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Abstract The main goal of this chapter is to give the reader a (relatively) brief

overview of operator-splitting, augmented Lagrangian and ADMM methods and al-

gorithms. Following a general introduction to these methods, we will give several

applications in Computational Fluid Dynamics, Computational Physics, and Imag-

ing. These applications will show the flexibility, modularity, robustness and versa-

tility of these methods. Some of these applications will be illustrated by the results

of numerical experiments; they will confirm the capabilities of operator-splitting

methods concerning the solution of problems still considered complicated by today

standards.

1 Introduction

In 2004, the first author of this chapter was awarded the SIAM Von Kármán Prize

for his various contributions to Computational Fluid Dynamics, the direct numeri-

cal simulation of particulate flow in particular. Consequently, he was asked by some

people at SIAM to contribute an article to SIAM Review, related to the Von Kármán

lecture he gave at the 2004 SIAM meeting in Portland, Oregon. Since operator-

splitting was playing a most crucial role in the result presented during his Portland

lecture, he decided to write, jointly with several collaborators (including the sec-

ond author), a review article on operator-splitting methods, illustrated by several
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selected applications. One of the main reasons for that review article was that, to the

best of our knowledge at the time, the last comprehensive publication on the subject

was [121], a book-size article (266 pages) published in 1990, in the Volume I of the

Handbook of Numerical Analysis. Our article was rejected, on the grounds that it

was untimely. What is ironical is that the very day (of August 2005) we received the

rejection e-mail message, we were having a meeting with computational scientists

at Los Alamos National Laboratory (LANL) telling us that one of their main prior-

ities was further investigating the various properties of operator-splitting methods,

considering that these methods were (and still are) applied at LANL to solve a large

variety of challenging, mostly multi-physics, problems. Another event emphasizing

the importance of operator-splitting methods was the December 2005 conference,

at Rice University in Houston, commemorating “50 Years of Alternating-Direction

Methods” and honoring J. Douglas, D. Peaceman and H. Rachford, the inventors

of those particular operator-splitting methods bearing their name. Actually, it was

striking to observe during this conference that, at the time, most members of the

Partial Differential Equations and Optimization communities were ignoring that

most alternating-direction methods for initial value-problems are closely related to

primal-dual algorithms such as ADMM (Alternating Direction Methods of Multi-

pliers). In order to create a bridge between these two communities, we updated the

failed SIAM Review paper and submitted it elsewhere, leading to [73] (clearly, a

publication in a SIAM journal would have had more impact, worldwide). Our goal

in this chapter is to present a (kind of) updated variant of [73], less CFD (resp.,

more ADMM) oriented. It will contain in particular applications to Imaging, a topic

barely mentioned in reference [73]. The content of this chapter is as follows:

In Section 2, we will discuss the numerical solution of initial value problems

by operator-splitting time-discretization schemes such as Peaceman-Rachford’s,

Douglas-Rachford’s, Lie’s, Strang’s, Marchuk-Yanenko’s, and by the fractional θ -

scheme, a three-stage variation, introduced in [67] and [68], of Peaceman-Rachford’s

scheme. We will conclude this section by some remarks on the parallelization of

operator-splitting schemes.

Section 3 will be dedicated to augmented Lagrangian and ADMM algorithms.

We will show in particular that some augmented Lagrangian and ADMM algorithms

are nothing but disguised operator-splitting methods (justifying thus the ADMM

terminology).

Following [73], we will discuss in Section 4 the operator-splitting based direct

numerical simulation of particulate flow, in the particular case of mixtures of in-

compressible viscous fluids and rigid solid particles.

In Section 5, we will discuss the application of operator-splitting methods to

the solution of two problems from Physics, namely the Gross-Pitaevskii equation,

a nonlinear Schrödinger equation modelling Bose-Einstein condensates, and the

Zakharov system, a model for the propagation of Langmuir waves in ionized plasma.

Next, in Section 6, we will discuss applications of augmented Lagrangian and

ADMM algorithms to the solution of problems from Imaging, a highly popular topic

nowadays (actually, the renewed interest in ADMM type algorithms that we observe
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currently can be largely explained by their application to Image Processing; see

[156, 170]).

Finally, in Section 7, we will return to various issues that we left behind in the

preceding sections of this chapter: these include augmentation parameter selection,

an analysis of the asymptotic behavior of the Peaceman-Rachford and Douglas-

Rachford schemes, and various comments concerning high order accurate operator-

splitting schemes. Also, owing to the fact that one of the success stories of operator-

splitting methods has been the numerical solution of the Navier-Stokes equations

modeling viscous flow, we will conclude this section (and the chapter) by providing

a (non-exhaustive) list of related references.

In addition to all the other chapters of this volume, material related to operator-

splitting, augmented Lagrangian and ADMM algorithms can be found in [72] (see

also the references therein). More references will be given in the following sections.

2 Operator-splitting schemes for the time discretization of initial

value problems

2.1 Generalities

Let us consider the following autonomous initial value problem:





dφ

dt
+A(φ) = 0 on (0,T ) (with 0 < T ≤+∞),

φ(0) = φ0.
(1)

Operator A maps the vector space V into itself and we suppose that φ0 ∈ V . We

suppose also that A has a non-trivial decomposition such as

A =
J

∑
j=1

A j, (2)

with J ≥ 2 (by non-trivial we mean that the operators A j are individually simpler

than A).

A question which arises naturally is clearly:

Can we take advantage of decomposition (2) for the solution of (1)?

It has been known for many years (see for example [36]) that the answer to the above

question is definitely yes.

Many schemes have been designed to take advantage of the decomposition (2)

when solving (1); several of them will be briefly discussed in the following para-

graphs.
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2.2 Time-discretization of (1) by Lie’s scheme

Let △t(> 0) be a time-discretization step (for simplicity, we suppose △t fixed,); we

denote n△t by tn. With φn denoting an approximation of φ(tn), Lie’s scheme reads

as follows (for its derivation see, e.g., [70] (Chapter 6) and Chapter 1, Section 2, of

this book):

φ0 = φ0; (3)

then, for n ≥ 0, φn → φn+1 via





dφ j

dt
+A j(φ j) = 0 on (tn, tn+1),

φ j(t
n) = φn+( j−1)/J;φn+ j/J = φ j(t

n+1),
(4)

for j = 1, . . . ,J.

If (1) is taking place in a finite dimensional space and if the operators A j are

smooth enough, then ‖φ(tn)−φn‖= O(△t), function φ being the solution of (1).

Remark 1. The above scheme applies also for multivalued operators (such as the

subdifferentials of proper lower semi-continuous convex functionals), but in such a

case first order accuracy is not guaranteed anymore. A related application will be

given in Section 2.7.

Remark 2. The above scheme is easy to generalize to non-autonomous problems by

observing that

{
dφ

dt
+A(φ , t) = 0,

φ(0) = φ0

⇔





dφ

dt
+A(φ ,θ ) = 0,

dθ

dt
− 1 = 0,

φ(0) = φ0,θ (0) = 0.

Remark 3. Scheme (3)-(4) is semi-constructive in the sense that we still have to

solve the initial value sub-problems in (4) for each j. Suppose that we discretize

these sub-problems using just one step of the backward Euler scheme. The resulting

scheme reads as follows:

φ0 = φ0; (5)

then, for n ≥ 0, φn → φn+1 via the solution of

φn+ j/J −φn+( j−1)/J

△t
+A j(φ

n+ j/J) = 0, (6)

for j = 1, . . . ,J.

Scheme (5)-(6) is known as the Marchuk-Yanenko scheme (see, e.g., refs. [121]

and [70] (Chapter 6)) for more details. Several chapters of this volume are making

use of the Marchuk-Yanenko scheme.
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2.3 Time-discretization of (1) by Strang’s symmetrized scheme

In order to improve the accuracy of Lie’s scheme, G. Strang suggested a sym-

metrized variant of scheme (3)-(4) (ref. [153]). When applied to non-autonomous

problems, in the case where J = 2, we obtain (with tn+1/2 = (n+ 1/2)△t):

φ0 = φ0; (7)

then, for n ≥ 0, φn → φn+1/2 → φ̂n+1/2 → φn+1 via





dφ1

dt
+A1(φ1, t) = 0 on (tn, tn+1/2),

φ1(t
n) = φn;φn+1/2 = φ1(t

n+1/2),
(8)





dφ2

dt
+A2(φ2, t

n+1/2) = 0 on (0,△t),

φ2(0) = φn+1/2; φ̂n+1/2 = φ2(△t),
(9)





dφ1

dt
+A1(φ1, t) = 0 on (tn+1/2, tn+1),

φ1(t
n+1/2) = φ̂n+1/2;φn+1 = φ1(t

n+1).
(10)

If (1) is taking place in a finite dimensional space and if operators A1 and A2 are

smooth enough, then ‖φ(tn)−φn‖= O(|△t|2), function φ being the solution of (1).

Remark 4. In order to preserve the second order accuracy of scheme (7)-(10) (as-

suming it takes place) we have to solve the initial value problems in (8), (9) and (10)

by schemes which are themselves second order accurate (at least); these schemes

are highly dependent of the properties of A1 and A2. The sub-problems (8), (9) and

(10) are all particular cases of





dφ

dt
+B(φ , t) = 0 on (t0, t f ),

φ(t0) = φ0.
(11)

Suppose now that B is a (positively) monotone operator; following [70] (Chapter 6),

we advocate using for the numerical integration of (11) the second order implicit

Runge-Kutta scheme below:





φ0 = φ0;

for q = 0, . . . ,Q− 1, φq → φq+θ → φq+1−θ → φq+1 via



φq+θ −φq

θτ
+B(φq+θ , tq+θ ) = 0,

φq+1−θ =
1−θ

θ
φq+θ +

2θ − 1

θ
φq,

φq+1 −φq+1−θ

θτ
+B(φq+1, tq+1) = 0,

(12)
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where in (12):

• Q(≥ 1) is an integer and τ =
t f − t0

Q
.

• φq+α is an approximation of φ(tq+α), with tq+α = t0 +(q+α)τ .

• θ = 1− 1√
2

.

It is shown in [70] (Chapter 2) that the implicit Runge-Kutta scheme (12) is stiff

A-stable and “nearly” third-order accurate. It has been used, in particular, in [70]

and [162] for the numerical simulation of incompressible viscous flow.

Remark 5. The main (if not the unique) drawback of Strang’s symmetrized scheme

(7)-(10) concerns its ability at capturing the steady state solutions of (1) (when T =
+∞), assuming that such solutions do exist. Indeed, the splitting error associated

with scheme (7)-(10) prevents using large values of △t when integrating (1) from

t = 0 to t = +∞; if the sequence {φn}n≥0 converges to a limit, this limit is not, in

general, a steady state solution of (1), albeit being close to one for small values of△t

(a similar comment applies also to the sequences {φn+1/2}n≥0 and {φ̂n+1/2}n≥0). A

simple way to-partly-overcome this difficulty is to use variable time discretization

steps: for example, in (8), (9) and (10), one can replace △t by τn (the sequence

{τn}n≥0 verifying τn > 0, lim
n→∞

τn = 0 and
∞

∑
n=0

τn = +∞), and then define tn+1 and

tn+1/2 by tn+1 = tn+τn ∀n ≥ 0, t0 = 0, and tn+1/2 = tn+τn/2, respectively. A more

sophisticated way to fix the asymptotic behavior of scheme (7)-(10) is to proceed as

in the chapter by McNamara and Strang in this book (Chapter 3).

Remark 6. More comments on scheme (7)-(10) can be found in, e.g., [70] (Chapter

6), [72] (Chapter 3) and various chapters of this volume, Chapter 3 in particular.

Among these comments, the generalization of the above scheme to those situations

where J ≥ 3 in (2) has been discussed. Conceptually, the case J ≥ 3 is no more

complicated than J = 2. Focusing on J = 3, we can return (in a non-unique way) to

the case J = 2 by observing that

A = A1 +A2 +A3 = A1 +(A2 +A3) = (A1 +A2)+A3 (13)

= (A1 +
1

2
A2)+ (

1

2
A2 +A3).

The first (resp., second and third) arrangement in (13) leads to 5 (resp., 7 and 9)

initial value sub-problems per time step. Scheme (7)-(10), combined with the first

arrangement in (13), has been applied in [81] to the computation of the periodic

solution of a nonlinear integro-differential equation from Electrical Engineering.
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2.4 Time-discretization of (1) by Peaceman-Rachford’s alternating

direction method

Another candidate for the numerical solution of the initial value problem (1), or of

its non-autonomous variant




dφ

dt
+A(φ , t) = 0 on (0,T ),

φ(0) = φ0.
(14)

is provided, if J = 2 in (2), by the Peaceman-Rachford scheme (introduced in [139]).

The idea behind the Peaceman-Rachford scheme is quite simple: the notation being

like in Sections 2.1, 2.2 and 2.3, one divides the time interval [tn, tn+1] into two sub-

intervals of length △t/2 using the mid-point tn+1/2. Then assuming that the approx-

imate solution φn is known at tn one computes first φn+1/2 using over [tn, tn+1/2] a

scheme of the backward Euler type with respect to A1 and of the forward Euler type

with respect to A2; one proceeds similarly over [tn+1/2, tn+1], switching the roles of

A1 and A2. The following scheme, due to Peaceman and Rachford (see [139]), real-

izes precisely this program when applied to the solution of the initial value problem

(14): 



φ0 = φ0;

for n ≥ 0, φn → φn+1/2 → φn+1 via the solution of

φn+1/2 −φn

△t/2
+A1(φ

n+1/2, tn+1/2)+A2(φ
n, tn) = 0,

φn+1 −φn+1/2

△t/2
+A1(φ

n+1/2, tn+1/2)+A2(φ
n+1, tn+1) = 0.

(15)

The convergence of the Peaceman-Rachford scheme (15) has been proved in [118]

and [84] under quite general monotonicity assumptions concerning the operators

A1 and A2 (see also [64], [65] and [110]); indeed, A1 and/or A2 can be nonlinear,

unbounded and even multi-valued. In general, scheme (15) is first order accurate at

best; however, if the operators A1 and A2 are linear, time independent and commute

then scheme (15) is second order accurate (that is ‖φn − φ(tn)‖ = O(|△t|2)), φ
being the solution of problem (1)). Further properties of scheme (15) can be found

in, e.g., [121], [70] (Chapter 2) and [72] (Chapter 3), including its stability, and its

asymptotic behavior if T = +∞; concerning this last issue, a sensible advice is to

use another scheme to compute steady state solutions, scheme (15) not being stiff

A-stable.

Remark 7. Scheme (15) belongs to the alternating direction method family. The rea-

son of that terminology is well-known: one of the very first applications of scheme

(15) was the numerical solution of the heat equation

∂φ

∂ t
− ∂ 2φ

∂x2
− ∂ 2φ

∂y2
= f ,
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completed by initial and boundary conditions. After finite difference discretization,

the roles of A1 and A2 were played by the square matrices approximating the oper-

ators − ∂ 2

∂x2
and − ∂ 2

∂y2
, respectively, explaining the terminology.

Remark 8. We observe that operators A1 and A2 play essentially symmetrical roles

in scheme (15).

Remark 9. For those fairly common situations where operator A2 is uni-valued, but

operator A1 is “nasty” (discontinuous and/or multi-valued, etc.), we should use the

following equivalent formulation of the Peaceman-Rachford scheme (15):





φ0 = φ0;

for n ≥ 0, φn → φn+1/2 → φn+1 via the solution of

φn+1/2 −φn

△t/2
+A1(φ

n+1/2, tn+1/2)+A2(φ
n, tn) = 0,

φn+1 − 2φn+1/2 +φn

△t/2
+A2(φ

n+1, tn+1) = A2(φ
n, tn).

(16)

2.5 Time-discretization of (1) by Douglas-Rachford’s alternating

direction method

We assume that J = 2 in (2).

The Douglas-Rachford scheme (introduced in [57]) is a variant of the Peaceman-

Rachford scheme (15); when applied to the numerical solution of the initial value

problem (14) (the non-autonomous generalization of (1)), it takes the following

form: 



φ0 = φ0;

for n ≥ 0, φn → φ̂n+1 → φn+1 via the solution of

φ̂n+1 −φn

△t
+A1(φ̂

n+1, tn+1)+A2(φ
n, tn) = 0,

φn+1 −φn

△t
+A1(φ̂

n+1, tn+1)+A2(φ
n+1, tn+1) = 0.

(17)

The Douglas-Rachford scheme (17) has clearly a predictor-corrector flavor.

The convergence of the Douglas-Rachford scheme (17) has been proved in [118]

and [84] under quite general monotonicity assumptions concerning the operators

A1 and A2 (see also [64], [65] and [110]); indeed, A1 and/or A2 can be nonlinear,

unbounded and even multi-valued. In general, scheme (17) is first order accurate

at best (even if the operators A1 and A2 are linear, time independent and commute,

assumptions implying second order accuracy for the Peaceman-Rachford scheme).

Further properties of scheme (17) can be found in, e.g., [121], [70] (Chapter 2) and

[72] (Chapter 3), including its stability, and its asymptotic behavior if T = +∞.

Concerning this last issue, a sensible advice is to use another scheme to compute
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steady state solutions, scheme (17) not being stiff A-stable, a property it shares with

the Peaceman-Rachford scheme (15).

Remark 10. Unlike the Peaceman-Rachford scheme (15), we observe that the roles

played by operators A1 and A2 are non-symmetrical in scheme (17); actually, nu-

merical experiments confirm that fact: for example, for the same △t the speed of

convergence to a steady state solution may depend of the choice one makes for A1

and A2. As a rule of thumb, we advocate taking for A2 the operator with the best

continuity and monotonicity properties (see, for example, [62] (Chapter 3), [63]

(Chapter 3) and [74] (Chapter 3) for more details).

Remark 11. Unlike scheme (15), scheme (17) is easy to generalize to operator de-

compositions involving more than two operators. Consider thus the numerical inte-

gration of (14) when J ≥ 3 in (2). Following J. Douglas in [54] and [55] we gener-

alize scheme (17) by

φ0 = φ0; (18)

then for n ≥ 0, φn being known, compute φn+1/J , . . . , φn+ j/J, . . . , φn+1 via the

solution of





φn+1/J −φn

△t
+

1

J− 1
A1(φ

n+1/J, tn+1)+
J− 2

J− 1
A1(φ

n, tn)

+
J

∑
i=2

Ai(φ
n, tn) = 0,

(19.1)





φn+ j/J −φn

△t
+

j−1

∑
i=1

[
1

J− 1
Ai(φ

n+i/J, tn+1)+
J− 2

J− 1
Ai(φ

n, tn)

]

+
1

J− 1
A j(φ

n+ j/J, tn+1)+
J− 2

J− 1
A j(φ

n, tn)

+
J

∑
i= j+1

Ai(φ
n, tn) = 0,

(19. j)





φn+1 −φn

△t
+

J−1

∑
i=1

[
1

J− 1
Ai(φ

n+i/J , tn+1)+
J− 2

J− 1
Ai(φ

n, tn)

]

+
1

J− 1
AJ(φ

n+1, tn+1)+
J− 2

J− 1
AJ(φ

n, tn) = 0,

(19.J)

Above, φn+i/J and φn+ j/J denote approximate solutions at steps i and j of the com-

putational process; they do not denote approximations of φ(tn+i/J) and φ(tn+ j/J)
(unless i = j = J).

Remark 12. This is the Douglas-Rachford analog of Remark 9: for those situations

where A1 is a “bad” operator (in the sense of Remark 9), we should use (assuming

that A2 is uni-valued) the following equivalent formulation of the Douglas-Rachford

scheme (17):
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



φ0 = φ0;

for n ≥ 0, φn → φ̂n+1 → φn+1 via the solution of

φ̂n+1 −φn

△t
+A1(φ̂

n+1, tn+1)+A2(φ
n, tn) = 0,

φn+1 − φ̂n+1

△t
+A2(φ

n+1, tn+1) = A2(φ
n, tn).

(20)

Remark 13. To those wondering how to choose between the Peaceman-Rachford

and Douglas-Rachford schemes, we will say that, on the basis of many numerical

experiments, it seems that the second scheme is more robust and faster for those

situations where one of the operators is non-smooth (multi-valued or singular, for

example), particularly if one is interested by capturing steady state solutions. Ac-

tually, a better advice could be: consider using the fractional θ -scheme to be dis-

cussed in Section 2.6, below. Indeed, we have encountered situations where this θ -

scheme outperforms both the Peaceman-Rachford and Douglas-Rachford schemes,

for steady state computations in particular; such an example is provided by the

anisotropic Eikonal equation, a nonlinear hyperbolic problem to be briefly discussed

in Section 2.7. We will return to the Peaceman-Rachford vs Douglas-Rachford issue

in Section 7.

2.6 Time-discretization of (1) by a fractional θ -scheme

This scheme (introduced in [67], [68] for the solution of the Navier-Stokes equa-

tions) is a variant of the Peaceman-Rachford scheme (15). Let θ belong to the open

interval (0,1/2) (in practice, θ ∈ [1/4,1/3]); the fractional θ -scheme, applied to

the solution of the initial value problem (14) (the non-autonomous generalization of

(1)), reads as follows if A = A1 +A2:





φ0 = φ0;

for n ≥ 0, φn → φn+θ → φn+1−θ → φn+1 via the solution of

φn+θ −φn

θ△t
+A1(φ

n+θ , tn+θ )+A2(φ
n, tn) = 0,

φn+1−θ −φn+θ

(1− 2θ )△t
+A1(φ

n+θ , tn+θ )+A2(φ
n+1−θ , tn+1−θ ) = 0,

φn+1 −φn+1−θ

θ△t
+A1(φ

n+1, tn+1)+A2(φ
n+1−θ , tn+1−θ ) = 0.

(21)

Remark 14. One should avoid confusion between scheme (21) and the following

solution method for the initial value problem (14) (with 0 ≤ θ ≤ 1)
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



φ0 = φ0;

for n ≥ 0, φn → φn+1 via the solution of

φn+1 −φn

△t
+θA(φn+1, tn+1)+ (1−θ )A(φn, tn) = 0,

(22)

which is also known as a θ -scheme. We observe that if θ = 1 (resp., θ = 0, θ =1/2)

scheme (22) reduces to backward Euler’s scheme (resp., forward Euler’s scheme,

a Crank-Nicolson’s type scheme). Another “interesting” value is θ = 2/3 (for rea-

sons detailed in, e.g., [70] (Chapter 2) and [72] (Chapter 3)). By the way, it is to

avoid confusion between schemes (21) and (22) that some practitioners (S. Turek, in

particular) call the first one a fractional θ -scheme. ⊓⊔
The stability and convergence properties of scheme (21) have been discussed in [70]

(Chapter 2) and [72] (Chapter 3) for very simple finite dimensional situations where

A1 and A2 are both positive multiples of the same symmetric positive definite matrix.

Numerical experiments have shown that the good properties verified by scheme

(21) for those simple linear situations, in particular its stiff A-stability for θ well-

chosen, still hold for more complicated problems, such as the numerical simulation

of unsteady incompressible viscous flow modeled by the Navier-Stokes equations

(as shown in, e.g., [23], [41], [69] and [70]).

Remark 15. We observe that operators A1 and A2 play non-symmetrical roles in

scheme (21). Since, at each time step, one has to solve two problems (resp., one

problem) associated with operator A1 (resp., A2) a natural choice is to take for A1 the

operator leading to the sub-problems which are the easiest to solve (that is, whose

solution is the less time consuming). Less naive criteria may be used to choose A1

and A2, such as the regularity (or lack of regularity) of these operators.

Remark 16. If one takes A1 = A and A2 = 0 in (21), the above scheme reduces to the

Runge-Kutta scheme (12), with A replacing B.

Remark 17. The fractional θ -scheme (21) is a symmetrized scheme. From that point

of view, it has some analogies with Strang’s symmetrized scheme (7)- (10), discussed

in Section 2.3.

Remark 18. This is the fractional θ -scheme analog of Remarks 9 and 12. For those

situations where A1 is a “bad” operator (in the sense of Remark 9), we advocate

using the following equivalent formulation of the θ -scheme (21):





φ0 = φ0;

for n ≥ 0, φn → φn+θ → φn+1−θ → φn+1 via the solution of

φn+θ −φn

θ△t
+A1(φ

n+θ , tn+θ )+A2(φ
n, tn) = 0,

θφn+1−θ−(1−θ )φn+θ+(1−2θ )φn

θ (1− 2θ )△t
+A2(φ

n+1−θ , tn+1−θ )=A2(φ
n, tn),

φn+1 −φn+1−θ

θ△t
+A1(φ

n+1, tn+1)+A2(φ
n+1−θ , tn+1−θ ) = 0.

(23)
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2.7 Two applications: smallest eigenvalue computation and

solution of an anisotropic Eikonal equation

2.7.1 Synopsis

It is not an exaggeration to say that applications of operator-splitting methods are ev-

erywhere, new ones occurring “almost” every day; indeed, some well-known meth-

ods and algorithms are disguised operator-splitting schemes as we will show in Sec-

tion 2.7.2, concerning the computation of the smallest eigenvalue of a real sym-

metric matrix. In Section 2.7.3, we will apply the fractional θ -scheme (21) to the

solution of an Eikonal equation modeling wave propagation in anisotropic media.

More applications will be discussed in Sections 4 and 5.

2.7.2 Application to some eigenvalue computation

Suppose that A is a real d × d symmetric matrix. Ordering the eigenvalues of A

as follows: λ1 ≤ λ2 ≤ ·· · ≤ λd , our goal is to compute λ1. We have (with obvious

notation)

λ1 = min
v∈S

vtAv, with S = {v|v ∈ IRd ,‖v‖= 1}, (24)

the norm in (24) being the canonical Euclidean one. The constrained minimization

problem in (24) is equivalent to

min
v∈IRd

[
1

2
vtAv+ IS(v)

]
, (25)

where, in (25), the functional IS : IRd → IR∪{+∞} is defined as follows

IS(v) =

{
0 i f v ∈ S,

+∞ otherwise,

implying that IS is the indicator functional of the sphere S. Suppose that u is a

solution of (25) (that is a minimizer of the functional in (25)); we have then

Au+ ∂ IS(u) ∋ 0, (26)

∂ IS(u) in (26) being a (kind of) generalized gradient of functional IS at u (∂ IS is

a multivalued operator). Next, we associate with the (necessary) optimality system

(26) the following initial value problem (flow in the Dynamical System terminol-

ogy): 



du

dt
+Au+ ∂ IS(u) ∋ 0 in (0,+∞),

u(0) = u0.
(27)
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If one applies the Marchuk-Yanenko scheme (5)-(6) to the solution of problem (27),

one obtains (with τ =△t):





u0 = u0,

for n ≥ 0, un → un+1/2 → un+1 via the solution of

un+1/2 −un

τ
+Aun+1/2 = 0,

un+1 −un+1/2

τ
+ ∂ IS(u

n+1) ∋ 0.

(28)

The first finite difference equation in (28) implies

un+1/2 = (I+ τA)−1un. (29)

On the other hand, the second finite difference equation in (28) can be interpreted

as a necessary optimality condition for the following minimization problem

min
v∈S

[
1

2
‖v‖2 − vtun+1/2

]
. (30)

Since ‖v‖= 1 over S, the solution of problem (30) is given by

un+1 =
un+1/2

‖un+1/2‖ . (31)

It follows from (29) and (31) that algorithm (28) is nothing but the inverse power

method with shift, a well-known algorithm from Numerical Linear Algebra. Indeed,

if

0 < τ <
1

max(0+,−λ1)
,

and if the projection of u0 on the vector space spanned by the eigenvectors of A

associated with λ1 is different from 0, we can easily prove that the sequence {un}n≥0

converges to an eigenvector of A associated with λ1 and also that

lim
n→+∞

(un)tAun = λ1.

Clearly, numerical analysts have not been waiting for operator-splitting to compute

matrix eigenvalues and eigenvectors; on the other hand, operator-splitting has pro-

vided efficient algorithms for the solution of complicated problems from Differ-

ential Geometry, Mechanics, Physics, Physico-Chemistry, Finance, etc., including

some nonlinear eigenvalue problems, as shown in, e.g., [72] (Chapter 7).
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2.7.3 Application to the solution of an anisotropic Eikonal equation from

acoustics

The next application of operator-splitting, that we are going to (briefly) consider

in this chapter, was brought to our attention recently (December 2014) by our col-

leagues S. Leung and J. Qian. It concerns the numerical solution of the following

nonlinear hyperbolic partial differential equation

|∇τ|− |1−V ·∇τ|
c

= 0 in Ω , (32)

encountered in Acoustics and known as the anisotropic Eikonal equation. In (32),

we have (see [40] for more details):

• Ω ⊂ IRd , with d ≥ 2.

• τ(x) is the time of 1st arrival of the wave front at x ∈ Ω .

• c > 0 is the wave propagation speed in the medium filling Ω , assuming that this

medium is at rest (the so-called background medium).

• Assuming that the ambient medium is moving, V is its moving velocity; we as-

sume that V ∈ (L∞(Ω))d .

Fast-sweeping methods have been developed for the efficient numerical solution of

the classical Eikonal equation

|∇τ|= 1

c
in Ω , (33)

(see, e.g., [104] and [182]); these methods provide automatically viscosity solutions

in the sense of Crandall and Lions (see [38] for this notion). Unfortunately, as shown

in [40], the fast sweeping methods developed for the solution of (33) cannot handle

(32), unless one modifies them significantly, as done in [40]. Actually, there exists

an alternative, simpler to implement, to the method developed in [40]: it relies on

the operator-splitting methods discussed in Sections 2.3, 2.4, 2.5 and 2.6, and takes

advantage of the fact that the fast-sweeping methods developed for the solution of

(33) can be easily modified in order to handle equations such as

ατ −β ∇2τ + |∇τ|= f (34)

and

ατ −β ∇2τ − |1−V ·∇τ|
c

= f , (35)

with α > 0 and β ≥ 0. Therefore, in order to solve problem (32), we associate with

it the following initial value problem:




(I − ε∇2)

∂τ

∂ t
+ |∇τ|− |1−V ·∇τ|

c
= 0 in Ω × (0,+∞),

τ(0) = τ0,
(36)
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whose steady state solutions are also solutions of (32). In (36), ε is a non-negative

parameter (a regularizing one if ε > 0) and τ(t) denotes the function t → τ(x, t). Ac-

tually, additional conditions are required to have solution uniqueness, typical ones

being τ specified on a subset of Ω(= Ω ∪ ∂Ω), possibly reduced to just one point

(a point source for the wave). A typical choice for τ0 is the corresponding solution

of problem (33).

The results reported in [75] show that, with θ = 1/3, the fractional θ -scheme dis-

cussed in Section 2.6 outperforms the Strang’s, Peaceman-Rachford’s and Douglas-

Rachford’s schemes when applied to the computation of the steady state solutions

of (36). The resulting algorithm reads as follows:





τ0 = τ0;

for n ≥ 0, τn → τn+θ → τn+1−θ → τn+1 via the solution of

(I − ε∇2)
τn+θ − τn

θ△t
+ |∇τn+θ |− |1−V ·∇τn|

c
= 0,

(I − ε∇2)
τn+1−θ − τn+θ

(1− 2θ )△t
+ |∇τn+θ |− |1−V ·∇τn+1−θ |

c
= 0,

(I − ε∇2)
τn+1 − τn+1−θ

θ△t
+ |∇τn+1|− |1−V ·∇τn+1−θ |

c
= 0.

(37)

The three problems in (37) being particular cases of (34) and (35), their finite differ-

ence analogues can be solved by fast-sweeping algorithms. Physical considerations

suggest that △t has to be of the order of the space discretization step h. Actually,

the numerical results reported in [75] show that, unlike the other schemes discussed

in Sections 2.2 to 2.5, scheme (37), with θ = 1/3, has very good convergence prop-

erties, even for large values of the ratio
△t

h
(100, typically). If ε = 0 (resp., h2),

these numerical experiments suggest that the number of iterations (time steps), nec-

essary to achieve convergence to a steady state solution, varies (roughly) like h−1/2

(resp., h−1/3), for two and three-dimensional test problems (see [75] for further re-

sults and more details). Clearly, preconditioning does pay here (a well-known fact,

in general).

Remark 19. Some readers may wonder why the authors of [75] gave the role of A1

(resp., A2) to the operator τ → |∇τ| (resp., τ →−1

c
|1−V ·∇τ|), and not the other

way around. Let us say to these readers that the main reason behind that choice was

preliminary numerical experiments showing that, for the same values of α and β ,

problem (34) is cheaper to solve that problem (35).

2.8 Time-discretization of (1) by a parallel splitting scheme

The splitting schemes presented so far have a sequential nature, i.e. the sub-

problems associated with the decomposed operators are solved in a sequential man-
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ner. Actually, it is also possible to solve the sub-problems in parallel, as shown just

below, using the following variant of Marchuk-Yanenko’s scheme:





φ0 = φ0;

for n ≥ 0, we obtain φn+1 from φn by solving first

φn+ j/2J −φn

J△t
+A j(φ

n+ j/2J, tn+1) = 0, for j = 1, . . . ,J,

φn+1 being then obtained by averaging as follows

φn+1 =
1

J

J

∑
j=1

φn+ j/2J.

(38)

Scheme (38) is nothing but Algorithm 5.1 in [119]. Under suitable conditions, it has

been proved in the above reference that scheme (38) is first order accurate, that is

‖φn − φ(tn)‖ = O(△t). A parallelizable algorithm with second order accuracy is

presented also in [119]. The main advantage of the above schemes is that the sub-

problems can be solved in parallel. Clearly, this parallel splitting idea can be used for

computing the steady state solutions of (1). As observed in [155], the sub-problems

(or at least some of them) can also be solved in parallel if the corresponding operator

A j has the right decomposition properties.

3 Augmented Lagrangian algorithms and Alternating Direction

Methods of Multipliers

3.1 Introduction

It is our opinion that a review chapter like this one has to include some material

about augmented Lagrangian algorithms, including of course their relationships

with alternating direction methods. On the other hand, since augmented Lagrangian

algorithms and alternating direction methods of multipliers, and their last known de-

velopments, are discussed, with many details, in other chapters of this book, we will

not say much about these methods in this section. However, we will give enough in-

formation so that the reader may follow Section 6 (dedicated to Image Processing)

without spending too much time consulting the other chapters (or other references).

In Section 3.2 we will introduce several augmented Lagrangian algorithms, and

show in Section 3.3 how these algorithms relate to the alternating direction methods

discussed in Sections 2.4 (Peaceman-Rachford’s) and 2.5 (Douglas-Rachford’s).

This section is largely inspired by Chapter 4 of [72].
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3.2 Decomposition-coordination methods by augmented

Lagrangians

3.2.1 Abstract problem formulation. Some examples

A large number of problems in Mathematics, Physics, Engineering, Economics,

Data Processing, Imaging, etc. can be formulated as

u = argmin
v∈V

[F(Bv)+G(v)], (39)

where: (i) V and H are Banach spaces. (ii) B ∈ L (V,H). (iii) F : H → IR∪{+∞}
and G : V → IR∪{+∞} are proper, lower semi-continuous and convex functionals

verifying dom(F◦B) ∩ dom(G) 6= /0, implying that problem (39) may have solutions.

Example 1. This first example concerns the following variational problem:

u = arg min
v∈H1

0 (Ω)

[
µ

2

∫

Ω
|∇v |2 dx+ τy

∫

Ω
|∇v |dx−ϖ

∫

Ω
v dx

]
, (40)

where: (i) Ω is a bounded domain (that is an bounded open connected subset) of IR2;

we denote by Γ the boundary of Ω . (ii) dx = dx1dx2. (iii) µ and τy are two positive

constants. (iv) |∇v |2 =
∣∣∣∣

∂ v

∂x1

∣∣∣∣
2

+

∣∣∣∣
∂ v

∂x2

∣∣∣∣
2

(v) The space H1
0 (Ω) (a Sobolev space) is

defined by

H1
0 (Ω) = {v |v ∈ L2(Ω),∂ v/∂xi ∈ L2(Ω),∀i = 1,2,v |Γ = 0}, (41)

the two derivatives in (41) being in the sense of distributions (see, e.g., [148], [157]

for this notion). Since Ω is bounded, H1
0 (Ω) is a Hilbert space for the inner product

{v ,w} → ∫
Ω ∇v ·∇wdx, and the associated norm. Problem (40) is a well-known

problem from non-Newtonian fluid mechanics; it models the flow of an incompress-

ible visco-plastic fluid (of the Bingham type) in an infinitely long cylinder of cross-

section Ω , ϖ being the pressure drop per unit length and u the flow axial velocity. In

(40), µ denotes the fluid viscosity and τy its plasticity yield (see, e.g., [59] and [83]

for further information on visco-plastic fluid flows; see also the references therein).

It follows from, e.g., [66] and [72], that the variational problem (40) has a unique

solution.

Problem (40) is a particular case of (39) with V = H1
0 (Ω), H = (L2(Ω))2, B =∇,

F(q) =

∫

Ω
|q|dx, and G(v) =

µ

2

∫

Ω
|∇v |2 dx−ϖ

∫

Ω
v dx; other decompositions are

possible.

Close variants of problem (40) are encountered in imaging, as shown in Section

6 (and other chapters of this volume).

Example 2. It concerns the following variant of problem (40):
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u = argmin
v∈K

[
µ

2

∫

Ω
|∇v |2 dx−C

∫

Ω
v dx

]
, (42)

where Ω is a bounded domain of IR2, µ is a positive constant and

K = {v |v ∈ H1
0 (Ω), |∇v | ≤ 1 a.e. in Ω}.

It is a classical result (see, e.g., [59]) that (42) models, in an appropriate system of

mechanical units, the torsion of an infinitely long cylinder of cross-section Ω , made

of an elastic-plastic material, C being the torsion angle per unit length and u a stress

potential. It follows from, e.g., [66] and [72], that the variational problem (42) has

a unique solution.

Problem (42) is a particular case of problem (39) with V = H1
0 (Ω), H =

(L2(Ω))2, B = ∇, G(v) =
µ

2

∫

Ω
|∇v |2 dx−C

∫

Ω
v dx, and F(q) = IK (q), IK (·) be-

ing the indicator functional of the closed convex non-empty subset K of H defined

by

K = {q|q ∈ H, |q| ≤ 1 a.e. in Ω}.
Other decompositions are possible.

Remark 20. We recall that, we have, (from the definition of indicator functionals)

IK (q) =

{
0 if q ∈ K ,

+∞ otherwise,

implying, from the properties of K , that IK : H → IR∪{+∞} is convex, proper and

lower semi-continuous. ⊓⊔

Numerical methods for the solution of problem (42) can be found in, e.g., [66]

and [76].

3.2.2 Primal-dual methods for the solution of problem (39): ADMM

algorithms

In order to solve problem (39), we are going to use a strategy introduced in [77] and

[78] (to the best of our knowledge). The starting point is the obvious equivalence

between (39) and the following linearly constrained optimization problem:

{u,Bu}= arg min
{v ,q}∈W

j(v ,q), (43)

where

j(v ,q) = F(q)+G(v),

and

W = {{v ,q}|v ∈V,q ∈ H,Bv − q = 0}.
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From now on, we will assume that V and H are (real) Hilbert spaces, the H-norm

being denoted by | · | and the associated inner-product by (·, ·). The next step is quite

natural: we associate with the minimization problem (43) a Lagrangian functional

L defined by

L (v ,q; µ) = j(v ,q)+ (µ ,Bv − q),

and an augmented Lagrangian functional Lr defined (with r > 0) by

Lr(v ,q; µ) = L (v ,q; µ)+
r

2
|Bv − q|2. (44)

One can easily prove that the functionals L and Lr share the same saddle-points

over (V ×H)× H, and also that, if {{u, p},λ} is such a saddle-point, then u is

a solution of problem (39) and p = Bu. A classical algorithm to compute saddle-

points is the so-called Uzawa algorithm, popularized by [3] (a book dedicated to

the study of Economics equilibria), and further discussed in, e.g., [76]. Applying a

close variant of the Uzawa algorithm to the computation of the saddle-points of Lr

over (V ×H)×H, we obtain





λ 0 is given in H;

for n ≥ 0, λ n →{un, pn}→ λ n+1 via

{un, pn}= arg min
{v ,q}∈V×H

Lr(v ,q;λ n),

λ n+1 = λ n +ρ(Bun− pn),

(45)

an algorithm called ALG1 by some practitioners, following a terminology intro-

duced in [78] (an alternative name could have been augmented Lagrangian Uzawa

algorithm which summarizes quite well what algorithm (45) is all about).

Concerning the convergence of ALG1 it has been proved in, e.g., [62], [63], [66]

and [74] (see also [78]), that if:

(i) L has a saddle-point {{u, p},λ} over (V ×H)×H.

(ii) B is an injection and R(B) is closed in H.

(iii) lim
|q|→+∞

F(q)

|q| =+∞.

(iv) F = F0 +F1 with F0 and F1 proper, lower semi-continuous and convex, with F0

Gateaux-differentiable, and uniformly convex on the bounded sets of H

(the above properties imply that problem (39) has a unique solution), then we have,

∀ r > 0 and if

0 < ρ < 2r,

the following convergence result

lim
n→+∞

{un, pn}= {u,Bu} in V ×H, (46)

where u is the solution of problem (39); moreover, the convergence result (46) holds

∀ λ 0 ∈ H. The convergence of the multiplier sequence {λ n}n≥0 is no better than
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weak in general, implying that the criterion used to stop ALG1 has to been chosen

carefully. Of course, in finite dimension, the properties of B, F and G implying con-

vergence are less demanding than in infinite dimension; for example, the existence

of a solution to problem (39) is sufficient to imply the existence of a saddle-point.

The main difficulty with the Uzawa algorithm (45) is clearly the solution of the

minimization problem it contains. An obvious choice to solve this problem is to use

a relaxation method (as advocated in [77], [78]). Suppose that, as advocated in the

two above references (which show that, indeed, for the nonlinear elliptic problem

discussed there the number of relaxation iterations reduces quickly to two), we limit

the number of relaxation iterations to one when solving the minimization problem

in (45): we obtain then the following primal-dual algorithm (called ALG2 by some

practitioners):

{u−1,λ 0} is given in V ×H; (47)

for n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

pn = argmin
q∈H

Lr(u
n−1,q;λ n), (48)

un = argmin
v∈V

Lr(v , pn;λ n), (49)

λ n+1 = λ n +ρ(Bun− pn). (50)

Assuming that

0 < ρ <
1+

√
5

2
r,

with the other assumptions implying the convergence of ALG1 still holding, we have

lim
n→+∞

{un, pn}= {u,Bu} in V ×H,

where u is the solution of problem (39). Convergence proofs can be found in [62],

[63], [66] and [74].

A simple variant (called ALG3) of algorithm (47)-(50) is obtained by updating

the multiplier a first time immediately after (48); we obtain then

{u−1,λ 0} is given in V ×H, (51)

for n ≥ 0, {un−1,λ n}→ pn → λ n+1/2 → un → λ n+1 via

pn = argmin
q∈H

Lr(u
n−1,q;λ n), (52)

λ n+1/2 = λ n +ρ(Bun−1− pn). (53)

un = argmin
v∈V

Lr(v , pn;λ n+1/2), (54)

λ n+1 = λ n+1/2 +ρ(Bun− pn). (55)
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Most practitioners prefer ALG2 to ALG3, the main reason being that ALG2 is more

robust than ALG3, in general.

Remark 21. If one takes ρ = r in (47)-(50) and (51)-(55), the algorithms we ob-

tain belong to the Alternating Direction Methods of Multipliers (ADMM) family (a

terminology we will justify in Section 3.3). The convergence of ADMM related al-

gorithms is rather well established in the convex case (see, for example, [18], [61],

[95]; see also the references therein and other chapters of this book, the one by M.

Burger, A. Sawatzky & G. Steidl in particular). On the other hand, one is still lacking

a general theory for the convergence of algorithms such as ALG1, ALG2 and ALG3

when applied to the solution of non-convex variational problems. Nevertheless, the

above algorithms have been successfully applied to the solution of non-convex prob-

lems as shown, for example, in [42], [72] (Chapter 4), [74], and other chapters of

this book, Chapters 6 and 7, in particular.

Remark 22. An important issue with the above primal-dual algorithms is how to

vary r and ρ dynamically in order to improve the speed of convergence of these

algorithms. This issue has been addressed in, e.g., [18], [34], [45], [46] (see also the

references therein).

Remark 23. An overlooked ([34] being a notable exception) property of primal-dual

algorithms such as ALG1, ALG2 and ALG3 is that they may be constructive still, in

those not so uncommon situations where in (39) one has dom(F ◦B)∩ dom(G) =
/0, implying that problem (39) has no solutions, strictly speaking. On the basis of

the numerical results reported in [42] (see also [72] (Chapter 4) and Chapter 7 of

this volume), we conjecture that if the parameters ρ and r are properly chosen, the

sequence {{un, pn}}n≥0 converges to a pair {u, p} minimizing the functional

{v ,q}→ G(v)+F(q)

over the set

{{v ,q}}|{v ,q}∈ dom(G)× dom(F), |Bv − q|= min
{w,ϖ}∈dom(G)×dom(F)

|Bw−ϖ |},

while the sequence {λ n}n≥0 diverges arithmetically (that is, |λ n| →+∞ like n mul-

tiplied by a positive constant, that is slowly). If the above convergence/divergence

result holds true (which seems to be the case for the non-convex problem discussed

in [42]), it implies that the above primal-dual algorithms solve problem (39) in a

least-squares sense, a most remarkable property indeed, testifying of the robustness

of these algorithms. The above results look natural, but the optimization experts we

consulted had trouble to give us a precise reference (or a proof).

Remark 24. We encountered situations (in incompressible finite elasticity in partic-

ular; see, e.g., [74] for details) where a safe way to proceed with the above primal-

dual algorithms is as follows: Employ ALG1 with a well-balanced (that is neither

to small nor too large) stopping criterion for the relaxation algorithm used to solve

the minimization problem in (45); it has been observed quite often that the number
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of relaxation iterations necessary to compute {un, pn} from λ n goes down quickly

to one or two (an observation at the origin of ALG2), implying that starting with

ALG1, the algorithm switches automatically to ALG2. It is not uncommon that this

implementation of ALG1 produces an algorithm faster (CPU-wise) than ALG2 and

ALG3, when solving “hard” problems. ⊓⊔

Further information on the convergence of Lagrange multiplier based iterative

methods can be found in other chapters of this volume, and in, e.g., [45], [60], [62],

[63], [66], [74] and [100] (see also the many references therein).

3.3 On the relationship between Alternating Direction Methods

and ALG2, ALG3

As reported in [71] and [72] (Chapter 4) some previously unknown relationships

between alternating direction methods and augmented Lagrangian algorithms were

identified in 1975 by T.F. Chan and the first author of this chapter, while investi-

gating the numerical solution of some simple nonlinear elliptic problems by various

iterative methods (see [30] for details). Indeed, let us consider the particular case of

problem (39) where V = H, B = I and F and G are both differentiable over V ; then,

assuming that ρ = r, ALG2 (that is algorithm (47)-(50)) takes the following form:

{u−1,λ 0} is given in V ×H; (56)

for n ≥ 0, {un−1,λ n}→ pn → un → λ n+1 via

r(pn − un−1)+DF(pn)−λ n = 0, (57)

r(un − pn)+DG(un)+λ n = 0, (58)

λ n+1 = λ n + r(un − pn), (59)

where DF (resp., DG) denotes the differential of F (resp., G). By elimination of λ n

and λ n+1 in (57)-(59), we obtain

r(pn − un−1)+DF(pn)+DG(un−1) = 0,

r(un − un−1)+DF(pn)+DG(un) = 0,

which imply in turn (after changing n− 1 in n):

r(pn+1 − un)+DF(pn+1)+DG(un) = 0, (60)

r(un+1 − un)+DF(pn+1)+DG(un+1) = 0. (61)

Comparing to (17) shows that in this particular case, ALG2 is a disguised form of the

Douglas-Rachford scheme discussed in Section 2.5, with r = 1/△t and DF (resp.,

DG) playing the role of A1 (resp., A2). A similar interpretation holds for ALG3: in-
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deed, if we assume again that V = H, B = I and F and G are differentiable, then,

if ρ = r, algorithm (51)-(55) reduces to the Peaceman-Rachford scheme (15) dis-

cussed in Section 2.4. The above equivalence result can be generalized to situations

where F and/or G are not differentiable.

The reasons for which ALG2 and ALG3 are called Alternating Direction Meth-

ods of Multipliers (ADMM) by many practitioners should be clear now. For further

information and details on these primal-dual equivalences, see the discussion by M.

Yan and W. Yin in Chapter 4 of this book.

4 Operator-splitting methods for the direct numerical simulation

of particulate flow

4.1 Generalities. Problem formulation

It is the (necessarily biased) opinion of the authors of this chapter that the direct

numerical simulation of particulate flow has been one of the success stories of

operator-splitting methods, justifying thus a dedicated section in this chapter, de-

spite the fact that this story has been told in several publications (see, e.g., [70]

(Chapters 8 & 9), [73] and [79], and the references therein). For simplicity, we will

discuss only the one-particle case (however, the results of numerical experiments

involving more than one particle will be presented).

Let Ω be a bounded, connected and open region of IRd (d = 2 or 3 in applica-

tions); the boundary of Ω is denoted by Γ . We suppose that Ω contains:

(i) A Newtonian incompressible viscous fluid of density ρ f and viscosity µ f ; ρ f

and µ f are both positive constants.

(ii) A rigid body B of boundary ∂B, mass M, center of mass G, and inertia I at

the center of mass (see Figure 1, for additional details).

The fluid occupies the region Ω \B and we suppose that distance (∂B(0),Γ )> 0.

From now on, x = {xi}d
i=1 will denote the generic point of IRd , dx = dx1 . . .dxd ,

while φ(t) will denote the function x → φ(x, t). Assuming that the only external

force is gravity, the fluid flow-rigid body motion coupling is modeled by

ρ f

(
∂u

∂ t
+(u ·∇∇∇)u

)
− µ f ∇∇∇

2
u+∇∇∇p = ρ f g in Ω \B(t), a.e. t ∈ (0,T ), (62)

∇∇∇ ·u(t) = 0 in Ω \B(t), a.e. t ∈ (0,T ), (63)

u(t) = uΓ (t) on Γ , a.e. t ∈ (0,T ), with

∫

Γ
uΓ (t) ·ndΓ = 0, (64)

u(0) = u0 in Ω \B(0) with ∇∇∇ ·u0 = 0, (65)

and
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Fig. 1 Visualization of the rigid body and of a part of the flow region

dG

dt
= V, (66)

M
dV

dt
= Mg+RH, (67)

d(Iωωω)

dt
= TH , (68)

G(0) = G0,V(0) = V0,ωωω(0) = ωωω0,B(0) = B0. (69)

In relations (62)-(69):

• Vector u = {ui}d
i=1 is the fluid flow velocity and p is the pressure.

• u0 and uΓ are given vector-valued functions.

• V is the velocity of the center of mass of body B, while ωωω is the angular velocity.

• RH and TH denote, respectively, the resultant and the torque of the hydrodynam-

ical forces, namely the forces that the fluid exerts on B; we have, actually,

RH =

∫

∂B
σσσndγ and TH =

∫

∂B

−−→
Gx ×σσσndγ. (70)

In (70) the stress-tensor σσσ is defined by σσσ = 2µ f D(u)− pId , with D(v) = 1
2
(∇∇∇v+

(∇∇∇v)t), while n is a unit normal vector at ∂B and Id is the identity tensor.

Concerning the compatibility conditions on ∂B we have: (i) the forces exerted by

the fluid on the solid body balance those exerted by the solid body on the fluid, and

we shall assume that: (ii) the no-slip boundary condition holds, namely

u(x, t) = V(t)+ωωω(t)×
−−−→
G(t)x , ∀x ∈ ∂B(t). (71)
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Remark 25. System (62)-(65) (resp., (66)-(69)) is of the incompressible Navier-

Stokes (resp., Euler-Newton) type. Also, the above model can be generalized to

multiple-particles situations and/or non-Newtonian incompressible viscous fluids.

⊓⊔

The (local in time) existence of weak solutions for problems such as (62)-(69)

has been proved in [52], assuming that, at t = 0, the particles do not touch Γ and

each other (see also [87] and [145]). Concerning the numerical solution of (62)-

(69), (71) several approaches are encountered in the literature, among them: (i) The

Arbitrary Lagrange-Euler (ALE) methods; these methods, which rely on moving

meshes, are discussed in, e.g., [98], [103] and [127]. (ii) The fictitious boundary

method discussed in, e.g., [165], and (iii) the non-boundary fitted fictitious domain

methods discussed in, e.g., [70], [79] and [140], [141] (and in Section 4.2, hereafter).

Among other things, the methods in (ii) and (iii) have in common that the meshes

used for the flow computations do not have to match the boundary of the particles.

Remark 26. Even if theory suggests that collisions may never take place in finite

time (if we assume that the particles have smooth shapes and that the flow is still

modeled by the Navier-Stokes equations as long as the particles do not touch each

other, or Γ ), near collisions take place, and after discretization particles may collide.

These phenomena can be handled by introducing (as done in, e.g., [70] (Chapter

8) and [79]) well-chosen short range repulsion potentials reminiscent of those en-

countered in Molecular Dynamics, or by using Kuhn-Tucker multipliers to authorize

particle motions with contact but no overlapping (as done in, e.g., [128] and [129]).

More information on the numerical treatment of particles in flow, can be found in,

e.g., [152] (and the references therein), and of course in Google.

4.2 A fictitious domain formulation

Considering the fluid-rigid body mixture as a unique (heterogeneous) medium we

are going to derive a fictitious domain based variational formulation to model its

motion. The principle of this derivation is pretty simple: it relies on the following

steps (see, e.g., [70] and [79] for more details), where in Step a we denote by S : T

the Fröbenius inner product of the tensors S and T, that is (with obvious notation)

S : T = ∑
1≤i, j≤d

si jti j:

Step a. Start from the following global weak formulation (of the virtual power type):
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



ρ f

∫

Ω\B(t)

[
∂u

∂ t
+(u ·∇∇∇)u

]
·vdx+ 2µ f

∫

Ω\B(t)
D(u) : D(v)dx

−
∫

Ω\B(t)
p∇∇∇ ·vdx+M

dV

dt
·Y+

d(Iωωω)

dt
·θθθ

= ρ f

∫

Ω\B(t)
g ·vdx+Mg ·Y,

∀{v,Y,θθθ} ∈ (H1(Ω \B(t)))d × IRd ×ΘΘΘ and veri f ying

v = 0 on Γ , v(x) = Y+θθθ ×
−−−→
G(t)x ,∀x ∈ ∂B(t), t ∈ (0,T ),

with ΘΘΘ = IR3 i f d = 3, ΘΘΘ = {(0,0,θ ) | θ ∈ IR} i f d = 2,

(72)

∫

Ω\B(t)
q∇∇∇ ·u(t)dx = 0,∀q ∈ L2(Ω \B(t)), t ∈ (0,T ), (73)

u(t) = uΓ (t) on Γ , t ∈ (0,T ), (74)

u(x, t) = V(t)+ωωω(t)×
−−−→
G(t)x ,∀x ∈ ∂B(t), t ∈ (0,T ), (75)

dG

dt
= V, (76)

u(x,0) = u0(x),∀x ∈ Ω \B(0), (77)

G(0) = G0, V(0) = V0, ωωω(0) = ωωω0, B(0) = B0. (78)

Step b. Fill B with the surrounding fluid and impose a rigid body motion to the fluid

inside B.

Step c. Modify the global weak formulation (72)-(78) accordingly, taking advantage

of the fact that if v is a rigid body motion velocity field, then ∇∇∇ ·v = 0 and D(v) = 0.

Step d. Use a Lagrange multiplier defined over B to force the rigid body motion

inside B.

Assuming that B is made of a homogeneous material of density ρs, the above

program leads to:





ρ f

∫

Ω

[
∂u

∂ t
+(u ·∇∇∇)u

]
·vdx+ 2µ f

∫

Ω
D(u) : D(v)dx−

∫

Ω
p∇∇∇ ·vdx

+(1−ρ f/ρs)

[
M

dV

dt
·Y+

d(Iωωω)

dt
·θθθ
]
+< λλλ ,v−Y−θθθ ×

−−−→
G(t)x >B(t)

= ρ f

∫

Ω
g ·vdx+(1−ρ f/ρs)Mg ·Y, ∀{v,Y,θθθ} ∈ (H1(Ω))d × IRd ×ΘΘΘ ,

t ∈ (0,T ), with ΘΘΘ = IR3 i f d = 3, ΘΘΘ = {(0,0,θ ) | θ ∈ IR} i f d = 2,
(79)
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∫

Ω
q∇∇∇ ·u(t)dx = 0,∀q ∈ L2(Ω), t ∈ (0,T ), (80)

u(t) = uΓ (t) on Γ , t ∈ (0,T ), (81)


< µµµ ,u(x, t)−V(t)−ωωω(t)×

−−−→
G(t)x >B(t)= 0,

∀µµµ ∈ ΛΛΛ(t) (= (H1(B(t)))d), t ∈ (0,T ),

(82)

dG

dt
= V, (83)





G(0) = G0, V(0) = V0, ωωω(0) = ωωω0, B(0) = B0,

u(x,0) = u0(x),∀x ∈ Ω \ B̄0, u(x,0) = V0 +ωωω0 ×
−−→
G0x, ∀x ∈ B̄0.

(84)

From a theoretical point of view, a natural choice for < ·, ·>B(t) is provided by, e.g.,

< µµµ ,v >B(t)=
∫

B(t)
[µµµ ·v+ l2D(µµµ) : D(v)]dx; (85)

in (85), l is a characteristic length, the diameter of B, for example. In practice, fol-

lowing [70] (Chapter 8) and [79], one makes things much simpler by approximating

ΛΛΛ(t) by

ΛΛΛ h(t) = {µµµ | µµµ =
N(t)

∑
j=1

µµµ jδ (x− x j), with µµµ j ∈ IRd , ∀ j = 1, . . . ,N}, (86)

and the pairing in (85) by

< µ ,v >(B(t),h)=
N(t)

∑
j=1

µµµ j ·v(x j). (87)

In (86), (87), x → δ (x− x j) is the Dirac measure at x j, and the set {x j}N
j=1 is the

union of two subsets, namely: (i) The set of the points of the velocity grid contained

in B(t) and whose distance at ∂B(t) is ≥ ch, h being a space discretization step and

c a constant ≈ 1.(ii) A set of control points located on ∂B(t) and forming a mesh

whose step size is of the order of h. It is clear that, using the approach above, one

forces the rigid body motion inside the particle by collocation.

A variant of the above fictitious domain approach is discussed in [140] and [141];

after an appropriate elimination, it does not make use of Lagrange multipliers to

force the rigid body motion of the particles, but uses instead projections on velocity

subspaces where the rigid body motion velocity property is verified over the parti-

cles (see [140] and [141] for details).
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4.3 Solving problem (79)-(84) by operator-splitting

We do not consider collisions; after (formal) elimination of p and λλλ , problem (79)-

(84) reduces to an initial value problem of the following form

dX

dt
+

J

∑
j=1

A j(X, t) = 0 on (0,T ), X(0) = X0, (88)

where X= {u,V,ωωω ,G} (or {u,V,Iωωω ,G}). A typical situation will be the one where,

with J = 4, operator A1 will be associated with incompressibility, A2 with advection,

A3 with diffusion, A4 with the fictitious domain treatment of the rigid body motion;

other decompositions are possible as shown in, e.g., [70] (Chapter 8) and [79] (both

references include a collision operator). The Lie’s scheme (3), (4) applies “beauti-

fully” to the solution of problem (79)-(84). The resulting method is quite modular

implying that different space and time approximations can be used to treat the var-

ious sub-problems encountered at each time step; the only constraint is that two

successive steps have to communicate (by projection in general to provide the ini-

tial condition required by each initial value sub-problem).

4.4 Numerical experiments

4.4.1 Generalities

The methodology we described (briefly) in the above paragraphs has been validated

by numerous experiments (see, in particular, [70] (Chapters 8 & 9), [73], [79], [97]

[137] and the related publications reported in http://www.math.uh.edu/∼pan/). In

this chapter, we will consider two test problems (borrowed from [73] (Section 3.4)):

The first test problem involves three particles, while the second one concerns a chan-

nel flow with 300 particles. The fictitious domain/operator-splitting approach has

made the solution of these problems (almost) routine nowadays. All the flow compu-

tations have been done using the Bercovier-Pironneau finite element approximation;

namely (see [70] (Chapters 5, 8 and 9) for details), we used a globally continuous

piecewise affine approximation of the velocity (resp., the pressure) associated with

a triangulation (in 2-D) or tetrahedral partition (in 3-D) Th (resp., T2h ) of Ω , h

being a space discretization step. The pressure mesh is thus twice coarser than the

velocity one. The calculations have been done using uniform partitions Th and T2h.

4.4.2 First test problem: Settling of three balls in a vertical narrow tube

Our goal in this sub-section is to discuss the interaction of three identical balls set-

tling in a narrow tube of rectangular cross-section, containing an incompressible

Newtonian viscous fluid. Theoretically, the tube should be infinitely long, but for
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Fig. 2 Projections on the x1x3-plane of the trajectories of the mass centers of the three particles

practicality we first consider the settling of the balls in a cylinder of length 6 whose

cross-section is the rectangle Ω = (0,1.5)× (0,0.25); this cylinder is moving with

the balls in such a way that the center of the lower ball is in the horizontal symmetry

plane (a possible, but less satisfying, alternative would be to specify periodicity in

the vertical direction). At time t = 0, we suppose that the truncated cylinder coin-

cides with the “box” (0,1.5)× (0,0.25)× (0,6), and the centers of the balls are on

the vertical axis of the cylinder at the points x1 = 0.75, x2 = 0.125, x3 = 1, 1.3 and

1.6. The parameters for this test case are ρs = 1.1, ρ f = 1, µ f = 1, the diameter of

the balls being d = 0.2. The mesh size used to compute the velocity field (resp., the

pressure) is hv = h = 1/96 (resp., hp = 2h = 1/48), while we took 1/1000 for the

time-discretization step; the initial velocity of the flow is 0, while the three balls are

released from rest. The velocity on the cylinder wall is 0. On the time interval [0,15]
the drafting, kissing and tumbling phenomenon (a terminology introduced by D.D.

Joseph) has been observed several time before a stable quasi-horizontal configura-

tion takes place, as shown in Figures 2, 3 and 4. The averaged vertical velocity of the

balls is 2.4653 on the time interval [13,15], while the averaged particle Reynolds

number is 49.304 on the same time interval, a clear evidence that inertia has to be

taken into account.
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Fig. 3 Relative positions of the three balls at t = 0, 0.4, 0.6, 0.65, 0.7, 0.8, 0.9, 1, 1.5, 2, 6, 6.25,

6.4, 6.6, 6.7, 8, 9, 10, 12 and 15 (from left to right and from top to bottom)
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Fig. 4 Visualization of the flow and of the particles at t = 1.1, 6.6 and 15.

4.4.3 Motion of 300 neutrally buoyant disks in a two-dimensional horizontal

channel

This second test problem involving 300 particles and a solid volume/fluid volume

of the order of 0.38, collisions (or near-collisions) have to be accounted for in the

simulations; to do so, we have used the methods discussed in [70] (Chapter 8) and

[79]. Another peculiarity of this test problem is that ρs = ρ f for all the particles

(a neutrally buoyant situation). Indeed, neutrally buoyant models are more delicate

to handle than those in the general case since 1−ρ f/ρs = 0 in (79); however this

difficulty can be overcome as shown in [136]. For this test problem, we have: (a)

Ω = (0,42)× (0,12). (b) Ω contains the mixture of a Newtonian incompressible

viscous fluid of density ρ f = 1 and viscosity µ f = 1, with 300 identical rigid solid

disks of density ρ f = 1 and diameter 0.9. (c) At t = 0, fluid and particles are at rest,

the particle centers being located at the points of a regular lattice. (d) The mixture

is put into motion by a uniform pressure drop of 10/9 per unit length (without the

particles the corresponding steady flow would have been of the Poiseuille type with

20 as maximal flow speed). (e) The boundary conditions are given by u(x1,x2, t) = 0

if 0 ≤ x1 ≤ 42, x2 = 0 and 12, and 0 ≤ t ≤ 400 (no-slip boundary condition on the

horizontal parts of the boundary), and then u(0,x2, t) = u(42,x2, t), 0 < x2 < 12,

0≤ t ≤ 400 (space-periodic in the Ox1 direction). (f) hv = h= 1/10, hp = 2h= 1/5,

the time-discretization step being 1/1000.
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Fig. 5 Positions of the 300 particles at t = 100, 107.8, 114, 200 and 400 (from top to bottom).

The particle distribution at t = 100, 107.8, 114, 200 and 400 has been visual-

ized on Figures 5. These figures show that, initially, we have the sliding motion of

horizontal particle layers, then after some critical time a chaotic flow-motion takes

place in very few time units, the highest particle concentration being along the chan-

nel axis (actually, a careful inspection of the results shows that the transition to chaos

takes place just after t =107.8). The maximal speed at t =400 is 7.9, implying that

the corresponding particle Reynolds number is very close to 7.1. On Figure 6 we

show the averaged solid fraction as a function of x2, the averaging space-time set

being {{x1, t}|0≤ x1 ≤ 42,380≤ t ≤ 400}; the particle aggregation along the chan-

nel horizontal symmetry axis appears very clearly from this figure since the solid

fraction is close to 0.58 at x2 = 6 while the global solid fraction is 0.38 (vertical line

in the figure). Finally, we have visualized on Figure 7 the x1-averaged horizontal

component of the mixture velocity at t = 400, as a function of x2. The dashed line

corresponds to a horizontal velocity distribution of the steady flow of the same fluid,

with no particle in the channel, for the same pressure drop; the corresponding veloc-

ity profile is (of course) of the Poiseuille type and shows that the mixture behaves

like a viscous fluid whose viscosity is (approximately) 2.5 larger than µ f . Actually,

a closer inspection (see [136] for details) shows that the mixture behaves like a non-
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Fig. 7 Horizontal velocity distribution at t = 400.

Newtonian incompressible viscous fluid of the power law type, for an exponent s =
1.7093 (s = 2 corresponding to a Newtonian fluid and s = 1 to a perfectly plastic

material). Figures 5, 6 and 7 show also that, as well-known, some order may be

found in chaos.

For more details and further results and comments on pressure driven neutrally

buoyant particulate flows in two-dimensional channels (including simulations with

much larger numbers of particles, the largest one being 1,200) see [70] (Chapter 9)

and [97].
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5 Operator-splitting methods for the numerical solution of

nonlinear problems from condensate and plasma physics

5.1 Introduction

Operator-splitting methods have been quite successful at solving problems in Com-

putational Physics, beside those from Computational Mechanics (CFD in particu-

lar). Among these successful applications let us mention those involving nonlinear

Schrödinger equations, as shown, for example, by [9], [10], [44] and [102]. On the

basis of some very inspiring articles (see, e.g., [9], [10] and [102]) he wrote on

the above topic, the editors asked their colleague Peter Markowich to contribute a

related chapter for this book; unfortunately, Professor Markowich being busy else-

where had to say no. Considering the importance of nonlinear Schrödinger related

problems, it was decided to (briefly) discuss in this chapter the solution of some of

them by operator-splitting methods (see also Chapter 15 on the propagation of laser

pulses along optical fibers). In Section 5.2, we will discuss the operator-splitting

solution of the celebrated Gross-Pitaevskii equation for Bose-Einstein condensates,

then, in Section 5.3, we will discuss the solution of the Zakharov system modeling

the propagation of Langmuir waves in ionized plasma.

5.2 On the solution of the Gross-Pitaevskii equation

A Bose-Einstein condensate (BEC) is a state of matter of a dilute gas of bosons

cooled to temperatures very close to absolute zero. Under such conditions, a large

fraction of the bosons occupies the lowest quantum state, at which point macro-

scopic quantum phenomena become apparent. The existence of Bose-Einstein con-

densates was predicted in the mid-1920s by S. N. Bose and A. Einstein. If di-

lute enough, the time evolution of a BEC is described by the following Gross-

Pitaevskii equation (definitely of the nonlinear Schrödinger type and given here

in a-dimensional form (following [9])):

iε
∂ψψψ

∂ t
=−ε2

2
∇2ψψψ +Vd(x)ψψψ +Kd |ψψψ|2ψψψ in Ω × (0,T ), (89)

where, in (89), ψψψ is a complex-valued function of x and t, i =
√
−1, Ω is an open

connected subset of IRd (with d = 1, 2 or 3), the real-valued function Vd denotes an

external potential, and the real-valued parameter Kd is representative of the particles

interactions. Equation (89) has to be completed by boundary and initial conditions.

Equation (89) has motivated a very large literature from both physical and mathe-

matical points of view. Let us mention among many others [1], [9], [125] and [126]

(see also the many references therein). To solve equation (89) numerically we need

to complete it by boundary and initial conditions: from now on, we will assume that
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ψψψ(x,0) = ψψψ0(x), x ∈ Ω , (90)

and (denoting by Γ the boundary of Ω )

ψψψ = 0 on Γ × (0,T ). (91)

The boundary conditions in (91) have been chosen for their simplicity, and also to

provide an alternative to the periodic boundary conditions considered in [9]. An

important (and very easy to prove) property of the solution of the initial boundary

value problem (89)-(91) reads as:

d

dt

∫

Ω
|ψψψ(x, t)|2 dx = 0 on (0,T ],

implying that ∫

Ω
|ψψψ(x, t)|2 dx =

∫

Ω
|ψψψ0(x)|2 dx on [0,T ]. (92)

As done before, we denote by ψψψ(t) the function x → ψψψ(x, t). Let △t(> 0) be a time

discretization step and denote (n+α)△t by tn+α ; applying to problem (89)-(91) the

Strang’s symmetrized scheme (7)-(10) of Section 2.3, we obtain:

ψψψ0 = ψψψ0; (93)

for n ≥ 0,ψψψn → ψψψn+1/2 → ψ̂ψψ
n+1/2 → ψψψn+1 as follows




i
∂ψψψ

∂ t
+

ε

2
∇2ψψψ = 0 in Ω × (tn, tn+1/2),

ψψψ = 0 on Γ × (tn, tn+1/2),

ψψψ(tn) = ψψψn; ψψψn+1/2 = ψψψ(tn+1/2),

(94)





iε
∂ψψψ

∂ t
=Vd(x)ψψψ +Kd |ψψψ|2ψψψ in Ω × (0,△t),

ψψψ = 0 on Γ × (0,△t),

ψψψ(0) = ψψψn+1/2; ψ̂ψψ
n+1/2

= ψψψ(△t),

(95)





i
∂ψψψ

∂ t
+

ε

2
∇2ψψψ = 0 in Ω × (tn+1/2, tn+1),

ψψψ = 0 on Γ × (tn+1/2, tn+1),

ψψψ(tn+1/2) = ψ̂ψψ
n+1/2

; ψψψn+1 = ψψψ(tn+1).

(96)

On the solution of (95): Let us denote by ψ1 (resp., ψ2) the real (resp., imaginary)

part of ψψψ ; from (95), we have





ε
∂ψ1

∂ t
=Vd(x)ψ2 +Kd |ψψψ|2ψ2 in Ω × (0,△t),

ε
∂ψ2

∂ t
=−Vd(x)ψ1 −Kd|ψψψ |2ψ1 in Ω × (0,△t),

(97)
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Multiplying by ψ1 (resp., ψ2) the 1st (resp., the 2nd) equation in (97), we obtain by

addition
∂

∂ t
|ψψψ(x, t)|2 = 0 on(0,△t), a.e. x ∈ Ω ,

which implies in turn that

|ψψψ(x, t)|= |ψψψ(x,0)|= |ψψψn+1/2| on(0,△t), a.e. x ∈ Ω . (98)

It follows then from (95) and (98) that





iε
∂ψψψ

∂ t
=Vd(x)ψψψ +Kd|ψψψn+1/2|2ψψψ in Ω × (0,△t),

ψψψ = 0 on Γ × (0,△t),

ψψψ(0) = ψψψn+1/2; ψ̂ψψ
n+1/2

= ψψψ(△t),

which implies for ψ̂ψψ
n+1/2

the following closed-form solution

ψ̂ψψ
n+1/2

= e−i
△t
ε (Vd+Kd |ψψψn+1/2|2)ψψψn+1/2. (99)

On the solution of (94) and (96): The initial boundary value problems in (94) and

(96) are particular cases of





i
∂φφφ

∂ t
+

ε

2
∇2φφφ = 0 in Ω × (t0, t f ),

φφφ = 0 on Γ × (t0, t f ),

φφφ(t0) = φφφ0.

(100)

The above linear Schrödinger problem is a very classical one. Its solution is obvi-

ously given by

φφφ(t) = ei ε
2 (t−t0)∇

2
φφφ 0, ∀t ∈ [t0, t f ]. (101)

Suppose that Ω = (0,a)× (0,b)× (0,c) with 0 < a < +∞, 0 < b < +∞ and 0 <
c < +∞; since the eigenvalues, and related eigenfunctions, of the negative Laplace

operator −∇2, associated with the homogeneous Dirichlet boundary conditions are

known explicitly, and given, for p, q and r positive integers, by





λpqr = π2

(
p2

a2
+

q2

b2
+

r2

c2

)
,

wpqr(x1,x2,x3) = 2

√
2

abc
sin
(

pπ
x1

a

)
sin
(

qπ
x2

b

)
sin
(

rπ
x3

c

) (102)

(we have then
∫

Ω |wpqr(x)|2 dx = 1) it follows from (101) that

φφφ(x, t) = ∑
1≤p,q,r<+∞

φφφ0
pqre

−i ε
2 λpqr(t−t0)wpqr(x), with φφφ0

pqr =
∫

Ω
wpqr(y)φφφ 0(y)dy. (103)
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In practice, one takes 1 ≤ p ≤ P, 1 ≤ q ≤ Q, 1 ≤ r ≤ R, and uses the Fast Fourier

Transform (FFT) to compute the coefficients φφφ 0
pqr and then φφφ(x, t).

For those more general situations where the solutions of the following linear

eigenvalue problem





{w,λ} ∈ H1
0 (Ω)× IR,

∫

Ω
|w(x)|2 dx = 1, λ > 0,

∫

Ω
∇w ·∇v dx = λ

∫

Ω
wv dx, ∀v ∈ H1

0 (Ω),
(104)

are not known explicitly, one still has several options to solve (100), an obvious one

being:

Approximate (104) by





{w,λ} ∈Vh × IR,

∫

Ω
|w(x)|2 dx = 1, λ > 0,

∫

Ω
∇w ·∇v dx = λ

∫

Ω
wv dx, ∀v ∈Vh,

(105)

where Vh is a finite dimensional sub-space of H1
0 (Ω). Then, as in, e.g., [17], [82] use

an eigensolver (like the one discussed in [113]) to compute the first Q(≤N = dimVh)

eigen-pairs solutions of (105), such that (with obvious notation)
∫

Ω wpwq dx = 0

∀p,q, 1 ≤ p,q ≤ Q, p 6= q, and denote by VQ the finite dimensional space span by

the basis {wq}Q
q=1. Next, proceeding as in the continuous case we approximate the

solution of problem (100) by φφφQ defined by

φφφ Q(x, t) =
Q

∑
q=1

φφφ 0
qe−i ε

2 λq(t−t0)wq(x), with φφφ0
q =

∫

Ω
wq(y)φφφ0(y)dy. (106)

For the space Vh in (105), we can use these finite element approximations of H1
0 (Ω)

discussed for example in [37], [66] (Appendix 1) and [72] (Chapter 1) (see also the

references therein).

Another approach, less obvious but still natural, is to observe that if φφφ , the unique

solution of (100) is smooth enough, it is also the unique solution of





∂ 2φφφ

∂ t2
+

ε2

4
∇4φφφ = 0 in Ω × (t0, t f ),

φφφ = 0 and ∇2φφφ = 0 on Γ × (t0, t f ),

φφφ(t0) = φφφ0,
∂φφφ

∂ t
(t0) = i

ε

2
∇2φφφ 0(= φφφ1),

(107)

a well-known model in elasto-dynamics (vibrations of simply supported plates).

From Q, a positive integer, we define a time discretization step τ by τ =
t f − t0

Q
.

The initial-boundary value problem (107) is clearly equivalent to
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



∂φφφ

∂ t
= v in Ω × (t0, t f ),

∂v

∂ t
+

ε2

4
∇4φφφ = 0 in Ω × (t0, t f ),

φφφ = 0 and ∇2φφφ = 0 on Γ × (t0, t f ),

φφφ (t0) = φφφ 0, v(t0) = i
ε

2
∇2φφφ0(= v0).

(108)

A time-discretization scheme for (107) (via (108)), combining good accuracy, sta-

bility and energy conservation properties (see, e.g., [14]) reads as follows (with

{φφφq,vq} an approximation of {φφφ ,v} at tq = t0 + qτ):





φφφ0 = φφφ 0, v0 = v0;

for q = 0, · · · ,Q− 1, compute {φφφq+1,vq+1} from {φφφq,vq} via the solution of



φφφ q+1 −φφφ q

τ
=

1

2
(vq+1 + vq),

vq+1 − vq

τ
+

ε2

8
∇4(φφφ q+1 +φφφ q) = 0 in Ω ,

φφφ q+1 = 0 and ∇2φφφ q+1 = 0 on Γ .
(109)

By elimination of vq+1 it follows from (109) that φφφq+1 is solution of





φφφq+1 +
(τε)2

8
∇4φφφ q+1 = φφφ q + τvq − (τε)2

8
∇4φφφq in Ω ,

φφφq+1 = 0 and ∇2φφφq+1 = 0 on Γ ,
(110)

a bi-harmonic problem which is well-posed in H1
0 (Ω)∩H2(Ω). Next, one obtains

easily vq+1 from

vq+1 =
τ

2
(φφφq+1 −φφφq)− vq.

For the solution of the bi-harmonic problem (110) we advocate those mixed finite

element approximations and conjugate gradient algorithms used in various chapters

of [72] (see also the references therein).

5.3 On the solution of Zakharov systems

In 1972, V.E. Zakharov introduced a mathematical model describing the propagation

of Langmuir waves in ionized plasma (ref. [180]). This model reads as follows (after

rescaling): 



i
∂u

∂ t
+∇2u = un,

∂ 2n

∂ t2
−∇2n+∇2(|u|2) = 0,

(111)
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where the complex-valued function u is associated with a highly oscillating elec-

tric field, while the real-valued function n denotes the fluctuation of the plasma-ion

density from its equilibrium state. In this section, following [102], we will apply the

symmetrized Strang operator-splitting scheme (previously discussed in Section 2.3

of this chapter) to the following generalization of the above equations:





i
∂u

∂ t
+∇2u+ 2λ |u|2u+ 2un= 0,

1

c2

∂ 2n

∂ t2
−∇2n+ µ∇2(|u|2) = 0,

(112)

where λ and µ are real numbers and c(> 0) is the wave propagation speed. Fol-

lowing again [102], we will assume, for simplicity, that the physical phenomenon

modelled by (112) takes place on the bounded interval (0,L), with u, n, ∂u/∂x and

∂n/∂x space-periodic, during the time interval [0,T ]. Thus, (112), completed by

initial conditions, reduces to:





i
∂u

∂ t
+

∂ 2u

∂x2
+ 2λ |u|2u+ 2un= 0 in (0,L)× (0,T),

1

c2

∂ 2n

∂ t2
− ∂ 2n

∂x2
+ µ

∂ 2

∂x2
(|u|2) = 0 in (0,L)× (0,T),

u(0, t) = u(L, t),
∂u

∂x
(0, t) =

∂u

∂x
(L, t) on (0,T ),

n(0, t) = n(L, t),
∂n

∂x
(0, t) =

∂n

∂x
(L, t) on (0,T ),

u(0) = u0, n(0) = n0,
∂n

∂ t
(0) = n1.

(113)

As done previously in this chapter, we denote by φ(t) the function x → φ(x, t).

Remark 27. Albeit considered by some as too simple from a physical point of view,

space-periodic boundary conditions are common in plasma physics. They have been

used for example in [131], a most celebrated article dedicated to the mathematical

analysis of the behavior of plasma entropy (see also [163] which relates a discus-

sion that C. Villani had with E. Lieb concerning precisely the use of space-periodic

boundary conditions in plasma physics). ⊓⊔

From the rich structure of the Zakharov’s system (113) it is not surprising that a

variety of operator-splitting schemes can be applied to its numerical solution, sev-

eral of these schemes being described in [102] (see also the references therein con-

cerning splitting schemes not described in [102]). A first step to the application of

operator-splitting scheme to the time-discretization of problem (113) is to introduce

the function p =
∂n

∂ t
and to rewrite (113) as:
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



i
∂u

∂ t
+

∂ 2u

∂x2
+ 2λ |u|2u+ 2un= 0 in (0,L)× (0,T ),

∂n

∂ t
− p = 0 in (0,L)× (0,T ),

1

c2

∂ p

∂ t
− ∂ 2n

∂x2
+ µ

∂ 2

∂x2
(|u|2) = 0 in (0,L)× (0,T ),

u(0, t) = u(L, t),
∂u

∂x
(0, t) =

∂u

∂x
(L, t) on (0,T ),

n(0, t) = n(L, t),
∂n

∂x
(0, t) =

∂n

∂x
(L, t) p(0, t) = p(L, t) on (0,T ),

u(0) = u0, n(0) = n0, p(0) = n1.

(114)

Applying the Strang’s symmetrized scheme to the time-discretization of problem

(114), one obtains (among other possible schemes, and with tq+α = (q+α)△t):

{u0,n0, p0}= {u0,n0,n1}. (115)

For q ≥ 0, {uq,nq, pq} → {uq+1/2,nq+1/2, pq+1/2} → {ûq+1/2, n̂q+1/2, p̂q+1/2} →
{uq+1,nq+1, pq+1} via





i
∂u

∂ t
+

∂ 2u

∂x2
= 0 in (0,L)× (tq, tq+1/2),

∂n

∂ t
− p

2
= 0 in (0,L)× (tq, tq+1/2),

1

c2

∂ p

∂ t
− ∂ 2n

∂x2
= 0 in (0,L)× (tq, tq+1/2),

u(0, t) = u(L, t),
∂u

∂x
(0, t) =

∂u

∂x
(L, t) on (tq, tq+1/2),

n(0, t) = n(L, t),
∂n

∂x
(0, t) =

∂n

∂x
(L, t), p(0, t) = p(L, t) on (tq, tq+1/2),

u(tq) = uq, n(tq) = nq, p(tq) = pq;

uq+1/2 = u(tq+1/2),nq+1/2 = n(tq+1/2), pq+1/2 = p(tq+1/2),

(116)





i
∂u

∂ t
+ 2λ |u|2u+ 2un= 0 in (0,L)× (0,△t),

∂n

∂ t
− p

2
= 0 in (0,L)× (0,△t),

1

c2

∂ p

∂ t
+ µ

∂ 2

∂x2
(|u|2) = 0 in (0,L)× (0,△t),

u(0, t) = u(L, t),
∂u

∂x
(0, t) =

∂u

∂x
(L, t) on (0,△t),

n(0, t) = n(L, t),
∂n

∂x
(0, t) =

∂n

∂x
(L, t), p(0, t) = p(L, t) on (0,△t),

u(0) = uq+1/2, n(0) = nq+1/2, p(0) = pq+1/2;

ûq+1/2 = u(△t), n̂q+1/2 = n(△t), p̂q+1/2 = p(△t),

(117)
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



i
∂u

∂ t
+

∂ 2u

∂x2
= 0 in (0,L)× (tq+1/2, tq+1),

∂n

∂ t
− p

2
= 0 in (0,L)× (tq+1/2, tq+1),

1

c2

∂ p

∂ t
− ∂ 2n

∂x2
= 0 in (0,L)× (tq+1/2, tq+1),

u(0, t) = u(L, t),
∂u

∂x
(0, t) =

∂u

∂x
(L, t) on (tq+1/2, tq+1),

n(0, t) = n(L, t),
∂n

∂x
(0, t) =

∂n

∂x
(L, t), p(0, t) = p(L, t) on (tq+1/2, tq+1),

u(tq+1/2) = ûq+1/2, n(tq+1/2) = n̂q+1/2, p(tq+1/2) = p̂q+1/2;

uq+1 = u(tq+1),nq+1 = n(tq+1), pq+1 = p(tq+1).
(118)

Scheme (115)-(118) is clearly equivalent to

{u0,n0, p0}= {u0,n0,n1}. (119)

For q ≥ 0, {uq,nq, pq} → {uq+1/2,nq+1/2, pq+1/2} → {ûq+1/2, n̂q+1/2, p̂q+1/2} →
{uq+1,nq+1, pq+1} via





i
∂u

∂ t
+

∂ 2u

∂x2
= 0 in (0,L)× (tq, tq+1/2),

2

c2

∂ 2n

∂ t2
− ∂ 2n

∂x2
= 0 in (0,L)× (tq, tq+1/2),

u(0, t) = u(L, t),
∂u

∂x
(0, t) =

∂u

∂x
(L, t) on (tq, tq+1/2),

n(0, t) = n(L, t),
∂n

∂x
(0, t) =

∂n

∂x
(L, t) on (tq, tq+1/2),

u(tq) = uq, n(tq) = nq,
∂n

∂ t
(tq) = pq/2;

uq+1/2 = u(tq+1/2),nq+1/2 = n(tq+1/2), pq+1/2 = 2
∂n

∂ t
(tq+1/2),

(120)





i
∂u

∂ t
+ 2λ |u|2u+ 2un= 0 in (0,L)× (0,△t),

2

c2

∂ 2n

∂ t2
+ µ

∂ 2

∂x2
(|u|2) = 0 in (0,L)× (0,△t),

u(0, t) = u(L, t),
∂u

∂x
(0, t) =

∂u

∂x
(L, t) on (0,△t),

n(0, t) = n(L, t),
∂n

∂x
(0, t) =

∂n

∂x
(L, t) on (0,△t),

u(0) = uq+1/2, n(0) = nq+1/2,
∂n

∂ t
(0) = pq+1/2/2;

ûq+1/2 = u(△t), n̂q+1/2 = n(△t), p̂q+1/2 = 2
∂n

∂ t
(△t),

(121)
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



i
∂u

∂ t
+

∂ 2u

∂x2
= 0 in (0,L)× (tq+1/2, tq+1),

2

c2

∂ 2n

∂ t2
− ∂ 2n

∂x2
= 0 in (0,L)× (tq+1/2, tq+1),

u(0, t) = u(L, t),
∂u

∂x
(0, t) =

∂u

∂x
(L, t) on (tq+1/2, tq+1),

n(0, t) = n(L, t),
∂n

∂x
(0, t) =

∂n

∂x
(L, t) on (tq+1/2, tq+1),

u(tq+1/2) = ûq+1/2, n(tq+1/2) = n̂q+1/2,
∂n

∂ t
(tq+1/2) = p̂q+1/2/2;

uq+1 = u(tq+1),nq+1 = n(tq+1), pq+1 = 2
∂n

∂ t
(tq+1).

(122)

The linear Schrödinger and wave equations in (120) and (122) are uncoupled, im-

plying that they can be solved by a variety of classical spectral or finite difference

methods taking advantage of the space-periodic boundary conditions. On the other

hand, the nonlinear system (121) can be solved pointwise: Indeed, since u and n are

real-valued functions, it follows from the first and fifth equations in (121) that

|u(x, t)|= |uq+1/2(x)|, ∀t ∈ [0,△t], x ∈ [0,L]. (123)

It follows then from (121) and (123) that the solution n in (121) is also a solution of

the following linear problem





∂ 2n

∂ t2
=−µ

2
c2 ∂ 2

∂x2
(|uq+1/2|2) in (0,L)× (0,△t),

n(0, t) = n(L, t) on (0,△t),

n(0) = nq+1/2,
∂n

∂ t
(0) = pq+1/2/2.

(124)

The closed form solution of (124) is given by

n(x, t) = nq+1/2(x)+
1

2
pq+1/2(x)t − µ

4
c2 ∂ 2

∂x2
(|uq+1/2|2)t2 on (0,L)× (0,△t),

(125)

implying, in particular, that

n̂q+1/2 = nq+1/2 +
△t

2
pq+1/2 − µ

4
(c△t)2 ∂ 2

∂x2
(|uq+1/2|2).

Finally, to obtain the u solution of system (121), we observe that (n being known

from (125)) it is the unique solution of the following non-autonomous linear initial

value problem





i
∂u

∂ t
+ 2(λ |uq+1/2|2 + n)u = 0 in (0,L)× (0,△t),

u(0, t) = u(L, t) on (0,△t),

u(0) = uq+1/2,

(126)
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a particular case of





i
∂φ

∂ t
+ 2(λ |ψψψ|2 + v)φ = 0 in (0,L)× (t0, t f ),

φ(0, t) = φ(L, t) on (t0, t f ),

φ(t0) = φ0,

(127)

ψψψ (resp., v) being a given complex (resp., real)-valued function of x (resp., of {x, t}).

With M ≥ 1 an integer, let us define τ , a time-discretization step, by τ =
t f − t0

M
, and

tm = t0 +mτ . To solve (127) we advocate the following time-discretization scheme

of the Crank-Nicolson type:

φ0 = φ0. (128)

For m = 0, · · · , M− 1, φm → φm+1 via the solution of





i
φm+1−φm

τ
+

[
λ |ψψψ |2+ v(tm+1)+ v(tm)

2

]
(φm+1+φm)=0 in (0,L),

φm+1(0) = φm+1(L).

(129)

Problem (129), can be solved point-wise (in practice at the grid-points of a finite

difference one- dimensional “grid”). Scheme (128)-(129) is second-order accurate

and modulus preserving (that is, verifies |φm+1| = |φm|, ∀m = 0, . . . ,M − 1 ). On

[0,L], φm+1(x) is obtained via the solution of a 2× 2 linear system (for those who

prefer to use real arithmetic).

Remark 28. In [102], one advocates using instead of n the function n− µ |u|2. The

numerical results reported in the above publication clearly show that operator-

splitting provides efficient methods for the numerical solution of the Zakharov’s

system (112).

6 Applications of augmented Lagrangian and ADMM

algorithms to the solution of problems from Imaging

6.1 Variational models for image processing

6.1.1 Generalities

Usually, image processing refers to the processing and analysis of digital images.

Variational models have become an essential part of image processing, such models

relying on the minimization of a well-chosen energy functional, the minimization

problem reading typically as

u = arg min
v∈V

[
E f itting(v)+Eregularizing(v)

]
. (130)
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As shown above, the energy functional has two parts, namely a fitting part and

a regularizing one. In the following we will present various variational image pro-

cessing models and show that the operator-splitting and ADMM methodology pro-

vides efficient methods for the numerical solution of the related minimization prob-

lems. We will start our discussion with the well-known Rudin-Osher-Fatemi (ROF)

model, and then follow with the presentation of some higher order models. Before

going into more details, some remarks are in order, namely:

Remark 29. Most of the models we are going to consider below are not fully un-

derstood yet from a mathematical point of view, two of the main issues being, in

(130), the choice of the space V and the weak-continuity properties of the energy

functional. This will not prevent us to use these continuous models, for the simplic-

ity of their formalism which facilitates the derivation of algorithms whose discrete

analogues have provable convergence properties.

Remark 30. For image processing problems, the computational domain is always a

rectangle, the image pixels providing a natural mesh for space discretization. This

particularity makes easy, in general, the finite difference discretization of problem

(130) and the implementation of iterative solution algorithms. The methodology we

are going to discuss is not restricted to rectangular domains, however for domains

with curved boundaries using finite-difference discretization may become compli-

cated near the boundary; an elegant way to overcome this difficulty is to employ

finite element approximations, as done in, e.g., [133].

Remark 31. A very detailed analysis of ADMM algorithms for the solution of image

processing problems can be found in the chapter of this book by M. Burger, A.

Sawatzky & G. Steidl (Chapter 8).

6.1.2 Total variation and the ROF model

One of the most popular variational models for image processing was proposed by

Rudin, Osher, and Fatemi in their seminal work (ROF model) [144]. In [144], a

denoised image is obtained by minimizing the following energy functional

E(v) =
1

2

∫

Ω
| f − v |2 dx+η

∫

Ω
|∇v |dx, (131)

where: dx = dx1dx2, f : Ω → IR is a given noisy image defined on Ω ,
∫

Ω |∇v |dx

stands for the total variation of the trial function v (see [157] and [169] for a def-

inition of the notion of total variation), and η > 0 is a positive tuning parameter

controlling how much noise will be removed. The remarkable feature of the ROF

model lies in its effectiveness in preserving object edges while removing noise. In

fact, the total variation regularizer has been widely employed to accomplish other

image processing tasks such as deblurring, segmentation, and registration.

In order to incorporate more geometrical information into the regularizer, a num-

ber of higher order regularization models have been proposed and used for im-
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age processing and computer vision problems. The ROF model has several un-

favorable features. The main caveat is the stair-case effect, that is, the resulting

cleaned image would present blocks even though the desired image may be smooth.

Other undesirable properties include corner smearing and loss of image contrast.

To remedy these drawbacks, a very rich list of results exists in the literature, see

[2, 31, 120, 183, 186]. Despite the effectiveness of these models in removing the

staircase effect, it is often a challenging issue to minimize the corresponding func-

tionals. Note that if the functional E contains second-order derivatives of v , the

related Euler-Lagrange equation is a fourth-order linear or nonlinear partial differ-

ential equation.

6.1.3 Regularization using TV2

In [120], Lysaker et al. directly incorporated second order derivative information

into the image denoising process, by proposing to minimize the following energy

functional

E(v) =
1

2

∫

Ω
| f − v |2 dx+η

∫

Ω

√
(vx1x1

)2 + 2(vx1x2
)2 +(vx2x2

)2 dx (132)

This higher order energy functional is much simpler than the Elastica regularizer

that we shall introduce later. Numerically, this regularizer shows rather good perfor-

mance with noise suppression and edge preservation. In the literature, there exists

quite a number of related models, see [20, 24, 25, 26, 28, 39, 53, 58, 89, 99, 101,

134, 138, 147, 171, 146, 181]. The well-posedness of the variational problem asso-

ciated with the energy functional in (132), and its gradient flow equation, have been

studied in [88, 130]. High order models, such as the one associated with the energy

in (132), have been discussed in, e.g., [15, 24, 32, 149, 177].

6.1.4 Regularization using the Euler’s Elastica energy

In order to ‘clean’ a given function f : Ω → IR, the Euler’s Elastica model relies on

the minimization of the following energy functional

E(v) =
1

2

∫

Ω
| f − v |2 dx+

∫

Ω

[
a+ b

∣∣∣∣∇ · ∇v

|∇v |

∣∣∣∣
2
]
|∇v |dx. (133)

In (133), a and b are non-negative with a+ b > 0. These two constants have to be

chosen properly, depending of the application under consideration. The image pro-

cessing model associated with the above energy functional comes from the Euler’s

Elastica energy for curves (see [31, 124] for the derivation of this energy): indeed,

for a given curve Γ ⊂ IR2 with curvature κ , the Euler’s Elastica energy is defined

(with obvious notation) by
∫

Γ (a+ bκ2)ds. For a function v , the curvature of the
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level curve Γc := {x|v(x) = c} is κ = ∇ · ∇v

|∇v | (if ∇v 6= 0). Thus, the Euler’s Elastica

energy for the level curve Γc is given by

l(c) =
∫

Γc

[
a+ b

∣∣∣∣∇ · ∇v

|∇v |

∣∣∣∣
2
]

ds.

Summing up (integrating) the Euler’s Elastica energy over all the level curves Γc, it

follows from the co-area formula (see [168]) that the total Euler’s Elastica energy is

given by

∫ ∞

−∞
l(c)dc =

∫ ∞

−∞

∫

Γc

[
a+ b

∣∣∣∣∇ · ∇v

|∇v |

∣∣∣∣
2
]

dsdc =

∫

Ω

[
a+ b

∣∣∣∣∇ · ∇v

|∇v |

∣∣∣∣
2
]
|∇v |dx.

6.1.5 Regularization using the image graph mean curvature

In [183], the authors proposed a variational image processing model making use of

the mean curvature of the graph of function f , that is of the surface {x,y,z= f (x,y)},

to remove the noise. More specifically, the model considered in [183] employs the

L1 norm of the mean curvature of the above graph as a regularizer, the associated

energy functional being defined by

E(v) =
1

2

∫

Ω
| f − v |2 dx+η

∫

Ω

∣∣∣∣∣∇ · ∇v√
1+ |∇v |2

∣∣∣∣∣ dx. (134)

Above, η(> 0) is a tuning parameter and the term
∇v√

1+ |∇v |2
is the mean curvature

of the surface φ(x,y,z) = 0 with φ(x,y,z) = u(x,y)− z. Clearly, the model tries to fit

the given noisy image surface {x,y,z = f (x,y)} with a surface {x,y,z = u(x,y)}, u

being a minimizer of the L1-mean curvature energy functional (134). This idea goes

back to much earlier publications, [108] for example. The model can sweep noise

while keeping object edges, and it also avoids the staircase effect. More importantly,

as discussed in [186], the model is also capable of preserving image contrasts as well

as object corners.

6.1.6 Interface problems: Chan-Vese segmentation model, labeling

techniques, min-cut and continuous max-flow

In image processing, computer vision, etc., one encounters operations more compli-

cated than denoising, segmentation being one of them. These applications require

mathematical models more complicated (in some sense) than those considered in

Sections 6.1.2 to 6.1.5, one of them being the Chan-Vese model introduced in [33].

Actually (as obvious from [33]), the snake and active contour model (ref. [106]) and
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the Mumford-Shah model (ref. [132]) can be viewed as ancestors of the Chan-Vese

model. Using the notation of [33], the Chan-Vese segmentation model relies on the

minimization of the following energy functional:

ECV (φ ,d1,d2) = λ1

∫

Ω
| f − d1|2H(φ)dx+λ2

∫

Ω
| f − d2|2[1−H(φ)]dx (135)

+µ

∫

Ω
|∇H(φ)|dx+ν

∫

Ω
H(φ)dx,

where in (135): (i) φ is a level set function whose zero level curves set represents the

segmentation boundary. (ii) H(·) is the Heaviside function. (iii) d1 and d2 are two

real numbers. (iv) λ1, λ2 and µ (resp., ν ) are positive (resp., non-negative) tuning

parameters (in many applications, one takes λ1 =λ2 = 1). The Euler-Lagrange equa-

tion associated with the minimization of the functional in (135) has been derived in

[33]. In the above reference the associated gradient flow has been time-discretized

by an explicit scheme to compute the solution of the above minimization problem

(after an appropriate finite difference space discretization). Operator- splitting and

ADMM can be used to develop algorithms with much faster convergence properties

than the above explicit schemes; we will return on this issue in Section 6.2. Let us

denote H(φ) by v ; there is clearly equivalence between minimizing the functional

defined by (135) and





inf
{v ,d1,d2}∈V×IR×IR

[λ1

∫

Ω
| f − d1|2v dx+λ2

∫

Ω
| f − d2|2[1− v ]dx

+µ

∫

Ω
|∇v |dx+ν

∫

Ω
v dx],

(136)

where V = {v |v ∈ L∞(Ω),v(x) ∈ {0,1},a.e. in Ω ,∇v ∈ L1(Ω)}. The model asso-

ciated with (136) was proposed in [117] and referred as a binary level set based

model. More generally, we can consider the minimization, over the above set V , of

energy functionals such as Epotts defined by

Epotts(v) =

∫

Ω
f1v dx+

∫

Ω
f2[1− v ]dx+

∫

Ω
g|∇v |dx, (137)

where f1 and f2 are given functions indicating the possibility that a point belongs

to phase 0 or to phase 1, and where g is a non-negative function, possibly constant;

if d1 and d2 are fixed in (136), the Chan-Vase model becomes a particular case of

the model associated with the functional Epotts defined by (137). It was recently

observed (see [173, 176]) that minimizing Epotts over the above V is a (kind of)

continuous min-cut problem, itself equivalent (by duality) to a max-flow problem.

Indeed, let us consider the following continuous max-flow problem





sup
qs,q f ,v

∫

Ω
qs dx subject to

qs ≤ f1,qt ≤ f2, |v| ≤ g,

∇ ·v = qs − qt in Ω ,v ·n = 0 on Γ (= ∂Ω),

(138)



48 R. Glowinski, T.–W. Pan and X.–C. Tai

where in (138)): (i) v = {v1,v2} and |v| =
√

v
2
1 + v

2
2 , v being the flow inside Ω .

(ii) n is the unit outward vector normal at Γ . (iii) qs (resp., qt ) represents a flow

from a source (resp., to a sink). (iv) f1 and f2 are as in (137). We can also define |v|
by |v| := |v1|+ |v2| ; if we do so, the discretized max-flow problem can be solved

by traditional graph cut methods. It follows from [176] that a dual of the max flow

problem (138) reads as:

inf
µ∈Λ

[∫

Ω
f1(1− µ)dx+

∫

Ω
f2µ dx+

∫

Ω
g|∇µ |dx

]
, (139)

where Λ = {µ |µ ∈ L∞(Ω),0 ≤ µ(x) ≤ 1,a.e. in Ω} ∩W 1,1(Ω). We have recov-

ered thus the functional Epotts from (137) and shown a link between the Chan-

Vese model and the max-flow problem. The dual problem (139) is known as a

(continuous) min-cut problem. Actually, Chan, Esedoglu and Nikolova have shown

in [29] that there is equivalence between (139) and minimizing over V = {v |v ∈
L∞(Ω),v(x) ∈ {0,1}, a.e. in Ω ,∇v ∈ L1(Ω)} the functional Epotts defined by

(137), a most remarkable result indeed since problem (139) is a convex variational

problem whose discrete variants can be solved by ADMM type algorithms (see

[5, 6, 7, 8, 114, 173, 174, 175, 176, 179] for more details and generalizations).

Remark 32. In (136), (138) and (139), it is on purpose that we used inf (resp., sup)

instead of min (resp., max) since we have no guarantee that the minimizing se-

quences of the functionals under consideration will converge weakly in the space or

set where the minimization takes place.

Remark 33. Suppose that in (138) we replace the constraint |v| ≤ g by |v1| ≤ g1 and

|v2| ≤ g2, everything else being the same; then, the dual problem of the associated

variant of (138) reads (with Λ as in (139)) as

inf
µ∈Λ

[∫

Ω
f1(1− µ)dx+

∫

Ω
f2µ dx+

∫

Ω

(
g1

∣∣∣∣
∂ µ

∂x1

∣∣∣∣+ g2

∣∣∣∣
∂ µ

∂x2

∣∣∣∣
)

dx

]
,

clearly a close variant of (139). Similarly, if we replace in (138) the constraint |v| ≤ g

by |v1|+ |v2| ≤ g, we obtain (as expected) the following dual problem

inf
µ∈Λ

[∫

Ω
f1(1− µ)dx+

∫

Ω
f2µ dx+

∫

Ω
g sup

(∣∣∣∣
∂ µ

∂x1

∣∣∣∣ ,
∣∣∣∣

∂ µ

∂x2

∣∣∣∣
)

dx

]
,

the set Λ being as above.

6.1.7 Segmentation models with higher order regularization

As could have been expected, first order segmentation models have limitations (dis-

cussed in [132]). To give an example let us consider the situation depicted in Figure

8(a) where some parts of the four letters have been erased: albeit one can easily rec-

ognize the four letters, first order segmentation models such as Chan-Vese’s, might
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(a) (b)

Fig. 8 Broken letters “UCLA” and its connected segmentation.

often capture the existing boundary instead of restoring the missing ones, as illus-

trated in Figure 8(b). In inpainting problems (see [31, 124]), missing image infor-

mation is also recovered, but within given regions assigned in advance. In contrast,

one would like to have a segmentation model that can interpolate the missing bound-

aries automatically without specifying the region of interest. To this end, one may

employ the Euler’s Elastica functional as a novel regularization term in the Chan-

Vese’s model (135), in order to replace the weighted TV term. Doing so we obtain

the following energy functional (we assume ν = 0, here):

ECVE(φ ,d1,d2) = λ1

∫

Ω
| f − d1|2H(φ)dx+λ2

∫

Ω
| f − d2|2[1−H(φ)]dx (140)

+

[
a+ b

(
∇ · ∇φ

|∇φ |

)2
]
|∇H(φ)|dx

where λ1, λ2, a and b are positive parameters. If φ is the signed distance level set

function, it can be proved that the last term in (140) is equal to the Euler’s elastica

energy of the segmentation curve. This regularization was originally proposed and

used in the celebrated paper on segmentation with depth by Nitzberg, Mumford

and Shiota (ref. [135]). Actually, it has also been used in [31] (resp., [184, 185])

for the solution of the in-painting (resp., illusory contour) problem. In [146], linear

programming was used to minimize (after space discretization) curvature dependent

functionals, the functional defined by (140) being one of those considered in this

article.

Remark 34. Observe that since (formally at least, but this can be justified using a

well-chosen regularization of the Heaviside function, such as ξ → 1
2

[
1+ ξ√

ε2+ξ 2

]
)

∇φ

|∇φ | =
∇H(φ)

|∇H(φ)| , only the sign H(φ) of the function φ is needed when solving the

segmentation problem via the functional in (140). This property suggests, as done

in [117], to use a binary level set representation via the introduction of the function

v = H(φ). Such a change of function was also used in [29] for finding the global

minimizer associated with the Chan-Vese’s model. More general binary level set
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representations with global minimization techniques have been developed (see, e.g.,

[7, 173, 174, 176, 178]) using the relationships existing between graph cuts, binary

labeling and continuous max flow problems. Since ∇ · ∇φ

|∇φ | = ∇ · ∇H(φ)

|∇H(φ)| , one can

rewrite the functional in (140) as

E(v ,d1,d2) = λ1

∫

Ω
| f − d1|2v dx+λ2

∫

Ω
| f − d2|2[1− v ]dx (141)

+

[
a+ b

(
∇ · ∇v

|∇v |

)2
]
|∇v |dx

with the values taken by v being either 0 or 1. Strictly speaking the mean curva-

ture of the graph makes sense for “smooth” functions only; to fix this issue, one

relaxes the above binary restriction by replacing it by 0 ≤ v ≤ 1, a less constraining

condition indeed.

6.2 Fast numerical algorithms for variational image processing

models based on operator- splitting and augmented

Lagrangian methods (ALM)

In this section, we will present operator-splitting and ALM based fast numerical

algorithms, for the numerical treatment of variational image processing models.

6.2.1 Parallel splitting schemes for the ROF model

The first model that we are going to consider is the ROF model discussed in Section

6.1.2. The formal Euler-Lagrange equation associated with the minimization of the

(strictly convex) functional in (131) reads as

−η∇ · ∇u

|∇u| + u = f in Ω ,
∇u

|∇u| ·n = 0 on ∂Ω . (142)

with n the outward unit vector normal at ∂Ω . In order to solve the nonlinear non-

smooth elliptic equation (142) we associate with it an initial value problem and look

for steady-state solutions. We consider thus





∂u

∂ t
−η∇ · ∇u

|∇u| + u = f in Ω × (0,+∞),

∇u

|∇u| ·n = 0 on ∂Ω × (0,+∞),

u(0) = u0,

(143)
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an obvious choice for u0 in (143) being u0 = f . Actually to overcome the difficulty

associated with the non-smoothness of the elliptic operator in (142) and (143), we

consider the following regularized variant of (143):





∂u

∂ t
−η∇ · ∇u√

|∇u|2 + ε2
+ u = f in Ω × (0,+∞),

∂u

∂n
= 0 on ∂Ω × (0,+∞),

u(0) = u0,

(144)

with ε a small positive number. The simplest time-stepping scheme we can think

about to capture the steady state solution of (144) is clearly the forward-Euler

scheme. Let △t(> 0) be a time-discretization step; applied to the solution of (144)

the forward Euler scheme produces the following algorithm:

u0 = u0. (145)

For n ≥ 0, un → un+1 via





un+1 − un

△t
−η∇ · ∇un

√
|∇un|2 + ε2

+ un = f in Ω ,

∂un+1

∂n
= 0 on ∂Ω .

(146)

In practice, scheme (145)-(146) is applied to a discrete variant of (144) obtained

by finite difference or finite element space discretization. Scheme (145)-(146) being

explicit and the condition number of the operator in (146) rather large, its condi-

tional stability requires small time steps leading to a slow convergence to a steady

state solution. Suppose that Ω is the rectangle (0,a)×(0,b); in order to improve the

speed of convergence to a steady state solution, we are going to apply to the solution

of (144) the parallelizable operator-splitting scheme discussed in Section 2.8, taking

advantage of the following decomposition of the operator in (144)

−η∇ · ∇u√
|∇u|2 + ε2

+ u− f = A1(u)+A2(u), (147)

with 



A1(u) =−η
∂

∂x1




∂u

∂x1√
|∇u|2 + ε2


+

1

2
(u− f ),

A2(u) =−η
∂

∂x2




∂u

∂x2√
|∇u|2 + ε2


+

1

2
(u− f ).

(148)
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Combining the scheme we mentioned just above with a semi-explicit time dis-

cretization of the nonlinear terms we obtain

u0 = u0. (149)

For n ≥ 0, un →{un+1/4,un+2/4}→ un+1 via





un+1/4 − un

2△t
−η

∂

∂x1




∂un+1/4

∂x1√
|∇un|2 + ε2


+

un+1/4

2
=

f

2
in Ω ,

∂un+1/4

∂x1

(0,x2) =
∂un+1/4

∂x1

(a,x2) = 0 ∀x2 ∈ (0,b),

(150.1)





un+2/4 − un

2△t
−η

∂

∂x2




∂un+2/4

∂x2√
|∇un|2 + ε2


+

un+2/4

2
=

f

2
in Ω ,

∂un+2/4

∂x2

(x1,0) =
∂un+2/4

∂x2

(x1,b) = 0 ∀x1 ∈ (0,a),

(150.2)

un+1 =
1

2
(un+1/4 + un+2/4). (151)

Scheme (149)-(151) can accommodate large time steps implying a fast convergence

to steady state solutions. It preserve also the symmetry of the images. Moreover

since in most applications Ω is a rectangle with the image pixels uniformly dis-

tributed on it, it makes sense to use a finite difference discretization on a uni-

form Cartesian grid to approximate (150.1) and (150.2). For Dirichlet or Neunann

boundary conditions, the finite difference discretization of (150.1) and (150.2) will

produce two families of uncoupled tri-diagonal linear systems easily solvable (the

good parallelization properties of the above scheme are quite obvious). The above

operator-splitting scheme can be generalized to the numerical treatment of other

variational models (such as Chan-Vese’s, and to models involving derivatives of or-

der higher than one, as shown in, e.g., [89]). A closely related scheme is discussed

in [167].

6.2.2 A split-Bregman method and related ADMM algorithm for the ROF

model

In ref. [86], T. Goldstein and S. Osher proposed and tested a fast converging iterative

method for the ROF model: this algorithm, of the split-Bregman type, is certainly

one of the fastest numerical methods for the ROF model. It was quickly realized

(see [156, 170, 172]) that the Bregman algorithm discussed in [86] is equivalent to

an ADMM one. Here, we will explain the ideas in an informal way using the con-

tinuous model whose formalism is much simpler. As stated in Remark 29, to make
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our discussion more rigorous mathematically, the functional spaces for which the

continuous model makes sense have to be specified (here, they are of the bounded

variation type). This difficulty is one of the reasons explaining why some authors

(as in [170]) consider discrete models, directly.

Let us denote ∇u by p; then, it is easy to see that (from (131)) the ROF model is

equivalent to the following linearly constrained minimization problem:

{u,p}= arg min {v ,q}
∇v−q=0

[
η

∫

Ω
|q|dx+

1

2

∫

Ω
|v − f |2 dx

]
. (152)

Clearly, problem (152) belongs to the family of variational problems discussed in

Section 3.2, the associated augmented Lagrangian being defined (with r > 0) by

(see, e.g., [72] (Chapter 4)):

Lro f (v ,q; µµµ) = η

∫

Ω
|q|dx+

1

2

∫

Ω
|v − f |2 dx (153)

+
r

2

∫

Ω
|∇v −q|2 dx+

∫

Ω
µµµ · (∇v −q)dx.

Above, u : Ω → IR denotes the restored image we are looking for, p = ∇u, µµµ is a

multiplier. Due to the strict convexity of the second term, the discrete analogues of

the minimization problem (152) have a unique solution. Applying algorithm ALG2

of Section 3.2.2 to the solution of (152) we obtain the following

Algorithm 6.1: An augmented Lagrangian method for the ROF model

0. Initialization: λλλ 0 = 0, u0 = f .

For k = 0, 1, · · · , until convergence:

1. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))2Lro f (u
k,q;λλλ k). (154)

2. Compute uk+1 from

uk+1 = arg min
v∈H1(Ω)Lro f (v ,p

k+1;λλλ k). (155)

3. Update λλλ k
by

λλλ k+1 = λλλ k + r(∇uk+1 −pk+1). (156)

It was observed in [156, 170] that this augmented Lagrangian algorithm is equiva-

lent to the split-Bregman algorithm discussed in [86]. This equivalence is also ex-

plained in [172] for compressive sensing models. The minimization sub-problems

(154) have closed form solutions which can be computed point-wise; solving them

is thus quite easy. The minimization sub-problems (155) (in fact their discrete ana-

logues) reduce to discrete well-posed linear Neumann problems; the associated ma-
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trix being symmetric, positive definite and sparse, these discrete elliptic problems

can be solved by a large variety of direct and iterative methods (among them: sparse

Cholesky, multi-level, Gauss-Seidel, conjugate gradient, FFT, etc.; see [170, 172]

for more details). The convergence of algorithm (154)-(156) is discussed in [170].

Remark 35. As described above, Algorithm 6.1 is largely formal since it operates in

the space W = [H1(Ω)×(L2(Ω))2]×(L2(Ω))2, although the solution u of problem

(131) may not have enough regularity to belong to H1(Ω). However, Algorithm 6.1

makes sense for the discrete analogues of problem (131) and space W obtained by

finite difference or finite element approximation; for finite element approximations

in particular, the formalisms of Algorithm 6.1 and of its discrete counterparts are

nearly identical. The above observation applies to most of the ADMM algorithms

described below (see Remark 36, for example).

Remark 36. As shown in, e.g., [109] (for image denoising applications), Algorithm

6.1 is easy to modify in order to handle those situations where the functional∫
Ω |∇v|dx is replaced by 1

s

∫
Ω |∇v|s dx with 0 < s < 1, or by other non-convex func-

tionals of |∇v|; once discretized, these modifications of Algorithm 6.1 perform very

well as shown in [109].

Remark 37. It is easy to extend algorithm (154)-(156) to the solution of the min-

cut problem (139), since the additional constraint encountered in this last problem,

namely 0 ≤ µ(x)≤ 1, a.e. in Ω , is (relatively) easy to treat; actually, this extension

has been done in [22] (see also [4, 27], and Section 6.2.3, below, for a number of

related new approaches). As shown in [170] (page 320), and [142, 143], it is also

easy to extend algorithm (154)-(156) to those situations where one uses vector-TV

regularization in order to process vector- valued data.

6.2.3 An augmented Lagrangian method for the continuous min-cut and

max-flow problems

The continuous max-flow problems (138) and (139) are dual to each other in the

sense that if the function λ is solution of (139), it is a Lagrange multiplier for the

flow conservation equation in (138). We can solve both problems simultaneously us-

ing a primal-dual method à la ALG2 relying on the following augmented Lagrangian

functional

Lc(qs,qt ,v; µ) =−
∫

Ω
qs dx−

∫

Ω
µ(∇ ·v− qs+ qt)dx+

r

2

∫

Ω
(∇ ·v− qs+ qt)

2 dx,

(157)

where in (157): r > 0, and qs, qt and v verify, a.e. in Ω , qs ≤ f1, qt ≤ f2, |v| ≤ g; here

|v| =
√

v
2
1 + v

2
2 , ∀v = {v1,v2}. Applying ALG2 to the computation of the saddle-

points of Lc over the set (Q1 ×Q2 ×K)×L2(Ω), where Q1 = {q|q ∈ L2(Ω),q ≤
f1}, Q2 = {q|q ∈ L2(Ω),q ≤ f2}, and K = {v|v ∈ (L2(Ω))2,∇ ·v ∈ L2(Ω),v ·n =
0 on Γ , |v| ≤ g}, we obtain
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Algorithm 6.2: An augmented Lagrangian method for the continuous max-flow

problem

0. Initialization: λ 0 = 0, p0
s = f1, p0

t = f2.

For k = 0, 1, · · · , until convergence:

1. Compute uk+1 from

uk+1 = arg minv∈KLc(pk
s , pk

t ,v;λ k). (158)

2. Compute {pk+1
s , pk+1

t } from

{pk+1
s , pk+1

t }= arg min{qs,qt}∈Q1×Q2
Lc(qs,qt ,u

k+1;λ k). (159)

3. Update λ k by

λ k+1 = λ k − r(∇ ·uk+1 − pk+1
s + pk+1

t ). (160)

We observe that (159) has a closed form solution (and that pk+1
s and pk+1

t can

be computed point-wise independently of each other). The sub-problem (158) is a

simple variant of the dual of the ROF problem (that is, the unconstrained minimiza-

tion of the functional in (131)). We just need to solve this problem approximately;

indeed, in our implementations we just used few steps of a descent algorithm, fol-

lowed by a projection on the convex set {v|v ∈ (L2(Ω))2, |v| ≤ g} (see [173], [176]

for more details on the solution of these sub-problems). The discrete variant of algo-

rithm (158)-(160) that we implemented (via a finite difference discretization) proved

being very robust with respect to initialization and to the value of the augmentation

parameter r; it is also very efficient computationally.

Remark 38. As written, algorithm (158)-(160) is applicable only to the solution of

two-phase flow problems. There are several ways to generalize this algorithm to

models involving more than two phases, as shown in, e.g., [5, 6, 7, 8, 173, 178].

Also, we would like to emphasize the fact that the discrete analogue of algorithm

(158)-(160) we implemented has good convergence properties no matter which of

the following two norms we used for the flow constraint in (138) (see Remark 33

for the dual formulation associated with (162)):

|v|2 =
√

v
2
1 + v

2
2 (161)

or

|v|1 = |v1|+ |v2|. (162)

If one uses the meshes classically used in digital imaging, traditional graph cut meth-

ods (like those discussed in [19]) can be used to solve the discrete min-cut and max-

flow problems if one uses the norm defined by (162) to bound v. On the other hand,

the above mentioned graph cut methods cannot handle the norm defined by (161). It
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is also known that the solutions of the discrete min-cut and max-flow problems suf-

fer from the matrication error if the norm in (162) is used. Compared to graph cut

methods, ADMM algorithms such as (158)-(160) can handle both norms without

particular difficulty. Moreover, these augmented Lagrangian algorithms are easy to

parallelize and to implement on GPUs; also, they use much less memory than tradi-

tional graph cut methods; this enables using these algorithms for high dimensional

and large size images or data.

6.2.4 A split-Bregman method and related ADMM algorithm for a second

order total variation model

Here, we will discuss the application of ALG2 (that is ADMM) to the solution of

those image processing problems associated with the functional defined by (132)

(also known as the TV2 model). The presentation follows [42, 73, 170], where the

main idea is: (i) Transfer the burden of nonlinearity from the Hessian

D2u

(
=

(
∂ 2u/∂x2

1 ∂ 2u/∂x1∂x2

∂ 2u/∂x1∂x2 ∂ 2u/∂x2
2

))

to an additional unknown p, via the relation

p = D2u, (163)

and (ii) Use a well-chosen augmented Lagrangian functional, associated with the

linear relation (163). A similar idea has been (successfully) used in [42] for the

augmented Lagrangian solution of the Dirichlet problem for the Monge-Ampère

equation det D2u = f (see also Chapter 7 of this book).

Back to the TV2 model (132), let us recall that the related minimization problem

reads as

u = arg min
v∈V

[
1

2

∫

Ω
|v − f |2 dx+η

∫

Ω
|D2

v |dx

]
, (164)

with V = {v |v ∈ L2(Ω),D2
v ∈ (L1(Ω))2×2} and |M| =

√
∑

1≤i, j≤2

m2
i j denoting the

Fröbenius norm of matrix M. Proceeding as in Section 3.2.2, we observe the equiv-

alence between (164) and

{u,D2u}= arg min{v ,q}∈W

[
1

2

∫

Ω
|v − f |2 dx+η

∫

Ω
|q|dx

]
, (165)

where

W = {{v ,q}|v ∈V,q ∈ (L1(Ω))d×d ,D2
v −q = 0},

an observation leading us to introduce the following augmented Lagrangian func-

tional
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LTV2(v ,q; µµµ) =
1

2

∫

Ω
|v − f |2 dx+η

∫

Ω
|q|dx (166)

+
r

2

∫

Ω
|D2

v −q|2 dx+
∫

Ω
µµµ : (D2

v −q)dx,

where, in (166), r > 0, and (with obvious notation) S : T = ∑1≤i, j≤2 si jti j. Applying

the methods discussed in Section 3.2.2 to the solution of the minimization problem

(164) we obtain the following

Algorithm 6.3: An augmented Lagrangian method for the TV 2 model

0. Initialization: λλλ 0 = 0, u0 = f .

For k = 0, 1, · · · , until convergence:

1. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))2×2LTV 2(u
k,q;λλλ k). (167)

2. Compute uk+1 from

uk+1 = arg min
v∈H2(Ω)LTV2(v ,p

k+1;λ k). (168)

3. Update λλλ k
by

λλλ k+1 = λλλ k + r(D2uk+1 −pk+1). (169)

As with Algorithm 6.1 (that is (154)-(156)), the sub-problems (167) have closed-

form solutions which can be computed point-wise. On the other hand, the sub-

problems (168) reduce to linear bi-harmonic problems for the elliptic operator

I + r∇4; if properly discretized on a uniform grid (typically by finite differences),

the discrete analogues of these bi-harmonic problems can be solved by FFT or by

iterative methods (see [170] (page 324) for details).

Remark 39. Obviously, Remark 35 applies also to Algorithm 6.3, with H2(Ω) play-

ing here the role of H1(Ω) there.

6.2.5 An augmented Lagrangian method for the Euler’s Elastica model

The energy functional defined by (133), namely

E(v) =
1

2

∫

Ω
| f − v |2 dx+

∫

Ω

[
a+ b

∣∣∣∣∇ · ∇v

|∇v |

∣∣∣∣
2
]
|∇v |dx,

makes no sense on the subset of Ω where ∇v vanishes. Following an approach very

common in visco-plasticity (see, e.g., [66, 83]]) one make things more rigorous by

defining (following [154]) the energy functional by
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E(v ,m) =
1

2

∫

Ω
| f − v |2 dx+

∫

Ω

[
a+ b |∇ ·m|2

]
|∇v |dx (170)

the functions v and m in (170) verifying

|∇v |= m ·∇v , |m| ≤ 1. (171)

The related minimization problem reads as

{
{u,n}= arg min{v ,m}E(v ,m),

with {v ,m} verifying (171).
(172)

Introducing the vector-valued function p verifying p = ∇u, we clearly have equiva-

lence between (172) and




{u,p,n}= arg min{v ,q,m}

[
1

2

∫

Ω
| f − v |2 dx+

∫

Ω

[
a+ b |∇ ·m|2

]
|q|dx

]
,

with {v ,q,m} verifying q = ∇v , |q|= m ·q, |m| ≤ 1.
(173)

Following [154], we associate with the minimization problem (173) the following

augmented Lagrangian functional

Lelas{v ,q,m; µµµ1,µ2) =
1

2

∫

Ω
|v − f |2 dx+

∫

Ω

[
a+ b |∇ ·m|2

]
|q|dx

+
r1

2

∫

Ω
|∇v −q|2 dx+ r2

∫

Ω
(|q|−q ·m)dx (174)

+
∫

Ω
µµµ1 · (∇v −q)dx+

∫

Ω
µ2(|q|−q ·m)dx,

with r1 and r2 both positive. Suppose that in (174) the vector-valued function m

belongs to M, the closed convex set of (L2(Ω))2 defined by

M = {m|m ∈ (L2(Ω))2, |m(x)| ≤ 1,a.e. in Ω};

we have then |q| − q ·m ≥ 0, implying (since |q| − q ·m = ||q| − q ·m|)) that the

variant of ALG2 described just below will force the condition |q|−q ·m = 0 in the

sense of L1(Ω). This variant of ALG2 reads as follows when applied to the solution

of problem (172) (below, H(Ω ;div) = {v|v ∈ (L2(Ω))2,∇ ·v ∈ L2(Ω)}):

Algorithm 6.4: An augmented Lagrangian method for the Euler’s Elastica model

0. Initialization: λλλ 0
1 = 0, λ 0

2 = 0, u0 = f , n0 = 0.

For k = 0, 1, · · · , until convergence:

1. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))2Lelas(u
k,q,nk;λλλ k

1,λ
k
2 ). (175)
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2. Compute nk+1 from

nk+1 = arg minm∈H(Ω ;div)∩MLelas(u
k,pk+1,m;λλλ k

1,λ
k
2 ). (176)

3. Compute uk+1 from

uk+1 = arg min
v∈H1(Ω)Lelas(v ,p

k+1,nk+1;λλλ k
1,λ

k
2 ). (177)

4. Update {λλλ k
1,λ

k
2} by

{
λλλ k+1

1 = λλλ k
1 + r1(∇uk+1 −pk+1),

λ k+1
2 = λ k

2 + r2(|pk+1|−pk+1 ·nk+1).
(178)

Below, we will give some details and comments about the solution of the sub-

problems encountered when applying algorithm (175)-(176); implementation issues

will be also addressed. Further information is provided in [154].

• The minimization sub-problem (175) has a unique closed-form solution which

can be computed point-wise.

• The minimization sub-problem (176) is equivalent to the following elliptic vari-

ational inequality





nk+1 ∈ H(Ω ;div)∩M,

b

∫

Ω
|pk+1| ∇ ·nk+1 ∇ · (m−nk+1)dx ≥

∫

Ω
(r2 +λ k

2 )p
k+1 · (m−nk+1)dx,

∀m ∈ H(Ω ;div)∩M.
(179)

We observe that the bilinear functional in the left-hand side of (179) is symmetric

and positive semi-definite (indeed,
∫

Ω |pk+1|(∇ ·m)2 dx = 0 if m = ∇× zzz. How-

ever, the boundedness of M implies that the variational problem (176), (179) has

solutions. For the solution of the discrete analogues of the above problem we ad-

vocate using few iterations of those relaxation methods with projection discussed

in, e.g., [66, 76] (other methods are possible as shown in [154]).

• The minimization sub-problem (177) has a unique solution characterized by





uk+1 ∈ H1(Ω),∫

Ω
uk+1

v dx+ r1

∫

Ω
∇uk+1 ·∇v dx =

∫

Ω
f v dx+

∫

Ω
(r1pk+1 −λλλ k

1) ·∇v dx

∀v ∈ H1(Ω).
(180)

Actually, (180) is nothing but a variational formulation of the following Neu-

mann problem
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



uk+1 − r1∇2uk+1 = f −∇ · (r1pk+1 −λλλ k
1) in Ω ,

r1
∂uk+1

∂ν
= (r1pk+1 −λλλ k

1) ·ννν on ∂Ω ,
(181)

where, in (181), ννν denotes the outward unit vector normal at the boundary ∂Ω
of Ω . The numerical solution of linear elliptic problems such as (181) is rou-

tine nowadays; after an appropriate space discretization it can be achieved by a

large variety of direct and iterative methods (sparse Cholesky, FFT, relaxation,

multilevel, etc.).

• Since the energy functional associated with the Euler’s Elastica is non-convex

(see (170)) the augmentation parameters r1 and r2 have to be chosen large enough

to guarantee the convergence of algorithm (175)-(179). Actually, the tuning of r1

and r2 is a delicate issue in itself and we can expect (as shown for example

in [133], for a problem involving three augmentation parameters) the optimal

values of these parameters to be of different orders of magnitude with respect to

the space discretization h.

• Another solution method for the Euler’s Elastica is discussed in [21]. It relies on

tractable convex relaxation in higher dimension.

Remark 40. In [154], an alternative method for the solution of the Euler’s Elastica

problem (172) is also considered. It relies on the equivalence between (172) and




{u,p,n1,n2}= arg min

{v ,q,m1,m2}

[
1

2

∫

Ω
| f − v |2 dx+

∫

Ω

[
a+ b |∇ ·m1|2

]
|q|dx

]
,

with {v ,q,m1,m2} verifying q = ∇v , m1 = m2, |q|= m2 ·q, |m2| ≤ 1.

(182)

An augmented Lagrangian associated with (182) is clearly the one defined by

Lelas{v ,q,m1,m2; µµµ1,µ2,µµµ3) =
1

2

∫

Ω
|v − f |2 dx+

∫

Ω

[
a+ b |∇ ·m1|2

]
|q|dx

+
r1

2

∫

Ω
|∇v −q|2 dx+ r2

∫

Ω
(|q|−q ·m2)dx+ r3

∫

Ω
|m1 −m2|2 dx (183)

+
∫

Ω
µµµ1 · (∇v −q)dx+

∫

Ω
µ2(|q|−q ·m2)dx+

∫

Ω
µµµ3 · (m1 −m2)dx,

with r1, r2 and r3 all positive. From (183), one can easily derive a variant of algo-

rithm (175)-(178) for the solution of the minimization problem (172); such an algo-

rithm is discussed in [154]. Actually the above reference discusses also the solution

by a similar methodology of the variant of problem (172) obtained by replacing the

fidelity term
1

2

∫

Ω
| f − v |2 dx by

1

s

∫

Ω
| f − v |s dx with s ∈ [1,+∞). Typically, one

takes s = 1 (resp., s = 2) for salt-and-pepper noise (resp., Gaussian noise). Further

details and generalizations are given in [154].

Remark 41. As shown in [187], the methodology we employed to solve the mini-

mization problem (172) can be easily modified in order to handle the Chan-Vese

Elastica model.
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6.2.6 An augmented Lagrangian method for the L1-mean curvature model

In this section, we follow closely the presentation used in [186]. The rational of the

L1-mean curvature model has been given in Section 6.1.5, leading one to consider

the following minimization problem

u = arg min
v∈V

[
1

2

∫

Ω
|v − f |2 dx+η

∫

Ω

∣∣∣∣∣∇ · ∇v√
1+ |∇v |2

∣∣∣∣∣ dx

]
, (184)

where ∇ = {∂/∂xi}2
i=1. In (184), the choice of V is a delicate theoretical issue;

indeed the safest way to proceed would be to take V = H2(Ω) in (184), and to

replace min by inf (a (kind) of justification for this approach can be found in [133]).

Let observe (as in [186], where a slightly different notation is used) that

∇ · ∇v√
1+ |∇v |2

= ∇3 ·
{∇v ,−1}
|{∇v ,−1}| , (185)

where, in (185), ∇3 = {∂/∂x1,∂/∂x2,0},and where {∇v ,−1} denotes the 3-dimensional

vector-valued function {∂ v/∂x1,∂ v/∂x2,−1}. In order to simplify (in some sense)

the nonlinear structure of the minimization problem (184), we associate new un-

known functions with its solution u, namely p, n and ψ verifying





p = {∇u,−1},
n =

p

|p| , or equivalently here |p|−p ·n = 0, |n| ≤ 1,

ψ = ∇3 ·n.
(186)

From (185) and (186), there is clearly equivalence between (184) and




{u,ψ ,p,n}= arg min{v ,ϕ,q,m}

[
1

2

∫

Ω
|v − f |2 dx+η

∫

Ω
|ϕ |dx

]
,

with {v ,ϕ ,q,m} verifying q = {∇v ,−1}, |q|−q ·m= 0, |m| ≤ 1,∇3 ·m = ϕ .
(187)

In order to solve the minimization problem (184), taking advantage of its equiva-

lence with (187), we introduce the following augmented Lagrangian functional
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LMC(v ,ϕ ,q,z,m; µ1,µµµ2,µ3,µµµ4) =
1

2

∫

Ω
|v − f |2 dx+η

∫

Ω
|ϕ |dx

+
r1

2

∫

Ω
(|q|−q · z)dx+

∫

Ω
µ1(|q|−q · z)dx

+
r2

2

∫

Ω
|{∇v ,−1}−q|2 dx+

∫

Ω
µµµ2 · ({∇v ,−1}−q)dx (188)

+
r3

2

∫

Ω

∣∣∣∣ϕ −
(

∂m1

∂x1

+
∂m2

∂x2

)∣∣∣∣
2

dx+

∫

Ω
µ3

(
ϕ −

(
∂m1

∂x1

+
∂m2

∂x2

))
dx,

+
r4

2

∫

Ω
|z−m|2 dx+

∫

Ω
µµµ4 · (z−m)dx.

The additional vector-valued function z has been introduced in order to decouple

∇3 ·m from the nonlinear relations verified by m in (187). Following [186], and

taking (187) and (188) into account, we advocate the following algorithm for the

solution of problem (184):

Algorithm 6.5: An augmented Lagrangian method for the L1-mean curvature model

0. Initialization: λ 0
1 = 0, λλλ 0

2 = 0,λ 0
3 = 0, λλλ 0

4 = 0, u0 = f , p0 = {∇u0,−1}, n0 =

y0 =
p0

|p0| , ψ0 = ∇3 ·n0.

For k = 0, 1, · · · , until convergence:

1. Compute uk+1 from

uk+1 = arg min
v∈H1(Ω)LMC(v ,ψ

k,pk,yk,nk;λ k
1 ,λλλ

k
2,λ

k
3 ,λλλ

k
4). (189)

2. Compute ψk+1 from

ψk+1 = arg minϕ∈L2(Ω)LMC(u
k+1,ϕ ,pk,yk,nk;λ k

1 ,λλλ
k
2,λ

k
3 ,λλλ

k
4). (190)

3. Compute pk+1 from

pk+1 = arg minq∈(L2(Ω))3LMC(u
k+1,ψk+1,q,yk,nk;λ k

1 ,λλλ
k
2,λ

k
3 ,λλλ

k
4). (191)

4. Compute yk+1 from

yk+1 = arg minz∈ZLMC(u
k+1,ψk+1,pk+1,z,nk;λ k

1 ,λλλ
k
2,λ

k
3 ,λλλ

k
4). (192)

5. Compute nk+1 from

nk+1 = arg minm∈MLMC(u
k+1,ψk+1,pk+1,yk+1,m;λ k

1 ,λλλ
k
2,λ

k
3 ,λλλ

k
4). (193)

6. Update {λ k
1 ,λλλ

k
2,λ

k
3 ,λλλ

k
4} by
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



λ k+1
1 = λ k

1 + r1(|pk+1|−pk+1 ·yk+1),

λλλ k+1
2 = λλλ k

2 + r2({∇uk+1,−1}−pk+1),

λ k+1
3 = λ k

3 + r3

(
ψk+1 −

(
∂nk+1

1

∂x1

+
∂nk+1

2

∂x2

))
,

λλλ k+1
4 = λλλ k

4 + r4(y
k+1 −nk+1).

(194)

In (189)-(194), the sets Z and M are defined by

Z = {z|z ∈ (L2(Ω))3, |z(x)| ≤ 1, a.e. in Ω},

and

M = {m|m ∈ (L2(Ω))3,
∂m1

∂x1

+
∂m2

∂x2

∈ L2(Ω)},

respectively.

We observe that that the minimization sub-problems (190), (191) and (192) have

closed form solutions which can be computed point-wise. On the other hand, the

Euler-Lagrange equations of the sub-problems (189) and (193) are well-posed linear

elliptic equations with constant coefficients; fast solvers exist for the solution of the

discrete analogues of these elliptic problems (see [186] for details and the results

of numerical experiments validating the above algorithm). An important issue is the

tuning of the augmentation parameters r1, r2, r3 and r4; the comments we did in

Section 6.2.5, concerning the adjustment of r1 and r2 in algorithm (176)-(178), still

apply here.

Remark 42. Another augmented Lagrangian based solution method for the L1-mean

curvature problem (184) is discussed and numerically tested in ref. [133]. The re-

lated ADMM algorithm involves only three Lagrange multipliers, and three aug-

mentation parameters. Moreover, the various vector-valued functions encountered

in the approach discussed in [133] map Ω into IR2 (instead of IR3, as it is the case

for algorithm (189)-(194)).

7 Further comments and complements

There is much more to say about operator-splitting and ADMM algorithms; for-

tunately, many of these issues and topics we left behind, or said very little about,

are developed in the other chapters of this book. There are hovever some issues we

would like to-briefly-comment to conclude this chapter, namely:

(i) The convergence of operator-splitting methods and ADMM algorithms, when

applied to the solution of problems involving non-monotone operators and/or

non-convex functionals.

(ii) The choice of the augmentation parameters and their dynamical adjustment

when applying ADMM algorithms.
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(iii) The derivation of operator-splitting schemes of high (or higher) orders of

accuracy.

(iv) Trying to understand why the Douglas-Rachford scheme is more robust than

the Peaceman-Rachford one, using simple model problems to clarify this issue.

(v) Very few problems have generated as many operator-splitting based solution

methods than the Navier-Stokes equations modelling viscous fluid flows. From

this fact, providing the reader with a significant number of related references is a

must in a book like this one. These references will conclude this chapter.

Concerning the first issue, to the best of our knowledge, there is no general theory

concerning the convergence of operator-splitting methods and ADMM algorithms

when the problem under consideration involves at least one non-monotone operator

and/or a non-convex functional. Actually, one can find in the litterature convergence

results for some problems lacking monotonicity and/or convexity, but, most often,

the proofs of these results are very specific of the problem under consideration, and

therefore are not easy to generalize to other situations. However, some recent results

obtained by R. Luke [96, 115] and W. Yin [166], and collaborators, suggest that a

fairly general theory is not out of reach. However, we think that there always will be

situations where one not will be able to prove the convergence of operator-splitting

methods and ADMM algorithms. This is not surprising since these methods and

algorithms have been quite successful at solving problems for which the existence

of solutions has not been proved.

The second issue, concerning the choice and the dynamical adaptation of the aug-

mentation parameters is another complicated one, particularly for those non-convex

and non-monotone situations involving more than one of such parameters. Indeed,

numerical experiments have shown that the optimal values of these parameters may

have several orders of magnitude (as shown in, e.g., [80] and [133]), and, from the

possible existence of multiple solutions, that bifurcations can take place depending

also of the values of these parameters (and of the algorithm initialization). How-

ever, for particular problems, heuristics have been found, significantly improving

the speed of convergence of these ADMM algorithms (see, e.g., [46]).

In order to address the high (or higher) orders of accuracy issue (our third issue)

we return to Section 2.3 of this chapter (the one dedicated to the Strang symmetrized

operator-splitting scheme), and consider the following initial value problem





dX

dt
+(A+B)X = 0 on (0,T ),

X(0) = X0,
(195)

where A and B are linear operators independent of t. When applied to the solution

of the initial value problem (195), the Strang symmetrized scheme (7)-(10) can be

written in the following more compact form

{
X0 = X0,

Xn+1 = e−A△t/2e−B△te−A△t/2Xn, ∀n ≥ 0.
(196)
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The relation

e−(A+B)△t − e−A△t/2e−B△te−A△t/2 = O(△t3),

shows that scheme (196) is second order accurate (and exact if AB = BA). For those

situations requiring an order of accuracy higher than two, several options do exist,

the best known being:

(a)The 4th order Strang-Richardson scheme discussed in [49, 50, 48] where it is ap-

plied (among other problems) to the numerical solution of real-valued or vector-

valued reaction-diffusion equations such as

∂u

∂ t
−M∇2u+F(u) = 0,

where u(x, t) ∈ IRd , ∇2 denotes the Laplace operator, M is a d × d symmetric

definite matrix, and F is a smooth mapping from IRd into IRd .

(b)The exponential operator-splitting schemes. Actually, the Lie and Strang split-

ting schemes belong to this family of time discretization methods, whose origin

(concerning schemes of order higher than two) is not easy to track back, early sig-

nificant publications being [150, 151] (see also the references therein and those

in [161], and in Google Scholar). Arbitrary high accuracy can be obtained with

these methods, the price to pay being their reduced stability (compared to the

Strang scheme, for example).

The best way to introduce the Strang-Richardson scheme is to start, one more

time, from the simple initial value problem (195). Applied to the solution of (195),

the Strang-Richardson scheme reads as





X0 = X0,

Xn+1 =
1

3

[
4e−A△t/4e−B△t/2e−A△t/2e−B△t/2e−A△t/4

−e−A△t/2e−B△te−A△t/2
]

Xn, ∀n ≥ 0.

(197)

A more practical equivalent formulation of the symmetrized scheme (197) can be

found in the Chapter 6 of [70]; it avoids the use of matrix exponentials and can

be generalized easily to nonlinear problems (it requires the solution of eight sub-

initial value problems per time step). Scheme (197) is fourth order accurate but

not as stable as the original Strang scheme (scheme (196)). Also, its application to

decompositions involving more than two operators becomes a bit complicated to

say the least (higher order methods of the same type are discussed in [85]).

In a similar fashion, we consider again the initial value problem (195) to in-

troduce exponential splitting methods. Applied to the solution of (195) the typical

exponential operator-splitting scheme reads as follows:





X0 = X0,

Xn+1 =

(
J

∏
j=1

e−b jB△te−a jA△t

)
Xn, ∀n ≥ 0.

(198)
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where a j, b j ∈ IR, for 1 ≤ j ≤ J. The Strang symmetrized scheme (196) is a particu-

lar case of (198) (corresponding to J = 2, b1 = 0, a1 = 1/2, b2 = 1, a2 = 1/2). By an

appropriate choice of J, and of the coefficients a j and b j, scheme (198) can be made

of order higher than two (as shown in, e.g., [16]), the price to pay being that some

of the coefficients a j, b j are negative making the scheme inappropriate to those sit-

uations where some of the operators are dissipative. On the other hand, these higher

order schemes produce spectacular results when applied to reversible systems, like

those associated with some linear and nonlinear Schrödinger operators, as shown

in, e.g.,[51, 161]. Their generalization to those (fairly common) situations involving

more than two operators is rather complicated, although theoretically doable.

Concerning the fourth issue, the Peaceman-Rachford and Douglas-Rachford

schemes have been briefly discussed in Sections 2.4 and 2.5, respectively. In or-

der to have a better idea of their accuracy and stability properties, we will consider

the particular situation where, in problem (14), φ0 ∈ IRd , T = +∞, and where A1

(resp., A2) is given by A1 = αA (resp., A2 = β A), A being a real symmetric positive

definite d × d matrix, and α,β verifying 0 ≤ α,β ≤ 1 and α +β = 1. The exact

solution of the associated problem (14) reads as

φ(t) = e−Atφ0, ∀t ≥ 0,

which implies (by projection on an orthonormal basis of eigenvectors of matrix A,

and with obvious notation)

φi(t) = e−λitφ0i, ∀t ≥ 0, ∀i = 1, . . . ,d, (199)

where 0 < λ1 ≤ ·· · ≤ λi ≤ ·· · ≤ λd , the λi’s being the eigenvalues of matrix A. Ap-

plying the Peaceman-Rachford scheme (15) to the particular problem (14) defined

above, we obtain the following discrete analogue of (199):

φn
i (t) = (R1(λi△t))n φ0i, ∀n ≥ 0, ∀i = 1, . . . ,d, (200)

R1 being the rational function defined by

R1(ξ ) =

(
1− α

2
ξ
)(

1− β

2
ξ

)

(
1+

α

2
ξ
)(

1+
β

2
ξ

) . (201)

Since |R1(ξ )|< 1, ∀ξ > 0, the Peaceman-Rachford scheme (15) is unconditionally

stable in the particular case considered here. However, the property lim
ξ→+∞

R1(ξ ) = 1

shows that the above scheme is not stiff A-stable, making it not a first choice scheme

to capture steady state solutions or to simulate fast transient phenomena. Actually,

the stability drawback we just mentioned is not specific to the particular case we are

considering, but seems to hold in general for scheme (15). Incidentally, the relation

R1(ξ )− e−ξ = O(ξ 3) in the neighborhood of ξ = 0
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implies that in the particular case under consideration (where A1 and A2 commute)

scheme (15) is second order accurate. Applying now the Douglas-Rachford scheme

(17) to the same particular case of problem (14), we obtain

φn+1 = (I +α△tA)−1(I +β△tA)−1(I+αβ (△t)2A2)φn, ∀n ≥ 0,

which implies

φn = (I +α△tA)−n(I +β△tA)−n(I+αβ (△t)2A2)nφ0, ∀n ≥ 0. (202)

By projection of (202) on an orthonormal basis of IRd consisting of eigenvectors of

A, we obtain the following variant of (200):

φn
i (t) = (R2(λi△t))n φ0i, ∀n ≥ 0, ∀i = 1, . . . ,d, (203)

R2 being the rational function defined by

R2(ξ ) =
1+αβ ξ 2

(1+αξ )(1+β ξ )
. (204)

Since 0< R2(ξ )< 1, ∀ξ > 0, the Douglas-Rachford scheme (17) is unconditionally

stable in the particular case considered here. However, the property lim
ξ→+∞

R2(ξ ) = 1

shows that the above scheme is not stiff A-stable, making it not a first choice scheme

to capture steady state solutions or to simulate fast transient phenomena. Actually,

the stability drawback we just mentioned is not specific to the particular case we are

considering, but seems to hold in general for scheme (17). Concerning the accuracy

of scheme (17), we observe that in the neighborhood of ξ = 0, we have

R2(ξ ) = 1− ξ + ξ 2 +O(ξ 3),

which implies, by comparison with e−ξ = 1− ξ +
ξ 2

2
+O(ξ 3), that scheme (17) is

no better than first order accurate in the particular case we are considering. Since this

particular case is the most favorable one can think about, one expects the Douglas-

Rachford scheme (17) to be generically first order accurate, a prediction supported

by the results of various numerical experiments. It is worth mentioning that in order

to improve the accuracy of the Douglas-Rachford scheme (17), J. Douglas & S.

Kim introduced in the late 90s-early 2000s ([56]), the following variant of the above

scheme

φ0 = φ0. (205)

For n ≥ 0, φn → φ̂n+1 → φn+1 as follows:

Solve
φ̂n+1 −φn

△t
+A1

(
φ̂n+1 +φn

2
, tn+1/2

)
+A2(φ

n, tn) = 0, (206)

and
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φn+1 −φn

△t
+A1

(
φ̂n+1 +φn

2
, tn+1/2

)
+A2

(
φn+1 +φn

2
, tn+1/2

)
= 0. (207)

The Douglas-Kim scheme (205)-(207) is clearly inspired from the Crank-Nicolson

scheme. Scheme (205)-(207) is second order accurate if the operators A1 and A2 are

sufficiently smooth, the price to pay for this accuracy enhancement being a reduction

of stability and robustness compared to the original Douglas-Rachford scheme (17).

At those wondering how to choose between Peaceman-Rachford and Douglas-

Rachford schemes we will say that on the basis of many numerical experiments, it

seems that the second scheme is more robust and faster for those situations where

one of the operators is non-smooth (multivalued or singular, for example), particu-

larly if one is interested at capturing steady state solutions. Actually, this behavior is

consistent with the fact that the rational function R1 associated with the Peaceman-

Rachford scheme (the one defined by (201)), may change sign when ξ varies on

(0,+∞), unlike the rational function R2 defined by (204) (the one associated with

the Douglas- Rachford scheme) which stays positive on the above interval. These

sign changes, suggest a more oscillatory behavior for the associated scheme if fast

transients take place, or if one tries to capture steady state solutions starting far away

from these solutions.

As a final comment on ADI methods we have to mention that one their main

contributors (if not the main one), beyond their founders (J. Douglas, H. Rach-

ford and D. Peaceman), is definitely E. Wachpress: His wonderful book The ADI

Model Problem [164] is an invaluable source of information and references on the

Peaceman-Rachford and Douglas-Rachford methods, from the theoretical and prac-

tical points of view.

As a conclusion, let observe that the Navier-Stokes equations modelling the flow

of viscous fluids have been mentioned quite a few times in this chapter (Section 4 in

particular), and in other chapters of this book. There is no doubt that very few par-

tial differential equation problems have motivated such a large number of operator-

splitting based solution methods. Focusing on those publications with which we

have some familiarity, let us mention: [11, 12, 13, 23, 35, 43, 47, 70, 72, 73, 90, 91,

92, 93, 94, 105, 107, 111, 112, 116, 122, 123, 158, 159, 160] (see also the references

therein, Google Scholar, and Chapters 21, 22 and 23 of this book).
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2. Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image

reconstruction. Interfaces and Free Boundaries, 5, 63–82 (2003)

3. Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Linear and Nonlinear Programing. Stanford

University Press, Stanford, CA (1958)

4. Aujol, J.F.: Some first-order algorithms for total variation based image restoration. Journal

of Mathematical Imaging and Vision, 34, 307–327 (2009)



Operator-Splitting and Alternating Direction Methods 69

5. Bae, E., Lellmann, J., Tai, X.C.: Convex relaxations for a generalized Chan-Vese model. In:

Heyden, A., Hahl, F., Olsson, C., Oskarsson, Tai, X.C. (eds) Energy Minimization Methods

in Computer Vision and Pattern Recognition, pp. 223–236. Springer, Berlin (2013)

6. Bae, E., Tai, X.C.: Efficient global minimization methods for image segmentation models

with four regions. Journal of Mathematical Imaging and Vision, 51, 71–97 (2015)

7. Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning

problems using a dual approach. International Journal of Computer Vision, 92, 112–129

(2011)

8. Bae, E., Yuan, J., Tai, X.C., Boykov, Y.: A fast continuous max-flow approach to non-convex

multilabeling problems. In: Bruhn, A., Pock, T., Tai, X.C. (eds.) Efficient Algorithms for

Global Optimization Methods in Computer Vision, pp. 134-154. Springer, Berlin (2014)

9. Bao, W., Jaksch, D., Markowich, P.A.: Numerical solution of the Gross-Pitaevskii equation

for Bose-Einstein condensation. J. Comp. Phys., 187, 318–342 (2003)

10. Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the

Schrödinger equation in the semi-classical regime. J. Comp. Phys, 175, 487–524 (2002)

11. Beale, J.T., Greengard, C.: Convergence of EulerStokes splitting of the NavierStokes equa-

tions. Communications on Pure and Applied Mathematics, 47 (8),1083-115 (1994)

12. Beale, J.T., Greengard, C., Thomann, E.: Operator splitting for Navier-Stokes and Chorin-

Marsden product formula. In: Vortex Flows and Related Numerical Methods, NATO ASI

Series, Vol. 395, pp. 27-38. Springer-Netherlands (1993)

13. Beale, J.T., Majda, A.: Rates of convergence for viscous splitting of the Navier-Stokes equa-

tions. Mathematics of Computation, 37 (156), 243-259 (1981)

14. Belytschko, T., Hughes, T.J.R.(editors): Computational Methods for Transient Analysis.

North-Holland, Amsterdam (1983)

15. Bertozzi, A.L., Greer, J.B.: Low curvature image simplifiers: global regularity of smooth

solutions andLaplacian limiting schemes. Comm. Pure Appl. Math., 57, 764-790 (2004)

16. Blanes, S., Moan, P.C.: Practical symplectic partitioned Runge-Kutta and Runge-Kutta-

Nyström methods. J. Comp. Appl. Math., 142 (2), 313-330 (2002)

17. Bonito, A., Glowinski, R.: On the nodal set of the eigenfunctions of the Laplace-Beltrami

operator for bounded surfaces in R-3: A computational approach. Commun. Pure Appl.

Analysis, 13, 2115–2126 (2014)

18. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statis-

tical learning via the alternating direction method of multipliers. Foundations and Trends in

Machine Learning, 3, 1–122 (2011)

19. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms

for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26, 359–374 (2001)

20. Bredies, K.: Recovering piecewise smooth multichannel images by minimization of con-

vex functionals with total generalized variation penalty. In: Bruhn, A., Pock, T., Tai, X.C.

(eds.) Efficient Algorithms for Global Optimization Methods in Computer Vision, pp. 44–

77. Springer, Berlin (2014)

21. Bredies, K., Pock, T., Wirth, B.: Convex relaxation of a class of vertex penalizing function-

als. Journal of Mathematical Imaging and Vision, 47, 278–302 (2013)

22. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimiza-

tion of the active contour/snake model. Journal of Mathematical Imaging and Vision, 28,

151–167 (2007)

23. Bristeau, M.O., Glowinski, R., Périaux, J.: Numerical methods for the Navier-Stokes equa-

tions. Application to the simulation of compressible and incompressible viscous flow. Com-

puter Physics Reports, 6, 73–187 (1987)

24. Brito-Loeza, C., Chen, K.: On high-order denoising models and fast algorithms for vector-

valued images. IEEE Transactions on Image Processing, 19, 1518–1527 (2010)

25. Calder, J., Mansouri, A.,Yezzi, A.: Image sharpening via Sobolev gradient flows. SIAM

Journal on Imaging Sciences, 3, 981–1014 (2010)

26. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related

problems. Numerische Mathematik, 76, 167–188, (1997)



70 R. Glowinski, T.–W. Pan and X.–C. Tai

27. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with

applications to imaging. Journal of Mathematical Imaging and Vision, 40, 120–145 (2011)

28. Chan, R.H., Lanza, A., Morigi, S., Sgallari, F.: An adaptive strategy for the restoration

of textured images using fractional order regularization. Numerical Mathematics: Theory,

Methods & Applications, 6, 276–296 (2013)

29. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of im-

age segmentation and denoising models. SIAM J. Appl. Math., 66, 1632–1648 (electronic)

(2006)

30. Chan, T.F., Glowinski, R.: Finite Element Approximation and Iterative Solution of a Class

of Mildly Nonlinear Elliptic Equations. Stanford report STAN-CS-78-674, Computer Sci-

ence Department, Stanford University, Palo Alto, CA (1978)

31. Chan, T., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting. SIAM Jour-

nal on Applied Mathematics, 62, 564–592 (2002)

32. Chan, T. F., Marquina, A., Mulet, P.: High-order total variation-based image restoration.

SIAM J. Sci. Comput., 22(2), 503-516 (2000).

33. Chan, T., Vese, L.A.: Active contours without edges. IEEE Trans Image Proc., 10, 266–277

(2001)

34. Chiche, A., Gilbert, J.C.: How the augmented Lagrangian algorithm can deal with an infea-

sible convex quadratic optimization problem. Journal of Convex Analysis, 22, 30 (2015)

35. Chorin, A.J.: Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 57 (4),

785-796 (1973)

36. Chorin, A.J., Hughes, T.J.R., McCracken, M.F., Marsden, J.E.: Product formulas and nu-

merical algorithms. Com. Pure Appl. Math., 31, 205–256 (1978)

37. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, PA

(2002)

38. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Transactions

of the American Mathematical Society, 277, 1–42 (1983)

39. Cuesta, E., Kirane, M., Malik, S.A.: Image structure preserving denoising using generalized

fractional time integrals. Signal Processing, 92, 553–563 (2012)

40. Dahiya, D., Baskar, S., Coulouvrat, F.: Characteristic fast marching method for monotoni-

cally propagating fronts in a moving medium. SIAM J. Scient. Comp., 35, A1880–A1902

(2013)

41. Dean, E.J., Glowinski, R.: On some finite element methods for the numerical simulation of

incompressible viscous flow In: Gunzburger, M.D., Nicolaides, R.A. (eds.) Incompressible

Computational Fluid Dynamics, pp. 109–150. Cambridge University Press, New York, NY

(1993)

42. Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution

of the Dirichlet problem for the Monge-Ampère equation in two dimensions. Electronic

Transactions on Numerical Analysis, 22, 71–96 (2006)

43. Dean, E;J., Glowinski, R., Pan, T.W.: A wave equation approach to the numerical simulation

of incompressible viscous fluid flow modeled by the Navier-Stokes equations. In: J.A. de

Santo (ed.) Mathematical and Numerical Aspects of Wave Propagation, pp. 65-74. SIAM,

Philadelphia, PA (1998)

44. Deiterding, R., Glowinski, R., Olivier, H., Poole, S.: A reliable split-step Fourier method

for the propagation equation of ultra-fast pulses in single-mode optical fibers. J. Lightwave

Technology, 31, 2008–2017 (2013)

45. Delbos, F., Gilbert, J.C.: Global linear convergence of an augmented Lagrangian algorithm

for solving convex quadratic optimization problems. Journal of Convex Analysis, 12, 45–69

(2005)

46. Delbos, F., Gilbert, J.C., Glowinski, R., Sinoquet, D.: Constrained optimization in seismic

reflection tomography: A Gauss-Newton augmented Lagrangian approach. Geophys. J. In-

ternat., 164, 670–684 (2006)

47. Demkowicz, L., Oden, J.T., Rachowicz, W.: A new finite element method for solving com-

pressible Navier-Stokes equations based on an operator splitting method and h-p adaptivity.

Comp. Meth. Appl. Mech. Eng., 84 (3), 275-326 (1990)



Operator-Splitting and Alternating Direction Methods 71

48. Descombes, S.: Convergence of splitting methods of high order for reaction-diffusion sys-

tems. Math. Comp., 70 (236), 1481-1501 (2001)

49. Descombes, S., Schatzman, M.: Directions alternées d’ordre élevé en réaction-diffusion.
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68. Glowinski, R.: Splitting methods for the numerical solution of the incompressible Navier-

Stokes equations. In: Balakrishnan, A.V., Dorodnitsyn, A.A., Lions, J.L. (eds.) Vistas in

Applied Mathematics, pp. 57–95. Optimization Software, New York, NY (1986)

69. Glowinski, R.: Finite element methods for the numerical simulation of incompressible vis-

cous flow. Application to the control of the Navier-Stokes equations. In: Anderson, C.R.,

Greengard, C. (eds.) Vortex Dynamics and Vortex Methods, pp. 219–301. American Math-

ematical Society, Providence, RI (1991)



72 R. Glowinski, T.–W. Pan and X.–C. Tai

70. Glowinski, R.: Finite element methods for incompressible viscous flow In: Ciarlet, P.G.,

Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. IX, pp. 3–1176. North-Holland,

Amsterdam, (2003)

71. Glowinski, R.: On alternating direction methods of multipliers: A historical perspective. In:
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