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Abstract

In this short note we briefly outline a new and remarkably fast al-
gorithm for solving a a large class of high dimensional Hamilton-Jacobi
(H-J) initial value problems arising in optimal control and elsewhere
[1]. This is done without the use of grids or numerical approxima-
tions. Moreover, by using the level set method [8] we can rapidly
compute projections of a point in Rn, n large to a fairly arbitrary
compact set [2]. The method seems to generalize widely beyond what
will we present here to some nonconvex Hamiltonians, new linear pro-
gramming algorithms, differential games and perhaps state dependent
Hamiltonians.

1 Introduction

We begin with the HJ initial value problem
∂ϕ

∂t
(x, t) +H(∇xϕ(x, t)) = 0 in Rn × (0,+∞)

ϕ(x, 0) = J(x) ∀x ∈ Rn.
(1)

We assume J : Rn → R is convex and one coercive, i.e., lim‖x‖2→+∞
J(x)
‖x‖2 =

+∞, H : Rn → R is convex and positively one homogeneous (we some-
times relax all these assumptions).
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A good example of this is

H(v) = ‖v‖2.

Here ‖v‖p = (Σn
i=1|vi|p)

1
p for p ≥ 1 and 〈x, v〉 = Σn

i=1xivi.
If we take for J a convex Lipschitz function having the property

that, for Ω a convex compact set of Rn
J(x) < 0 for any x ∈ int Ω

J(x) = 0 for any x ∈ (Ω \ int Ω)

J(x) > 0 for any x ∈ (Rn \ Ω).

We call this level set initial data. Then the set of points for which
ϕ(x, t) = 0, t > 0 are exactly those at a distance t, from the boundary
of Ω. In fact given x̄ /∈ Ω, then the closest point xopt from x̄ to
(Ω \ int Ω) is exactly

xopt = x̄− t ∇ϕ(x̄, t)

‖∇ϕ(x̄, t)‖2
. (2)

To solve (1) we use the Hopf formula [5]

ϕ(x, t) = (J∗ + tH)∗(x) = − min
v∈Rn
{J∗(v) + tH(v)− 〈x, v〉},

where the Fenchel-Legendre transform f∗ : Rn → R ∪ (+∞) of the
convex function f is defined by

f∗(v) = sup
x∈Rn

{〈v, x〉 − f(x)}.

Moreover, for free we get that the minimizer satisfies

arg min
v∈Rn
{J∗(v) + tH(v)− 〈x, v〉} = ∇xϕ(x, t). (3)

whenever ϕ(·, t) is differentiable at x. Let us note here that our algo-
rithm computes ϕ(x, t) but also ∇xϕ(x, t).

Also, we can use the Hopf-Lax formula [5, 6] to solve (1).

ϕ(x, t) = min
z ∈ Rn

{
J(z) + tH∗

(
x− z
t

)}
(4)

for convex H.

2



From (4) it is easy to show that if we have k different initial value
problems i = 1, . . . k

∂ϕi

∂t
(x, t) +H(∇xϕi(x, t)) = 0, in Rn × (0,+∞)

ϕi(x, 0) = Ji(x) ∀x ∈ Rn

with the usual hypotheses, then (4) implies, for any x ∈ Rn, t > 0

ϕi(x, t) = min
z ∈ Rn

{
Ji(z) + tH∗

(
x− z
t

)}
.

So

min
i=1,k

ϕi(x, t) = min
z ∈ Rn

{
min

i=1,...,k

{
Ji(z) + tH∗

(
x− z
t

)}}
solves the initial value problem

∂ϕ

∂t
(x, t) +H(∇xϕ(x, t)) = 0, in Rn × (0,+∞)

ϕ(x, 0) = min
i=1,...,k

Ji(x) ∀x ∈ Rn.
(5)

This means that if Ω = ∪i=1,...,kΩi, each Ωi is compact and convex
and may overlap, then we can easily compute the set of all points at
distance t from Ω which is exactly the solution to (5) where each Ji is
a level set function for Ωi. Moreover, at every point x̄ outside of Ω̄ for
which there is one i such that ϕi(x̄, t) < ϕi′(x̄, t) for any i 6= i′, then
the closest point xopt to x̄ and Ω is again

xopt = x̄− t ∇xϕi(x̄, t)

|∇xϕi(x̄, t)|
.

If there are several i for which ϕi(x̄, t) is the minimum among all k
of them, then ∇xϕ will be “multivalued”, i.e. it will have jumps, but
any of the xopt defined above will be a closest point on Ω to x̄.

2 Split Bregman

We solve the optimization problem (3) by using the split Bregman
algorithm [4, 3, 9] as follows

vk+1 = arg min
v∈Rn
{J∗(v)− 〈x, v〉+

λ

2
‖dk − v − bk‖22}, (6)

dk+1 = arg min
d∈Rn

{
tH(d) +

λ

2
‖d− vk+1 − bk‖22

}
(7)

bk+1 = bk + vk+1 − dk+1. (8)
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Here the sequences (vk)k∈N, (d
k)k∈N both converge to ∇xϕ(x, t). Let

us emphasize again that our numerical algorithm not only computes
the solution ϕ(x, t) but also computes ∇xϕ(x, t) when ϕ(·, t) is differ-
entiable.

Both (6) and (7), up to change of variables, can be reformulated
as finding the unique minimizer of

arg min
w

{
αf(w) +

1

2
‖w − z‖22

}
which is the proximal map of f . Equation (6) can be solved if either
J∗ or J have easily computable proximal maps, which often occurs,
especially if one of them is smooth.

Equation (7) can be easily solved if H(d) = ‖d‖2 via the shrink2

operator defined by

shrink2(z, α) =

{
z
‖z‖2 max(‖z‖2 − α, 0) if z 6= 0

0 if z = 0

and we have

arg min
w

{
α‖w‖2 +

1

2
‖w − z‖22

}
= shrink2(z, α)

If H(d) = ‖d‖1 we use shrink1 operator defined as follows for any
i = 1, . . . , n

(shrink1(z, α))i =


zi − α if zi > α

0 if |zi| ≤ α
zi + α if zi < −α

and we have

arg min
w

{
α‖w‖1 +

1

2
‖w − z‖22

}
= shrink1(z, α).

To solve (7) for more general H(d) convex one homogeneous or to
find the proximal map for f of that type we use the fact that H∗ is
the characteristic function of a closed convex set C ⊂ Rn

H∗ = Ic.

By using the Moreau identity [7] we realize that the proximal map
of H can be obtained by projecting onto C. To do this projection, we
merely solve the eikonal equation with level set initial data for C via
split Bregman as above in (6), (7), (8) with H(d) = ‖d‖2. This is easy
using the shrink2 operator. We then use (2) to obtain the projection
and repeat the entire iteration.
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3 Numerical simulation

Numerical experiments on an Intel Laptop Core i5-5300U running at
2.3 GHz are now presented. We consider diagonal matrices D defined
by Dii = 1 + 1+i

n for i = 1, . . . , n. We also consider matrices A defined
by Aii = 2 for i = 1, . . . , n and Aij = 1 for i, j = 1, . . . , n. Table 1
presents the average time (in seconds) to evaluate the solution over
1,000,000 samples (x, t) uniformly drawn in [−10, 10]n × [0, 10]. The
convergence is remarkably rapid: 10−6 to 10−8 seconds on a standard
laptop, per function evaluation. Figure 1 depicts 2-dimensional slices
at different times for the (H-J) equation with a weighted `1 Hamilto-
nian H = ‖D · ‖1, initial data J = 1

2‖ · ‖
2
2 and n = 8.

n ‖y‖1 ‖y‖2 ‖y‖∞ ‖y‖D ‖y‖A
4 6.36e-08 1.20e-07 2.69e-07 7.00e-07 8.83e-07
8 6.98e-08 1.28e-07 4.89e-07 1.07e-06 1.57e-06

12 8.72e-08 1.56e-07 7.09e-07 1.59e-06 2.23e-06
16 9.24e-08 1.50e-07 9.92e-07 2.04e-06 2.95e-06

Table 1: Time results in seconds for the average time per call for evaluting the
solution of the HJ-PDE with the initial data J = 1

2
‖·‖22, several Hamiltonians

and various dimensions n.

4 Summary and Future Work

We have derived a very fast and totally parallelizable method to solve
a large class of high dimensional, state independent H-J initial value
problems. We do this suing the Hopf formula and convex optimization
via splitting, which overcomes the “curse of dimensionality”. This
is also done without the use of grids or numerical approximations,
yielding not only the solution, but also its gradient.

We also as a step in this procedure, very rapidly compute the
projections from a point in Rn, n large, to a fairly arbitrary compact
set.

In future work, we expect to extend this set of ideas to nonconvex
Hamiltonians, including some that arise in differential games, to new
linear programming algorithms, to fast methods for redistancing in
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level set methods and, hopefully, to a wide class of state dependent
Hamiltonians.
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Figure 1: Evaluation of the solution φ((x1, x2, 0, 0, 0, 0, 0, 0)†, t) of the HJ-
PDE with initial data J = 1

2
‖ · ‖22 and Hamiltonian H = ‖D · ‖1 for

(x1, x2) ∈ [−20, 20]2 for different times t. Plots for t = 0, 3, 5, 8 and re-
spectively depicted in (a), (b), (c) and (d). The level lines multiple of 10 are
superimposed on the plots.
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