, by running ei-
ther of the algorithms 10000 iterations. Then we eval-
uate the progress of the algorithm by computing the
relative error of the primal energy defined as

el =
|El −E∗|

E∗
, (17)

where El is the primal energy in the lth iteration.
We test the primal-dual and the augmented La-

grangian methods on the standard cameraman image
(see the left of Fig. 1) for the two-phase image seg-
mentation problem and on the standard noisy 3 color
image (see the right of Fig. 1) for the multi-phase im-
age segmentation problem. Due to the limited space,
we only conduct the tests for the variational model
with the integer value representation in Sec. 2.2.2. In
Alg. 1, c is selected to be 0.3, and the adaptive step-
size selections in Alg. 2 are listed in Tab. 1.

Table 1: Stepsize selections for the primal-dual method (Alg. 2)
τpl τ ql βl

Cameraman 0.1 ∗ l 0.04 ∗ l− 0.02 1
0.08∗l+0.2

3 color 0.005 ∗ l+ 0.03 0.005 ∗ l 1
0.02∗l

The segmentation results are plotted in Figs. 2. By
comparing the plots before and after thresholding,
we can see that both the primal-dual and the aug-
mented Lagrangian methods can achieve very good
performance since they all converge to a result which
takes the values 0 and 1 almost everywhere. The com-
putational results are presented in Tab. 2 which in-
cludes the number of iterations and computational
time needed for the algorithm to converge to certain
accuracy. Table 2 clearly shows that the primal-dual
method with the adaptive stepsize selections can be
faster than the augmented Lagrangian method.
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