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Abstract

In this paper, we propose a block nonlocal total variational (TV) regularization for image restoration.
We extend the existing nonlocal TV method into two aspects: firstly, some block nonlocal operators are
introduced to extend the point based nonlocal diffusion as a block based nonlocal diffusion process; secondly,
the weighting function in the nonlocal methods can be adaptively determined by the cost functional itself.
The proposed method is derived from a block based maximum a posteriori (MAP) estimation. By the
assumption of the self similarity of small patches, we formulate a regularization term as a log-likelihood
functional of a mixture model. To optimize this regularization term efficiently, we employ the idea of
the expectation maximum algorithm and give a variational framework to propose a block based nonlocal
TV regularization. The weighting function occurred in our model can be regarded as a probability of the
similarity for images patches, and it can be updated adaptively according to the newest estimation. Beside,
we mathematically prove the existence of minimizer for some of the proposed models. Compared with the
nonlocal TV method, numerical results show that our method can greatly improve the quality of the restored
images, especially under heavy noise.

1. Introduction

Image denoising is a fundamental and active research field in image processing. The goal of image
denoising is to recover a true image from some noisy observed data. The classical noise model is additive
Gaussian noise, that is,

v = u+ n,

where v is the observed image, u is the true image and n stands for noise.
A vast variety of methods for image denoising are available after several decades of developments[3]. Gaus-

sian (Gabor) filters[15] and anisotropic diffusion[20] are the early denoising approaches. Statistical methods
(e.g.,[1]) considering the noise as a random variable is a popular denoising technique. They are mainly
based on maximum likelihood estimator (MLE) and Bayesian maximum a posteriori (MAP). Variational
approaches (e.g.,[21, 22]) is another popular and powerful technique for image denoising. The variational
methods obtain a clean image by minimizing a cost functional which typically consists of a fidelity term
and a regularization term. Of course, all these methods are not separated from each other, such as many
methods can be viewed within the variational framework. But variational method is more highly valued
since the total variation (TV) based-ROF model was proposed in [22]. The ROF model is a classical and
efficient model to remove Gaussian noise, and many variants [19, 16] based on TV had been designed for
different denoising tasks due to its good edges-preserving properties. However, the results obtained with TV
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could be piecewise constant and the image details such as textures could be removed together with noise. In
order to better preserve image textures and repetitive structures, nonlocal denoising methods have gained
considerable attention in recent years. The concept of nonlocal averaging was introduced by Yaroslavsky via
an nonlocal neighborhood filter [26]. Nonlocal neighborhood filter averages the value at point x based on
points y with similar values which can be located far from x. A well-known nonlocal method based on patch
distances extending this idea is the nonlocal means [2] proposed by Buades etc.. The novelty of the nonlocal
mean is to introduce the patch distances, i.e. the value at point y is used to denoise that at x if the local
value pattern near y is similar to the local value pattern near x [23]. A variational interpretation of nonlocal
means was given in [14, 9]. Motivated by the nonlocal mean and the graph theory, the nonlocal TV varia-
tional framework base on nonlocal operators was proposed in [10]. The weighting function occurred in these
nonlocal methods play a very important role in the task of denoising. Although the above nonlocal methods
show superior performance in textured or structure repeated images, the weights in the nonlocal method are
given and fixed. It may give a bad estimation for the weights and lead to a undesirable restoration under the
heavy noise. Furthermore, the estimation in these methods is point by point, it may not robust for heavy
noise. Many block based methods [7, 6, 12, 13] have shown that the block based estimation can improve the
precision and be more robust to noise. Based on overlapping-patches technique and sparsity, block based
nonlocal image denoising methods have been proposed in recent years, e.g. patch-based near-optimal image
denoising (PLOW)[5], locally learned dictionaries (K-LLD) [4], clustering-based sparse representation (CSR)
[8], a weighted dictionary learning model[17], the expected patch log likelihood (EPLL) [27] and so on.

In this work, we formulate a block based nonlocal maximum a posterior estimation (MAP) framework,
in which we construct a nonparametric mixture model to describe the prior probability density function for
the small image patches. Instead of optimizing such a complicated regularization term derived from the
mixture model, we propose a variant which comes from a well-known expectation maximum (EM) process.
It lead to a block diffusion based BNLH1 model with an adaptive weighting function. The BNLH1 model
can be regarded as an extension of nonlocal means method. We also prove the existence of minimizer for
such a BNLH1 model with minimizing sequence method. It is well-known that the L1 norm has a better
performance on noncontinuity preservation than L2, so we define a block nonlocal TV operator, and propose
a block nonlocal (BNLTV) TV model . The BNLTV can be efficiently solved by many recently popular
splitting algorithms such as augmented Lagrangian [25], splitting Bregman [11] methods and ADMM[24].
Compared with the existing nonlocal TV, the experimental results in this paper show that our method can
greatly improve the quality of the reconstruction.

The rest of the paper is organized as follows: in section 2 we review some basic definitions and properties
of the existing point based nonlocal TV operator. A block based maximum a posterior estimation (MAP)
model and the two block nonlocal variational models BNLH1 and BNLTV are proposed in section 3; section
4 presents the algorithms and some details about the implementation; experimental results are shown in
section 5; we summarize our method and conclude the paper in section 6.

2. Nonlocal TV

In this section we will review some basic defintions of point based nonlocal derivative, nonlocal gradient,
nonlocal divergence and Laplace operator as following [10].

Let Ω ⊂ Rn, u : Ω → R, w : Ω× Ω → R be a symmetric and nonnegative weighting function.
Nonlocal derivative of u at x with respect to y can be defined as

∂yu(x) := (u(y)− u(x))
√
w(x, y), x, y ∈ Ω,

then the nonlocal gradient operator ∇w : F1(Ω;R) → F2(Ω× Ω;R), where F1(Ω;R)
.
= {u : Ω → R}, F2(Ω×

Ω;R) .
= {v : Ω× Ω → R}, is defined as

(∇wu)(x, y) = (u(x)− u(y))
√
w(x, y),

the nonlocal divergence operator divw : F2(Ω × Ω;R) → F1(Ω;R) defined as the adjoint of the nonlocal
gradient is given by :

(divwv)(x) =

∫
Ω

(v(x, y)− v(y, x))w(x, y)dy,
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obviously, the Laplace operator ∆w : F1(Ω;R) → F1(Ω;R) will be

(∆wu)(x) =
1

2
divw((∇wu)(x, y)) =

∫
Ω

(u(y)− u(x))w(x, y)dy.

Noting that w(x, y) = w(y, x), one can easily verify the adjoint equality

< ∇wu, v >=< u,−divwv >,

and obtain the following results: ∫
Ω×Ω

divwvdxdy = 0.

< ∆wu, v >=< u,∆wv >,

< ∆wu, u >= − < ∇wu,∇wv >≤ 0.

In the definition of nonlocal operator, the weighting function is alway to assume as a known one or selected
empirically. However, it is easy to see that the weighting function plays a key role in image denoising. If the
empirically chosen weighting function is not good, the restoration would be very bad. Besides, the diffusion
of ∆w is point based one and this leads to that the pixel reconstruction would be point by point, thus it may
be not robust enough. if the noise level is high. In order to solve these problems, we will extend the above
definitions to some block based new ones.

3. The Proposed Methods

3.1. Statistical Methods

In this section, we shall propose a block based maximum a posteriori estimation (MAP) for nonlocal
method, in which the weighting function can be determined by the cost functional itself and also can be
updated in the iterations.

3.1.1. Block Based Maximum a Posteriori (MAP) Estimation

Let Ω be a 2 dimensional discrete set. v : Ω → R is the observed noisy image, and u : Ω → R stands for
the latent clear image. Denote B as a small symmetrical neighborhood centered at 0, i.e. B = {x : ||x|| < r}.
Moreover, we use uB(x) to represent a small image block of u, namely, uB(x) = {u(x+ z) : z ∈ B}. All the
observed image blocks vB(x), x ∈ Ω can be regarded as some realizations of a random vector ξ. The MAP
estimation problem for u can be written by

u∗ = argmax
u

p(uB|vB) = argmax
u

p(vB |uB)p(uB)

p(vB)
.

Since p(vB) is known for any given noisy image v, thus the MAP problem is equivalent to

u∗ = argmax
u

{ln p(vB |uB) + ln p(uB)}. (1)

From the noisy model, one can easily find

p(vB|uB) ∝ exp

(
− (u− v)2

2σ2

)
,

where σ is the standard deviation of the Gaussian noise.
p(uB) is a priority term for u. As to natural images, there are usually many similar and repeated

structures or textures in the sense of small blocks. We will construct a nonparametric mixture model to
describe such a priority. Once u is estimated, the histogram of all the block uB(y), y ∈ Ω can be calculated
with the formulation ∑

y∈Ω

δ(z− uB(y)).
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Here δ is a vector-valued function which count the number of blocks whose structures are the same as z, i.e.

δ(x) =

{
1, x = 0,
0, else.

For calculation convenience, usually δ can be approximated by a Gaussian function

δh(x) =
1

(πh)
|B|
2

exp

(
−||x||2

h

)
,

where h > 0 is a parameter which controls the the precision of this approximation.
Assume all the clear image blocks uB(x), x ∈ Ω are some realizations of a random vector with the

probability density function

p(z) =
1

|Ω|
∑
y∈Ω

δh(z− uB(y)),

then according to the independent identify distribution assumption, one can obtain

p(uB) =
1

|Ω||Ω|

∏
x∈Ω

∑
y∈Ω

δh(uB(x)− uB(y)).

Therefore, ignoring any constant terms, the problem (1) becomes

u∗ = argmin
u

E(u) =
λ

2

∑
x∈Ω

(u(x)− v(x))2 −
∑
x∈Ω

ln
∑
y∈Ω

δh(uB(x)− uB(y))

 . (2)

The first term in the above cost functional is the fidelity term, which is used to measure the difference
between the noisy image v and clear image u in terms of noisy model. The second term can be regraded
as a regularization term, which describes the similarity among the small image blocks uB(x). λ > 0 is a
regularization parameter which balances these two terms.

To optimize E(u) directly is not easy since the second regularization term, which is derived from a mixture
model, is associated to a complex nonlinear equation if we employ the first order optimization conditions.
However, this problem can be greatly simplified by the well-known expectation maximum (EM) algorithm.
For convenience, we denote

E1(u) = −
∑
x∈Ω

ln
∑
y∈Ω

δh(uB(x)− uB(y)).

The key idea of EM algorithm to solve such a problem as following: in order to minimize E1(u), we turn to
construct another function H(u;un) which can be easily optimized and has a proposition

Proposition 3.1. If H(un+1;un) ⩽ H(un;un), then E1(u
n+1) ⩽ E1(u

n), where n is an iteration number.

According to this proposition, the value of E1 would be descended during the iteration of minimizing H.
Therefore, the original optimization problem of E1 can be replaced by finding the minimizer of H, which is
easier to be minimized.

In the next sections, we will give the formulation of H and give a variational interpretation for such a
EM process.

3.1.2. Expectation Maximum (EM) Process and Weighting Function

Please note to minimize E1 is a standard parameters estimation problem of mixture model. We assume
that all the small image blocks uB(x), x ∈ Ω can be divided into |Ω| classes (Some classes may be empty).
Let we introduce a latent integer random variable, whose values are in the range of {1, 2, · · · , |Ω|} and each
η(x) indicates that each image block uB(x) centered at x should belongs to the η(x)-th classes. We use a
function ω(x, y) to represent the probability of each block uB(x) belongs to y-th classes. According to the
standard EM method, the expectation step can be written as
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E-step:

ωn(x, y) = P{η(x) = y|un
B(x)} =

δh(u
n
B(x)− un

B(y))∑
y∈Ω δh(un

B(x)− un
B(y))

. (3)

Then the related maximum step is
M-step:

un+1 = argmax
u

{
−
∑

x∈Ω

∑
y∈Ω ln (δh(uB(x)− uB(y)))ω

n(x, y)
}

= argmin
u

{∑
x∈Ω

∑
y∈Ω ln (δh(uB(x)− uB(y)))ω

n(x, y) := H(u;un)
}
.

(4)

Please note H is easy to optimized since it is a quadratic term.
In our previous work [18], we reinterpreted the above EM process in a variational framework. The E-step

and M-step can be regarded as two steps of alternating direction minimization method. For completeness,
we list the main results of [18] here:

Lemma 3.1 (Commutativity of log-sum operations). Given a function δh(x, y) > 0, we have

−
∑
x∈Ω

ln
∑
y∈Ω

δh(x, y) = min
ω∈C

−
∑
x∈Ω

∑
y∈Ω

ln δh(x, y)ω(x, y) +
∑
x∈Ω

∑
y∈Ω

ω(x, y) lnω(x, y)

 ,

where C =
{
ω(x, y) : 0 ⩽ ω(x, y) ⩽ 1,

∑
y∈Ω ω(x, y) = 1, ∀x ∈ Ω

}
.

Hence, we define

H(u, ω) = −
∑
x∈Ω

∑
y∈Ω

ln δh(uB(x)− uB(y))ω(x, y) +
∑
x∈Ω

∑
y∈Ω

ω(x, y) lnω(x, y),

and can get

min
u

E1(u) = min
u

{
min
ω∈C

H(u, ω)

}
.

One can choose the alternating direction minimization method to solve such a problem and get an iteration
scheme  ωn+1 = argmin

ω∈C
H(un, ω),

un+1 = argmin
u

H(u, ωn+1).
(5)

It is easy to check that the two problems in (5) are equal to the E-step (3) and M-step (4), respectively.
Moreover, for the scheme (5), we have

Lemma 3.2 (Energy Descent). The sequence un produced by iteration scheme (5) satisfies

E1(u
n+1) ⩽ E1(u

n).

Based on the former analysis, we employ the functional H(u, ω) as the regularization term and propose
the following image restoration functional

(u∗, ω∗) = argmin
u,ω∈C

λ

2

∑
x∈Ω

(u(x)− v(x))2 + h
∑
x∈Ω

∑
y∈Ω

ω(x, y) lnω(x, y) +
∑
x∈Ω

∑
y∈Ω

||uB(x)− uB(y||2ω(x, y)

 .

By setting λ = 0, the above model can be regarded as an extension of nonlocal means method. To be
different from the nonlocal means in which the weighting functions are manually chosen according to some
experience, here the weighting functions are determined by the restoration cost functional itself. Besides,
the estimation in nonlocal means is point by point but here is blocks based. Generally speaking, the block
based estimation can improve the precision and be more robust to noise. It is well known that the nonlocal
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means is related to the nonlocal H1 regularization problem, hence we can extend the block based method
to the nonlocal TV version. In the next section, from the view of the variational method, we will propose a
block nonlocal TV model with adaptive weighting functions.

3.2. Variational Framework

3.2.1. Some Definitions and Notations

Let Ω ⊂ R2 be a bounded and open set, Br ⊂ R2 be a small symmetrical region centered at 0 with
radius r, i.e. Br = {z : ||z|| < r}. ω : Ω × Ω → R+ is a nonnegative smooth weighting function, u : Ω → R
is an image function, and g : Br → R+, ρε : Bε → R+ are two others smooth weighting function with
g(z) = g(−z),

∫
Br

g(z)dz = 1 and
∫
Bε

ρε(z)dz = 1. Denote Ω̃ = Ω + Br + Bε = {x|x = x1 + x2 + x3, x1 ∈
Ω, x2 ∈ Br, x3 ∈ Bε}. We use the symbol “˜” to represent an expansion of a function. For example, ũ is an
expansion of u with

ũ(x) =

{
u(x), x ∈ Ω,

u0(x), x ∈ Ω̃\Ω.

In which u0(x) is a given function associated to the so-called boundary condition. To simplify the following
formulations, here we set the boundary condition u0(x) = 0. Other boundary conditions such as Neumann
boundary condition also can be discussed as the similar way. In the next discussion, without special state-
ment, the boundary conditions are all set to 0 if we need the expansions of any functions. The symbol ”∗”
is used to represent the convolution operator, namely, (ρε ∗ u)(x) =

∫
Bε

ρε(y)u(x− y)dy.
We define a block nonlocal gradient operator

∇g
ω : L2(Ω) → L2(Ω× Ω×Br),

which has the following representation:

∇g
ωu(x) =

√
g(z)[(ρε ∗ ũ)(y + z)− (ρε ∗ ũ)(x+ z)]

√
w(x, y), ∀x ∈ Ω, y ∈ Ω, z ∈ Br.

Here we employ two smooth function g and ρε in the definition of the block nonlocal gradient since we need
ρε to keep the later constructed regularization term to possess some better mathematical properties, which
can theoretically guarantee that we can proof the existence of solutions for our proposed model (please see
in section 3.2.4). Hence, the related block nonlocal divergence operator divgω : L2(Ω×Ω×Br) → L2(Ω) can
be given by

divgωp(x, y, z) =

∫
Ω

∫
Br

∫
Bε

√
g(z)ρε(s)

[
p̃(x− z + s, y, z)

√
ω̃(x− z + s, y)− p̃(y, x− z + s, z)

√
ω̃(y, x− z + s)

]
dsdzdy.

It is easy to check
< ∇g

ωu, p >= − < divgωp, u >

with the 0 boundary conditions for p, ω and u. Here <,> is the standard inner product in L2.
The related block nonlocal Laplacian operator △g

ω : L2(Ω) → L2(Ω) is given by

△g
ωu(x) =

∫
Ω

∫
Br

∫
Bε

g(z)ρε(s) [(ρε ∗ ũ)(y + z)− (ρε ∗ ũ)(x+ s)] [ω̃(y, x− z + s) + ω̃(x− z + s, y)] dsdzdy

which satisfies △g
ω = divgω∇g

ω.
The proposed blocked based nonlocal operators can be considered as the vector-valued extensions of the

existing nonlocal operators. Please see the figure 1 for some comparisons.

3.2.2. Block Nonlocal H1 with Adaptive Weighting Function

The block nonlocal H1 norm of u can be given as

(H1)gω(u) =

∫
Ω

∫
Ω

∫
Br

g(z)[(ρε ∗ ũ)(y + z)− (ρε ∗ ũ)(x+ z)]2ω(x, y)dzdydx.
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Figure 1: Comparison of point based nonlocal operator and the proposed block based nonlocal operator.

Thus, the previous model can be modified as BNLH1 model:

(u∗, ω∗) = argmin
u,ω∈C

{
λ

2

∫
Ω

(u(x)− v(x))2dx+ h

∫
Ω

∫
Ω

ω(x, y) lnω(x, y)dydx+ (H1)gω(u)

}
,

where C =
{
ω(x, y) : 0 ⩽ ω(x, y) ⩽ 1,

∫
Ω
ω(x, y)dy = 1, ∀x ∈ Ω

}
3.2.3. Block Nonlocal TV

By defining

TV g
ω (u) =

∫
Ω

√∫
Ω

∫
Br

g(z)[(ρε ∗ ũ)(y + z)− (ρε ∗ ũ)(x+ z)]2ω(x, y)dzdydx.

we get a BNLTV model:

(u∗, ω∗) = argmin
u,ω∈C

{
λ

2

∫
Ω

(u(x)− v(x))2dx+ h

∫
Ω

∫
Ω

ω(x, y) lnω(x, y)dydx+ TV g
ω (u)

}
, (6)

where C =
{
ω(x, y) : 0 ⩽ ω(x, y) ⩽ 1,

∫
Ω
ω(x, y)dy = 1, ∀x ∈ Ω

}
.

In the proposed method, there are some convolutions ρε ∗ ũ in regularization term. As mentioned earlier,
the reason for such a design is that these convolutions operators can help us to theoretically proof the
existence of minimizers. From the viewpoint of statistics, it requires that there are some self-similarity
blocks in the smooth version of image u. This requirement is reasonable. In practice computation, we can
let ε be small enough, and then ρε becomes a delta function.

3.2.4. Existence of Minimizer for the Proposed Models

In this section, we will proof the existence of minimizer for BNLH1. As to the BNLTV model, we have
not yet investigated a theoretical result and let us leave it as a future work.

Let us consider the energy functional for BNLH1 model

J(u, ω) =
λ

2

∫
Ω

(u(x)− v(x))2dx+ h

∫
Ω

∫
Ω

ω(x, y) lnω(x, y)dydx+ (H1)gω(u) (1)
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We will show the existence of minimizer for (1) in the following space

X := {(u, ω) : u ∈ L2(Ω), 0 ≤ ω ≤ 1, a.e., and

∫
Ω

ω(x, y)dy = 1, a.e.x ∈ Ω}.

Proposition There exists a solution for BNLH1 model

min
(u,ω)∈X

J(u, ω) (2).

Proof: Let

J1(u) =
λ

2

∫
Ω

(u(x)− v(x))2dx,

J2(ω) = h

∫
Ω

∫
Ω

ω(x, y) lnω(x, y)dydx,

J3(u, ω) =

∫
Ω

∫
Ω

∫
B

g(z)(ρε ∗ ũ(y + z)− ρε ∗ ũ(x+ z))2ω(x, y)dzdydx.

It is obviously that J1(u) ≥ 0 and J3(u, ω) ≥ 0. Futhermore, since x lnx ≥ − 1
e whenever x ≥ 0 and Ω

is a bounded domain, J2(ω) ≥ −h
e |Ω|

2. That is, J(u, ω) has a lower bound and inf
(u,ω)∈X

J(u, ω) exists. Let

{(un, ωn)} be a minimizing sequence of (2), i.e. a sequence such that

J(un, ωn) → inf
(u,ω)

J(u, ω).

It is clear that ∥ωn∥L∞ ≤ 1 and ωn ∈ L∞(Ω×Ω) , as L∞ is the conjugate space of L1 which is a separable
linear normed space, by the Banach-Alaoglu Theorem, there is a * weakly convergent subsequence(which we
relabel by n), and a * weak limit ω ∈ L∞(Ω× Ω) such that

ωn
∗
⇀ ω in L∞(Ω× Ω),

That is, for any φ ∈ L1(Ω× Ω),∫
Ω×Ω

ωn(x, y)φ(x, y)dxdy →
∫
Ω×Ω

ω(x, y)φ(x, y)dxdy, n → +∞.

Since ω lnω is continuous and convex with respect to ω, it is quasiconvex and J2(ω) is * weakly lower
semicontinuous, i.e.

lim inf
n→∞

∫
Ω

∫
Ω

ωn(x, y) lnωn(x, y)dydx ≥
∫
Ω

∫
Ω

ω(x, y) lnω(x, y)dydx.

We also need to verify the * weak limit ω is in X, that is, 0 ≤ ω ≤ 1 a.e., and
∫
Ω
ω(x, y)dy = 1, a.e. x ∈ Ω.

Owing to ωn
∗
⇀ ω in L∞, then, for any φ ∈ L1,∫

Ω

∫
Ω

ωn(x, y)φ(x, y)dydx →
∫
Ω

∫
Ω

ω(x, y)φ(x, y)dydx (3)

Set A = {(x, y) ∈ Ω × Ω : ω(x, y) > 1}, Br = {(x, y) ∈ Ω × Ω : ω(x, y) < 0}, φ1(x, y) = χA(x, y),
φ2(x, y) = χBr (x, y), then φ1, φ2 ∈ L1(Ω× Ω). We will show that |A| = 0 and |Br| = 0.

Substituting φ1 for φ in (3), we obtain∫
A

ωn(x, y)dydx →
∫
A

ω(x, y)dydx (4)

If |A| ̸= 0, the right hand side of (4) is bigger than |A|, by sign-preserving theorem of limit, there is a N > 0,
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for any n > N ,
∫
A
ωn(x, y)dydx > |A|. However, since ωn ≤ 1, the left hand side of (4) should be smaller

than or equal to |A| for any n, which is a contradiction. Thus, we have |A| = 0. In the same way, we obtain
|Br| = 0. The results show that 0 ≤ ω ≤ 1 a.e..

Let f(x) =
∫
Ω
ω(x, y)dy, φ(x, y) = sign(f(x)− 1), then φ ∈ L1, and∫

Ω

(∫
Ω

ωn(x, y)dy

)
φ(x)dx →

∫
Ω

f(x)φ(x)dx

i.e. ∫
Ω

|f(x)− 1| dx = 0

hence,
∫
Ω
ω(x, y)dy = 1 for a.e. x ∈ Ω. Above all, we have ω ∈ X, and

lim inf
n→∞

J2(ωn) ≥ J2(ω).

Since J(u, ω) is coercive, {un} must be bounded, i.e. there is a constant M > 0 such that

∥un∥L2(Ω) ≤ M.

Boundedness of the sequence in a reflexive space implies the existence of a weakly convergent subsequence,
which we still denote by {un}, then, there is a weak limit u ∈ L2(Ω) such that

un ⇀ u.

Since J1 : u 7→ λ
2

∫
Ω
(u(x)− v(x))2dx is continuous and convex, and un ⇀ u in L2(Ω), then

lim inf
n→∞

λ

2

∫
Ω

(un(x)− v(x))2dx ≥ λ

2

∫
Ω

(u(x)− v(x))2dx

i.e.
lim

n→∞
J1(un) = J1(u).

Now, we consider the convergence of J3(un, ωn).
Here, we assume the support of g is a proper subset of B and choose ε equals to one half of the distance

between the support and B.
Set bn(x, y) =

∫
Br

g(z)(ρε ∗ ũn(x+ z)− ρε ∗ ũn(y + z))2dz. By the smoothness of convolution operation,

integral bn depending on parameters x, y is in C1(Ω× Ω), and

∂bn
∂x

(x, y) = 2

∫
Br

g(z)(ρε ∗ ũn(x+ z)− ρε ∗ ũn(y + z))

(
∂ρε
∂x

∗ ũn(x+ z)

)
dz,

∂bn
∂y

(x, y) = 2

∫
Br

g(z)(ρε ∗ ũn(x+ z)− ρε ∗ ũn(y + z))

(
∂ρε
∂y

∗ ũn(x+ z)

)
dz.

As ∫
Ω

∫
Ω

|bn(x, y)|dxdy ≤ 2

∫
Ω

∫
Ω

∫
Br

g(z)[(ρε ∗ ũn(x+ z))2 + (ρε ∗ ũn(y + z))2]dzdxdy

≤ 4|Ω|∥g∥∞
∫
Ω

∫
Br

(ρε ∗ ũn(x+ z))2dzdx ≤ 4|Ω||B|∥g∥∞M2,

∫
Ω

∫
Ω

|∇xbn(x, y)|dxdy ≤ 2

∫
Ω

∫
Ω

∫
Br

g(z)|ρε ∗ ũn(x+ z)− ρε ∗ ũn(y + z)|
∣∣∣∣∂ρε∂x

∗ ũn(x+ z)

∣∣∣∣dzdxdy
≤ 4|Ω||B|∥g∥∞∥ρε∥1,∞M2,
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then {bn(x, y)} is a bounded sequence in W 1,1(Ω × Ω). By Rellich-Kondrachov Compactness Theorem,
W 1,1(Ω×Ω) is compactly embedded in L1(Ω×Ω), i.e. there exists a subsequence {bn(x, y)} which converges
to b(x, y) in L1(Ω× Ω).

Apparently, J3(u, ω) is continuous and convex in u, then it is weakly lower semicontinuous, that is,

lim inf
n→+∞

∫
Ω

∫
Ω

bn(x, y)ω(x, y)dzdxdy ≥
∫
Ω

∫
Ω

∫
Br

g(z)(ρε ∗ ũ(x+ z)− ρε ∗ ũ(y + z))2ω(x, y)dzdxdy.

Furthermore,∫
Ω

∫
Ω

bn(x, y)(ωn(x, y)− ω(x, y))dydx

=

∫
Ω

∫
Ω

(bn(x, y)ωn(x, y)− b(x, y)ω(x, y))dydx+

∫
Ω

∫
Ω

(b(x, y)ω(x, y)− bn(x, y)ω(x, y))dydx

=

∫
Ω

∫
Ω

(bn(x, y)− b(x, y))ωn(x, y)dydx+

∫
Ω

∫
Ω

b(x, y)(ωn(x, y)− ω(x, y))dydx

+

∫
Ω

∫
Ω

(b(x, y)− bn(x, y))ω(x, y)dydx

Because of ωn
∗
⇀ ω in L∞(Ω× Ω), bn → b in L1(Ω× Ω), we have

lim
n→+∞

∫
Ω

∫
Ω

bn(x, y)(ωn(x, y)− ω(x, y))dydx = 0.

As

J3(un, ωn) =

∫
Ω

∫
Ω

bn(x, y)ωn(x, y)dxdy =

∫
Ω

∫
Ω

bn(x, y)(ωn(x, y)−ω(x, y))dxdy+

∫
Ω

∫
Ω

bn(x, y)ω(x, y)dxdy,

we have
lim inf
n→+∞

J3(un, ωn) ≥ J3(u, ω).

In a word,
J(u, ω) = J1(u) + J2(ω) + J3(u, ω) ≤ lim inf

n→∞
J(un, ωn),

and
J(u, ω) = inf

(u,ω)∈X
J(u, ω),

which completes the proof.

4. Algorithms

To simplify the computation, we can set ρε to the delta function δ, thus ρε ∗ ũ = δ ∗ ũ = ũ. In the
following discussion, we set ρε = δ.

The BNLH1 model can be directly minimized by an alternating direction minimization algorithm. We
summary the steps in algorithm (4.1)

Algorithm 4.1. Given an initial value u0 = v, for n = 1, 2, 3, · · · , do
Step1, calculating the weighting function by

ωn+1(x, y) =

exp

(
−
∫
Br

g(z)(ũn(y + z)− ũn(x+ z))2dz

h

)
∫
Ω

exp

(
−
∫
Br

g(z)(ũn(y + z)− ũn(x+ z))2dz

h

)
dy

.
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Step 2, restoring un+1 by solving the following equation

−△g
ωn+1u+ λu = λv.

Step 3, if the convergence condition ||un+1−un||2
||un||2 less than a tolerant error, then stop. Otherwise, go to the

step 1.

As to BNLTV, we need to employ some more efficient algorithms, such as augmented Lagrangian method
an splitting Bregman method. Here, we write the iteration scheme as augmented Lagrangian method.

Let us introduce a function q = (∇g
ω)u, the BNLTV model is equal to the constraint minimization problem

(u∗, ω∗, q∗) = argmin
u,ω∈C,q=(∇g

ω)u

{
λ

2

∫
Ω

(u(x)− v(x))2dx+ h

∫
Ω

∫
Ω

ω(x, y) lnω(x, y)dydx+

∫
Ω

||q(x, ·, ·)||2dx
}
.

By applying standard augmented Lagrangian method, one can get a Lagrangian function

L(u, ω, q, d) =
λ

2

∫
Ω

(u(x)−v(x))2dx+h

∫
Ω

∫
Ω

ω(x, y) lnω(x, y)dydx+

∫
Ω

||q(x, ·, ·)||2dx+ < d, q−(∇g
ω)u > +

η

2
||q−(∇g

ω)u||22.

The saddle of L can be split as 4 subproblems, each subproblem is easy to solve.

Subproblem 1: expectation maximum step

ωn+1 = argmin
ω∈C

L(un+1, w, qn, dn) = argmin
ω∈C

{
h

∫
Ω

∫
Ω

ω(x, y) lnω(x, y)dydx+
η

2
||qn − (∇g

ω)u
n+1 +

dn

η
||22
}
.

Subproblem 2: restoration step

un+1 = argmin
u

L(u,wn, qn, dn) = argmin
u

{
λ

2

∫
Ω

(u(x)− v(x))2dx+
η

2
||qn − (∇g

ωn)u+
dn

η
||22
}
.

Subproblem 3: gradient updating

qn+1 = argmin
q

L(un+1, wn+1, q, dn) = argmin
q

{∫
Ω

||q(x, ·, ·)||2dx+
η

2
||q − (∇g

ωn+1)u
n+1 +

dn

η
||22
}
.

Subproblem 4: Lagrangian multiplier updating

dn+1 = argmax
d

L(un+1, wn+1, qn+1, d) = argmax
d

{
< d, qn+1 − (∇g

ωn+1)u
n+1 >

}
.

As to the subproblem 1, we can use the first order optimization condition to get an approximation
solution. For simplifying the representation, let us denote

An(x, y) =

exp

{
− η

2h

∫
Br

[
g(z)(ũn+1(y + z)− ũn+1(x+ z))2 + 1√

ωn(x,y)

√
g(z)(ũn+1(y + z)− ũn+1(x+ z))(qn(x, y, z) + dn(x,y,z)

η )

]
dz

}
.

Then we obtain

ωn+1(x, y) =
An(x, y)∫

Ω
An(x, y)dy

. (7)

To get the solution of subproblem 2, we need to solve equation

λu− η△g
ωu = λv − ηdivgω(q

n +
dn

η
). (8)
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This equation can be solved iteratively by many methods such as Gauss-Seidel iteration.
qn+1 can be given by a shrinkage process

qn+1(x, y, z) = S((∇g
ωn+1)u

n+1(x, y, z)− dn(x, y, z)

η
, η), (9)

where the shrinkage operator

S(f(x, y, z), η) =

{
f(x,y,z)

||f(x,·,·)||2 (||f(x, ·, ·)||2 −
1
η ), ||f(x, ·, ·)||2 ⩾ 1

η ,

0, ||f(x, ·, ·)||2 < 1
η ,

and ||f(x, ·, ·)||2 =
√∫

Ω

∫
Br

f2(x, y, z)dzdy. The last subproblem can be easily maximized by

dn+1(x, y, z) = dn(x, y, z) + τ(qn+1(x, y, z)− (∇g
ωn+1)u

n+1(x, y, z)), (10)

where 0 < τ < 2η is a parameter which controls the convergence of the augmented Lagrangian algorithm.
Usually, it can be chosen as τ = η.

We summarize the steps as algorithm 4.2

Algorithm 4.2. Given an initial value u0 = v, ω0 = 1
|Ω| , d

0 = q0 = 0, for n = 1, 2, 3, · · · , do
Step1, weighting function updating.:
Calculating the weighting function by (7).
Step 2, image restoration:
Restoring un+1 by solving the equation (8).
Step 3, gradient updating:
Computing qn+1 according to (9).
Step 4, Lagrangian multiplier updating:
Renewing dn+1 by formulation (10).
Step 5, convergence checking:

If the convergence condition ||un+1−un||2
||un||2 less than a tolerant error, then stop. Otherwise, go to the step 1.

5. Experimental Results

In this section, we will show some numerical results for the proposed method and make some comparison
with some related methods. Without special statements, in the proposed method, some parameters are
chosen as following: h = 0.252, σ = 3.0, η = 10, Br is set to a 7×7 rectangle path. λ is set as different values
according to the noise levels, we will list the exact values later. For computational efficiency and saving
memory storage, we do not let y go through the entire Ω and just set a 13× 13 search window for every x.

According to the definition of the block gradient operator ∇g
ω, both local and nonlocal factors are con-

sidered by the variables y and z, respectively. Thus, the proposed block based ones are more robust for
heavy noise than the point based nonlocal operators [10]. Let us give an intuitive interpretation for such a
diffusion mechanism. Let ρε = δ and ω be symmetrical, then the Gauss-Seide iteration for −△g

ωu would be

un+1(x) =

∫
Ω

∫
Br

un(y + z)ω(x− z, y)g(z)dzdy∫
Ω

∫
Br

g(z)ω(x− z, y)dzdy
. (11)

This equation means that all of the pixels at y and y + z are averaged with the weighting function ω(x −
z, y)g(z). The pixels located at y could be far way from x, these pixels can be regarded as nonlocal ones. Since
z only can be taken in a local neighborhood centered at 0, thus y + z are local positions of y. Furthermore,
please note that the path centered at y with large weight would be very similar to the one centered at x,
then u(y + z) can be regarded as similar local pixels of u(x). In this sense, the block nonlocal diffusion are
both local and nonlocal. Please see figure 2 for the ideas.
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ω(x − z, y)

Figure 2: The schematic plot of the Gauss-Seide iteration for −△g
ωu

The equation (11) also can be reformulated as

un+1(x) =

∫
Ω

∫
Br

un(y)ω(x− z, y − z)g(z)dzdy∫
Ω

∫
Br

g(z)ω(x− z, y − z)dzdy

with some appropriate boundary condition. From this viewpoint, the above formulation means that one pixel
u(x) may be contained in many overlapping patches in the block based mode, thus u(x) would be estimated
for many times. Our formulation give a weighting function to average all the repeatedly estimated û(x).
Thus, the block based operators are more robust for noise. It can be found in the following experiments.

In the first experiment, we show the superiority of block diffusion operators. The clean original “barbara“
image in the figure 3(a) was destroyed by the additive Gaussian white noise with standard deviation σ = 80,
and the noisy image was shown in the figure 3(b). We recover it with different denoising methods. For each
algorithm, we try different parameters and select the best reconstructed results (with the highest PSNR)
for comparison. Let us first show the differences of local, nonlocal and block based nonlocal operators. To
see this clearly, we fix the weighting functions and do not update them in the related nonlocal methods.
The result produced by TV [22] was displayed in the figure 3(c), one can find this restored image is almost
piecewise constant and loses a lot of texture structures. The PSNR for TV is 22.08 dB. Compared with
TV, the NLTV [10] can keep more texture details since the repeat structure information was used in this
model. However, some recovered textures demonstrated in the figure 3(d) are still not very clear since the
noise is very heavy. Please find the texture details comparison in the figure 4 which contains the related
enlargements of white rectangle areas in figure 3. The PSNR of NLTV is 22.45 dB, which is higher than
TV’s. In the figure 4(g), we show the result provided by the proposed block based nonlocal method BNLTV.
One can find it can produce better texture restorations with PSNR 22.90 dB(please see figure 4 for texture
details) under heavy noise because both of the local and nonlocal information are used in this algorithm. In
this experiment, the fidelity parameters for TV, NLTV, and BNLTV are 3.6, 1.0 and 2.0, respectively.

In the next, the advantages of the weighting function updating will be illustrated. In figure 6, we restore
the same noisy image in figure 4 by using the NLTV and BNLTV (algorithm 4.2) with 10 times iteration.
The related result are shown as in the figure 5(a) and 5(b), respectively. Obviously, the reconstructed images
have a much better quality than the previous ones, please also see the details comparison in figure 4. It is
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σ
Images Methods 10 30 50 80 100 120
Barbara NLTV [10] 33.08 27.41 24.70 22.45 21.52 20.95

(512× 512) BNLTV 33.53 28.36 25.76 23.62 22.92 22.15
Lena NLTV [10] 33.42 27.50 25.16 23.00 21.99 21.21

(256× 256) BNLTV 33.69 28.39 25.77 24.31 23.52 22.79
House NLTV [10] 35.20 30.20 27.30 24.63 23.46 22.65

(256× 256) BNLTV 35.30 30.79 28.42 26.21 25.29 24.35

Table 1: PSNRs (dB) for NLTV and the proposed BNLTV under Gaussian noise with different levels.

reasonable because the weighting function could be improved by some new estimated images. We display
the PSNR values of the BNLN method during the iteration in the figure 6. The final PSNR of NLTV
and BNLTV are 23.22 dB and 23.62 dB, respectively. Compared to the previous result without weighting
function updating, the PSNRs are improved more than 0.7 dB. Based on some experimental experience, we
find that it would be better to choose a big fidelity parameter to prevent the recovered image over smooth,
thus we set the fidelity parameter λ to be 4.0 for NLTV and 2.0 for BNLTV.

For more comparison results of different test images under a variety of noise levels, please see in table 1.
It can be found that the proposed BNLTV has a better performance than NLTV in all the cases. Generally
speaking, the heavier the noise, the larger increasement for the PSNR.

6. Conclusion and Discussion

In this paper, we proposed a block based nonlocal method for image restoration. In our model, the
weighting function in nonlocal method is not fixed but adaptively determinated by the cost functional itself.
The weighting function ω(x, y) also has a statistical meaning, and it stands for a probability of the similarity
between patches centered at x and y. By updating the weighting function, the quality of the restored
images will be greatly improved, especially under the heavy noise. Besides, we also extend the existing point
based nonlocal diffusion to a block based one. The numerical results show that the proposed block nonlocal
operators are more robust for noise than the previous ones. It can help us to get a better reconstruction
images.

The proposed method can be applied in many image tasks. One of the possible application is the
inpainting and compressed sensing, in which the weights are more important and our method would greatly
improve the results. Due to the page limitation, let us left them as a future work in the oncoming another
paper.

Though the proposed method can produce better result than the existing NLTV, the computational cost
is higher than NLTV. Generally speaking, for 256 × 256 images, it would cost about 11 seconds CPU time
on MacBook Pro 2011 for one outer iteration (including the weight calculation and restoration).
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