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Abstract. In this paper we propose several algorithms for some vari-
ational models for semi-supervised clustering of high-dimensional data.
The new models produces substantial improvements of the classifica-
tion accuracy in comparison with the corresponding models without the
regional force in cases that the sample rate is relatively low. For the
proposed models, the data points are modeled as vertices of a weighted
graph, and the labeling function defined on each vertex takes values
from the unit simplex, which can be interpreted as the probability of
belonging to each class. The algorithm is proposed as a minimization of
a convex functional of the labeling function. There are two versions of
the models. The first one combines the Rayleigh quotient for the graph
Laplacian and a region-force term, and the second one only replaces
the Rayleigh quotient with the total variation of the labeling function.
The region-force term is calculated by the affinity between each vertex
and the training samples, characterizing the conditional probability of
each vertex belonging to each class. The numerical methods for solving
these two versions of the proposed algorithm are presented, and both
are tested on several benchmark data sets such as handwritten digits
(MNIST) and moons data. Experiments indicate that the correction
rates and the computational speed are competitive with the state-of-
the-art in multi-class semi-supervised clustering algorithms. Numerical
experiments also confirm that the total variation model out performs
the Laplacian counter part in most of the tests.

Keywords. semi-supervised clustering, graphical model, multi-class
segmentation, region force penalty, Chan-Vese model

1. Introduction

The problem of partitioning a large dataset into a prescribed number
of sensible groups is a fundamental task in machine learning and imaging.
Many unsupervised and semi-supervised learning algorithm fall into this
category. Also the contour detection and image segmentation can be viewed
as data clustering [2, 17]. Many clustering algorithms are based on the
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2 AN EFFECTIVE REGION FORCE FOR SOME VARIATIONAL MODELS

graphical model [11,26,32], where the data points are vertices of a weighted
graph, and the edge weights models the affinity between pairs of data points.
The popular spectral graph partitioning finds a minimal K-way graph cut
or normalized graph cut. It is a NP-hard combinatorial problem. Some
influential solvers using the lowest K eigenvectors of the graph Laplacian
are discussed in [25]. Recently it is discovered that the minimization of graph
cut has a continuous relaxation based on the min-cut-max-flow equivalence,
see [40–42], and a primal-dual hybrid gradient method is proposed in [35].
There are some other algorithms based on Cheeger cut [4]. These problems
are also shown to be NP-hard, and various continuous relaxation, though
non-convex, are proposed and their algorithms are presented in [4, 15, 17,
39]. Some of them are based on solving the eigenvalue problem associated
with the normalized graph Laplacian [17, 39], while others using non-linear
optimization or partial differential equation solvers are discussed in [4, 15].
Due to the non-convexity of the proposed minimization problems, there
could be difficulty finding the global minimizers.

In this paper we focus on multi-class semi-supervised clustering algo-
rithms. It is assumed that the number of clusters are prescribed, and in
each cluster there are a few samples that are already labeled. Our goal is to
infer the labels for the rest of the data points from these labeled ones. The
basic assumption is that vertices in the graph that are connected by edges
of large weight should belong to the same cluser. The idea of geometric dif-
fusion is proposed in the seminal paper by Coifman et. al. [10]. In there the
diffusion map built on the eigenvectors of the graph Laplacian embeds the
graph into the feature space with the diffusion distance as the new metric.
Then the propagation of the labels is driven by a diffusion kernel defined
in the feature space. Some other ideas inspired by the variational methods
in image segmentation are also proposed, such as [4], where the Mumford-
Shah-Potts Model on the graph is demonstrated to be useful. There the
Cheeger cut is interpreted as the perimeter for the clusters, which we call
the edge force. However a region force which penalizes the inhomogeneity
inside the same cluster is absent. The celebrated Chan-Vese model [6] which
combines an edge force and a region force can also be applied on the graph
segmentation problems. Some early attempts in this spirit are presented
in [16,19]. Apart from these, there are some emerging interest in the appli-
cation of the partial differential equation techniques, such the diffuse inter-
face approach [13,22]. The diffusion interface approach uses the phase field
representation for the clusters, and a graph-based Merriman-Bence-Osher
scheme [23] is established for solving the diffusion equation with double-well
potential.

We propose a novel approach that combines the graph cut in the spectral
clustering method and a region force inspired by the Chan-Vese model in
image segmentation. In particular, we minimize the functional of the label-
ing function that is the sum of the K-way graph cut and the region force
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for each cluster. The region force can be interpreted as a data fitting con-
straint. However, this constraint is not only imposed on the already labeled
vertices on the graph, but on all vertices. The strength of the constraint is
proportional to the conditional probability of each vertex belonging to each
cluster, which depends on the affinity between that vertex and the given
labeled vertices. Various ways of calculating the conditional probability are
also discussed. The labeling function assumes values in the unit simplex. It
is therefore an optimization problem of a convex objective function over the
domain of the unit simplex. There are two versions of expressing the K-
way graph cut in our approach. One is using the original definition, which is
equivalent to the total variation on the graph, and the other is the quadratic
relaxation of it or the Rayleigh quotient of the graph Laplacian. We also
present efficient algorithms for solving this convex optimization problems.
For the graph-cut version we use the primal-dual hybrid gradient method
on the graph which is first described in [44]. For the Rayleigh quotient
version we apply the projected gradient method with Barzilai–Borwein step
sizes [12].

The rest of the paper is organized as follows. In Section 2, we discuss
prior related work, as well as motivation for the methods proposed here.
We then describe our two new versions of the proposed approach in Section
3. In Section 4, we present experimental results on benchmark data sets,
demonstrating the effectiveness of our methods. Finally, in Section 5, we
conclude and discuss ideas for future work.

2. Prior related work

2.1. Graphical model for the data set. The data points can be modeled
as a weighted undirected graph G = (V,E,w), where V and E are vertex set
and edge set respectively, w : E → R+ is the weight function defined on the
edges. The coordinates {xi} for the vertices can be either the data vectors of
the same dimension, or feature vectors after some transformation or filtering.
For xi, xj ∈ V , wij = w(xi, xj) measures the similarity between the two
vertices. W = (wij) is called the affinity matrix, and usually assumed to be
a symmetric matrix with non-negative entries [9].

Even though the weight function can be defined on all pairs of vertices,
only a small portion of them are used in practice, depending on the topol-
ogy of underlying structure of the graph. Therefore the affinity matrix W
is sparse. For instance, under the assumption that the data points are
uniformly distributed on a manifold X, the graph G is constructed by con-
necting k-nearest neighbors of each vertex with edges for a small k. The
choice of k may also depend on the co-dimension of the manifold X. Under
this assumption, some popular choices for the weight function are the Radial
Basis Functions (RBF) [27]

(1) w(xi, xj) = exp(−d(xi, xj)
2/(2ε)),
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for the distance metric d, and the Zelnik-Manor and Perona (ZMP) [43]
weight function

(2) w(xi, xj) = exp

(
−d(xi, xj)

2/
√
σ(xi)σ(xj)

)
where σ is the local variance. Another popular choice in natural language
processing for the weight function is the cosine similarity [29]

(3) w(xi, xj) = cos(xi, xj) =
〈xi, xj〉
‖xi‖‖xj‖

.

If the manifold assumption is taken, then the graph G can be constructed
by k-Nearest-Neighbor (k-NN). The number of neighborhood points k is
practical, which may depend on the dimension of the underlying manifold
for the graph. For some other types of graph topology such as the scale-free
networks, for example the popular Barabasi-Albert (BA) model and Erdös-
Rényi (ER) model, the tree structure may be more appropriate. We also
note that there are some successful attempt to approximate a given dense
graph G by a sparse graph on the same set of vertices [30].

2.2. Some useful graph operators. Let the matrix W = (wij) be con-
structed as outlined in the last section and D = (dii) be the diagonal matrix
with the diagonal entries are equal to the sum of the entries on the same
row in W .

The following are some graph operators that are useful in the subsequent
discussions [9]:

(4)


L = D −W, the graph Laplacian

Ws = D−1/2WD−1/2, the normalized affinity matrix

Ls = I −Ws, the normalized graph Laplacian.

Assume u ∈ L2(V ) is a function defined on the vertex set of graph G.
The gradient operator [14]

(5) ∇ : L2(V )→ L2(V,L2(V ))

is defined by

(6) ∇u(xi)(xj) = wij(u(xj)− u(xi)).

So ∇u(xi) is a function in L2(V ) for each xi ∈ V . It is assumed that G is
a sparse graph and each xi has at most d neighbors. Therefore, ∇u(xi) can
be understood as a sparse vector

(7) ∇u(xi) = (wij(u(xj)− u(xi)))xj∈N (xi)

with at most d non-zeros which are in the neighborhood of xj (N (xi)).
The adjoint operator of the gradient is called divergence, which is formally

written as

(8) div : L2(V,L2(V ))→ L2(V ).
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For f ∈ L2(V,L2(V )),

(9) div(f)(xi) =
∑

xj∈N (xi)

wij(f(xj)(xi)− f(xi)(xj)).

Evaluating gradient and divergence both have O(d|V |) complexity, since
there are at most d non-zero terms in both (7) and (9) for each xi ∈ V .

3. Graph partitioning by minimizing graph cuts

3.1. Variational models for graph partitioning. Suppose the graph of
n vertices is partitioned into K clusters V1, . . . , Vk. We denote the n × K
partition matrix by Ψ = (ψik), where

(10) ψik =

{
1 if xi ∈ Vk,
0 otherwise.

Therefore, Ψ is a binary matrix. Under the assumption that each vertex
belongs to one and only one cluster, we have

(11) Ψ1 = 1.

The K-way graph cut uses the following energy functional [17,25] :

(12) C =
K∑
k=1

∑
(xi,xj)∈E

wij(ψik − ψjk)2,

which can be written as

(13) C =
K∑
k=1

ΨT
kLΨk,

with the matrix L defined as in (4). The K-way normalized graph cut is
trying to minimize the following functional [17]:

(14) Cn =
K∑
k=1

ΨT
kLΨk

ΨT
kDΨT

k

+ (K − 1)
ΨT
kLΨk

Tr(D)−ΨT
kDΨk

The Cheeger cut is also related [3,9], which is trying to find a minimizer for:

(15) Cc =
K∑
k=1

ΨT
kLΨk

min((K − 1)ΨT
kDΨk,Tr(D)−ΨT

kDΨk)
.

We note that for partition matrix Ψ taking binary values, the graph cut
(12) can also be written as

(16) C =

K∑
k=1

∑
(xi,xj)∈E

wij |ψik − ψjk|,
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As is often done in the literature, the above functional of Ψ is often defined
as the (weighted) total variation of the labeling function on the graph, or
written as

(17) C =

K∑
k=1

‖∇Ψk‖1.

In (14)–(15), ds = Tr(D) is the sum of all the degrees of the graph, and
‖Ψk‖22 = ΨT

kDΨk is the square of the weighted L2 norm of the labeling
function for kth cluster. In the ideal case where the partition matrix taking
values from {0, 1}, ‖Ψk‖1 = sum(DΨk) = ΨT

kDΨk, that is the weighted L1

norm of the labeling function for kth cluster is equal to that of the weighted
L2 norm squared. Using these notations, the minimization functional for
the K-way normalized graph cut can be rewritten as

(18) Cn =
K∑
k=1

‖∇Ψk‖1
‖Ψk‖1

+ (K − 1)
‖∇Ψk‖1

ds − ‖Ψk‖1
,

and the minimization functional for the Cheeger cut is

(19) Cc =

K∑
k=1

‖∇Ψk‖1
min((K − 1)‖Ψk‖1, ds − ‖Ψk‖1)

.

The variational models for unsupervised graph partitioning can be pro-
posed as finding the binary partition matrix Ψ that minimizes the chosen
graph cut from the above. These minimization problems are combinatorial
in nature, and proven to be NP-hard [17]. Several relaxations are proposed,
such as defining the new partition matrix Φ = (φik) ∈ Rn×K satisfying
φik ∈ [0, 1] and the relaxed minimization problem for graph cut is proposed
as

(20)
Φ = argmin

φik∈[0,1]

K∑
k=1

ΦT
kLΦk

s.t. Φ1 = 1,

or in the line of (17)

(21)
Φ = argmin

φik∈[0,1]

K∑
k=1

‖∇Φk‖1

s.t. Φ1 = 1.

We note that if the ordinary graph cut (13) is chosen, then the trivial min-
imizer for the above minimization problems that all vertices belong to the
same cluster should be avoided. Several algorithms for minimizing graph-
cut (12) or normalized graph cut (14) are proposed in [17, 25, 39], which
are based on lowest eigenfunctions of the graph Laplacian L or the nor-
malized graph Laplacian Ls. Several non-linear optimization algorithms for
minimizing Cheeger cut (19) and its relaxations are described in [4, 5, 15].
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In [21, 40, 42], (21) is interpreted as the dual of a max-flow problem and
showed that the non-relaxed min-cut problem is equivalent to the continuous
max-flow problem and thus to (21). We want to emphasis that such an
equivalence is not valid for the Laplacian counter part (20). The proof
of [40,42] were given for continuous setting and (21) is the discettized version
of the corresponding continuous problems.

3.2. Variational models for semi-supervised graph partitioning. If
the vertices of the graph are partially labeled, then the graph partitioning
problem becomes semi-supervised. It is desirable to infer the labels for the
rest of the vertices from the labeled ones. In practice, the number of labeled
vertices (called training samples) is only a small fraction of the total number

of vertices. We denote those labeled samples in Vk by Sk, and S =
⋃K
k=1 Sk.

One way to utilizing the training samples is to incorporate it as a data
fidelity term in the minimization of the energy functional

(22) E(Φ) = R(Φ) + µ(Φ, Φ̂)‖Φ− Φ̂‖1,

where Φ̂ = (φ̂ik) is the n ×K labeling matrix for the training samples. Φ̂
can be written as

(23) φ̂ik =

{
1 if xi ∈ Sk,
0 otherwise.

R(Φ) is a regularization functional that can be taken as some graph cut

described in the previous sub-section [13]. The data fidelity µ(Φ, Φ̂) is taken
as a large constant defined on the training samples and zero elsewhere. Some
other improvement of the data fidelity term includes updating µ iteratively
based on the current solution of Φ [16].

Another way to incorporate this training sample data is to fix the values
of Ψ and only update the values of Ψ in the rest of the vertices, i.e. we ask

(24) φik =

{
1 if xi ∈ Sk,
0 if xi ∈ S\Sk.

and only compute the values of φik in V \S.

3.3. An effective region force for graph partitioning. We would like
to replace the data fidelity in (22) by a region force term. It is inspired
by the celebrated Chan-Vese model [6]. As in [16], Chan-Vese model for
multi-class graph partitioning can be written as

(25)
Φ = argmin

φik∈[0,1]

K∑
k=1

∑
xi∈V

(
gk(xi)‖(∇Φk)i‖+ µφik‖xi − ck‖2

)
,

s.t. Φ1 = 1,

where Φk is the kth column of Φ, ck is the centroid of each cluster in the
feature space, and gk is the edge detector function for k-th cluster. The
centroids are updated iteratively based on the current labeling. In practice,
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the centroids are calculated by the (weighted) average of the feature vectors
in each cluster. See Figure 1a for an illustration of high dimensional data
where the points of the same cluster are distributed around the centroids.
The first term in (25) is called the edge force since it penalizes the (weighted)
length of the boundary of each cluster, and the second term is the region
force because it penalizes the inhomogeneity of the feature vectors inside
each cluster.

This choice of region force is successful in image segmentation tasks, where
the feature vectors are pixel values or some transformation of local patches.
The image features are quite homogeneous in visually smooth regions, and
the centroids are characteristic of the regions. However, in some machine
learning and data clustering tasks, the feature vectors of the data points
in the same class can be varying, and the centroids may not be inside the
respective regions. A classical example is the three-moon synthetic data set,
where the centroids of the all three classes coincide and is positioned outside
of respective classes, see Figure 1b. For such cases, the region force given in
(25) will not be appropriate.

(a) Three mixed Gaussian data (b) Three-Moon data

Figure 1. (1a) The centroids are the centers of each un-
derlying Gaussian distribution, which are inside each cluster.
(1b) The centroids are the centers of each arc, which are out-
side of the arcs.

We use a novel region force term without defining centroids, but using
the affinity matrix W . It can be formally written as

(26) pk(W,xi)(1− φik) + (1− pk(W,xi))φik,

where pk is the probability measure on V characterizing the probability of
each vertex belonging to cluster Vk. It can be considered as a conditional
probability given labeled vertices.

There are several choices for choosing pk for (26). They are based on the
idea that the points “close” to the given labeled vertices should have high
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probability of having similar labels. Similar ideas can be found in [36, 37],
where a novel Markov chain based learning algorithm is proposed to infer the
unknown labels of objects from known labeled ones. In our formulation, the
conditional probability of a vertex xi’s membership in cluster Sk is calculated
as the average of the “influence” of all labeled vertices in Sk. For instance, we
assume that the “influence” of a labeled vertex xj ∈ Sk to the given vertex xi
is inversely proportional to the diffusion distance (proposed in [10]) between
them. The m-th diffusion distance between two vertices xi, xj , denote by

d(m)(xi, xj), characterizes the rate of connectivity between two points xi, xj
through m edges. In particular when m = 1, it is the rate of connectivity
between two neighbors, and when m = 2, it is the rate of connectivity
between two second neighbors (vertices connected by two edges). It is small
if there are a large number of weighted paths of length m connecting xi and
xj . In this case, we can calculate pk as

(27) pk(W,xi) =

1
|Sk|

∑
j∈Sk

(d(m)(xi, xj))
−1

K∑
r=1

1
|Sr|

∑
j∈Sr

(d(m)(xi, xj))−1

.

Let Ŵ = D−1/2WD−1/2 be the normalized affinity matrix and Ŵm = (ŵ
(m)
ij )

be them-th power of it. Them-th diffusion distance can be calculated by [10]

(28) d(m)(xi, xj) = ŵ
(m)
ii + ŵ

(m)
jj − 2ŵ

(m)
ij .

Another way to calculate pk can be

(29) pk(W,xi) =

1
|Sk|

∑
j∈Sk

qij

K∑
r=1

1
|Sr|

∑
j∈Sr

qij

,

where

(30) qij =
(ŵ

(m)
ij )2

ŵ
(m)
ii ŵ

(m)
jj

.

In case when the denominator is zero, we set pk(W,xi) = 1
K . In this paper,

we use m = 1 or 2, which are found to have good performance in practice.
For m = 1, the complexity of computing pk is O(Kd|S|), where d is the
average degree of a vertex and |S| is the total number of labeled points. We

note that for m = 2, it is unnecessary to compute Ŵ 2 in order to obtain

ŵ
(2)
ij for selected j ∈ Sk. It is readily checked that

(31) ŵ
(2)
jj = ‖Ŵj‖2

where Ŵj is the j-th column of Ŵ ; and

(32) Ŵ 2
j = ŴŴj
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for j-th column of Ŵ 2. Only j ∈ Sk(k = 1, . . . ,K) are needed, usually a
small fraction of all columns, i.e., |S| � |V |. In summary the complexity of
computing pk for m = 2 is O(Kd|S||V |).

Replacing the region force term in (25) by (26) we have a new model
(33)

Φ = argmin
φik∈[0,1]

(1− τ)
K∑
k=1

∑
xi∈V

gk(xi)‖(∇Φk)i‖+ τ(pk(W,xi)(1− φik) + (1− pk(W,xi))φik),

s.t. Φ1 = 1,

where τ ∈ (0, 1). It is a convex optimization problem. For all the application
condidered in this work, the edge detector gk can be set to be constant 1.
Under this relaxation, we rewrite the above model as
(34)

Φ = argmin
φik∈[0,1]

(1− τ)
K∑
k=1

∑
xi∈V

‖(∇Φk)i‖+ τ(pk(W,xi)(1− φik) + (1− pk(W,xi))φik),

s.t. Φ1 = 1.

As a quadratic relaxation of (34), we have
(35)

Φ = argmin
φik∈[0,1]

1− τ
2

K∑
k=1

∑
xi∈V

‖(∇Φk)i‖2 + τ(pk(W,xi)(1− φik) + (1− pk(W,xi))φik),

s.t. Φ1 = 1.

Comparing this model with the model in (20), a region force has been added.
The objective functional of this convex optimization problem is differen-
tiable.

As an extreme case, if no vertices are labeled, then for each cluster Vk, pk
is defined as the uniform distribution

(36) pk(W,xi) =
1

K
,

and the proposed models (34)–(35) has trivial solutions.
We could also add the region force of (22) to our model or fix the label

values at the sample points as in (24). We find that this is not increasing
the accuracy in most of the cases, especially when there are sampled points
near the boundary of the classes. Thus, we have chosen not to do so in our
tests given later.

Given a partition matrix Φ taking values on [0, 1], the label for each vertex
xi is calculated by argmax

1≤k≤K
φik.

3.4. Algorithms for solving graph partitioning with a region force.
In this section, we describe iterative algorithms for solving (34)–(35). In the
following, we define P = (pik) as an n×K matrix with pik = pk(W,xi), and
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Φk is the kth column of Φ. (35) can be written as

(37)
Φ = argmin

φik∈[0,1]

1− τ
2

K∑
k=1

〈Φk, LΦk〉+ τ(〈pk,1− Φk〉+ 〈1− pk,Φk〉),

s.t. Φ1 = 1.

It is a quadratic minimization problem with convex constraint. It can be
solved by projected gradient method with Barzilai-Borwein step sizes [12].
The feasible domain for (37) is

(38) ∆ = {Φ ∈ Rn×K : Φ1 = 1}.

The objective functional in (37) is denoted by J(Φ). Then the projected
gradient method for solving (37) in one iteration can be written as

(39) Φ(j+1) = Π∆(Φ(j) − α(j)∂J(Φ(j))Λ(j)),

where α(j) = 1 by default, Λ(j) is an K × K diagonal matrix with diag-

onal entries (λ
(j)
1 , . . . , λ

(j)
K ) equal to the step sizes for the gradient descent

directions. The step sizes λ
(j)
k alternate between the two choices

(40) λ
(j)
k =

‖s(j−1)
k ‖2

〈s(j−1)
k ,y

(j−1)
k 〉

,

and

(41) λ
(j)
k =

〈s(j−1)
k ,y

(j−1)
k 〉

‖y(j−1)
k ‖2

,

where s
(j−1)
k and y

(j−1)
k are kth columns of s(j−1) = Φ(j) − Φ(j−1) and

y(j−1) = ∂J(Φ(j)) − ∂J(Φ(j−1)) respectively. The projection operator onto
the feasible domain Π∆ is implemented by the fast algorithm proposed in [8],
the complexity of which is O(|V |K logK). The projected gradient algorithm
does not guarantee the decreasing of the objective functional. To ensure
sufficient decreasing, a non-monotone line search is taken by decreasing the
parameter α(j) in (39), based on Armijo-type acceptability test (see [12] and
the references therein)

(42) J(Φ(j+1)) ≤ J(Φ(j)) + θTr(∂J(Φ(j))Ts(j)),

for some small constant θ > 0. It is summarized as Algorithm 1 (named as
LapRF). The stopping criterion is chosen as

(43) |J(Φ(j+1))− J(Φ(j))| ≤ εJ(Φ(j))

for some small ε > 0. The complexity of each outer iteration is dominated by
computing projected gradient as in (39), which is O(Kd|V |+ |V |K logK).
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Algorithm 1 Laplacian-based multi-class graph partitioning with a region
force (LapRF)

Require: L, P = [p1 . . . pK ], τ
Ensure: Φ

1: function LapRF
2: while “not converged” do
3: α = 1;
4: calculate Φ by (39);
5: while (42) is not satisfied do
6: α = 0.8α;
7: re-calculate Φ by (39);
8: end while
9: end while

10: return Φ.
11: end function

Next, we describe the algorithm for solving (34). First, we rewrite it using
simpler notations for the variables as

(44)
Φ = argmin

φik∈[0,1]

K∑
k=1

(1− τ)‖∇Φk‖1 + τ(〈pk,1− Φk〉+ 〈1− pk,Φk〉),

s.t. Φ1 = 1.

We first note that the variational formulation for total variation

(45) ‖∇Φk‖1 = max
qk∈Rn×n, ‖qk‖∞≤1

〈Φk, divqk〉,

then the minimization problem (44) can be proposed as a saddle-point prob-
lem

(46) min
Φ∈∆

max
‖qk‖∞≤1

K∑
k=1

(1− τ)〈Φk, divqk〉+ τ(〈pk,1− Φk〉+ 〈1− pk,Φk〉).

This saddle point problem can be solved by primal-dual hybrid gradient
method, which alternates between two steps: gradient ascent for dual vari-
ables qk and gradient descent for primal variable Φk [44]. More specifically,
they are

q
(j)
k = Π‖qk‖∞≤1(q

(j−1)
k − β(j−1)∇Φ

(j−1)
k ) for j = 1, . . . ,K,(47a)

Φ(j) = Π∆(Φ(j−1) − γ(j−1)((1− τ)divQ(j) + τ(1− 2P ))),(47b)

where Q = [q1 . . . qK ]. The choice for the step sizes β, γ follows the theoreti-
cal analysis in [1]. It is summarized as Algorithm 2 (named as TVRF). Line
5 of this algorithm is solved by hard-thresholding and line 7 is calculated
by the projection onto simplex algorithm described in [8]. The stopping cri-
terion is similar to (43). The complexity of each iteration is dominated by
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Algorithm 2 TV-based multi-class graph partitioning with a region force
(TVRF)

Require: P = [p1 . . . pK ], W , {βl = 0.2l}, {γl = 0.1/(1 + 0.1l)}, τ
Ensure: Φ

1: function TVRF
2: l = 0,
3: while “not converged” do
4: for k = 1 . . .K do
5: calculate ∇Φk,
6: qk = Π‖qk‖∞≤1(qk − βl∇Φk),
7: end for
8: calculate divQ,
9: Φ = Π∆(Φ− γl((1− τ)divQ+ τ(1− 2P ))),

10: l = l + 1,
11: end while
12: return Φ.
13: end function

computing (47), in which O(Kd|V |) for (47a) and O(Kd|V | + |V |K logK)
for (47b).

4. Numerical experiments

In this section, we evaluate the performance of our proposed algorithms on
several benchmark semi-supervised learning data sets, including Text, COIL,
Opt-Digits and MNIST. Text and COIL data sets are from the supplementary
material of [7] (http://olivier.chapelle.cc/ssl-book/benchmarks.html).
Opt-Digits comes from “UCI machine learning repository” (http://archive.
ics.uci.edu/ml/datasets.html). MNIST is from “The MNIST Database of
Handwritten Digits” (http://yann.lecun.com/exdb/mnist/). The num-
ber of classes of these data sets are known. Among them Text is binary
class, while the rest are multi-class. Also we test against a synthetic data
set – the three-moon model. The basic properties of the benchmark data
sets are shown in Table 1.

Table 1. Basic properties of the benchmark data sets.

Data set Classes Dimension Points
Three Moon 3 100 1500

COIL 6 241 1500
Text 2 11,960 1500

Opt-Digits 10 64 5620
MNIST 10 784 60,000

As the formulation for the graphical model, k-NN graphs are constructed
for the data sets. Here we make use of an implementation of the randomized

http://olivier.chapelle.cc/ssl-book/benchmarks.html
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://yann.lecun.com/exdb/mnist/
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kd-tree [24, 28], called VLFeat [34], for finding k-nearest neighbors. Except
for Text data set, the Zelnik-Manor and Perona weight function (2) are
used, with the standard deviations estimated by the distance from the k-th
nearest neighbor to the current point. Text data set uses cosine similarity
weight function.

We apply Algorithm 1 (LapRF) and Algorithm 2 (TVRF) respectively
with different number of randomly selected training samples for these data
sets. Unless specified otherwise, in Algorithm 1 we choose τ = 0.4 and in
Algorithm 2 τ = 0.8. pk is calculated by (29) for m = 1 or m = 2. As for the
region force term (26), the conditional probability pk is calculated by (29).
The stopping criteria for LapRF and TVRF are (43) for ε = 10−6, with
maximum number of outer iterations is set to 100. The correction rate, or
accuracy is defined as the percentage of correctly labeled data points. The
accuracy for the classification results of COIL, Text and Opt-Digits are
compared with five existing methods: k-NN, SGT, LapRLS, SQ-Loss-I and
MP where the results are taken from [31]. The Three Moon and MNIST are
compared against recently proposed methods called multiclass Ginsburg-
Landau MBO scheme (multiclass-MBO) [13], since these two data sets are
not listed in the previous reference [31].

In the tables in the testing examples given in the following, l is the number
of labeled sample points. The number in the brackets after l is the percentage
of the samples compared with the total number of input data. The tables
show the accuracy of the corrected computed labels.

4.1. Three Moon data set. The three-moon synthetic data is constructed
by three one-dimensional half circles with added gaussian noise. Here we
choose the three circles are centered at (0,0), (3,0), (1.5, 0.4) respectively
with radius 1, 1, and 1.5. 500 points are uniformly sampled from each half
circle. They are embedded into R100 by appending zeros to the coordinates
and i.i.d Gaussian noise of standard deviation equal to 0.14 are added to
each entry of the coordinates. See Figure 2a for an illustration in the first
two dimensions.

A k-NN graph with k = 10 is built for the data set. The distance metric is
set to be the Euclidean distance between two points in R100. Total number
of l = 25, 50, 75 labeled samples are used for testing the accuracy of the
partitioning, where each l is tested with 10 different sets of randomly selected
labeled samples. For comparison, we calculate pk by (29) for both m =
1 and 2. Some illustrations of pk and the final partition results are in Figures
2c-2f. The average rate of correctly labeled points for each l is listed in
Table 2, comparing also with multiclass-MBO method, the parameters of
which are the same as in [13]. From Table 2, we see that all the methods
perform rather well with high sample rate (5%). With low sample rate, i.e.
l = 25, 50, the proposed method TVRF outperform the multiclass MBO by
a huge margin.
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(a) Groud truth labels (b) 25 randomly sampled
labels in black

(c) Calculated pk by (29)
for m = 1

(d) Partition result by
TVRF (m = 1)

(e) Calculated pk by (29)
for m = 2

(f) Partition result by
TVRF (m = 2)

Figure 2. Three-moon synthetic data. Each point is colored
by RGB vector (p1, p2, p3) up to a proper scaling. The RGB
vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) represent blue, green
and red respectively. For black points p1 = p2 = p3 = 1/3.
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Table 2. Comparison of accuracy (%) for different numbers
(l) of labeled samples using various algorithms for three-
moon.

l 25 (1.25%) 50 (2.5%) 75 (5%)

multiclass MBO 68.3 84.1 94.3
LapRF (m = 1) 95.1 96.4 98.1
TVRF (m = 1) 96.4 98.2 98.4
LapRF (m = 2) 96.4 97.9 98.5
TVRF (m = 2) 96.4 98.2 98.6

Next, we compare the result of TVRF (Algorithm 2) with that of mini-
mizing the functional (22) that uses data fitting defined only on the points
that are labeled, i.e we compare our model with the model in (22). More
exactly, we solve the minimization problem

(48)
Φ = argmin

φik∈[0,1]

K∑
k=1

(1− τ)‖∇Φk‖1 +
∑
xi∈V

τk(xi)(1− Φk(xi)),

s.t. Φ1 = 1,

where

(49) τk(xi) =

{
τ if xi ∈ Sk,
0 otherwise.

We compare the result obtained from solving (48) (TV with point-wise data
fidelity, abbreviated as TVP) and that of region force penalty (TVRF) using
the same parameters (in particular τ = 0.8). The average rate of correctly
labeled points for each l is listed in Table 3. We can see that the region force
has a significant contribution to the partition accuracy. Compared with the
data fidelity that defined only at the already labeled points, using region
force gives much better accuracy especially in the low labeling rate cases.

Table 3. Comparison of accuracy (%) for different numbers
(l) of labeled samples using TVRF and TVP (48) for
Three-Moon.

l 25 (1.25%) 50 (2.5%) 75 (5%)

multiclass MBO 68.3 84.1 94.3
TVP 60.0 73.5 93.4

TVRF (m = 1) 96.4 98.2 98.4

These comparisons show that the combination of total variation (TV)
and the region force can be competitive against existing methods, especially
when the sample rate of the labeled data is low. We also note the slight
difference between TVRF (m = 1) and TVRF (m = 2). The difference lie
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in the calculation of conditional probability pk(xi) of an unknown label given
existing labels. The former one (m = 1) considers the direct neighbors of the
labeled points and latter (m = 2) uses the second neighbors. From Figures
2c 2e we can see that in m = 2 case, pk is non-trivial for almost all points,
which places strong assumption on the probability of the labels. It is useful
when the noise in the data is large (see the Text data set below). However,
for m = 2 the computational complexity of pk is bigger (O(Kd|S||V |)) than
m = 1’s O(Kd|S|).

4.2. MNIST data set. The MNIST data set consists of 70,000 size-normalized
and centered 28×28 images of handwritten digits 0-9. So there are 10 classes
of data, and they are roughly balanced. We use the training set of 60,000
points. The task is to partition the data set into 10 classes, given relative
few labeled samples.

A k-NN graph with k = 10 is built for the data set. The distance metric
is set to be the Euclidean distance between two points as 784 dimensional
vectors. In Algorithm 1 (LapRF) we choose τ = 0.5 for the case m = 1,
and τ = 0.4 for the case m = 2. In Algorithm 2 (TVRF) τ = 0.9 for the
case m = 1 and τ = 0.6 for m = 2. For TVP, τ = 0.99 is used for (48).
Total number of l = 150, 300, 600 labeled samples are used for testing the
accuracy of the partitioning, where each l is tested 10 times. The average
correction rate for each l is listed in Table 4. We can see that the correction
rate is very high even for very low sample rate of labeled data.

We have also done other tests as were done for the three-moon data
set. The conclusions are essentially similar, i.e. our model gives substantial
improvement of labelling accuracy when the sample rate is relatively low.
TVRF with m = 1 (and some times m = 2) produces the best accuracy
in comparison with mutlclass-MBO, LapRF and TVP. The results with our
proposed region force gives clearly better results than without it.

Next, we simply threshold pk calculated by (29) for m = 2 to parti-
tion the data set. More exactly, the label for a point xi is calculated by
max
k

pk(W,xi). The result is recorded also in Table 4. We can see that the

region force in the case of m = 2 alone cannot do a good job partitioning
the data set with low rate of labeled data, but the graph cut minimization,
or equivalently total variation (TV) minimization significantly improves the
partition accuracy.

As for the time comparison, we perform all testing on MATLAB on a
Linux machine with octa-core Intel Core i7-4770S CPU at 3.10GHz and
7.7GB memory. The construction of k-NN graph with k = 10 using VLFeat

[34] takes 26.7 seconds. The rest of the computation time are shown also
in Table 4. The MBO method takes into account of the time spent on
calculating the eigenvectors. We can see that TVRF is at least 10 times
faster than multiclass-MBO, and the correction rate is better.

We also note that in our experiment, we make use of no image features
other than the pixel values that form the data vector. Of course, if the
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Table 4. Comparison of accuracy (%) for different numbers
(l) of labeled samples using various algorithms for MNIST data
set. multiclass MBO includes the time for computing eigen-
vectors of W .

l 0.25% 0.5% 1% ave. time (s)

pk(m = 2) 35.5 52.3 71.5 0.4
TVP 83.7 86.3 90.8 66

multiclass MBO 73.0 90.1 94.9 845
LapRF (m = 1) 84.2 90.9 95.1 18
TVRF (m = 1) 93.4 96.4 96.8 66
LapRF (m = 2) 91.0 94.2 95.6 14
TVRF (m = 2) 94.6 96.6 96.7 61

images are preprocessed by some advanced filters before constructing the
affinity matrix, the accuracy of clustering result can be improved. Here
we experiment with the adjacency matrix A provided in [38] and also used
in [3]. There A is a binary matrix characterizing the k-NN graph structure
for k = 10. The distance is not defined as the Euclidean distance between
two vectors of image pixel values, but is calculated by extracting scattering
features in the images first before using the new feature vectors to define the
distance. The scattering features is proposed in [20] for signal processing.
Using this A we compute W as a weighted affinity matrix, where the indices
of nonzeros are the same as A, but the values are recalculated by (2). We
then use this W for TVRF (m = 2) and compare the results with the Multi-
class Total Variation (MTV) method [3], which is based on some relaxation
of Cheeger cut. MTV can be used for both unsupervised and semi-supervised
clustering, and here we can compare with the semi-supervised version. The
comparison is shown in Table 5. We can see that our method compares well
with MTV in speed and accuracy.

Table 5. Comparison of accuracy (%) using scattering fea-
tures of images for constructing adjacency/affinity matrix for
MNIST data set. The average running time in seconds are in-
side the parentheses.

l 0.25% 0.5% 1%

MTV 97.56 (110) 97.66 (70) 97.64 (65)
TVRF (m = 2) 97.52 (60) 97.66 (64) 97.70 (55)

4.3. COIL data set. The Columbia object image library (COIL-100) is a
set of color images of 100 different objects taken from different angles (in
steps of 5 degrees) at a resolution of 128 × 128 pixels. To create our data
set, we first down-sampled the red channel of each image to 16 × 16 pixels
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by averaging over blocks of 8 × 8 pixels. We then randomly selected 24 of
the 100 objects (with 24 × 360/5 = 1728 images). The set of 24 objects
was partitioned into six classes of four objects each. We then randomly
discarded 38 images of each class, to leave 250 each.

A k-NN graph with k = 5 is built for the data set. The distance metric
is set to be the Euclidean distance between two images as 241 dimensional
vectors. In Algorithm 1 we choose τ = 0.1 and in Algorithm 2 τ = 0.8. Total
number of l = 50, 100, 150 labeled samples are used for testing the accuracy
of the partitioning, where each l is tested 10 times. The average rate of
correctly labeled points for each l is listed in Table 6. In this case, TVRF
(m = 1) is consistently better or at least comparable to other methods.

Table 6. Comparison of accuracy (%) for different numbers
(l) of labeled samples using various algorithms for COIL.

l 50 (3.3%) 100 (6.7%) 150 (10%)

k-NN 66.9 79.2 83.5
SGT 78.0 89.0 89.9

LapRLS 78.4 84.5 87.8
SQ-Loss-I 81.0 89.0 90.9

MP 78.5 90.2 91.1
LapRF (m = 1) 71.7 87.0 91.0
TVRF (m = 1) 80.3 90.0 91.7

4.4. Opt-Digits data set. Preprocessing programs made available by NIST
are used to extract normalized bitmaps of handwritten digits from a preprinted
form. 32× 32 bitmaps are divided into non-overlapping blocks of 4× 4 and
the number of on pixels are counted in each block. This generates an input
matrix of 8× 8 where each element is an integer in the range 0 to 16.

A k-NN graph with k = 10 is built for the data set. The distance metric
is set to be the Euclidean distance between two images as 64 dimensional
vectors. Total number of l = 50, 100, 150 labeled samples are used for test-
ing the accuracy of the partitioning, where each l is tested 10 times. The
average rate of correctly labeled points for each l is listed in Table 7. In this
case, TVRF (m = 1) is consistently better or at least comparable to other
methods.

4.5. Text data set. This is the 5 comp.* groups from the Newsgroups
data set and the goal is to classify the ibm category versus the rest [33].
A tf-idf (term frequency – inverse document frequency) encoding resulted
in a sparse representation with 11,960 dimensions. For the benchmark, 750
points of each class have been randomly selected and the features randomly
permuted.

A k-NN graph with k = 50 is built for the data set. The distance metric
is set to be the cosine similarity between two points as 11960 dimensional
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Table 7. Comparison of accuracy (%) for different numbers
(l) of labeled samples using various algorithms for
Opt-Digits.

l 50(0.89%) 100(1.78%) 150(2.67%)

k-NN 85.5 92.0 93.8
SGT 91.4 97.4 97.4

LapRLS 92.3 97.6 97.3
SQ-Loss-I 95.9 97.3 97.7

MP 94.7 97.0 97.1
LapRF (m = 1) 79.0 95.2 96.8
TVRF (m = 1) 95.9 97.2 98.3

vectors. In Algorithm 1 (LapRF) we choose τ = 0.9 and in Algorithm 2
(TVRF) τ = 0.9. Total number of l = 50, 100, 150 labeled samples are used
for testing the accuracy of the partitioning, where each l is tested 10 times.
The average correction rate for each l is listed in Table 8. Again, our method
produces better or nearly as good results as the state-of-art methods. For
this examples, we observe that the choice m = 2 for calculating pk performs
better than m = 1 in the clustering result.

Table 8. Comparison of accuracy (%) for different numbers
(l) of labeled samples using various algorithms for Text data
set.

l 50 (3.3%) 100 (6.7%) 150 (10%)

k-NN 71.6 72.3 74.5
SGT 73.1 77.0 78.1

LapRLS 71.2 74.2 76.2
SQ-Loss-I 74.1 76.8 76.6

MP 73.0 75.4 77.9
LapRF (m = 1) 69.4 73.5 77.2
TVRF (m = 1) 71.3 75.2 77.9
LapRF (m = 2) 73.4 77.4 79.0
TVRF (m = 2) 74.5 78.1 79.4

These examples show that the combination of total variation (TV) and
the region force compare favorably to existing methods. In the calculation
of pk, the choice of m = 1 has similar or better performance than that of
m = 2, except for the Text data set.

5. Conclusions

In this paper we presented two graph based algorithms for clustering high-
dimensional data given a few portion of training samples. The first algorithm
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is based on minimizing a convex functional combining the Rayleigh quotient
for the graph Laplacian and a region-force term, subject to a simplex feasible
domain. The second algorithm is similar to the first one, except that the
Rayleigh quotient for the graph Laplacian is replaced by the total variation of
the labeling function defined on the graph [4, 13, 15]. These two algorithms
are related to the spectral clustering algorithms in the use of the graph
Laplacian and the concept of minimizing the graph cut, although without
the need of computing the eigenfunctions of the graph Laplacian as in related
methods such as [13,15]. They are also inspired by the celebrated Chan-Vese
model in the use of the region force. However the region force proposed in
this paper is novel, because there is no need of computing the centroids of
the heuristic regions. The new region force characterized the probability of
each unlabeled points belonging to each cluster, conditioned on the given
labeled points. The conditional probability is calculated based on some
average diffusion distance to the labeled points of the same cluster.

The k-nearest-neighbor (k-NN) graph structure is used throughout the
discussion. It is based on the assumption that the sub-graph of each clus-
ter can be embedded onto a low-dimensional smooth manifold. However,
our algorithm can run without on this assumption. We also note that the
sparsity of the graph contributes to the linear scaling of our algorithm.

The feasible domain is a unit K-simplex, characterizing the probability
of each point belonging to each of the K clusters. In the end each point
is assigned to the cluster with the largest probability. This avoids doing
one-versus-all clustering for multiple times.

The numerical tests on several popular benchmark data sets demonstrate
the promise of our algorithm: it is competitive with some state-of-the-art
methods, especially for TVRF algorithm when the rate of labeled data is
low. In all this tests, very little data-dependent features are explored, but
only the simplest kernel functions based on the Euclidean distance or cosine
similarity are used. We note that the need of parameter tuning is minimal
in our algorithm. In the numerical examples presented in this paper, only
the number of neighbors k (as in k-NN) and the parameter τ balancing the
edge force and region force are slightly different from case to case.

Labelling techniques related to spectral clustering through graph Lapla-
cian is still widely used in the industry. Tests given in this work show that
replacing the Laplacian term by the corresponding TV energy improve the
accuracy and in some cases rather substantial. The minimization prob-
lem related to the Laplacian is quadratic and thus easy to solve. However,
through some proper primal-dual approaches, the costs for solving the non-
linear TV model is not much higher than solving the quadratic Laplacian
models.
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