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Abstract. Analyzing the deformation pattern of an object is crucial in various fields, such as
in computer visions and medical imaging. A deformation can be considered as a combination of
local and global deformations at different locations. To fully understand the deformation pattern,
extracting the deformation of various scales and locations is necessary. We propose an algorithm for
the multi-scale decomposition of a deformation using quasi-conformal theories. A deformation of an
object can be described as a diffeomorphism. The diffeomorphism can then be represented by its
associated Beltrami coefficient (BC), which measures the local geometric (conformality) distortion of
the deformation. The BC is a complex-valued function defined on the source domain. By applying
the wavelet transform on the BC, the BC can be decomposed into different components of different
frequencies compactly supported in different sub-domains. Quasi-conformal maps associated to dif-
ferent components of the BC can be reconstructed by solving the Beltrami’s equation. A multi-scale
decomposition of the deformation can then be constructed. We test the proposed algorithm on syn-
thetic examples as well as real medical data. Experimental results show the efficacy of our proposed
model to decompose a deformation at multiple scales and locations.
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1. Introduction. Analyzing the deformation pattern of an object has central
importance in various fields, such as in computer visions and medical shape analysis
[25, 2]. For example, in medical imaging, finding abnormal deformation pattern of
the cardiac motion is crucial for understanding heart disease [31, 3, 23]. While in
computer visions, the analysis of deformation pattern is necessary for video tracking
[32]. Developing an effective mathematical model to analyze deformations is therefore
of great research interest.

A deformation is often described as a diffeomorphism of the domain in which
the object is embedded. A deformation can be regarded as a combination of local
and global deformations at different scales and locations. In order to understand the
deformation pattern thoroughly, the extraction of deformations at different scales and
locations is essential. To achieve this goal, an algorithm to decompose a diffeomor-
phism into different components of different scales is needed. A major challenge is
that each components of the decomposition must remain diffeomorphic, as they de-
scribe deformations at multiple scales. Simply applying the multi-scale decomposition
on the coordinate functions of the diffeomorphism does not work, since the diffeomor-
phic property of each components can be severely lost. A better representation of
a diffeomorphism, with which multi-scale diffeomorphic decomposition can be easily
achieved, must be used.

In this paper, we propose a novel algorithm for the multi-scale decomposition of a
deformation via quasi-conformal theories. Given a deformation represented by a dif-
feomorphism, the associated complex-valued function, called the Beltrami coefficient
(BC), is computed. The BC measures the conformality or local geometric distortion of
the diffeomorphism, which has supreme norm strictly less than 1. Given a diffeomor-
phism, its BC can be easily computed from the Beltrami’s equation. Conversely, given
a BC, the associated quasi-conformal map can be reconstructed through solving ellip-
tic PDEs derived from the Beltrami’s equation. Unlike the coordinate functions, the
BC has much less constraints to ensure the associated map is diffeomorphic. The only
constraint is that its supreme norm is strictly less than 1, which can be easily enforced.
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In recent years, BCs have been applied to represent diffeomorphisms for image/surface
registration[19, 6, 16], video compression[18] and texture map compression[18]. In this
work, our main goal is to apply the BC to construct the multi-scale decomposition of
a deformation. The extracted local and global deformations at different locations can
be utilized for shape analysis. More precisely, by applying the wavelet transform on
the BC, the BC can be decomposed into different components of different frequencies
compactly supported in different sub-domains. Quasi-conformal maps associated to
different components of various scales can be reconstructed, which give the multi-
scale diffeomorphic decomposition of the deformation. With the decomposition, a
thorough multi-scale analysis of the deformation can be carried out. We have tested
the proposed algorithm on synthetic examples as well as real medical images. Exper-
imental results demonstrate the effectiveness of the proposed model to decompose a
deformation into diffeomorphic components at multiple scales.

To summarize, the main contribution of this paper is to explore the efficacy of
a wavelet-based algorithm for the multi-scale decomposition of a deformation. We
propose to apply the wavelet transform on the BC, with which the multi-scale com-
ponents of the deformation can be defined. The rest of the paper is organized as
follows. In Section 2, some previous works closely related to this paper are presented.
Some basic mathematical theories necessary for this work are described in Section 3.
Our proposed algorithm for multi-scale deformation extraction is explained in details
in Section 4. Experimental results are reported in Section 5. The paper is concluded
and some future works are discussed in Section 6.

2. Previous work. We briefly review some previous works closely related to
this paper.

In this work, registration is required to extract deformations. Registration aims to
establish meaningful one-to-one correspondences between different subjects [13, 34].
With the registration result, the deformation field can be obtained for further anal-
ysis. In this work, a deformation field is described as a diffeomorphism between
corresponding data. Different registration algorithms have been proposed for obtain-
ing the deformation fields. Basically, registration models can be classified into two
categories [25], namely, the landmark-based model and the intensity-based model.
Landmark-based models aim to guide registration using characteristic features, which
can be uniquely identified across different data. For example, the Thin-Plate Spline
(TPS) registration model proposed by Bookstein et al. [4] aligns landmarks via the
biharmonic regularizer. Using the framework of quasi-conformal theories, several
works have been proposed to tackle the landmark-based registration problem [16, 6].
Intensity-based registration models aim to guide the registration process by match-
ing the intensity information. A number of intensity-based registration algorithms
have been developed recently. To list a few, the Diffeomorphic Demons registration
method has been proposed in [29], which extended Thirion’s demons algorithm [27].
The algorithm obtained the registration result in the space of diffeomorphic transfor-
mations. Glocker et al. [10, 9] proposed the DROP algorithm to register images using
the Markov random field formulation.

With the deformation fields, different techniques can be applied to analyze the
hidden information from the registration results. For instance, the Support Vec-
tor Machines (SVM) has been proposed for studying statistical differences between
anatomical shapes [11]. Analysis of deformation fields using Wavelet SVM (WSVM)
has also been proposed in [21]. Another commonly used approach is to construct de-
scriptors for statistical models to perform comparison between different data [12, 33].



Multiscale Representation of Deformations 3

To name a few, Røgen and Bohr [22] proposed a family of global protein shape de-
scriptors for the classification of different proteins by their structures. In [15], a 3D
Zernike descriptor has been proposed for the shape analysis of protein with surface
representation. Detection of shape deformities from the deformation field using quasi-
conformal theories has also been proposed. Lui et. al [20] proposed to use Beltrami
coefficients to locate abnormal non-rigid changes over time. A quasi-conformal metric
for deformation classification has also been introduced by Taimouri and Hua [26] to
classify the left ventricle deformations of myopathic and control subjects.

To analyze a deformation with different geometric scales or directions, various
algorithms for the decomposition of vector fields have been proposed. Tong et al.
[28] proposed a variational multi-scale decomposition of vector fields. The vector
fields were decomposed into the divergent-free part, the cur-free part and the har-
monic part using the idea of Heltmotz-Hodge decomposition. Abeyratne [1] applied
the Cauchy-Navier equation to describe the elastic deformation and a wavelet-based
approach was proposed for the multi-scale deformation analysis of objects with spher-
ical boundary. Kaplan and Donoho [14] proposed the Morphlet Transform to obtain
a multi-scale representation for diffeomorphisms. Under the Morphlet framework,
the representation is equipped with a forward transform with coefficients, which are
organized dyadically. Its inverse transform was also guaranteed to generate diffeomor-
phism under certain sampling conditions. Sommer et al. [24] proposed a multi-scale
kernel bundle to represent large deformations in medical imaging. As the registration
results obtained from the LDDMM framework are greatly affected by the choice of
the kernel, this work extends the LDDMM framework by allowing multiple kernels
at different scales for controlling the registration. In [5], Chen et al. proposed an
efficient method to compute the Morse decomposition of vector fields to extract and
visualize the vector field topology. In this work, our goal is to extract diffeomorphic
components of a deformation in different scales and locations. Both the local and
global deformation patterns are extracted through applying a wavelet transform on
the Beltrami representation of a diffeomorphism. The Beltrami representation has
been applied in [18] for texture map and video compression. It has also been applied
for image and surface registration [6, 16].

3. Mathematical Background. In this section, we describe some basic math-
ematical theories relevant to this work. For details, we refer readers to [8, 7, 17].

A surface S with a conformal structure is called a Riemann surface. Given two
Riemann surfaces M and N , a map f : M → N is conformal if it preserves the
surface metric up to a multiplicative factor called the conformal factor. An immediate
consequence is that every conformal map preserves angles. With the angle-preserving
property, a conformal map effectively preserves the local geometry of the surface
structure.

A generalization of conformal maps is the quasi-conformal maps, which are ori-
entation preserving homeomorphisms between Riemann surfaces with bounded con-
formality distortion, in the sense that their first order approximations take small
circles to small ellipses of bounded eccentricity [8]. Mathematically, f : C → C is
quasi-conformal provided that it satisfies the Beltrami equation:

∂f

∂z
= µ(z)

∂f

∂z
. (3.1)

for some complex-valued function µ satisfying ||µ||∞ < 1. µ is called the Beltrami
coefficient, which is a measure of non-conformality. It measures how far the map at
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each point is deviated from a conformal map. In particular, the map f is conformal
around a small neighborhood of p when µ(p) = 0. Infinitesimally, around a point p,
f may be expressed with respect to its local parameter as follows:

f(z) ≈ f(p) + fz(p)z + fz(p)z

= f(p) + fz(p)(z + µ(p)z).
(3.2)

Obviously, f is not conformal if and only if µ(p) 6= 0. Inside the local parameter
domain, f may be considered as a map composes of a translation to f(p) together
with a stretch map S(z) = z + µ(p)z, which is post-composed by a multiplication
of fz(p), which is conformal. All the conformal distortion of S(z) is caused by µ(p).
S(z) is the map that causes f to map a small circle to a small ellipse. From µ(p), we
can determine the angles of the directions of maximal magnification and shrinking of
S(z) and the amount of them as well. Specifically, the angle of maximal magnification
is arg(µ(p))/2 with magnifying factor 1 + |µ(p)|; The angle of maximal shrinking is
the orthogonal angle (arg(µ(p)) − π)/2 with shrinking factor 1 − |µ(p)|. Thus, the
Beltrami coefficient µ gives us lots of information about the properties of the map.

The maximal dilation of f is given by:

K(f) =
1 + ||µ||∞
1− ||µ||∞

. (3.3)

Given a Beltrami coefficient µ : C → C with ‖µ‖∞ < 1. There is always a
quasiconformal mapping from C onto itself which satisfies the Beltrami’s equation in
the distribution sense [8].

4. Multi-scale extraction of deformation. In this section, we explain our
algorithm for the multi-scale decomposition of a deformation in details.

4.1. Deformations as diffeomorphisms. In this work, we formulate a defor-
mation as a diffeomorphism of the domain in which the object is embedded. Suppose
an object is embedded in a 2D domain D ⊂ R2. A deformation can be formulated as
a diffeomorphism f : D → D.

An object is often captured as an image. Suppose the image of the object at the
initial (t = 0) and final (t = 1) time are denoted by I1 : D → R and I2 : D → R
respectively. We can find the deformation by computing the diffeomorphic registration
between two images.

We apply the quasi-conformal registration algorithm to obtain the diffeomorphic
registration. The basic idea is to find a pair of functions ν : D → C and f : D → D,
which minimizes:

EQCR(ν, f) =

∫
D

|ν|2 + |∇ν|2 + α(I1 − I2(f))2 (4.1)

subject to the constraints that:
• ν is the BC of f ;
• ||ν||∞ < 1 and/or
• f(pi) = qi for i = 1, 2, ..., n.

Here, {pi}ni=1 and {qi}ni=1 are corresponding landmark points or curves of the two
images respectively. In the case that landmark features can be accurately delineated,
enforcing the landmark constraint (the third constraint) can lead to a more accu-
rate diffeomorphic quasi-conformal registration. For details of the quasi-conformal
registration, we refer the readers to [16].
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Once the diffeomorphic registration is obtained, the processing on the diffeomor-
phism can be carried out to decompose the deformation into components at multiple
scales and locations.

4.2. Beltrami coefficient and diffeomorphisms. The multi-scale decompo-
sition of a deformation can be extracted by performing a multiscale decomposition,
such as the wavelet transform, on the diffeomorphism. A basic requirement is that
each components of the decomposition must be diffeomorphic, as they represent dif-
feomorphic deformation at different scales and different locations.

A diffeomorphism f : D → D is often represented by its coordinate functions
f(x, y) = (U(x, y), V (x, y)). Applying the multiscale decomposition on U and V
directly inevitably leads to a severe loss of bijectivity (see Figure 5.6). A remedy is to
develop a decomposition algorithm while ensuring the Jacobians of each components
are positive. However, it is a rather challenging problem.

To effectively decompose a deformation into diffeomorphic components, we apply
the Beltrami coefficient to represent a diffeomorphism. Given a diffeomorphism f :
D → D, according to the Beltrami’s equation, it is associated with a unique complex-
valued function µ(f) : D → C defined by:

µ(f)(z) =

(
∂f

∂z̄

)
/

(
∂f

∂z

)
. (4.2)

As f is diffeomorphic, ||µ(f)||∞ < 1. Conversely, given an admissible Beltrami
coefficient ν : D → C with ||ν||∞ < 1, its associated quasi-conformal map can be
computed by solving the Beltrami’s equation. Suppose ν = ρ + iτ and fν = u + iv.

Let α = (ρ−1)2+τ2

1−ρ2−τ2 ; β = − 2τ
1−ρ2−τ2 ; γ = 1+2ρ+ρ2+τ2

1−ρ2−τ2 . The Beltrami’s equation can be
reduced to the following elliptic PDEs:

∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0 (4.3)

where A =

(
α β
β γ

)
.

In the discrete case, the elliptic PDEs (4.3) can be discretized into sparse posi-
tive definite linear systems and can be solved efficiently using the conjugate gradient
method. For details, please refer to [18].

The Beltrami coefficient is a desirable representation of a diffeomorphism, since
it has the simplest constraint to ensure the bijectivity. To ensure the bijectivity of a
mapping fν , its Jacobian must be greater than 0 everywhere. The Jacobian of fν is
closely related to its Beltrami coefficient ν:

J(f) = |∂f
ν

∂z
|2(1− |ν|2). (4.4)

Hence, if |ν| < 1 everywhere, J(f) is positive everywhere. If D is simply-connected,
fν can be shown to be diffeomorphic. Therefore, the only constraint on ν to ensure
fν is diffeomorphic is ||ν||∞ < 1. This can be easily enforced.

4.3. Wavelet transform on Beltrami Coefficient. In this work, our goal is
to decompose a deformation into diffeomorphic components at different scales and
locations. Thus, we apply the wavelet transform for the spectral decomposition of the
BC, which takes spatial and frequency information into consideration. The wavelet
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expansion allows a more accurate local description and separation of signal charac-
teristics.

We first give a brief introduction on wavelet transformation. For details, we refer
the readers to [30].

A wavelet ψ is a wave-like compactly supported function, which is generated by
another compactly supported function, called the scaling function ϕ. In 1D, the
scaling function ϕ assumes the following property:

ϕ(x) =
∑
k∈Z

h(k)21/2ϕ(2x− k), (4.5)

where {h(k)}k∈Z is an l2 sequence of coefficients and is called the scaling filter. The
wavelet filter g(k) is defined by

g(k) = (−1)kh(1− k) (4.6)

and the wavelet ψ(x) associated to ϕ is defined by

ψ(x) =
∑
k∈Z

g(k)21/2ϕ(2x− k). (4.7)

Then, {ψj,k(x) := 2j/2ϕ(2jx− k)}j,k∈Z forms a wavelet set.
In 2D, the wavelet orthonormal set generated by the dilations and translations

of basic wavelets can also be constructed. The construction is based on a single
two-dimensional scaling function Φ(x, y) and a set of three two-dimensional functions
Ψ(1)(x, y), Ψ(2)(x, y) and Ψ(3)(x, y). Let ϕ(x) and ψ(x) be the scaling and wavelet
functions. The 2D scaling and wavelet functions are defined as follows:

Φ(x, y) = ϕ(x)ϕ(y); Ψ(1)(x, y) = ϕ(x)ψ(y);

Ψ(2)(x, y) = ψ(x)ϕ(y); Ψ(3)(x, y) = ψ(x)ψ(y).
(4.8)

Then, the collection {Ψ(i)
j,k1,k2

(x, y) := 2jΨ(i)(2jx− k1, 2
jy− k2)}1≤i≤3,j,k1,k2∈Z forms

an orthonormal set of functions. In particular, for every f(x, y) ∈ C0
c ,

f(x, y) =

3∑
i=1

∑
l∈Z

∑
k1∈Z

∑
k2∈Z

< f,Ψ
(i)
l,k1,k2

> Ψ
(i)
l,k1,k2

(x, y), (4.9)

where < g1, g2 >:=
∫
g1g2. The above wavelet expansion decomposes a function into

components at different locations with different frequencies. The wavelet expansion
represents a function in both the spatial and frequency domains at the same time.
Thus, it overcomes a major problem of Fourier expansion that it has only frequency
resolution but no spatial resolution.

To obtain a multi-scale representation (MSR) of a deformation, we propose to
apply the wavelet decomposition on the Beltrami coefficient associated to the defor-
mation. As discussed earlier, every deformation can be described as a diffeomorphism
f : D1 → D2. The Beltrami coefficient µ(f) of f , which measures the local geometric
distortion, can be easily computed from the Beltrami’s equation. By applying the
wavelet expansion on µ(f), the multi-scale decomposition of the deformation can be
obtained. It is described in the following definition.
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Definition 4.1. Let f : C→ C be a diffeomorphism representing a deformation. Let
µ(f) : C→ C be the Beltrami coefficient of f . Suppose:

µ(f)(x, y) =

3∑
i=1

∑
l∈Z

∑
k1∈Z

∑
k2∈Z

µ̂(i, l, k1, k2)Ψ
(i)
l,k1,k2

(x, y), (4.10)

where µ̂(i, l, k1, k2) =< µ(f),Ψ
(i)
l,k1,k2

>.
1. The collection of coefficients {µ̂(i, l, k1, k2)}1≤i≤3,j,k1,k2∈Z are called the

(wavelet) decomposition coefficients of the deformation f .
2. Let Uj := T (Span({Ψ(i)(j, k1, k2)}1≤i≤3,k1,k2∈Z)), where T is the trunca-

tion operator to enforce the supreme norm of a complex-valued function to be
strictly less than 1. Uj is called the set of deformation distortions at scale j.
Define: Vj := LBS(Uj), where LBS converts a Beltrami coefficient to its
associated quasi-conformal map according to equation 4.3, with the normal-
ization that the map fixes 0, 1 and ∞. Vj is called the set of deformations at
scale j.

3. Let:

Pj(µ(f)) := T

(
3∑
i=1

∑
k1∈Z

∑
k2∈Z

µ̂(i, j, k1, k2)Ψ
(i)
j,k1,k2

(x, y)

)
(4.11)

Pj is called the projection of µ(f) to the distortion component at scale j.
Pj(µ(f)) is called the distortion component at scale j.

4. Let fj := LBS(Pj(µ(f))) : C→ C. fj ∈ Vj is called the deformation compo-
nent at scale j.
The sequence {fj : C→ C}j∈Z is called the multiscale representation (MSR)
of the deformation f .

5. Let Ω be a sub-domain in C. Define the index set I(j,Ω) by:

I(j,Ω) := {(i, k1, k2) : 1 ≤ i ≤ 3, k1, k2 ∈ Z, supp(Ψ(i)(j, k1, k2)) ⊆ Ω}.
(4.12)

where supp(Ψ(i)(j, k1, k2)) is the support of Ψ(i)(j, k1, k2).
Let:

µ̃(Ω, j) := T

 ∑
(i,k1,k2)∈I(j,Ω)

µ̂(i, j, k1, k2)Ψ
(i)
j,k1,k2

(x, y)

 (4.13)

µ̃(Ω, j) is called the local deformation distortion at the region Ω and scale j.
Consequently, fΩ

j := LBS(µ̃(Ω, j)) is called the deformation component of f
at the region Ω and scale j.

Remark: Below are some remarks for the above definitions.

1. The sets of deformation distortions at different scales satisfy the following
property:

Uj ⊆ Uj+1 for all j ∈ Z. (4.14)

Each set Uj consists of a collection of Beltrami coefficients of a given frequency
related to the scale j.
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Similarly, the sets of deformations at different scales satisfies: Vj ⊆ Vj+1 for all
j ∈ Z. Each set Vj consists of a collection of quasi-conformal maps associated
to the Beltrami coefficients in Uj . Thus, the idea of multi-scale decomposition
of a deformation can be considered as projecting the deformation into the
various sets Vj (j ∈ Z).

2. Note that the distortion component at a scale j is a complex-valued function,
whose supreme norm may not be strictly less than 1. In order to obtain the
multi-scale components of a deformation, each distortion component must be
a Beltrami coefficient with supreme norm strictly less than 1. This ensures
the diffeomorphic property of the associated quasi-conformal map. The trun-
cation operator is to truncate a complex-valued function so that its supreme
norm is strictly less than 1. There are several choices of T . A simple choice
is to define T by:

T (µ) = T(|µ|) µ
|µ|

(4.15)

where T : [0,+∞) → [0, 1) is a monotonically increasing function such that
T(x) = x for x ∈ [0, 1 − ε] and limx→+∞T(x) = 1. Another choice can be
done as follows. Given µ : C→ C, we define µ̃ : C→ C by:

µ̃(p) = min{|µ(p)|, 1− ε} µ(p)

|µ(p)|
for p ∈ C. (4.16)

Then, T (µ) can be defined as

T (µ) = argminν:C→C{α
∫
C
|∇ν|2 +

∫
C
|ν − µ̃|2}. (4.17)

In practice, when the deformation is not extremely large, the supreme norm of
its Beltrami coefficient is far below 1. In this case, the distortion component
at each scale j usually satisfies the property that its supreme norm is strictly
less than 1. Thus, the truncation operator can be omitted in our model.

3. In the above definition, f is a complex-valued function defined on the whole
complex plane C. In practice, a deformation f may be defined on a com-
pact simply-connected domain Ω1 in C. The above definition still applies to
this case. For example, suppose Ω1 is a unit square. For every distortion
component Pj(µ(f)) at scale j (j ∈ Z), it is associated to a quasi-conformal
map fj : Ω1 → Ω2(Pj(µ(f))). The target domain Ω2(Pj(µ(f))) depends on
Pj(µ(f)). We can impose the geometry of the target domain to be a 2D
rectangle whose base length is equal to 1. Then, the height of Ω2(Pj(µ(f)))
can be determined by:

h =

∫
Ω1

αju
2
x + 2βjuxuy + γju

2
y. (4.18)

where u is the real part of the fj . αj =
(ρj−1)2+τ2

j

1−ρ2j−τ2
j

; βj = − 2τj
1−ρ2j−τ2

j
; γj =

1+2ρj+ρ2j+τ2
j

1−ρ2j−τ2
j

with Pj(µ(f)) = ρj + iτj .

4. The local deformation distortion µ̃(Ω, j) provides information about the local
distortion of a certain scale j at a particular location Ω. Note that although
µ̃(Ω, j) is compactly supported in Ω, it has a global effect on the associated
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quasi-conformal map. For a large µ̃(Ω, j), the reconstructed quasi-conformal
map may induce deformation outside Ω without conformality distortion (that
is, µ̃(Ω, j)|Ωc = 0). To ensure that there is no deformation outside Ω, a
landmark constrained reconstruction LBSLM of the quasi-conformal map
from the Beltrami coefficient can be applied. The idea of LBSLM is to solve
equation (4.3) subject to the constraint that fΩ

j := I outside Ω. In practice,
if |µ(f)| is not very close to 1, the global effect of a Beltrami coefficient
compactly supported in a small region is very tiny. Hence, this procedure can
be omitted.

The proposed multi-scale representation of a deformation satisfies the following
properties.

Theorem 4.1. With the same setup as in Definition 4.1,
⋂
j∈Z Vj = {I : C→ C},

where I is the identity map of C.
Proof. Our construction forms a multiresolution analysis on R2, giving a sequence

of subspaces {Uj}j∈Z of functions L2 on R2. It has the property that
⋂
j∈Z Uj = {0}.

Under the normalization that 0, 1 and ∞ are fixed, the quasi-conformal map f :
C → C associated to the Beltrami coefficient µ ≡ 0 is the identity map I. Thus,⋂
j∈Z Vj = {I : C→ C}.

Theorem 4.2. Consider a diffeomorphism f : C → C that is conformal outside
a compact domain Ω ⊂ C. Given an accuracy ε > 0, there exist a deformation fJ at
certain scale J whose distortion resemble to the distortion of f up to the prescribed
accuracy. In other words, for all ε > 0, there is a J ∈ Z and a diffeomorphism
fJ ∈ VJ such that ||µ(fJ)− µ(f)||2 < ε. Also, limj→∞ ||µ(f)− Pj(µ(f))||2 = 0.

Proof. Since our construction gives a multiresolution analysis, it has the property
that ν ∈ span{Uj}j∈Z if ν ∈ C0

c . As f is conformal outside a compact domain Ω,
µ(f)(z) = 0 for all z ∈ C \ Ω. This implies µ(f) ∈ C0

c . Thus, for all ε > 0, there is a
J ∈ Z and a Beltrami coefficient µ̃ ∈ UJ such that ||µ̃−µ(f)||2 ≤ ε. Set fJ = LBS(µ̃).
Then, ||µ(fJ)− µ(f)||2 < ε.

Furthermore, given ε > 0, there is a J ∈ Z and a function ν ∈ UJ such that
||µ(f) − ν||2 < ε/2. For all j ∈ Z, Uj ⊆ Uj+1. Hence, ν ∈ Uj and Pj(ν) = ν for all
j ≥ J . This implies:

||µ(f)− Pj(µ(f))||2 = ||µ(f)− ν + Pj(ν)− Pj(µ(f))||2
≤ ||µ(f)− ν||2 + ||Pj(µ(f)− ν)||2
≤ 2||µ(f)− ν||2 < ε

for all j ≥ J , where ||Pj(µ(f)−ν)||2 ≤ ||µ(f)−ν||2 follows from the Bessel’s inequality.

Theorem 4.3. Suppose f : C→ C is a diffeomorphism that is conformal outside
a compact domain Ω ⊂ C. . Suppose Pj is the projection operator of the Beltrami
coefficient µ(f) of f to the distortion component at scale j. Let fj be the deformation
component at scale j. Then, fj converges locally uniformly to the original deformation
f .

Proof. The proof follows from the Bers-Bojarski theorem, which can be stated
as follows: if {gn}∞n=1 is a sequence of K-quasiconformal maps converging locally
uniformly to a K-quasiconformal map g and if their associated Beltrami coefficients
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{µn}∞n=1 converge to µ almost everywhere, then µ is the Beltrami coefficient of g al-
most everywhere. Now, fj is the deformation component at scale j. By the compact-
ness of the family of normalized K-quasiconformal maps, we can find a subsequence
of {fn}∞n=1, which converges locally uniformly to a K-quasiconformal map. Accord-
ing to Theorem 4.2, limj→∞ ||µ(f) − Pj(µ(f))||2 = 0. Thus, we can find another
subsequence, whose Beltrami coefficients converges to µ almost everywhere. By the
Bers-Bojarski theorem, any such subsequence converges locally uniformly to the same
limit f with Beltrami coefficient µ. We now show that the original sequence must
converge locally uniformly to a normalized quasi-conformal map f whose Beltrami
coefficient is equal to µ. Suppose not. There exists a neighborhood U and an ε > 0
such that for every k ∈ N, there is a nk ≥ k such that ||fnk

|U−f |U ||∞ ≥ ε. Therefore,
we get a subsequence {fnk

}∞k=1 such that ||fnk
|U − f |U ||∞ ≥ ε. Again, by compact-

ness, {fnk
}∞k=1 has a locally uniform convergent subsequence {fnkm

}∞m=1. However,
since {fnk

}∞k=1 such that ||fnk
|U − f |U ||∞ ≥ ε, {fnkm

}∞m=1 does not converge to f
locally uniformly. Now, {fnkm

}∞m=1 is also a subsequence of the original sequence,
which must converge locally uniformly to the same limit f with Beltrami coefficient
µ. Hence, we obtain a contradiction. This implies the original sequence converges
locally uniformly to f , whose Beltrami coefficient is equal to µ.

With the above formulations, our proposed algorithm to extract the multi-scale
representations of a deformation can be described as follows.

Algorithm 1: Multi-scale representation of deformation

Input: Images I1 and I2 capturing an object at t = 0 and t = 1.
Output: {I(j)}j∈Z = sequence of images capturing deformations of I1 at

various scales.

1 Compute the registration f between I1 and I2 as described in section 4.1;
2 Compute the Beltrami coefficient µ(f) of f using equation (4.2);
3 Compute the wavelet expansion of µ(f) to obtain µ̂(i, j, k1, k2) for 1 ≤ i ≤ 3,
j, k1, k2 ∈ Z;

4 For each j ∈ Z, compute Pj(µ(f)) and fj := LBS(Pj(µ(f)));

5 For each j ∈ Z, compute I(j) := I1 ◦ f−1
j ;

Remark: Algorithm 1 decomposes a deformation into components of different scales
over the entire domain. Sometimes, it is required to decompose a deformation into
components of various scales over a particular region Ω. In this case, µ̃(Ω, j) should
be computed and fj := LBS(Pj(µ(f))) in step 4 should be replaced by fΩ

j :=
LBS(µ̃(Ω, j)).

5. Experimental Result. We have tested our proposed algorithm on synthetic
examples together with real data. There are different choices of mother wavelet to be
used in our model, such as Haar, spline, Daubechies, biorthonal wavelets and so on.
In this work, we choose the biorthogonal wavelet 6.8 in Matlab for our deformation
extraction. Experimental results are reported in this section.

5.1. Synthetic examples.

Example 1:. In this synthetic example, a circular object is being deformed to
a star-shaped object. The unit circle and the deformed star-shaped boundaries are
shown in Figure 5.1(a) and (b) respectively, which are labeled in red as landmarks.
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(a) Original mesh (b) Deformed mesh (c) Re(µ) (d) Imag(µ)

Fig. 5.1: Example 1: Deformation from a circle to a star-shaped contour. The unit
circle and the deformed star-shaped contour are shown in (a) and (b) respectively.
(c) and (d) show the real and imaginary part of BC corresponds to the deformation
respectively.

The landmark-based registration between the two images and its associated Beltrami
coefficient are computed. The real and imaginary parts of the BC are shown in (c)
and (d) respectively. The wavelet coefficients of the BC can be computed. The
wavelet expansion approximates the input BC. Figure 5.2(a) and (b) shows the real
and imaginary parts of the reconstructed BC from the full set of wavelet coefficients.
They closely resemble to the original BC. The local and global components of the
deformation can be extracted by removing the low and high frequency components in
the wavelet expansion respectively. The extracted local deformation is shown in (c).
It deforms the original circle to a star-shaped contour of similar size. The extracted
global deformation is shown in (d). It deforms a unit circle to a bigger circle. This
demonstrates that the original deformation consists of two main components, namely,
1. a deformation from a circle to a star-shaped contour and 2. a global scaling. (e)
shows the spectrum of the wavelet coefficients. The upper left corner corresponds to
the wavelet decomposition coefficients at the global scale, while the coefficients in the
lower layers represent the wavelet decomposition coefficients at the local scale.

(a) (b) (c) (d) (e)

Fig. 5.2: Example 1: Multi-scale representation of the deformation from a circle to a
star-shaped contour. (a) and (b) show the reconstruction of the real and imaginary
part of BC respectively using the full set of coefficients. (c) and (d) show the extracted
local and global deformation respectively. (e) shows the spectrum of the wavelet
decomposition coefficients.

Example 2:. In this example, we compute the multi-scale representation of a
deformation consisting of deformations at three different scales. The boundary of the
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(a) Original (b) Registered (c) Local (d) Intermediate (e) Global

Fig. 5.3: (a) and (b) show the original mesh and the registration result of Example
2, where the landmarks are marked in red. (c), (d) and (e) shows the deformation
components at the local, intermediate and global scales respectively.

original object is a circle as shown in Figure 5.3(a), which is deformed to another
shape as shown in Figure 5.3(b). Using our proposed algorithm, we successfully
extract the three deformation components at different scales. (c), (d) and (e) shows
the deformation components at the local, intermediate and global scales respectively.

(a) Original (b) Registered (c) Mask on (a) (d) Mask on (b)

Fig. 5.4: (a) and (b) show the original mesh and the registration result of Example 3,
where the landmarks are marked in red and blue. (c) and (d) show the mask for the
wavelet decomposition coefficients for extracting multi-scale deformation components
at different locations.

Example 3:. In this example, we consider a deformation consisting of a large
global deformation and a local deformation. Figure 5.4(a) shows the boundaries of
the initial objects, which are marked in blue and red colors. The blue object is
moved upward and the red object is moved downward. Both objects are deformed
locally to star-shaped contours. We proceed to obtain the deformation components
at different scales and different locations. (c) and (d) show the mask for the wavelet
decomposition coefficients for extracting multi-scale deformation components. Figure
5.5(a) shows the spectrum of the wavelet decomposition coefficients. The red and
blue region represent the mask for choosing the wavelet coefficients to obtain the
deformation components at different locations. (b) shows the global deformation
component. (c) shows the extracted local deformation component of the blue object.
(d) shows the local deformation component of the red object. Note that the local
and global deformation components at different locations are successfully extracted.
Figure 5.6(a) and (b) show the extraction of the deformation component using the
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(a) Spectrum (b) Global (c) First local (d) Second local

Fig. 5.5: (a) shows the spectrum of the wavelet decomposition coefficients. The red
and blue region represent the mask for choosing the wavelet decomposition coeffi-
cients at different locations. (b), (c) and (d) shows the global, first and second local
deformation components.

wavelet transformation directly applied on the Euclidean coordinates of the mapping.
Note that abnormal squeezing and overlaps appear.

(a) (b)

Fig. 5.6: (a) and (b) show the extraction of the deformation in Example 3 using
wavelet transform directly applied on the Euclidean coordinates of the mapping. Note
that abnormal squeezing and overlaps appear.

Example 4:. Figure 5.7(a) and (b) shows the original and deformed objects. We
proceed to extract the local and global deformation components at different scales and
locations. (c) and (d) shows the mask for extracting the local deformation components
at different locations. The spectrum of the wavelet coefficients are shown in (e).
The different regions represent the masks for choosing the wavelet decomposition
coefficients at different locations. Figure 5.8(a) shows the extracted global deformation
component. (b), (c), (d) and (e) shows the local deformation components at the
bottom-left, bottom-right, top-right and top-left respectively.

5.2. Real examples.

Example 5: Spine. In this example, we test our proposed algorithm for the
multiscale deformation decomposition on real spine images. Figure 5.9(a) shows a
spine image of a young age control subject. (b) shows a spine image of a grown-up
patient. Our goal is to extract the global and local components of the deformation
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(a) Original (b) Deformed (c) Mask on (a) (d) Mask on (b) (e) Spectrum

Fig. 5.7: (a) and (b) show the original and deformed mesh of Example 4. (c) and (d)
show the mask for extracting the decomposition coefficients at different locations of
Example 4, which are divided by the red, blue, green and purple region respectively.
(e) shows the spectrum of the wavelet decomposition coefficients of Example 4.

(a) Global (b) First local (c) Second local (d) Third local (e) Fourth local

Fig. 5.8: (a) shows the extracted global deformation component of Example 4. (b),
(c), (d) and (e) shows the local deformation components at the bottom-left, bottom-
right, top-right and top-left regions respectively.

of the spine. A triangular mesh is built on the images and corresponding feature
landmarks to drive the registration, are shown in Figure 5.9(c) and (d). The extracted
global and local deformations from the control spine are shown in Figure 5.9(e) and
(f) respectively. The meshes show how to global and local diffeomorphism deforms
the image. (g) and (h) show the deformed spine images without meshes by the global
and local deformation respectively. Our proposed model successfully decomposes the
deformation into global and local components.

Example 6: Corpus callosum. In this example, we apply our proposed model
on corpus callosum images. Figure 5.10(a) shows the image of a healthy corpus
callosum. (b) shows the image of the corpus callosum of a patient suffering from
progressive supranuclear palsy (PSP). Triangular meshes are built on each images
and corresponding feature landmarks are labeled to drive the registration, which are
shown in (c) and (d). Figure 5.10(e) and (f) shows how the mesh of the image from
the healthy subject is deformed under the extracted global and local deformations
respectively. (g) and (h) shows the deformed images by the global and local defor-
mations. Our model successfully decomposes the deformation into global and local
components.

Figure 5.11(a) and (b) show the corpus callosum images of a healthy subject and
a patient suffering from normal pressure hydrocephalus (NPH) respectively. Meshes
are built on each images and corresponding feature landmarks are labeled (See (c)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.9: (a) shows the original spine image. (b) shows the deformed spine image of a
grown-up patient. (c) and (d) show the landmark points in (a) and (b) marked in blue
respectively. A triangular mesh is built on the images. (e) and (f) show the global
and local components of the spine deformation by using our proposed algorithm. (g)
and (h) show the corresponding deformed images.

and (d)). Figure 5.10(e) and (f) show how the mesh of the image from the healthy
subject is deformed under the extracted global and local deformations respectively.
(g) and (h) shows the deformed image by the global and local deformations. Again,
our model successfully decomposes the deformation into global and local components.

6. Conclusion. In this work, we propose a novel algorithm for the multiscale
decomposition of deformations via quasi-conformal theories. Our work focuses on the
decomposition of deformations at different geometric scales and locations. A deforma-
tion is described as a diffeomorphism. Given a diffeomorphism f , we first represent
the diffeomorphism using the Beltrami coefficient (BC), which is a complex-valued
function measuring the conformality distortion of the diffeomorphism. With this rep-
resentation, we propose to apply the wavelet transformation on the BC to decompose
it into various components of different frequencies compactly supported at different
sub-domains. Quasi-conformal map associated to different components of the BC can
be reconstructed by solving the Beltrami’s equation. The multiscale decomposition
of the deformation can then be constructed. To validate our proposed algorithm, we
have applied it on synthetic examples as well as real medical data. Results demon-
strate our model can successfully decompose the deformation at multiple geometric
scales and locations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.10: (a) shows the image of a healthy corpus callosum. (b) shows the image of the
corpus callosum of a patient suffering from progressive supranuclear palsy (PSP). (c)
and (d) show the feature landmarks (blue and red) which extract the corpus callosum
in (a) and (b) respectively. Triangular meshes are built on each images for registration.
(e) and (f) show how the mesh of the image from the healthy subject is deformed under
the extracted global and local deformations respectively. The deformed images by the
global and local deformations are shown in (g) and (h) respectively.

Acknowledgment. Lok Ming Lui is supported by RGC GRF (Project ID:
401811).

REFERENCES

[1] M. K. Abeyratne, W. Freeden, and C. Mayer. Multiscale deformation analysis by cauchy-navier
wavelets. Journal of Applied Mathematics, 12:605–645, 2003.

[2] D. Bechmann. Space deformation models survey. Computers & Graphics, 18(4):571–586, 1994.
[3] B. Bijnens, P. Claus, F. Weidemann, J. Strotmann, and G. R. Sutherland. Investigating cardiac

function using motion and deformation analysis in the setting of coronary artery disease.
Circulation, 116(21):2453–2464, 2007.

[4] F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, 1989.

[5] G. Chen, K. Mischaikow, R. S. Laramee, and E. Zhang. Efficient morse decompositions of vector
fields. IEEE Transactions on Visualization and Computer Graphics, 4(14):848–862, 2008.

[6] Lam K. C. Choi, P. T. and L. M.: Lui. Lash: Fast landmark aligned spherical harmonic
parameterization for genus-0 closed brain surfaces. SIAM Journal on Imaging Sciences,
8(1):67–94, 2015.

[7] A. Fletcher and V. Markovic. Quasiconformal maps and Teichmüller theory. Oxford graduate
texts in mathematics. Oxford University Press, Oxford, 2007.

[8] F. P. Gardiner and N. Lakic. Quasiconformal Teichmüller theory. Mathematical surveys and
monographs. American Mathematical Society, 2000.

[9] B. Glocker, N. Komodakis, G. Paragios, N.and Tziritas, and N. Navab. Inter and intra-modal



Multiscale Representation of Deformations 17

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.11: (a) shows the image of a healthy corpus callosum. (b) shows the image of the
corpus callosum of a patient suffering from Normal Pressure Hydrocephalus (NPH).
(c) and (d) show the feature landmarks (blue and red), which extract the corpus
callosum in (a) and (b) respectively. Triangular meshes are built on each images
for registration. (e) and (f) show how the meshes of the image from the healthy
subject is deformed under the extracted global and local deformations respectively.
The deformed images by the global and local deformations are shown in (g) and (h)
respectively.

deformable registration: Continuous deformations meet efficient optimal linear program-
ming. Information Processing in Medical Imaging. Springer Berlin Heidelberg, pages 408–
420, 2007.

[10] B. Glocker, A. Sotiras, N. Komodakis, and N. Paragios. Deformable medical image registration:
Setting the state of the art with discrete methods. Annual review of biomedical engineering,
13:219–244, 2011.

[11] P. Golland, W. E. L. Grimson, M. E. Shenton, and R. Kikinis. Deformation analysis for shape
based classification. Information Processing in Medical Imaging, pages 517–530, 2001.

[12] P. Golland, W. E. L. Grimson, M. E. Shenton, and R. Kikinis. Detection and analysis of
statistical differences in anatomical shape. Medical image analysis, 9(1):69–86, 2005.

[13] P. S. Heckbert. Survey of texture mapping. Computer Graphics and Applications, IEEE,
6(11):56–67, 1986.

[14] J. R. Kaplan and D. L. Donoho. The morphlet transform: A multiscale representation for
diffeomorphisms. DEFORM06-Proceedings of the Workshop on Image Registration in De-
formable Environments, 12:21–, 2003.

[15] D. Kihara, L. Sael, R. Chikhi, and J. Esquivel-Rodriguez. Molecular surface representation
using 3D Zernike descriptors for protein shape comparison and docking. Current Protein
and Peptide Science, 12(6):520–530, 2011.

[16] K.C. Lam and L.M. Lui. Landmark and intensity based registration with large deformations
via quasi-conformal maps. SIAM Journal on Imaging Sciences, 7(4):2364–2392, 2014.

[17] O. Lehto and K. I. Virtanen. Quasiconformal mappings in the plane. Die Grundlehren der
mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung
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