CT Image Reconstruction by Spatial-Radon Domain Data-Driven Tight Frame Regularization

Ruohan Zhan* Bin Dong†

January 26, 2016

Abstract

This paper proposes a spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF). The proposed SRD-DDTF model combines the idea of joint image and Radon domain inpainting model of [1] and that of the data-driven tight frames for image denoising [2]. It is different from existing models in that both CT image and its corresponding high quality projection image are reconstructed simultaneously using sparsity priors by tight frames that are adaptively learned from the data to provide optimal sparse approximations. An alternative minimization algorithm is designed to solve the proposed model which is nonsmooth and nonconvex. Convergence analysis of the algorithm is provided. Numerical experiments showed that the SRD-DDTF model is superior to the model by [1] especially in recovering some subtle structures in the images.

Keywords. Computed tomography, data-driven tight frames, sparse approximation, spatial-Radon domain reconstruction.

1 Introduction

X-ray computed tomography (CT) has been widely used in clinic due to its great ability in visualizing interior structures. However, additional imaging dose to patients’ healthy radiosensitive cells or organs has always been a serious clinical concern [3–5]. Low-dose CT is highly desirable if satisfactory image quality can be maintained for a specific clinical task. One commonly adopted strategy to achieve low-dose CT imaging, especially for cone beam CT (CBCT), is to reduce the total number of projections. However, this may also lead to degraded restored images if the reconstruction algorithm is not properly designed to incorporate missing information due to incomplete angular sampling and system noise. Therefore, many classical algorithms based on a complete angular sampling such as filtered back projection (FBP) [6] will generate undesirable artifacts due to lack of measurements. Other inversion techniques such as pseudo-inverse based methods [7, 8] also perform poorly at the presence of noise. Therefore, a more effective and robust method is needed to achieve satisfactory reconstruction for clinical purposes. In this paper, we shall focus on the problem of low-dose planer fan beam CT reconstruction of 2D images. However, the same modeling concept can be easily applied to 3D CBCT image reconstruction.

*Yuanpei College, Peking University, Beijing, CHINA (zrhan@pku.edu.cn).
†Corresponding author. Beijing International Center for Mathematical Research, Peking University, Beijing, CHINA (dongbin@math.pku.edu.cn). Research supported in part by the Thousand Talents Plan of China.
Assume that the X-ray point source with a fixed milliampere-second (mAs) setting rotates along a circle centered at the object, and a linear detector array is used. CT image reconstruction can be casted as the following linear inverse problem in discrete setting

$$f = Pu + \epsilon,$$

where \(P \) is the projection matrix generated by the Sidden’s Algorithm [9], \(f \) is the projection image whose rows indicate the data collected by each detector and columns indicate data collected from different projection angles, and \(\epsilon \) is additive Gaussian white noise. To reduce radiation dose, one common way is to reduce the number of projection angles which leads to an under-determined (or rank deficient) linear system (or matrix \(P \)). This is the main challenge of reconstructing a desirable CT image \(u \) from its projections \(f \) via (1.1), and also the reason why traditional CT reconstruction algorithms such as FBP and pseudo-inverse based methods do not perform well.

In image restoration, many problems can be formulated as the same linear inverse problem (1.1) with \(P \) taking different forms for different image restoration problems. For instance, \(P \) is an identity operator for image denoising; a convolution operator for image deblurring; and a restriction operator for image inpainting. Image restoration has the same challenge as CT image reconstruction, which is the rank deficiency of the matrix \(P \). A good image restoration method should be capable of smoothing the image so that noise and other artifacts are suppressed to the greatest extend, while at the same time, preserving important image features such as edges. This is a challenging task since smoothing and preservation of features are often contradictory to each other.

Most of the existing models and algorithms for image restoration are transformation based. The key to the success of any transformation based image restoration method is to find a transform that can identify local features from the given image, or in other words, to separate singularities and smooth image components. Such property is closely related to the concept called “sparse approximation” which is broadly adopted in various problems in image processing, image analysis, matrix completion, high dimensional data analysis, etc. Interested reader should consult [10] for a review of classical and recent developments of image restoration methods.

One of the most successful transformations in image restoration is the wavelet frame transform. It has been implemented with excellent results in both classical [11–18] and some more challenging image restoration problems [19–22]. Frames provide vast flexibility in designing adaptive and non-local filters with improved performance in applications [2, 23–25]. The application of wavelet frames has gone beyond image restoration. They have been successfully used in video processing [26], image segmentation [27, 28] and classifications [29, 30]. More recently, wavelet frames are constructed on non-flat domains such as surfaces [31, 32] and graphs [33–36] with applications to denoising [31, 32, 36] and classifications [36].

Another class of methods for image restoration that have been developed through a rather different path is the PDE based approach [37–39] which started with the refined total variation (TV) model [40] and anisotropic diffusion [41]. The PDE based approach includes variational and (nonlinear) PDE based methods. Both variational and PDE methods can be understood as transformation based methods as well, where the transformations are the differential operators involved in the models [42].

In recent work by [43, 44], fundamental connections between wavelet frame based approach and variational methods were established. In particular, connections to the total variation model [40] was established in [43], and to the Mumford-Shah model [45] was established in [44]. Furthermore, in [42], the authors established a generic connection between iterative wavelet frame shrinkage and general nonlinear evolution PDEs which include the Perona-Malik equation [41] and the shock-
filters [46] as special cases. The series of three papers [42–44] showed that wavelet frame transforms are discretization of differential operators in both variational and PDE frameworks, and such discretization is superior to some of the traditional finite difference schemes for image restoration. This new understanding essentially merged the two seemingly unrelated areas: wavelet frame base approach and PDE based approach. It also gave birth to many innovative and more effective image restoration models and algorithms.

The concept of sparse approximation via linear transformations originated from image restoration was also applied to CT image reconstruction due to the similarity of the problems in nature. For example, wavelet frame based methods are developed for standard CT image reconstruction [47], for 4D CT image reconstruction [48–50] and spectral CT reconstruction [51]. TV-based regularization model was also applied to CT image reconstruction in [52–57]. Many other regularization based methods for CT image reconstruction have also been introduced [58–63], as well as dictionary learning based methods [64–67].

However, all methods mentioned above attempted to recover a good CT image u with a fixed projection image f. Various sparsity based prior knowledge on the CT image u have been used, while the prior knowledge on f is yet to be fully exploited. The projection image f we collect using under-sampled angles will suffer from lack of angular resolution and measurement noise. Therefore, to reconstruct a high quality CT image u from (1.1), we need to restore a high quality (improved angular resolution and reduced noise) projection image f using properly chosen prior knowledge on f. Since f and u are linked by the linear inverse problem (1.1), it is more effective to restore both u and f simultaneously. Such modeling philosophy was first introduced in [1] with success, where the authors proposed the following optimization model based on sparse approximation of tight wavelet frames

$$
\min_{f,u} \frac{1}{2} \|R_A(Pu - f)\|^2_2 + \frac{1}{2} \|R_A(Pu) - f_0\|^2_2 + \frac{\kappa}{2} \|R_A f - f_0\|^2_2 + \lambda_1 \|W_1 f\|_1 + \lambda_2 \|W_2 u\|_1.
$$

Here, f_0 is the projection image we collect from the scanner defined on the grid Λ of size $N_D \times N_P$, where N_D is the total number of detectors and N_P is the number of angular projections. The projection image f that (1.2) tries to recover is defined on a grid $\Omega \supset \Lambda$ of size $N_D \times N_P$. In this paper, we focus on the case $N_P = 2N_P$, which means we want to recover a projection image f that has twice the angular resolution as that of f_0. The operator R_A is the restriction operator associated to the set Λ. The first three terms of (1.2) makes sure that f is consistent with f_0 on Λ and $Pu \approx f$. The last two terms are the sparsity priors assumed on u and f, where W_1 and W_2 are two (possibly different) tight wavelet frame transforms. We refer the interested readers to [1] for more details.

Although positive results were reported in [1], the sparsity priors based on W_1 and W_2 can be further improved. It is known in the literature of image restoration that wavelet frames can sparsely approximate images or piecewise smooth functions in general. However, for a specifically given image, the sparse approximation by a pre-constructed wavelet frame system may not be ideal. This is the main reason why data-driven tight frames or bi-frames generally outperforms regular wavelet frames in image restoration [2, 24, 25]. In this paper, we propose to use data-driven tight frames of [2,24] as our sparsity priors for both u and f. The contribution of this paper is threefold: (1) the introduction of a spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF); (2) the design of an alternative optimization algorithm; and (3) convergence analysis of the proposed algorithm.

The rest of the paper is organized as follows. In Section 2 we review the basic knowledge of wavelet frames and data-driven tight frames. In Section 3, we introduce our spatial-Radon
domain CT image reconstruction model based on data-driven tight frames, followed by an efficient algorithm and its convergence analysis. In Section 4, we present some numerical simulations, and the concluding remarks are given in Section 5 at the end.

2 Reviews and Preliminaries

2.1 Tight Wavelet Frames

In this section, we briefly introduce the concept of tight wavelet frames. The interested readers should consult [68–71] for theories of frames and wavelet frames, [10, 72] for a short survey on the theory and applications of frames, and [73] for a more detailed survey.

For a given set of functions $\Psi = \{\psi_1, \psi_2, \ldots, \psi_r\} \subset L_2(\mathbb{R})$, the quasi-affine wavelet system is defined as

$$X(\Psi) = \{\psi_{j,n,k} : 1 \leq j \leq r; n \in \mathbb{Z}, k \in \mathbb{Z}\},$$

where $\psi_{j,n,k}$ is defined by

$$\psi_{j,n,k} := \begin{cases} 2^n \psi_j(2^n \cdot -k), & n \geq 0; \\ 2^n \psi_j(2^n \cdot -2^n k), & n < 0. \end{cases}$$

The system $X(\Psi)$ is called a tight wavelet frame of $L_2(\mathbb{R})$ if

$$f = \sum_{g \in X(\Psi)} \langle f, g \rangle g$$

holds for all $f \in L_2(\mathbb{R})$, where $\langle \cdot, \cdot \rangle$ is the inner product in $L_2(\mathbb{R})$. When $X(\Psi)$ forms a tight frame of $L_2(\mathbb{R})$, each function $\psi_j, j = 1, \ldots, r$, is called a (tight) framelet and the whole system $X(\Psi)$ is called a tight wavelet frame.

The constructions of compactly supported and desirably (anti)symmetric framelets Ψ are usually based on the multiresolution analysis (MRA) generated by some refinable function ϕ with refinement mask a_0 satisfying

$$\phi = 2 \sum_{k \in \mathbb{Z}} a_0[k] \phi(2 \cdot -k).$$

The idea of an MRA-based construction of framelets $\Psi = \{\psi_1, \ldots, \psi_r\}$ is to find masks a_j, which are finite sequences (or filters), such that

$$\psi_j = 2 \sum_{k \in \mathbb{Z}} a_j[k] \phi(2 \cdot -k), \quad j = 1, 2, \ldots, r. \quad (2.1)$$

The sequences a_1, \ldots, a_r are called wavelet frame masks, or the high pass filters associated to the tight wavelet frame system, and a_0 is also known as the low pass filter.

The unitary extension principle (UEP) [68] provides a rather general characterization of MRA-based tight wavelet frames. Roughly speaking, as long as $\{a_1, \ldots, a_r\}$ are finitely supported and their Fourier series \hat{a}_j satisfy

$$\sum_{j=0}^r |\hat{a}_j(\xi)|^2 = 1 \quad \text{and} \quad \sum_{j=0}^r \hat{a}_j(\xi)\overline{\hat{a}_j(\xi + \pi)} = 0,$$ \quad (2.2)
for all $\xi \in [-\pi, \pi]$, the quasi-affine system $X(\Psi)$ with $\Psi = \{\psi_1, \ldots, \psi_r\}$ defined by (2.1) forms a tight frame of $L_2(\mathbb{R})$. Note that, some filters used in image restoration, such as those constructed in [2, 24] and some filter banks in [42], only satisfy the first condition of (2.2). In this case, the wavelet systems associated to these filter banks are not tight frames of $L_2(\mathbb{R})$ in general. However, these filter banks form tight frames for sequence space $\ell_2(\mathbb{Z})$ instead, which is sufficient for many image restoration problems.

In discrete setting, we denote W as the fast decomposition transform and its adjoint W^\top as the fast reconstruction transform. Both W and W^\top are formed by convolution operators with kernels $\{a_j\}_{m=0}^m$. Let a be a filter in $\ell_2(\mathbb{Z})$. The convolution operator $S_a : \ell_2(\mathbb{Z}) \rightarrow \ell_2(\mathbb{Z})$ associated to kernel a is defined by

$$[S_a u](n) := [a * u](n) = \sum_{k \in \mathbb{Z}} a(n - k) u(k).$$

Given a set of filters $\{a_j\}_{j=0}^m$, the associated analysis operator W and its adjoint W^\top are given by

$$W = [S_{a_0}^{\top}, S_{a_1}^{\top}, \ldots, S_{a_m}^{\top}]^\top,$$

$$W^\top = [S_{a_0}, S_{a_1}, \ldots, S_{a_m}].$$

It is not hard to verify that the filters $\{a_i\}_{j=0}^m$ satisfy the first condition of (2.2) if and only if $W^\top W = I$. (2.4)

2.2 Data-Driven Tight Frames

This subsection is to briefly review the data-driven tight frames. Interested readers should refer to [2, 24] for details.

To learn a good tight frame W, taking the form of (2.3), for a given image u, we solve the following optimization problem:

$$\min_{v, W} \lambda^2 \|v\|_0 + \|W u - v\|_2^2, \quad W^\top W = I,$$ (2.5)

where $\|\cdot\|_0$ is the ℓ_0-“norm” that returns the number of non-zero entries of the input vector.

To solve (2.5), let us start with reformulating (2.5). Reshape all $N \times N$ patches of u into vectors and put them together as column vectors of the matrix $G \in \mathbb{R}^{N^2 \times p}$, where p is the total number of patches. We put the filters $\{a_j\}_{j=0}^m$ associated to W as column vectors of the matrix $D \in \mathbb{R}^{N^2 \times m}$. For simplicity, we focus on the case $m = N^2$, i.e. $D \in \mathbb{R}^{N^2 \times N^2}$. Denote $V \in \mathbb{R}^{N^2 \times p}$ as the tight frame coefficients. So, we have

$$G = (g_1, g_2, \ldots, g_p) \in \mathbb{R}^{N^2 \times p},$$

$$D = (a_1, a_2, \ldots, a_{N^2}) \in \mathbb{R}^{N^2 \times N^2},$$

$$V = (v_1, v_2, \ldots, v_p) \in \mathbb{R}^{N^2 \times p}.$$ (2.6)

Thus, the decomposition operation can be written as $V = D^T G$, and the reconstruction operation can be written as $\tilde{G} = D V$. The condition $W^\top W = I$ is satisfied whenever $DD^\top = I$. Now, we rewrite (2.5) as

$$\min_{V, D} \lambda^2 \|V\|_0 + \|D^T G - V\|_2^2, \quad DD^\top = I.$$ (2.7)
In [2, 24], an alternative optimization algorithm was proposed to solve the problem (2.7) and its convergence analysis was later given in [24]. What makes the algorithm efficient is that both the subproblems for solving \(D\) and \(V\) respectively have closed-form solutions that can be efficiently computed. This algorithm can be written as

\[
\begin{align*}
D^{k+1} &= XY^\top, \\
V^{k+1} &= \mathcal{T}_\lambda((D^{k+1})^TG),
\end{align*}
\]

where \(X\) and \(Y\) are obtained by taking SVD of \(G(V^k)^\top\), i.e. \(G(V^k)^\top = X\Sigma Y^\top\), and \(\mathcal{T}_\lambda\) is the hard-thresholding operator defined by

\[
(\mathcal{T}_\lambda(V))[i,j] = \begin{cases}
0, & \text{if } |x| < \lambda, \\
0, & \text{if } |x| = \lambda, \\
V[i,j], & \text{otherwise.}
\end{cases}
\]

\[(2.9)\]

3 Models and Algorithms

3.1 CT Image Reconstruction Model

We first introduce some basic notation. Denote \(P_0\) as the projection operator (computed using Sidden’s algorithm [9]) with \(N_P\) projections and \(N_D\) detectors, and \(f_0\) as the observed projection image. Suppose \(f_0\) is supported on the grid \(\Lambda\) of size \(N_D \times N_P\), with each pixel value representing the data received from each detector at each projection angle. Given \(f_0\), our objective is to reconstruct a projection image \(f\) with less noise and higher angular resolution than \(f_0\), together with its corresponding high quality CT image \(u\) at the same time. Let \(f\) be supported on the grid \(\Omega \supset \Lambda\) of size \(N_D \times N_P\) with \(N_P > N_p\). For simplicity, we focus on the case \(N_P = 2N_p\), i.e. we want to restore an \(f\) from \(f_0\) with doubled angular resolution.

To ensure a high quality reconstruction of both \(u\) and \(f\), we shall enforce sparsity based regularization on both of the variables. In [1], sparsity regularization based on tight wavelet frames was used and their numerical experiments showed the advantage of recovering both \(u\) and \(f\) simultaneously over the classical approach where \(f\) is fixed, i.e. setting \(f = f_0\). In this paper, instead of using a pre-constructed system as sparse approximation to \(u\) and \(f\), we adopt the idea of data-driven tight frames of [2] to actively learn the optimal sparse representation for \(u\) and \(f\) based on the given data \(f_0\). Our spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF) reads as follows:

\[
\begin{align*}
\min_{f,u,v_1,w_1,w_2} & \quad \frac{1}{2}\|R_{\Lambda^C}(Pu - f)\|^2 + \frac{1}{2}\|R_{\Lambda}Pu - f_0\|^2 + \frac{\kappa}{2}\|R_{\Lambda}f - f_0\|^2 \\
& \quad + \lambda_1\|v_1\|_0 + \frac{\mu_1}{2}\|W_1f - v_1\|^2 + \lambda_2\|v_2\|_0 + \frac{\mu_2}{2}\|W_2u - v_2\|^2,
\end{align*}
\]

\[(3.1)\]

\[\text{s.t.}\quad \begin{align*}
W_i^TW_i &= I, & i = 1, 2
\end{align*}\]

where \(R_{\Lambda^C}\) denotes the restriction on \(\Omega \setminus \Lambda\), and \(R_{\Lambda}\) denotes the restriction on \(\Lambda\).

The first two terms \(\frac{1}{2}\|R_{\Lambda^C}(Pu - f)\|^2 + \frac{1}{2}\|R_{\Lambda}Pu - f_0\|^2\) is to ensure that \(Pu \approx f\) on \(\Lambda^C\) and \(Pu \approx f_0\) on \(\Lambda\), while the third term \(\frac{\kappa}{2}\|R_{\Lambda}f - f_0\|^2\) is to ensure with restriction on \(\Lambda\), \(f \approx f_0\). The reason that we are not using the simpler fidelity term \(\frac{1}{2}\|Pu - f\|^2\) to enforce \(Pu \approx f\) is because \(f\)
is the estimated projection data which may not be as reliable as \(f_0 \) on \(\Lambda \). Therefore, in the domain \(\Lambda \) where the actual projection image \(f_0 \) is available, we should make sure that \(R_{\Lambda} P u \approx f_0 \).

The transforms \(W_1 \) and \(W_2 \) are tight frames (due to the constraints \(W_i^T W_i = I, i = 1, 2 \)), with frame coefficients \(v_1 \) and \(v_2 \), that are learned from \(u \) and \(f \) respectively. The use of the \(\ell_0 \)-"norm" is to enforce sparsity of \(v_1 \) and \(v_2 \) which in turn grants sparse approximation to \(u \) and \(f \) by the transforms \(W_1 \) and \(W_2 \). The special structure of \(W_i \) given by (2.3) and the constraints \(W_i^T W_i = I \) make the dictionary learning component of (3.1) different from the popular K-SVD method [74], where neither of the aforementioned properties is guaranteed to be satisfied. These properties make the learning of \(W_i \) much faster than the K-SVD method, because the size of the problem is much smaller, while the performance is still comparable to the K-SVD method. Another drawback of the K-SVD method is that the learned dictionary is not guaranteed to be complete in the underlying Euclidean space, i.e. \(W_i^T W_i \neq I \). We refer the interested readers to [2] for more details on the comparison between data-driven tight frames and the K-SVD method.

3.2 Alternative Optimization Algorithms

Given a projected data \(f_0 \), we first solve the following analysis based model [13,75,76]

\[
\min_u \frac{1}{2} \| P_0 u - f_0 \|^2_2 + \lambda \| W u \|_1 \tag{3.2}
\]

to obtain an initial reconstruction \(u^0 \). Then, we let \(f_0 = P u^0 \) to be the initial estimation of the higher quality projection image. The initial estimations on the variables \(v_1, W_1, v_2, W_2 \) are obtained by solving the following problems

\[
\min_{v_1, W_1} \lambda^2 \| v_1 \|_0 + \| W_1 u^0 - v_1 \|^2_2, \quad W_1^T W_1 = I \tag{3.3}
\]

and

\[
\min_{v_2, W_2} \lambda^2 \| v_2 \|_0 + \| W_2 f^0 - v_2 \|^2_2, \quad W_2^T W_2 = I \tag{3.4}
\]

using algorithm (2.8). After the initializations, we optimize the variables \(f, u, \{ W_1, W_2 \}, \{ v_1, v_2 \} \) in the SRD-DDTF model (3.1) alternatively and iterate until convergence. Full details of the proposed algorithm is given in Algorithm 1. Convergence analysis of the algorithm is given in the next subsection.

Note that in step 2 of Algorithm 1 where variables are updated alternatively, we added additional \(\ell_2 \) terms, \(\frac{a}{2} \| f - f^k \|^2_2, \frac{a}{2} \| u - u^k \|^2_2, \frac{b}{2} \| W_1 - W_1^k \|^2_2, \frac{b}{2} \| W_2 - W_2^k \|^2_2, \frac{b}{2} \| v_1 - v_1^k \|^2_2, \frac{b}{2} \| v_2 - v_2^k \|^2_2 \), so that we can theoretically justify the convergence of the algorithm. Numerically, however, Algorithm 1 still converges with \(a = b = c_1 = c_2 = d_1 = d_2 = 0 \).

Problem (3.5) in Algorithm 1 has the following closed-form solution:

\[
f^{k+1} = (R_{\Lambda^c} + \kappa R_A + (\mu_1 + a) I)^{-1}(R_{\Lambda^c} Pu^k + \kappa R_A f_0 + \mu_1 W_1^T v_1^k + af^k),
\]

where \(R_{\Lambda^c} + \mu_1 R_A + (\mu_3 + a) I \) is simply a diagonal matrix and hence no matrix inversion is needed. Problem (3.6) also has a closed-form solution:

\[
u^{k+1} = (P^T P + (\mu_2 + b) I)^{-1}(P^T R_{\Lambda^c} f^{k+1} + P^T R_A f_0 + \mu_2 W_2^T v_2^k + bu^k),
\]

which can be efficiently solved by the conjugate gradient method.
3.3 Convergence Analysis

where \(T \). To solve problem (3.8), we can simply compute

\[
\begin{align*}
& f^{k+1} \leftarrow \arg\min_{f} \frac{\kappa}{2} \| R_{A} f - f_{0} \|_{2}^{2} + \frac{1}{2} \| R_{A} C (P u^{k} - f) \|_{2}^{2} + \frac{\mu_{1}}{2} \| W_{1}^{k} f - v_{1}^{k} \|_{2}^{2} + \frac{\alpha}{2} \| f - f^{k} \|_{2}^{2} \quad (3.5) \\
& u^{k+1} \leftarrow \arg\min_{u} \frac{1}{2} \| R_{A} C (P u - f^{k+1}) \|_{2}^{2} + \frac{1}{2} \| R_{A} P u - f_{0} \|_{2}^{2} + \frac{\mu_{2}}{2} \| W_{2}^{k} u - v_{2}^{k} \|_{2}^{2} + \frac{b}{2} \| u - u^{k} \|_{2}^{2} \quad (3.6) \\
& W_{1}^{k+1} \leftarrow \arg\min_{W_{1}} \frac{\mu_{1}}{2} \| W_{1} f^{k+1} - v_{1}^{k} \|_{2}^{2} + \frac{c_{1}}{2} \| W_{1} - W_{1}^{k} \|_{2}^{2}, \\
& W_{2}^{k+1} \leftarrow \arg\min_{W_{2}} \frac{\mu_{2}}{2} \| W_{2} u^{k+1} - v_{2}^{k} \|_{2}^{2} + \frac{c_{2}}{2} \| W_{2} - W_{2}^{k} \|_{2}^{2} \quad (3.7) \\
& v_{1}^{k+1} \leftarrow \arg\min_{v_{1}} \lambda_{1} \| v_{1} \|_{0} + \frac{\mu_{1}}{2} \| W_{1}^{k+1} f^{k+1} - v_{1} \|_{2}^{2} + \frac{d_{1}}{2} \| v_{1} - v_{1}^{k} \|_{2}^{2}, \\
& v_{2}^{k+1} \leftarrow \arg\min_{v_{2}} \lambda_{2} \| v_{2} \|_{0} + \frac{\mu_{2}}{2} \| W_{2}^{k+1} u^{k+1} - v_{2} \|_{2}^{2} + \frac{d_{2}}{2} \| v_{2} - v_{2}^{k} \|_{2}^{2} \quad (3.8)
\end{align*}
\]

The updates on the variables \(v_{1}, W_{1}, v_{2}, W_{2} \) can be implemented by reformulating the problem in the form (2.6) and solving them by a variant algorithm of (2.8) [24]. To be more specific, we first make the following reformulations:

\[
\begin{align*}
\{ f, v_{1}, W_{1} \} & \quad \Leftrightarrow \quad \{ F, V_{1}, D_{1} \}, \\
\{ u, v_{2}, W_{2} \} & \quad \Leftrightarrow \quad \{ U, V_{2}, D_{2} \}. \quad (3.9)
\end{align*}
\]

Thus, to solve problem (3.7), we can simply compute

\[
\begin{align*}
& D_{1}^{k+1} = X_{1} Y_{1}^{\top}, \quad \text{where} \quad X_{1} \Sigma_{1} Y_{1}^{\top} = F^{k+1} (V_{1}^{k})^{\top} + \frac{c_{1}}{\mu_{1}} D_{1}^{k}; \\
& D_{2}^{k+1} = X_{2} Y_{2}^{\top}, \quad \text{where} \quad X_{2} \Sigma_{2} Y_{2}^{\top} = U^{k+1} (V_{2}^{k})^{\top} + \frac{c_{2}}{\mu_{2}} D_{2}^{k}. \quad (3.10)
\end{align*}
\]

To solve problem (3.8), we can simply compute

\[
\begin{align*}
& V_{1}^{k+1} = T \sqrt{2 \lambda_{1} / (\mu_{1} + d_{1})} ((\mu_{1} (D_{1}^{k+1})^{T} F^{k+1}) + d_{1} V_{1}^{k}) / (\mu_{1} + d_{1}), \\
& V_{2}^{k+1} = T \sqrt{2 \lambda_{2} / (\mu_{2} + d_{2})} ((\mu_{2} (D_{2}^{k+1} U^{k+1}) + d_{2} V_{2}^{k}) / (\mu_{2} + d_{2}), \quad (3.11)
\end{align*}
\]

where \(T_{a}(\cdot) \) is the hard-thresholding operator defined by (2.9).

3.3 Convergence Analysis

In this subsection, we prove that under the bounded assumption, \(\{ f^{k}, u^{k}, W_{1}^{k}, W_{2}^{k}, v_{1}^{k}, v_{2}^{k} \} \) generated by Algorithm 1 converges globally and the limit is a stationary point of the proposed model (3.1).
Our convergence analysis has a similar structure as that of [24]. Our analysis is also based on the recent work by [77–79], where convergence of alternative optimization algorithms on nonconvex and nonsmooth functions is studied using Kurdyka-Lojasiewicz (KL) property. However, our algorithm has four block coordinates \((f, u, \{W_1, W_2\}, \{v_1, v_2\}) \), which leads to a relatively more complicated convergence analysis than that of [24, 77] where algorithm of two blocks was analyzed.

Our convergence analysis is based on the following assumption:

Assumption 3.1. The sequence \(\{u^k, f^k\} \) generated by algorithm 1 is bounded.

Under this assumption, we will prove:

1. Global convergence of \(\{f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k\} \) using KL property;
2. The limit is a stationary point of the SRD-DDTF model (3.1).

We start with some basic notation and definitions.

Definition 3.1. (Critical Point) Let \(f : \mathbb{R}^n \mapsto \mathbb{R} \cup \{\pm \infty\} \) be a proper and lower semi-continuous function.

1. The Fréchet subdifferential of \(f \) at \(x \) is defined by
 \[
 \partial_F f(x) := \{w \in \mathbb{R}^n : \liminf_{y \to x} \frac{f(y) - f(x) - \langle w, y - x \rangle}{\|y - x\|} \geq 0\} \tag{3.12}
 \]
 for any \(x \) with \(|f(x)| < \infty \) and \(\partial_F f(x) = \emptyset \) if \(|f(x)| = \infty \). Denote \(\partial_F f = \{x : \partial_F f(x) \neq \emptyset\} \).
2. The limiting-subdifferential (or simply subdifferential) of \(f \) at \(x \) is defined by
 \[
 \partial f(x) := \{u \in \mathbb{R}^n : \exists x_n \to x, f(x_n) \to f(x), u_n \in \partial_F f(x_n) \to u, n \to \infty\}. \tag{3.13}
 \]
 Denote \(\partial f = \{x : \partial f(x) \neq \emptyset\} \).
3. For each \(x \in \text{dom} f \), \(x \) is called the stationary point of \(f \) if it satisfies \(0 \in \partial_F f(x) \).

Remark 3.1. Our definition of stationary point is the same with the one used in [24], which is stronger than the definition used by [77, 78].

Definition 3.2. (Kurdyka-Lojasiewicz Property) [80, 81]. The function \(f \) is said to have the Kurdyka-Lojasiewicz Property at \(x \in \partial f \) if there exist \(\eta \in (0, +\infty) \), a neighborhood \(U \) of \(x \), and a continuous concave function \(\varphi : [0, \eta) \to [0, +\infty) \), such that:

- \(\varphi(0) = 0 \),
- \(\varphi \in C^1 ((0, \eta)) \),
- \(\varphi'(z) > 0, \forall z \in (0, \eta) \),
- and \(\forall x' \in U \cap \{x' : f(x) < f(x') < f(x) + \eta\} \), the Kurdyka-Lojasiewicz inequality holds:
 \[
 \varphi'(f(x') - f(x)) \text{dist}(0, \partial f(x')) \geq 1. \tag{3.14}
 \]

If for all \(x \in \partial f \) KL property holds, then \(f \) is called a KL function.
Suppose the patches of f have size $n \times n$, and the patches of u have size $m \times m$. For simplicity, define $D_1 = \{ W \in R^{n^2 \times n^2} : W^\top W = I_{n^2} \}$ and $D_2 = \{ W \in R^{m^2 \times m^2} : W^\top W = I_{m^2} \}$. Define

$$Q(f, u, W_1, W_2, v_1, v_2) = \frac{1}{2} \| R_{A C} (P u - f) \|^2_2 + \frac{1}{2} \| R_A P u - f_0 \|^2_2 + \frac{\kappa}{2} \| R_A f - f_0 \|^2_2 + \frac{\mu_1}{2} \| W_1 f - v_1 \|^2_2 + \frac{\mu_2}{2} \| W_2 u - v_2 \|^2_2,$$

and

$$f_1(v_1) = \lambda_1 \| v_1 \|_0, \quad f_2(v_2) = \lambda_2 \| v_2 \|_0, \quad g_1(W_1) = I_{D_1}(W_1), \quad g_2(W_2) = I_{D_2}(W_2),$$

where $I_D(W) = 0$, if $W \in D$ and $+\infty$ otherwise.

Then, problem (3.1) can be reformulated as

$$\min_{f, u, W_1, W_2, v_1, v_2} F(f, u, W_1, W_2, v_1, v_2) := f_1(v_1) + f_2(v_2) + g_1(W_1) + g_2(W_2) + Q(f, u, W_1, W_2, v_1, v_2). \quad (3.15)$$

It is clear that f_1, f_2 are lower semi-continuous. Since D_1, D_2 are compact, g_1, g_2 are also lower semi-continuous. For convenience, let $X^k = (f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k)$, $Q^k = Q(X^k), F^k = F(X^k)$.

Lemma 3.1. Denote $l = \min\{a, b, c_1, c_2, d_1, d_2\}$. We have

$$\frac{l}{2} \| X^{k+1} - X^k \|^2_2 \leq F^k - F^{k+1} \quad \text{and} \quad \| X^{k+1} - X^k \|^2_2 \to 0, k \to \infty,$$

and the sequence $\{F^k\}$ is bounded and monotonically decreases to a limit point.

Proof. According to Algorithm 1, we have

$$F(f^{k+1}, u^{k+1}, W_1^{k+1}, W_2^{k+1}, v_1^{k+1}, v_2^{k+1})$$

$$\leq F(f^{k+1}, u^{k+1}, W_1^{k+1}, W_2^{k+1}, v_1^{k+1}, v_2^{k+1}) + \frac{a}{2} \| f^{k+1} - f^k \|^2_2 + \frac{b}{2} \| u^{k+1} - u^k \|^2_2$$

$$+ \frac{c_1}{2} \| W_1^{k+1} - W_1^k \|^2_2 + \frac{c_2}{2} \| W_2^{k+1} - W_2^k \|^2_2 + \frac{d_1}{2} \| v_1^{k+1} - v_1^k \|^2_2 + \frac{d_2}{2} \| v_2^{k+1} - v_2^k \|^2_2 \quad (3.16)$$

$$\leq F(f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k)$$

$$\leq \cdots \leq F(f^0, u^0, W_1^0, W_2^0, v_1^0, v_2^0).$$

Therefore, the sequence $\{F^k \geq 0\}$ is bounded and monotonically decreasing, thus convergent. The second inequality of (3.16) gives us

$$\frac{a}{2} \| f^{k+1} - f^k \|^2_2 + \frac{b}{2} \| u^{k+1} - u^k \|^2_2 + \frac{c_1}{2} \| W_1^{k+1} - W_1^k \|^2_2 + \frac{c_2}{2} \| W_2^{k+1} - W_2^k \|^2_2$$

$$+ \frac{d_1}{2} \| v_1^{k+1} - v_1^k \|^2_2 + \frac{d_2}{2} \| v_2^{k+1} - v_2^k \|^2_2 \leq F^k - F^{k+1},$$

$$\Rightarrow \frac{l}{2} \| X^{k+1} - X^k \|^2_2 \leq F^k - F^{k+1},$$

which leads to

$$\frac{l}{2} \sum_{i=0}^{k} \| X^{i+1} - X^i \|^2_2 \leq F^0 - F^{k+1} \leq F^0, \forall k.$$

Thus, $\sum_{k=0}^{\infty} \| X^{k+1} - X^k \|^2_2$ are finite and $\| X^{k+1} - X^k \|^2_2 \to 0, k \to \infty$. \hfill \square
Lemma 3.2. Based on Assumption 3.1, the sequence $X^k = \{f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k\}$ generated by algorithm 1 is bounded and thus has a convergent subsequence.

Proof. By Assumption 3.1, the sequence $\{u^k, f^k\}$ is bounded. Also, $W_1^k \in D_1, W_2^k \in D_2$ are bounded too. Combining with Lemma 3.1, we have

$$\|v_1^k\|_2 \leq \|W_1^k f^k\|_2 \leq \|W_1^k f - v_1^k\|_2 \leq \frac{2F_{k}}{\mu_1} \leq \frac{2F_0}{\mu_1}, \forall k,$$

hence v_1^k is also bounded. Similarly, v_2^k is bounded. Thus, X^k is bounded and has convergent subsequence.

Lemma 3.3. Define

$$A^k = (-a(f^k - f^{k-1}), -b(u^k - u^{k-1}), -c_1(W_1^k - W_1^{k-1}), -c_2(W_2^k - W_2^{k-1}),$$

$$d_1(v_1^k - v_1^{k-1}), d_2(v_2^k - v_2^{k-1})) + Q_f(f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k) - Q_f(f^k, u^{k-1}, W_1^{k-1}, W_2^{k-1}, v_1^{k-1}, v_2^{k-1}), 0, 0, 0, 0)$$

(3.17)

Then $A_k \in \partial F^k$ and there exist a positive constant M such that $\|A^k\|_2 \leq M\|X^k - X^{k-1}\|_2$.

Proof. From the Algorithm 1, we have

$$0 \in a(f^k - f^{k-1}) + Q_f(f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k);$$

$$0 \in b(u^k - u^{k-1}) + Q_u(f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k);$$

$$0 \in c_1(W_1^k - W_1^{k-1}) + \partial g_1(W_1^k) + Q_{W_1}(f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k);$$

$$0 \in c_2(W_2^k - W_2^{k-1}) + \partial g_2(W_2^k) + Q_{W_2}(f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k);$$

$$0 \in d_1(v_1^k - v_1^{k-1}) + \partial f_1(v_1^k) + Q_{v_1}(f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k);$$

$$0 \in d_2(v_2^k - v_2^{k-1}) + \partial f_2(v_2^k) + Q_{v_2}(f^k, u^k, W_1^k, W_2^k, v_1^k, v_2^k).$$

Together with (3.17), it is easy to see that $A_k \in \partial F^k$. Note that under the bounded setting, ∂Q is Lipschitz continuous. Letting its Lipschitz constant be L, we have $\|A^k\|_2 \leq M\|X^k - X^{k-1}\|_2$ where $M = \sqrt{6}\max\{a, b, c_1, c_2, d_1, d_2\} + 4L$. }

It has been proved in [24] that f_1, f_2, g_1, g_2 are KL functions and Q is a polynomial function, hence also a KL function. Therefore, our object function F is a KL function. Then, we have the following theorem.

Theorem 3.4. Under the Assumption 3.1, denote a point $\bar{X} = \{\bar{f}, \bar{u}, \bar{W}_1, \bar{W}_2, \bar{v}_1, \bar{v}_2\}$ and its neighborhood U, η and continuous concave function φ for the consideration of KL property of F at \bar{X}, that is

$$\varphi'(F(X) - F(\bar{X}))dist(0, \partial F(X)) \geq 1, \forall X \in U \cap \{X | (F(X) - F(\bar{X}) < F(X) < F(\bar{X}) + \eta\}.$$
Denote a sequence \(\{X^k\} \) generated by Algorithm 1 starting from \(X^0 \) and a constant \(r > 0 \) with \(B(\bar{X}, r) \subset U \), we assume that
\[
\bar{F} < F^k < \bar{F} + \eta,
\]
and
\[
2\sqrt{\frac{2}{l}(F^0 - \bar{F}) + \frac{2M}{l} \phi(F^0 - \bar{F}) + \|X^0 - \bar{X}\|_2} < r \tag{3.18}
\]
where \(l \) is the constant in Lemma 3.1 and \(M \) is the constant in Lemma 3.3. Then, we conclude that
1. \(X^k \in B(\bar{X}, r) \), \(k \geq 1 \);
2. \(\sum_{k=1}^{\infty} \|X^{k+1} - X^k\|_2 < \infty \), which means \(\{X^k\} \) is a Cauchy sequence and converges globally.

Proof. For simplicity, we use \(\| \cdot \| \) to denote \(\| \cdot \|_2 \), and without loss of generality, we assume \(\bar{F} = F(\bar{X}) = 0 \).

First, it is clear from condition (3.18) that \(X^0 \in B(\bar{X}, r) \). Then, we consider the case \(k = 1 \). Combined with Lemma 3.1, we have
\[
\|X^1 - \bar{X}\| \leq \|X^1 - X^0\| + \|X^0 - \bar{X}\| \leq \sqrt{\frac{2}{l} F^0 + \|X^0 - \bar{X}\|}. \tag{3.19}
\]
Hence, by condition (3.18), we have \(X^1 \in B(\bar{X}, r) \). Now, we will use induction to prove the two conclusions.

Supposed \(X^i \in B(\bar{X}, r), 1 \leq i \leq k \), using KL property at \(\bar{X} \) and Lemma 3.3, we have
\[
\phi'(F^i) \geq \frac{1}{\|\partial F^i\|} \Rightarrow \phi'(F^i) \geq \frac{1}{\|A_i\|} \geq \frac{1}{M\|X^i - X^{i-1}\|}.
\]
Combined with lemma 3.1, we have
\[
\phi'(F^i)(F^i - F^{i+1}) \geq \frac{l\|X^{i+1} - X^i\|^2}{2M\|X^i - X^{i-1}\|}.
\]
Notice that \(\phi \) is concave, so we have
\[
\phi(F^i) - \phi(F^{i+1}) \geq \frac{l\|X^{i+1} - X^i\|^2}{2M\|X^i - X^{i-1}\|}.
\]
Thus
\[
\frac{2M}{l}\|X^i - X^{i-1}\|(\phi(F^i) - \phi(F^{i+1})) \geq \|X^{i+1} - X^i\|^2
\]
\[
\Rightarrow \sqrt{\|X^i - X^{i-1}\|} \cdot \frac{2M}{l}(\phi(F^i) - \phi(F^{i+1})) \geq \|X^{i+1} - X^i\|
\]
\[
\Rightarrow \|X^i - X^{i-1}\| + \frac{2M}{l}(\phi(F^i) - \phi(F^{i+1})) \geq 2\|X^{i+1} - X^i\|.
\]
Sum it up for \(1 \leq i \leq k \), then we have
\[
\|X^1 - X^0\| + \frac{2M}{l}(\phi(F^1) - \phi(F^{k+1})) \geq \sum_{i=1}^{k} \|X^{i+1} - X^i\| + \|X^{k+1} - X^k\| \tag{3.20}
\]
\[
\Rightarrow \|X^1 - X^0\| + \frac{2M}{l}\phi(F^1) \geq \sum_{i=1}^{k} \|X^{i+1} - X^i\|.
\]
Therefore,
\[
\|X^{k+1} - \bar{X}\| \leq \sum_{i=1}^{k} \|X^{i+1} - X^{i}\| + \|X^1 - \bar{X}\|
\]
\[
\Rightarrow \|X^{k+1} - \bar{X}\| \leq \|X^1 - X^0\| + \frac{2M}{l} \varphi(F^1) + \|X^1 - \bar{X}\|
\]
\[
\Rightarrow \|X^{k+1} - \bar{X}\| \leq 2\sqrt{\frac{2}{l} F_0 + \frac{2M}{l} \varphi(F^0)} + \|X^0 - \bar{X}\|.
\]
From condition (3.18), we conclude that \(X^{k+1} \in B(\bar{X}, r)\). So we have proven the first conclusion. The second conclusion is straightforward from inequality (3.20).

Lemma 3.5. Under the Assumption 3.1, for any convergent subsequence \(X^{k'}\) with limit point \(X^* = (f^*, u^*, W_1^*, W_2^*, v_1^*, v_2^*)\), we have
\[
X^{k'-1} \to X^*, k' \to \infty;
\]
and
\[
\lim_{k' \to \infty} f_1(v_1^{k'}) + f_2(v_2^{k'}) = f_1(v_1^*) + f_2(v_2^*), \quad \lim_{k' \to \infty} F(X^{k'}) = F(X^*).
\]

Proof. From Lemma 3.1, we have \(\lim_{k' \to \infty} \|X^{k'-1} - X^{k'}\|_2 = 0\). Since \(\lim_{k' \to \infty} X^{k'} = X^*,\) for any \(\epsilon > 0\), there exists \(K\), when \(k' > K\),
\[
\|X^{k'-1} - X^*\|_2 < \epsilon/2, \quad \|X^{k'} - X^*\|_2 < \epsilon/2
\]
\[
\Rightarrow \|X^{k'-1} - X^*\|_2 < \|X^{k'-1} - X^{k'}\|_2 + \|X^{k'} - X^*\|_2 < \epsilon.
\]
Therefore, \(\lim_{k' \to \infty} X^{k'-1} = X^*\).

From (3.8) in Algorithm 1, we have
\[
Q(u^{k'}, f^{k'}, v_1^{k'}, W_1^{k'}, v_2^{k'}, W_2^{k'}) + f_1(v_1^{k'}) + f_2(v_2^{k'}) + \frac{d_1}{2} \|v_1^{k'} - v_1^{k'-1}\|_2^2 + \frac{d_2}{2} \|v_2^{k'} - v_2^{k'-1}\|_2^2
\leq Q(u^{k'}, f^{k'}, v_1, W_1^{k'}, v_2, W_2^{k'}) + f_1(v_1) + f_2(v_2) + \frac{d_1}{2} \|v_1 - v_1^{k'-1}\|_2^2 + \frac{d_2}{2} \|v_2 - v_2^{k'-1}\|_2^2, \quad \forall v_1, v_2.
\]
Replacing \(v_1, v_2\) with \(v_1^{k'}, v_2^{k'}\), and taking \(k'\) to infinity, we have
\[
\lim_{k' \to \infty} \inf_{k'} f_1(v_1^{k'}) + f_2(v_2^{k'}) \leq f_1(v_1^*) + f_2(v_2^*).
\]
(3.21)
Note that \(f_1\) and \(f_2\) are lower semi-continuous. Together with (3.21), we have
\[
\lim_{k' \to \infty} \inf_{k'} f_1(v_1^{k'}) + f_2(v_2^{k'}) = f_1(v_1^*) + f_2(v_2^*). \quad (3.22)
\]
On the other hand, we have \(W_1^{k'} \in D_1, W_2^{k'} \in D_2\). Since \(D_1, D_2\) are compact, we have \(g_1(W_1^{k'}) = g_1(W_1^*) = g_2(W_2^{k'}) = g_2(W_2^*) = 0\) for all \(k'\). Since \(Q\) is continuous, we have
\[
\lim_{k' \to \infty} Q(u^{k'}, f^{k'}, v_1^{k'}, W_1^{k'}, v_2^{k'}, W_2^{k'}) = Q(u^*, f^*, v_1^*, W_1^*, v_2^*, W_2^*).
\]
Note that \(\{F^{k'}\}\) is monotonically decreasing and bounded. Thus, \(F^{k'}\) is convergent which means that the \(\liminf\) in (3.22) is in fact a regular limit. Consequently, we have \(\lim_{k' \to \infty} F(X^{k'}) = F(X^*)\).
Theorem 3.6. (Global Convergence) Under the Assumption 3.1, the sequence \(\{X^k\} \) generated by Algorithm 1 is globally convergent.

Proof. From Lemma 3.2, we know the sequence \(\{X^k\} \) generated by algorithm 1 has a convergent subsequence \(\{X^k\} \) with \(\lim_{k \to \infty} X^{k'} = X^* \). Let \(F^k = F(X^k) \) and \(F^* = F(X^*) \). Lemma 3.5 tells us that \(\lim_{k \to \infty} F^k = F^* \).

Suppose there is a \(k \) such that \(F^k = F^* \). Then, Lemma 3.1 implies that \(F^j = F^* \) for all \(j \geq k \), and hence \(X^j = X^* \) for all \(j \geq k \). Therefore, \(X^k \) converges.

Suppose \(F^k > F^* \) for all \(k \). Take \(X \) to be \(X^* \) in Theorem 3.4. Choose \(K' \in \{k'\} \) large enough so that \(2\sqrt{\frac{2}{d}(F^{K'} - F) + \frac{2M}{d} \phi(F^{K'} - F) + \|X^{K'} - X\| < r} \). Then, we have global convergence by taking \(X^{K'} \) as the new initial point \(X^0 \) in Theorem 3.4.

In the following, we will prove that the limit of \(\{X^k\} \) is a stationary point of our SRD-DDTF model.

Theorem 3.7. (Stationary Point) Under Assumption 3.1, the sequence \(X^k := (f^k, u^k, W^k_1, W^k_2, v^k_1, v^k_2) \) globally converges to a stationary point of the SRD-DDTF model (3.1).

Proof. Theorem 3.6 tells us that \(X^k \) is globally convergent. Denote its limit point by \(X^* = (f^*, u^*, W^*_1, W^*_2, v^*_1, v^*_2) \) and \(F(X^*) = F^*. \) From Algorithm 1, we have the following four inequalities:

\[
Q(f^{k+1}, u^k, W^k_1, W^k_2, v^k_1, v^k_2) + \frac{a}{2} \|f^{k+1} - f^k\|^2_2 \\
\leq Q(f, u^k, W^k_1, W^k_2, v^k_1, v^k_2) + \frac{a}{2} \|f - f^k\|^2_2, \quad \forall f; \\
Q(f^{k+1}, u^{k+1}, W^{k+1}_1, W^{k+1}_2, v^{k+1}_1, v^{k+1}_2) + \frac{b}{2} \|u^{k+1} - u^k\|^2_2 \\
\leq Q(f^{k+1}, u_1, W^{k+1}_1, W^{k+1}_2, v^{k+1}_1, v^{k+1}_2) + \frac{b}{2} \|u_1 - u^{k+1}\|^2_2, \quad \forall u; \\
Q(f^{k+1}, u^{k+1}, W^{k+1}_1, W^{k+1}_2, v^{k+1}_1, v^{k+1}_2) + g_1(W^{k+1}_1) + g_2(W^{k+1}_2) + \frac{c_1}{2} \|W^*_1 - W^{k+1}_1\|^2_2 + \frac{c_2}{2} \|W^{k+1}_2 - W_2\|^2_2 \\
\leq Q(f^{k+1}, u^{k+1}, W^*_1, W^*_2, v^{k+1}_1, v^{k+1}_2) + g_1(W^*_1) + g_2(W^*_2) + \frac{c_1}{2} \|W^*_1 - W^{k+1}_1\|^2_2 + \frac{c_2}{2} \|W^*_2 - W^{k+1}_2\|^2_2, \quad \forall W^*_1, W^*_2; \\
Q(f^{k+1}, u^{k+1}, W^{k+1}_1, W^{k+1}_2, v^{k+1}_1, v^{k+1}_2) + f_1(v^{k+1}_1) + f_2(v^{k+1}_2) + \frac{d_1}{2} \|v^{k+1}_1 - v^*_1\|^2_2 + \frac{d_2}{2} \|v^{k+1}_2 - v^*_2\|^2_2 \\
\leq Q(f^{k+1}, u^{k+1}, W^*_1, W^*_2, v^*_1, v^*_2) + f_2(v^*_2) + f_1(v^*_1) + \frac{d_1}{2} \|v^*_1 - v^{k+1}_1\|^2_2 + \frac{d_2}{2} \|v^*_2 - v^{k+1}_2\|^2_2, \quad \forall v^*_1, v^*_2.
\]

Taking \(k \to \infty \), we have

\[
\begin{align*}
F^* &\leq F(f^* + \delta f, u^*, W^*_1, W^*_2, v^*_1, v^*_2) + \frac{a}{2} \|\delta f\|^2_2, \quad \forall \delta f; \\
F^* &\leq F(f^*, u^* + \delta u, W^*_1, W^*_2, v^*_1, v^*_2) + \frac{b}{2} \|\delta u\|^2_2, \quad \forall \delta u; \\
F^* &\leq F(f^*, u^*, W^*_1 + \delta W_1, W^*_2 + \delta W_2, v^*_1, v^*_2) + \frac{c_1}{2} \|\delta W_1\|^2_2 + \frac{c_2}{2} \|\delta W_2\|^2_2, \quad \forall \delta W_1, \delta W_2; \\
F^* &\leq F(f^*, u^*, W^*_1, W^*_2, v^*_1 + \delta v_1, v^*_2 + \delta v_2) + \frac{d_1}{2} \|\delta v_1\|^2_2 + \frac{d_2}{2} \|\delta v_2\|^2_2, \quad \forall \delta v_1, \delta v_2.
\end{align*}
\]
Therefore, for any $\delta X = (\delta f, \delta u, \delta W_1, \delta W_2, \delta v_1, \delta v_2)$, we have

$$
\liminf_{\|\delta X\| \to 0} \frac{F(X^* + \delta X) - F(X^*)}{\|\delta X\|} \\
= \liminf_{\|\delta f\| \to 0} \frac{Q(X^* + \delta X) - Q(X^*) + (f_1(v_1^* + \delta v_1) + f_2(v_2^* + \delta v_2)) - (f_1(v_1^*) + f_2(v_2^*))}{\|\delta X\|} \\
+ \frac{(g_1(W_1^* + \delta W_1) + g_2(W_2^* + \delta W_2)) - (g_1(W_1^*) + g_2(W_2^*))}{\|\delta X\|} \\
= \liminf_{\|\delta f\| \to 0} \left(\frac{\langle \nabla Q(X^*), \delta X \rangle}{\|\delta X\|} + \frac{Q(f^*, u^*, W_1^*, W_2^*, v_1^*, v_2^*) - Q(X^*)}{\|\delta X\|} \\
+ \frac{f_1(v_1^* + \delta v_1) + f_2(v_2^* + \delta v_2) - f_1(v_1^*) - f_2(v_2^*) + o(\|\delta v_1\| + \|\delta v_2\|) + o(\|\delta X\|)}{\|\delta X\|} \\
+ \frac{g_1(W_1^* + \delta W_1) + g_2(W_2^* + \delta W_2) - g_1(W_1^*) - g_2(W_2^*) + o(\|\delta W_1\| + \|\delta W_2\|)}{\|\delta X\|} \right) \\
\geq \liminf_{\|\delta f\| \to 0} \frac{-\frac{a}{2}\|\delta f\|^2 - \frac{b}{2}\|\delta u\|^2 - \frac{c}{2}\|\delta W_1\|^2 - \frac{d}{2}\|\delta W_2\|^2 - \frac{e}{2}\|\delta v_1\|^2 - \frac{f}{2}\|\delta v_2\|^2}{\|\delta X\|} \\
+ \frac{o(\|\delta v_1\| + \|\delta v_2\|) + o(\|\delta u\| + \|\delta f\| + \|\delta W_1\| + \|\delta W_2\|) + o(\|\delta X\|)}{\|\delta X\|} \\
= 0.
$$

where the second and third identity follow from the first order Taylor expansion of Q and the inequality follows from the inequalities (3.23). By definition, the limit point X^* is a stationary point of our model (3.1).

4 Numerical Experiments

It has been shown in [1] that wavelets based inpainting model (1.2) has better image restoration performance than TV-based model and wavelet analysis model. Therefore, in this section, we will focus on comparing our proposed SRD-DDTF model (3.1) with wavelet frame based model (1.2) using the same initial value given by the analysis model (3.2). We show that the SRD-DDTF model can achieve noticeably better image reconstruction results.
Throughout our experiments, all data is synthesized by $f = Pu + \epsilon$, where ϵ is some Gaussian white noise. The standard deviation of noise is chosen to be $\max(|f|)/300$. In our model (3.1), we always set $\kappa = 1$, which is the same as the parameter κ in (1.2). Empirically, we observe that $\mu_1 \approx 5200\lambda_1$, $\mu_2 \approx 8400\lambda_2$ is a good choice. The patch size for u is 8×8, and the patch size for f is 8×2 to properly adapt to the shape of matrix f which has much more rows (number of detectors) than columns (number of angular projections). Parameters λ_1 and λ_2, which are the same as the parameter λ_1 and λ_2 in model (1.2), vary case by case and are chosen manually for optimal image reconstruction results. We use the analysis model (3.2) to obtain initial estimates for both our algorithm and model (1.2). We find in our experiments that the value of λ in the analysis model has small effects on the performance of both algorithms.

The experiments are conducted, with different configurations, on a real patient's image data (provided by Dr. Xun Jia from Department of Radiation Oncology, University of Texas, Southwestern Medical Center) and the popular test data set NURBS-based cardiac-torso (NCAT) phantom [82]. We shall refer to the former simply as “head” and the latter as “NCAT”. In addition to visual observation given by Figure 1 and Figure 3, we use relative error, correlation and computation time to quantify the quality of the model (1.2) and our SRD-DDTF model (3.1) (see Table 1). The relative error and correlation for reconstructed u based on ground truth image u_t are defined as follows:

$\text{err}(u_t, u) = \frac{\|u - u_t\|_2}{\|u_t\|_2}$, $\text{corr}(u_t, u) = \frac{(u - \bar{u})(u_t - \bar{u_t})}{\|u - \bar{u}\|_2 \|u_t - \bar{u_t}\|_2}$ (4.1)

where \bar{u}, \bar{u}_t denote the mean value of u and u_t. As we can see from Figure 1, Figure 3 and Table 1 that our SRD-DDTF model (3.1) managed to achieve better image reconstruction results than the model (1.2) of [1] for all configurations.

The stopping criterion we used takes the form $\text{err}(u^k, u^{k-1}) \leq \epsilon$ together with a maximum allowable iteration 1000, where $\epsilon = 0.001$ for the image “head” and $\epsilon = 0.005$ for “NCAT”. We consider the configurations with $N_P = 15, 30, 45, 60$ for “head” and $N_P = 60, 75, 90$ for “NCAT”. Table 1 shows that the SRD-DDTF model achieves noticeably better reconstruction with less relative errors and higher correlations based on ground truth images. It is remarkable that for “NCAT”, the results of the SRD-DDTF model can even achieve better image restoration than that of model (1.2) using the next larger projection number. The reconstructed image for each configuration is shown in Figure 1 and Figure 3, and it is worth noticing that the SRD-DDTF model is managed to recover some key structures that are lost by model (1.2). In particular, we list some zoom-in views of the results in Figure 2 for $N_p = 15$ to show that our model is capable of restoring subtle features.

5 Conclusion

In this paper, we proposed a new spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF), together with an efficient alternative minimization algorithm. Our convergence analysis on the proposed algorithm indicated that, under suitable assumptions, the sequence generated by the algorithm converges to a stationary point of the proposed model. Our numerical experiments showed that our model (3.1) can obtain noticeably better reconstruction results than those from the model (1.2), which showed that using data-driven tight frames as sparsity priors for both the CT image and the projection image performs better than using pre-determined systems, such as tight wavelet frames, that may not be ideal for a specifically given image data.
Figure 1: The tomographic results for the image “head”. The image on the top is the true data. The following rows represent the results using 15, 30, 45, 60 projections, respectively. Images from left to right in each row are results from initial value, wavelets based inpainting model and our SRD-DDTF model.
Table 1: Comparison of relative errors (in percentage), correlations (in percentage) and running time (in seconds).

<table>
<thead>
<tr>
<th>NP</th>
<th>initial value</th>
<th>Model (1.2) of [1]</th>
<th>SRD-DDTF model (3.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>err</td>
<td>corr</td>
<td>err</td>
</tr>
<tr>
<td>15</td>
<td>14.09</td>
<td>98.29</td>
<td>12.70</td>
</tr>
<tr>
<td>30</td>
<td>6.79</td>
<td>99.61</td>
<td>6.25</td>
</tr>
<tr>
<td>45</td>
<td>5.20</td>
<td>99.77</td>
<td>4.70</td>
</tr>
<tr>
<td>60</td>
<td>4.16</td>
<td>99.85</td>
<td>3.89</td>
</tr>
</tbody>
</table>

“Head”

<table>
<thead>
<tr>
<th>NP</th>
<th>initial value</th>
<th>Model (1.2) of [1]</th>
<th>SRD-DDTF model (3.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>err</td>
<td>corr</td>
<td>err</td>
</tr>
<tr>
<td>60</td>
<td>9.55</td>
<td>99.35</td>
<td>5.00</td>
</tr>
<tr>
<td>75</td>
<td>9.02</td>
<td>99.42</td>
<td>4.61</td>
</tr>
<tr>
<td>90</td>
<td>8.81</td>
<td>99.45</td>
<td>4.21</td>
</tr>
</tbody>
</table>

“NCAT”

Figure 2: Local comparison of restored images for the image “head” with $N_p = 15$. Images from left to right in each row are zoom-in patterns from the ground truth, the initial value, wavelets based inpainting model restored image, and our SRD-DDTF model.
Figure 3: The tomographic results for “NCAT”. The image on the top is the true data. The following rows represent the results using 60, 75, 90 projections, respectively. Images from left to right in each row are results from initial value, wavelets based inpainting model and our SRD-DDTF model.
References

