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ABSTRACT

Seismic data denoising and interpolation are essential preprocessing steps in any seis-

mic data processing chain. Sparse transforms with fixed basis are often used in these

two steps. Recently an adaptive learning method, the data driven tight frame (DDTF)

method, was introduced for seismic data denoising and interpolation. With its adapt-

ability to seismic data, the DDTF method achieves high quality recovery. For 2D

seismic data, the DDTF method is much more efficient than traditional dictionary

learning methods. But for 3D or 5D seismic data, the DDTF method results in high

computational expense. The motivation behind this work is to accelerate the filter

bank training process in DDTF, while do less damage to the recovery quality. The

most frequently used method involves only a randomly selective subset of the training

set. However, this random selection method uses no prior information of the data.

We have designed a new patch selection method for DDTF seismic data recovery. We

suppose that patches with higher variance contain more information related to complex

structures, and should be selected into the training set with higher probability. First

we calculate the variance of all available patches. Then for each patch, an uniformly

distributed random number is generated and the patch is preserved if its variance is

greater than the random number. Finally, all selected patches are used for filter bank

training. We call this procedure the Monte Carlo DDTF method. We test the trained

filter bank on seismic data denoising and interpolation. Numerical results using this

Monte Carlo DDTF method surpass random or regular patch selection DDTF when the

sizes of the training sets are the same. We also use state-of-the-art methods based on

curvelet transform, block matching 4D, and multichannel singular spectrum analysis

(MSSA) as comparisons when dealing with field data.
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INTRODUCTION

In seismic exploration, noise and missing traces are unavoidable. Noise can come from var-

ious sources (Liu et al., 2015). Missing traces emerge due to dead traces, or environmental

and economic restrictions. Noisy and incomplete data cause low resolution in seismic mi-

gration, inversion , and amplitude-versus-angle analysis, etc. Denoising and interpolation

are important preprocessing steps in the seismic data processing chain.

Random noise attenuation methods can mainly be classified into prediction error filters

methods, rank reduction methods , and transformed domain methods. Prediction error

filters methods can be carried out in the f-x (Canales, 1984) or t-x (Abma and Claerbout,

1995) domain. Rank reduction methods, such as singular spectrum methods (Sacchi, 2009)

or Cadzow filtering (Trickett, 2008), may also be used. These methods first arrange each

frequency slice of seismic data into a Hankel matrix, then force the Hankel matrix to be

low rank to attenuate the noise. Transformed domain methods have also been proposed

for seismic data denoising, such as the discrete cosine transform (Lu and Liu., 2007) , the

curvelet transform (Neelamani et al., 2008) and the seislet transform (Fomel and Liu, 2010).

Interpolation algorithms mainly fall into wave equation methods or signal processing

methods. The former requires an assumption of a known velocity, and is computation-

ally expensive. Signal processing methods are more popular due to their simplicity and

efficiency. Prediction error filter methods (Spitz, 1991; Naghizadeh and Sacchi, 2007) and

rank reduction methods (Trickett et al., 2010; Oropeza and Sacchi, 2011; Kreimer and Sac-

chi, 2012; Kreimer et al., 2014) assume seismic data is composed by linear events. After

applying a Fourier transform along the time axis of the data, each frequency slice obtained

is analyzed in a regression relationship. The relationship can be solved accurately in low

frequencies using a linear regression method or a rank reduction method. The relation-

ship in high frequencies can be predicted from low frequencies with the assumption that

events are linear. These sparse inversion methods have attracted researchers’ attention re-

cently due to recent developments on solving L1 constrained problem. Among the sparse
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transforms, the Fourier transform seems to be the most popular (Spitz, 1991; Zwartjes and

Sacchi, 2007; Liu and Sacchi, 2004; Duijndam et al., 1999; Trad, 2009; Xu et al., 2005).

Multi-scale and multi-directional transforms, such as the curvelet transform (Naghizadeh

and Sacchi, 2010), and the shearlet transform (Hauser and Ma, 2012) are considered due

to their ability to represent seismic data sparsely. The seislet transform (Fomel and Liu,

2010) and the physical wavelet (Zhang and Ulrych, 2003) are specially designed wavelets

for seismic data.

The sparse inversion methods mentioned above used in denoising and interpolation

expand seismic data with a predefined basis, which is not adaptive to seismic data and may

lead to low denoising or interpolation quality for data with complex structures. Adaptive

dictionary learning methods have been proposed for image processing (Aharon et al., 2006;

Mairal et al., 2009). These methods first decompose the 2D data into overlapped patches,

cubes for 3D data 1, which are used as samples to train the dictionary. The dictionary

is trained in an optimized sparse representation manner, then used for image processing.

Dictionary learning methods achieve improved results over fixed basis methods, although

they require significant computational time and memory, which limits their application on

large scale data processing, i.e., seismic data processing.

Recently Cai et al. (2014) proposed the data driven tight frame (DDTF) method for

image denoising. Different from most existing dictionary learning methods, DDTF con-

structs a tight frame, rather than an over-complete dictionary. As a result, DDTF is very

computationally efficient, and achieves comparable performance to the traditional dictio-

nary learning methods. This improvement makes it promising to apply adaptive dictionary

learning method on seismic data processing. Liang et al. (2014) first introduced DDTF on

2D seismic data interpolation. Yu et al. (2015) extended DDTF method to 3D and 5D

seismic data simultaneously interpolation and denoising.

DDTF is still computationally prohibitive and not practical for large-scale high-dimensional

1we will always use ‘patch’ for consistency in this paper
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seismic data processing. The filter training progress is computationally intensive and re-

quires a significant amount of memory because of the large size of training samples. To

improve efficiency, a randomly selected subset of all available training patches was used for

training the filter bank (Cai et al., 2014; Liang et al., 2014). Many efforts have been made

on large-scale problems using this ‘random’ strategy. For objective functions with large

numbers of components, computing the gradient of the objective function exactly is diffi-

cult. Stochastic gradient methods (Bottou, 2010; Xu and Yin, 2015) estimate this gradient

on a single randomly picked component, with moderate accuracy. NLM (nonlocal means)

is another time-consuming image processing method. To avoid searching the whole image,

one performs computation on a pre-selected subset of the image (Coupe et al., 2006). In

Chan et al. (2014), the authors propose a Monte Carlo NLM method. For each pixel i of

an image, a randomly selected set of reference pixels according to some sampling pattern is

used to eliminate noise in the pixel i.

Inspired by the Monte Carlo NLM method, we design a new strategy of training subset

selection for DDTF. This strategy significantly reduces the amount of training samples (less

than 0.5% of all available patches), so it can reduce filtering training time from about 500

seconds to about 10 seconds for 3D seismic data containing 128×128×128 data points. At

the same time we achieve better denoising and interpolation results than that using a ran-

domly or regularly selected training subset. For the field data, we also compare MC-DDTF

with three other state-of-the-art methods: the curvelet transform (Candes and Donoho,

2003; Ma and Plonka, 2010; Neelamani et al., 2008), the block matching 4D (BM4D) (Mag-

gioni et al., 2013), and the multichannel singular spectrum analysis (MSSA) (Oropeza and

Sacchi, 2011). The curvelet transform is one of the geometrical wavelet transforms that

provide multiscale and multidirection analysis of seismic data. The curvelet interpolation

method used for comparisons is based on sparsity promotion and POCS strategy (Abma

and Kabir, 2006). BM4D finds similar cubes among nonlocal area and a 4D transform is

applied on the similar group simultaneously to suppress the noise. BM4D interpolation

used for comparisons is also based on the POCS (project onto convex set) strategy. MSSA
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organizes each frequency slice of the f − x spectrum into a block Hankel matrix with rank

equal to the number of plane waves in the data. Missing samples will increase the rank of

the block Hankel matrix. Consequently, rank reduction is proposed as a method to recover

missing traces.

The rest of this paper is arranged as follows. In the second section, we first briefly

introduce DDTF theory, then we present our new strategy of training subset selection,

followed by an introduction to denoising and interpolation methods for seismic data. A

summary of our algorithm is given at the end of this part. In the third section, we show

numerical experiments for both denoising and simultaneously denoising and interpolation

for both synthetic and field data. Finally, we propose future work.

THEORY

Data-Driven Tight Frame

Dictionary learning is equivalent to matrix decomposition with constraints. Dictionary

learning decomposes the data as the product of a dictionary matrix and a coefficient matrix,

with constraints on these two matrices. Approximate decomposition is often used in the

presence of noise. For example, K-SVD (K-mean Singular Value Decomposition) imposes a

sparsity constraint on the coefficient matrix, an energy constraint on the dictionary matrix,

and a quadratic fidelity term for the approximate decomposition (Aharon et al., 2006). The

objective function of K-SVD is:

argmin
V,W

1

2
‖W TV − PG‖2F s.t. ∀i, ‖vi‖0 ≤ T0, ∀j, ‖wj‖2 ≤ 1. (1)

where G is the original data, P stands for a possible patch transform, which breaks the data

into small patches and then arranges/ reshapes the small patches of the data into columns

to form a new matrix for training, as defined in Ma (2013) and many others. We denote

the adjoint patch transform as P T . W is the matrix dictionary. V is the coefficient matrix

after expanding PG on W . ‖ · ‖2, ‖ · ‖F and ‖ · ‖0 indicate the vector norm, the Frobenius
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norm and the L0 norm (the number of non-zeros in a vector). vi is the ith column of V ,

wj is the jth row of W. T0 controls the sparsity of vi. The minimization problem (1) can

be solved by alternatingly solving for V and W , i.e., there are a sparsity coding stage and

a dictionary updating stage. In the dictionary updating stage, one SVD decomposition is

used to update each wj , causing its inefficiency.

In the manner as the K-SVD, DDTF imposes a sparse constraint on the coefficient

matrix. But unlike the K-SVD, DDTF imposes a ‘tight frame’ constrain on the dictionary

matrix. The objective function for the filters training in DDTF is as follows:

argmin
V,W

1

2
‖V −WPG‖2F + α‖V ‖0 s.t. W TW = I (2)

where I is the identity matrix. The constraint W TW = I means W is a tight frame 2 . The

coefficient α balances the fidelity term and regularization term. The minimization in (2)

can also be solved by alternatingly solving for V and W ( see Cai et al. (2014) for details).

With the tight frame constraint, W is updated by one SVD decomposition in the dictionary

updating stage. In this way the DDTF achieves much higher efficiency than K-SVD.

Monte Carlo Patch Selection

The patch transform breaks the original data into small patches, which are used for training

the filter bank. For 3D data with size n3 and patch size r3, the set of patches contains

(n − r + 1)3r3 data points. Large numbers of patches may be burdensome in terms of

memory and computation during the filter training progress. From the K-SVD and DDTF

codes available online, we see only a randomly selected subset of the original patches are

used as the training set. We raise the question: If the number of the training patches is

bounded, can we obtain a ‘better’ filter bank by selecting the subset of the training patches

2This expression is not strict. Actually W and WT are the analytic and synthetic operators of the tight

frame. W is obtained by all shifts of an orthogonal filter bank. We call W the filter bank ( the rows of W

filters) directly. We find this non strict expression is more simple and straightforward. The reader can refer

to Cai et al. (2014) for the strict expression.
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in some manner other than randomly? On the other hand, for a given recovery quality, can

we select a subset with smaller size than random selection? By ‘better’, we mean a higher

quality denoising or interpolation result can be obtained with a filter bank trained from the

selected patches.

The answer to these questions is yes, because random selection uses no priori information

of the patches. We propose a new patch selection strategy based on Monte Carlo theory.

The basic assumption is that patches containing complex structures should be selected

in the training subset with high probability in order to keep the details and improve the

resolution of the result. More complex patches in the training set mean that the trained

filter can sparsely represent complex patches, which will improve the recovery of complex

structures. If the training set contains more simple patches than complex patches (which

is the case in random selection or regular selection as shown and explained in Figure 1(e)),

the trained filters tend to sparsely represent the simple ones rather than the complex ones.

That is to say, information on simple patches will suppress the information on complex

patches. Complex patches stand for the details of the data, which are more important for

improving the resolution of the result and should be preferentially considered in the training

set preferentially.

The next question is how to measure the complexity of the patches ? Suppose the data

is clean and the amplitude of the events change only a little, we propose using the patch’s

variance to represent the complexity of its structure. For example, the variance equals zero

means the values on the patch are the same everywhere, which also means the patch locates

no events. Patches located on events result in higher variance. Each pixel in the image

corresponds to variance of one patch (without considering the boundary), so variances of

all patches can form an ‘image of variance’, which we will show later.

The amplitude of the events will affect the calculation of variance. The patches should

be normalized before calculating their variances. Usually seismic energy is more related to

vertical direction than horizontal direction. Energy will become weaker for deeper events. So
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we extract one trace to represent the seismic energy in depth. The normalization function is

combined by using linear lines going through the points of highest amplitude of every event

(Figure 1(f)). The points are selected manually empirically. The normalization function

should form an envelope of the selected trace. We will automate this step in future work.

For data corrupted with noise, we also apply a simple median filter before calculating

the variance. Our method does not deal with weak events and strong noise at the same time,

where a large variance might not indicate useful features. There could be other methods

of selecting the patches by utilizing the prior information, such as entropy, which is a

concept used for measuring the amount of information in data. In the following numerical

experiments, we show how the normalization and median filtering work as preprocessing

steps for calculating the variance.

In Figure 1(a), the 2D seismic data is composed with 128 traces and 128 time samples.

The data contains four linear events: the shallow ones have amplitude of 1.0 and the deep

ones have amplitude of 0.4. The data is normalized to (0, 1) before displaying. The patch

size is set as 8 (time)×8 (space). The variance image of this data is given in Figure 1(c).

The variances in the deep area are much smaller than in the shallow area. Therefore the

data must be normalized before calculating the variance, as shown in Figure 1(b). The

corresponding variance image in Figure 1(d) contains equivalent variances at shallow and

deep area. In Figure 1(f), the blue solid line and red dashed line show the selected trace

and normalization function used in this example.

In Figure 2(a), the data is normalized but contaminated with Gaussian noise. The noise

is amplified by the normalization function at the deeper area, resulting in higher variance,

as shown in Figure 2(c). In Figure 2(b), a median filter is applied to the noisy data, and

the corresponding variance image is shown in Figure 2(d), which is a better approximation

of Figure 1(d).

The histogram of Figure 1(d) is shown in Figure 1(e). The horizontal axis is variance, the

vertical axis is the number of pixels per variance, i.e., the density of pixels at that variance.
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Both axes are normalized before displaying. From the distribution, we can see that most of

the variances are relatively of low value. If we select the patch regularly or randomly, most

of them will contain little information about complex structures. We emphasize that higher

variance should be considered with priority, but smaller variance should not be neglected

either. The selection algorithm is similar to a Monte Carlo method, so we named it the

Monte Carlo patch selection, which is summarized in algorithm (1):

Algorithm 1 Monte Carlo patch selection algorithm

Input: Patches after patch transform on normalized and median filtered

data.

1: Compute the maximum of the variance: vmax. Here we use non-overlapping patches as

approximation.

2: For patch i, first compute its variance vi, then generate a random number ri ⊆ (0, vmax)

with uniform distribution, if ri < kvi, then keep the original patch i before normalization

and median filtering.

Output: Selected training subset.

In algorithm (1), the coefficient k controls both the efficiency of filter training and the

quality of the filtering result. Figure 3 shows the relationship between the percentage of

selected patches and k. The relationship is easily obtained based on numerical experiments

with different k on data in Figure 1(b). For different data, we first obtain a similar curve by

numerical experiments, then select k corresponding to certain selected percentage. Usually

the selected percentage under 1% works well. In our tests, k is set as 0.01 ∼ 0.1.

Seismic Data Denoising and Interpolation

The obtained filter bank W is used for denoising the original data G with a thresholding

method. We donate the denoising function as Dλ(G), defined as follow:

Dλ(G) = P TW TTλ(WPG) (3)
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where λ is a denoising parameter associated with noise level, and Tλ is the soft shrinkage

operator.

For seismic interpolation we introduce the POCS (Abma and Kabir, 2006) based method.

The algorithm is described in algorithm (4) in the appendix.

Monte Carlo DDTF for Seismic Data Recovery

We summarize the abbreviations for DDTF with different patch selection methods in table

(1):

MC-DDTF based seismic data denoising and interpolation algorithms are described in

algorithm (2) and (3) separately:

Algorithm 2 MC-DDTF based seismic data denoising algorithm

Input: Noisy data, denoising parameter.

1: Transform the raw data into patch space, and use Monte Carlo patch selection method

(Algorithm 1) to select a subset of the patch space as a training set.

2: Train the filter bank with minimization (2).

3: Denoise the data with trained filter bank using equation (3).

Output: Denoised data.

Algorithm 3 MC-DDTF based seismic data interpolation algorithm

Input: Sub-sampled data, Sampling matrix.

1: Transform the raw data into patch space, and use Monte Carlo patch selection method

(Algorithm 1) to select a subset of the patch space as a training set.

2: Train the filter bank with minimization (2).

3: Interpolate the data with trained filter bank using POCS method (Algorithm 4).

4: Use the interpolated data as raw data, and repeat 1, 2, 3 until meeting convergence

condition.

Output: Interpolated data.

In Figure 4, we apply different patch selection methods on the model in Figure 4(b) (
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SNR = 2.16). Here, SNR (signal-to-noise ratio) means the ratio of the energy of clean data

to the energy of noise. 0.94% of all patches are used for filter training in each method (except

for FP-DDTF). The patches selected in RD-DDTF, RG-DDTF, MC-DDTF and FP-DDTF

are shown in Figure 4(c)-4(f). We can see that the patches are mainly located on the

events with MC-DDTF in Figure 4(e). Figure 4(g)-4(j) are the trained filters corresponding

to Figure 4(c)-4(f). Notice that in Figure 4(i), there is one filter in the red ellipse, which

direction is going upward from left to right, standing for the feature of the weak and non-flat

event. Even with FP-DDTF, we cannot obtain such a filter. This is because in FP-DDTF,

the training patches contain patches with significant noise, which will also, unfortunately,

suppress significant signal. Figure 4(k)-4(n) are denoising results corresponding to Figure

4(c)-4(f), with SNR = 12.02, 11.64, 13.36, 13.97 separately. FP-DDTF achieves the highest

SNR, followed by MC-DDTF. But MC-DDTF achieves the best recovery result for the weak

feature, as marked in the red ellipses. The filter training time of MC-DDTF is only 0.034s,

more than 15 times faster than FP-DDTF (0.53s).

In Figure 5(a), we test the filter training time of FP-DDTF and MC-DDTF with respect

to different sizes of 3D seismic data. The horizontal axis means the size of the data is n×n×n

(all units are set as ‘1’). About 0.78% of all patches are used in MC-DDTF. We can see that

MC-DDTF achieves much higher efficiency than FP-DDTF. During our tests, FP-DDTF

runs out of memory (4G RAM) when the data size is over 80× 80× 80. In Figure 5(b), we

test patch selection time of RD-DDTF and MC-DDTF. We can see that MC-DDTF takes

twice the time as RD-DDTF, i.e., the additional variance calculation only takes the same

time as the random patch selection. In total, the filter training time of MC-DDTF is about

1.5 times of RD-DDTF for the data with the tested sizes.

NUMERICAL RESULTS

We test MC-DDTF for denoising and interpolation on 3D/5D simulated data and field

data. We show that MC-DDTF accelerates the filter training progress significantly, with
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little damage to reconstruction quality. A comparison with RD-DDTF and RG-DDTF

shows that we achieve a better reconstruction quality with MC-DDTF in terms of SNR.

For the field data, we also compare MC-DDTF with three other state-of-the-art methods:

the curvelet transform based method, the BM4D based method, and the MSSA based

method. All tests were carried out on a personal laptop, with Matlab on Windows 7

operation system, 4G RAM and Intel Core i-7 CPU.

Denoising on shot gather data set 1:

A shot gather (Shahidi et al., 2013) is displayed in Figure 6(a), with its noise corrupted

version ( SNR=3.57) in Figure 6(b) (If not specially mentioned, when displaying 3D data,

the center slice of each axis is shown). The data is composed of 128 (time)×128 (shot)×128

(receiver) samples. The time sampling interval is 4ms, the spatial sampling interval in shot

and receiver directions are both 0.02km. The patch size is 8 (time)×8 (shot)×8 (receiver)

samples. The sample interval and patch size are the same for the following tests if not spec-

ified. Figures 6(c)-6(f) show the denoising results. FP-DDTF achieves highest SNR=19.88,

with filter training time=427s. Here only 1% of all patches are used as an approximation

to FP-DDTF due to restriction of memory. For MC-DDTF, RD-DDTF and RG-DDTF,

we select 0.07% of all patches as a training subset. This leads to filter training time=9.74s.

MC-DDTF achieves higher SNR (17.93) than RD-DDTF (16.89) and RG-DDTF (17.10).

The filtering times of these three methods are the same (96.67s). In Figure 7(a)-7(d), we

show the residual between the recovered data and noisy data in a time-receiver plane, corre-

sponding to the center slice of Figure 6(c)-6(f), which makes the results more comparable.

In the red ellipses, we can see RD-DDTF and RG-DDTF leave obviously useful energy.

However, in MC-DDTF, there is significantly less useful energy left. In FP-DDTF, the

useful energy is hardly ever seen.

In Figure 8, we show how the size of training subset affects the filtering result. Figure

8 corresponds to the test in Figure 6. The x-axis stands for the percentage of the training
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subset of all patches. The y-axis stands for SNR of filtering result. The horizontal dashed

line is the SNR of FP-DDTF method for comparison. When the percentage is less than

0.5%, MC-DDTF gets higher SNR than RD-DDTF and RG-DDTF. The advantage is much

greater when the percentage is less than 0.1%. This is because, for seismic data, patches

on events have high variance, and will be selected with higher probability in the Monte

Carlo patch selection. Random or regular patch selection treats the patches the same

without regard to the existence of events in the patch, so information in the events may be

submerged by the other area. When the percentage is over 0.6%, MC-DDTF, RD-DDTF

and RG-DDTF achieve almost the same SNR. This is, because for the simulated model

in Figure 6(a), all the important information are learned by MC-DDTF, RD-DDTF and

RG-DDTF when the percentage is over 0.6%.

Interpolation for migration data set 2:

A migrated marine data (courtesy of Elf Aquitaine)(Sergey Fomel, 2003) is shown in Figure

9(a). The data size is 512 (time)×512 (inline)×16 (crossline). In Figure 9(b), we decimate

the data in Figure 9(a) by random 50% traces in inline-crossline plane. Nearest neighbor-

hood interpolation is used to generate the initial training data. Four iterations are used with

the MC-DDTF in Algorithm (3). The same setting is used in the following examples. 0.21%

patches are used in the filter training progress. Filter training takes 5.08s. Interpolation

takes 1210s. Finally we achieve SNR=37.11 with MC-DDTF , and the result is shown in

Figure 9(c). For completeness, we give the results of BM4D ( SNR=32.66) interpolation,

the curvelet transform interpolation ( SNR=30.93) and MSSA interpolation (SNR=32.14)

as comparisons in Figure 9(d)- Figure 9(f). In Figure 10, we give the zoomed version

(time: 0− 0.512s, crossline: 5.14− 7.68km, inline: 0.16km) of the results in Figure 9.
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Interpolation for migration data set 3:

A 3D migrated data (a test data from the software ‘GEOFRAME’) is displayed in Figure

11(a). The data size is 240 (time)×221 (inline)×271 (crossline) samples, and the 120th

slice of each direction is shown. The 50% decimated version is shown in Figure 11(b).

0.027% of all patches are used in the filter training progress. Filter training takes only

6.30s. Interpolation takes 6500s. The interpolation results are shown in Figure 11(c)-11(f).

The reconstruction errors are given in Figure 12 for better comparison of the results.

Interpolation for a 5D simulated data:

We test simultaneously denoising and interpolation on a 5D simulated model. The param-

eters of the 5D model can be found in Yu et al. (2015). Four 2D sections of the 5D data is

shown in Figure 13(a), with the noisy and decimated version shown in Figure 13(b). 0.043%

patches are used for filter bank training. The patch size is 45. The training subset forms

a matrix with size 1024×725, which requires 2.84MB memory. For all patches, the size of

the matrix is 1024× 1685099, which requires 6.56GB memory. Recovery results with MC-

DDTF and RG-DDTF are shown in Figure 13(c) and 13(d). MC-DDTF achieves higher

SNR (15.96) than RG-DDTF (15.55). The recovery error (times 3) sections are shown in

Figure 13(e) and 13(f).

Simultaneous denoising and interpolation for a field prestack shot gather

Figure 14(a) shows a shot gather with 800 time samples and 128 traces from a field prestack

seismic data used for simultaneous noise attenuation and interpolation. A zoomed version

(1.6s − 2.3s, 0.6 − 0.8km) is displayed in Figure 14(b). The data is regularly 50% sub-

sampled in Figure 14(c). 1.69% of all patches are used in the training set of MC-DDTF.

Figure 14(d)-14(e) are recovered shot gathers with MC-DDTF and FP-DDTF. MC-DDTF

achieves higher interpolated results than FP-DDTF. FP-DDTF seems overfit the data. The
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results are more comparable in the recovery errors in Figure 14(f)-14(g). The filter training

progress of MC-DDTF takes 0.03s, while it takes 1.28s in FP-DDTF.

CONCLUSION

Adaptive methods such as DDTF are proposed for recovery of complex structures in seismic

data, but they are memory and time consuming for high dimensional situation. In this

paper, we introduce a Monte Carlo based DDTF, which is designed to make the filter

training progress of DDTF more efficient for high dimensional seismic data. MC-DDTF

accelerates filter training progress with less damage to the recovered result than RD-DDTF

and RG-DDTF. Our method also outperforms other state-of-art methods such as the BM4D

based method and the curvelet based method. The disadvantage of our method is that it

fails to deal with weak features and strong noise at the same time. Future work will focus

on: 1, extracting patches containing weak features and strong noise 2, parallelizing the

filtering progress to make the adaptive dictionary learning method handle high dimensional

seismic data within a reasonable time.
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APPENDIX A

ALGORITHM OF POCS

Algorithm 4 POCS Algorithm

Input: G0: sub-sampled data, M : sampling matrix, λ: denoising param-

eter, G: initial data (e.g., nearest neighborhood interpolation can be used

here).

1: Denoise the data with equation (3)

G∗ = Dλ(G) (A-1)

2: Reinsert original traces

G∗ = (I −M)G∗ +MG0 (A-2)

3: Set G = G∗ and repeat 1, 2 until certain convergence condition is satisfied.

Output: Interpolated data G∗.



18

REFERENCES

Abma, R., and J. Claerbout, 1995, Lateral prediction for noise attenuation by t-x and f-x

techniques: Geophysics, 60, 1887–1896, doi:10.1190/1.1443920.

Abma, R., and N. Kabir, 2006, 3D interpolation of irregular data with a POCS algorithm:

Geophysics, 71, no. 6, E91-E97, doi:10.1190/1.2356088.

Aharon, M., M. Elad, and A. Bruckstein, 2006, K-SVD: An algorithm for designing over-

complete dictionaries for sparse representation: IEEE Transcations on Signal Processing,

54, no. 11, 4311–4322, doi:10.1109/TSP.2006.881199.

Bottou, L., 2010, Large-Scale Machine Learning with Stochastic Gradient Descent: Proc.

of COMPSTAT 2010.

Cai, J., H. Ji, Z. Shen, and G. Ye, 2014, Data-driven tight frame construction and

image denoising: Applied and Computational Harmonic Analysis, 37, no. 1, 89–105,

doi:10.1016/j.acha.2013.10.001.

Chan, S. H., T. Zickler, and Y. M. Lu, 2014, Monte Carlo non local means: Random

sampling for large-scale image filtering: IEEE Trans. Image Process, 23, no. 8, 3711–

3725, doi:3711–3725.10.1109/TIP.2014.2327813.

Canales, L., 1984, Random noise reduction: 54th Annual International Meeting, SEG,

Expanded Abstracts, 525–527.

Candes, E., and D. Donoho, 2003, New tight frames of curvelets and optimal representations

of objects with C2 singularities: Comm. Pure Appl. Math., 57, no. 2, 219-266.

Coupe, P., P. Yger, and C. Barillot, Fast non local means denoising for 3D MR images:

Proc. MICCAI, 33–40.

Duijndam, A., M. Schonewille, and C. Hindriks, 1999, Reconstruction of band-limited

signals, irregularly sampled along one spatial direction: Geophysics, 64, 524–538,

doi:10.1190/1.1444559.

Fomel, S., 2003, Time-migration velocity analysis by velocity continuation: Geophysics, 68,

1662-1672, doi:10.1190/1.1620640.

Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics, 75, no. 3,

http://dx.doi.org/ 10.1190/1.1443920
http://dx.doi.org/ 10.1190/1.2356088
http://dx.doi.org/ 10.1109/TSP.2006.881199
http://dx.doi.org/ 10.1016/j.acha.2013.10.001
http://dx.doi.org/ 3711--3725.10.1109/TIP.2014.2327813
http://dx.doi.org/ 10.1190/1.1444559
http://dx.doi.org/ 10.1190/1.1620640


19

V25-V38, doi:10.1190/1.3380591.

Hauser, S., and J. Ma, 2012, Seismic data reconstruction via shearlet-regularized directional

inpainting, http://www.mathematik.uni-kl.de/uploads/tx_sibibtex/seismic.pdf,

accessed 15 May 2012.

Kreimer, N., and M. Sacchi, 2012, A tensor higher-order singular value decomposition for

prestack seismic data noise reduction and interpolation: Gephysics, 77, no. 3, V113–V122,

doi:10.1190/geo2011-0399.1.

Kreimer, N., A. Stanton and M. D. Sacchi, 2014, Tensor completion based on nuclear norm

minimization for 5D seismic data reconstruction: Geophysics, 78, no. 6, V273–V284,

doi:10.1190/geo2013-0022.1.

Liang, J., J. Ma, and X. Zhang, 2014, Seismic data restoration via data-driven tight frame:

Geophysics, 79, no. 3, 65–74, doi:10.1190/geo2013-0252.1.

Liu, B., and M. D. Sacchi, 2004, Minimum weighted norm interpolation of seismic records:

Geophysics, 69, 1560–1568, doi:10.1190/1.1836829.

Liu, Y., N. Liu, and C. Liu, 2015, Adaptive prediction filtering in t-x-y domain for random

noise attenuation using regularized nonstationary autoregression: Geophysics, 80, no. 1,

V13–V21, doi:10.1190/geo2014-0011.1.

Lu, W., and J. Liu, 2007, Random noise suppression based on discrete cosine transform:

77th Annual International Meeting, SEG, Expanded Abstracts, 2668–2672.

Ma, J., 2013, Three-dimensional irregular seismic data reconstruction via low-rank matrix

completion: Geophysics, 78, no. 5, 181–192, doi:10.1190/geo2012-0465.1.

Ma, J., and G. Plonka, 2010, The curvelet transform: IEEE Signal Processing Magazine,

27, no. 2, 118-133.

Maggioni, M., V. Katkovnik, K. Egiazarian, and A. Foi, 2013, Nonlocal transform-domain

filter for volumetric data denoising and reconstruction: IEEE Transactions on Image

Processing, 22, no. 1, 119–133, doi:10.1109/TIP.2012.2210725.

Mairal, J., F. Bach, J. Ponce, and G. Sapiro, 2009, Online dictionary learning for sparse

coding: in Proceedings of the 26th Annual International Conference on Machine Learning,

http://dx.doi.org/ 10.1190/1.3380591
http://www.mathematik.uni-kl.de/uploads/tx_sibibtex/seismic.pdf
http://dx.doi.org/ 10.1190/geo2011-0399.1
http://dx.doi.org/ 10.1190/geo2013-0022.1
http://dx.doi.org/ 10.1190/geo2013-0252.1
http://dx.doi.org/ 10.1190/1.1836829
http://dx.doi.org/ 10.1190/geo2014-0011.1
http://dx.doi.org/ 10.1190/geo2012-0465.1
http://dx.doi.org/ 10.1109/TIP.2012.2210725


20

ACM, 689–696, doi:10.1145/1553374.1553463.

Neelamani, R., A. I. Baumstein, D. G. Gillard, M. T. Hadidi, and W. I. Soroka, 2008,

Coherent and random noise attenuation using the curvelet transform: The Leading Edge,

27, 240–248, doi:10.1190/1.2840373.

Naghizadeh, M., and K. Innanen, 2011, Seismic data interpolation using a fast generalized

Fourier transform: Geophysics, 76, no. 1, V1–V10, doi:10.1190/1.3511525.

Naghizadeh, M. and M. D. Sacchi, 2007, Multistep autoregressive reconstruction of seismic

records: Geophysics 72, no. 6, V111-V118, doi:10.1190/1.2771685.

Naghizadeh, M., and M. D. Sacchi, 2010, Beyond alias hierarchical scale curvelet transform

interpolation of regularly and irregularly sampled seismic data: Geophysics, 75, no. 6,

189–202, doi:10.1190/1.3509468.

Oropeza, V., and M. Sacchi, 2011, Simultaneous seismic data denoising and reconstruc-

tion via multichannel singular spectrum analysis: Geophysics, 76, no. 3, V25–V32,

doi:10.1190/1.3552706.

Sacchi, M. D., 2009, FX singular spectrum analysis: Presented at CSPG CSEG CWLS

Convention.

Shahidi R., G. Tang, J. Ma, F. Herrmann, 2013, Application of randomized sampling

schemes to curvelet transform-based sparsity-promoting seismic data recovery, Geophys-

ical Prospecting, 61, no. 5, 973-997, doi:10.1111/1365-2478.12050.

Spitz, S., 1991, Seismic trace interpolation in the fx domain: Geophysics, 56, 785–794,

doi:10.1190/1.1443096.

Trad, D., 2009, Five-dimensioinal interpolation: Recovering from acquisition constraints:

Geophysics, 74, no. 6, V123–V132, doi:10.1190/1.3245216.

Trickett, S., 2008, F-xy Cadzow noise suppression: 78th Annual International Meeting,

SEG, Expanded Abstracts, 2586–2590.

Trickett, S., L. Burroughs, A. Milton, L. Walton, and R. Dack, 2010, Rank reduction-based

trace interpolation: 80th Annual International Meeting, SEG, Expanded Abstracts, 3829–

3833.

http://dx.doi.org/10.1145/1553374.1553463
http://dx.doi.org/ 10.1190/1.2840373
http://dx.doi.org/ 10.1190/1.3511525
http://dx.doi.org/ 10.1190/1.2771685
http://dx.doi.org/ 10.1190/1.3509468
http://dx.doi.org/ 10.1190/1.3552706
http://dx.doi.org/ 10.1111/1365-2478.12050
http://dx.doi.org/ 10.1190/1.1443096
http://dx.doi.org/ 10.1190/1.3245216


21

Xu, S., Y. Zhang, D. Pham, and G. Lambaré, 2005, Antileakage Fourier transform for
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TABLES

MC-DDTF DDTF based on Monte Carlo patch selection

RD-DDTF DDTF based on Random patch selection

RG-DDTF DDTF based on Regular patch selection

FP-DDTF DDTF based on all available patches (Full Patch)

Table 1: Abbreviations
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Figure 1: A demonstration of variance distribution of seismic data. (a) 2D seismic data. (b)

Normalization of data in (a). (c)-(d) Variance distribution with patch size = 8 for (a)-(b).

(e) Variance distribution of (d). (f) Normalization function.
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Figure 2: A demonstration of variance distribution of seismic data with noise. (a) 2D noisy

and normalized seismic data. (b) Denoised result of (a) with median filter. (c)-(d) Variance

distribution with patch size = 8 for (a)-(b).
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Figure 3: The percentage of selected patches from all patches versus coefficient k.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

Figure 4: A demonstration of different patch selection methods. (a) 2D seismic data. (b)

Noisy version of (a). (c)-(f) Select patches randomly, regularly, with Monte Carlo method

and with all patches. (g)-(j) Trained filters from (c)-(f). (k)-(n) Denoising results of (g)-(j)

with SNR = 12.02, 11.64, 13.36, 13.97 separately.
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Figure 5: Time analysis on 3D seismic data. (a) Filter training time for FP-DDTF and

MC-DDTF patch selection. (b) Patch selection time for RD-DDTF and MC-DDTF.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Denoising result for simulated data. (a) Clean data. (b) Noisy data ( SNR=3.57).

(c) Recovery with RD-DDTF ( SNR=16.89). (d) Recovery with RG-DDTF ( SNR=17.10).

(e) Recovery with MC-DDTF ( SNR=17.93). (f) Recovery with FP-DDTF ( SNR=19.88).
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Figure 7: Recovery residual in time-receiver plane of results in Figure 6. (a)-(d) correspond

to RD-DDTF, RG-DDTF, MC-DDTF and PF-DDTF separately.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Interpolation for field data. (a) Original data. (b)50% sub-sampled data. (c)

Recovery with MC-DDTF ( SNR=37.11). (d) Recovery with BM4D ( SNR=32.66). (e) Re-

covery with the curvelet transform ( SNR=30.93). (f) Recovery with MSSA (SNR=32.14).
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Figure 10: Zoomed version of time-crossline plane of the results in Figure 9. (a)-(b) Orig-

inal and subsampled data. (c)-(f) Recovery results correspond to MC-DDTF, BM4D, the

curvelet transform and MSSA separately.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Interpolation for field data. (a) Original data. (b) 50% sub-sampled data

(c) Recovery with MC-DDTF. (d) Recovery with BM4D. (e) Recovery with the curvelet

transform. (f) Recovery with MSSA.
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Figure 12: Reconstruction errors of time-crossline plane of the results in Figure 11. (a)-(d)

correspond to MC-DDTF, BM4D, the curvelet transform and MSSA methods separately.
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Figure 13: Simultaneous interpolation and denoising for 5D simulated data. (a) Simulated

data. (b) 1/3 sub-sampled data. (c) Recovery with MC-DDTF ( SNR=15.96). (d) Recovery

with RG-DDTF ( SNR=15.55). (e)(f) Recovery error ×3 corresponding to (c)(d).
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Figure 14: Simultaneous denoising and interpolation for a field prestack shot gather. (a)

Original prestack shot gather. (b) A zoomed portion of original data. (c) 50% regularly

sub-sampled data. (d) Recovered shot gather using MC-DDTF. (e) Recoverd shot gather

using FP-DDTF. (f)(g) Recovery difference corresponding to (d)(e).


